
Fully Homomorphic Encryption without Squashing
Using Depth-3 Arithmetic Circuits

Craig Gentry and Shai Halevi
IBM T.J. Watson Research Center

April 14, 2011

Abstract

All currently known fully homomorphic encryption (FHE) schemes use the same blueprint from
[Gentry 2009]: First construct a somewhat homomorphic encryption (SWHE) scheme, next “squash”
the decryption circuit until it is simple enough to be handled within the homomorphic capacity of the
SWHE scheme, and finally “bootstrap” to get a FHE scheme. In all existing schemes, the squashing
technique induces an additional assumption: that the sparse subset sum problem (SSSP) is hard.

We describe a new approach that constructs FHE as a hybrid of a SWHE and a multiplicatively
homomorphic encryption (MHE) scheme, such as Elgamal. Our construction eliminates the need for
the squashing step, and thereby also removes the need to assume the SSSP is hard. We describe a few
concrete instantiations of the new method, obtaining the following results:

• A “simple” FHE scheme where we replace SSSP with Decision Diffie-Hellman.

• The first FHE scheme based entirely on worst-case hardness. Specifically, we describe a “leveled”
FHE scheme whose security can be quantumly reduced to the approximate shortest independent
vector problem over ideal lattices (ideal-SIVP).

• Some efficiency improvements for FHE. While at present our new method does not improve compu-
tational efficiency, we do provide an optimization that reduces the ciphertext length. For example,
at one point, the entire FHE ciphertext may consist of a single Elgamal ciphertext!

Our new method does not eliminate the bootstrapping step. Whether this can be done remains an in-
triguing open problem. As in the previous blueprint, we can get “pure” (non-leveled) FHE by assuming
circular security.

Our main technique is to express the decryption function of SWHE schemes as a depth-3 (
∑∏∑

)
arithmetic circuit of a particular form. When evaluating this circuit homomorphically, as needed for
bootstrapping, we temporarily switch to a MHE scheme, such as Elgamal, to handle the

∏
part. We then

translate the result back to the SWHE scheme by homomorphically evaluating the decryption function
of the MHE scheme. (Due to the special form of the circuit, switching to the MHE scheme can be
done without having to evaluate anything homomorphically.) Using our method, the SWHE scheme
only needs to be capable of evaluating the MHE scheme’s decryption function, not its own decryption
function. We thereby avoid the circularity that necessitated squashing in the original blueprint.

1 Introduction

Fully homomorphic encryption allows a worker to receive encrypted data and perform arbitrarily-complex
dynamically-chosen computations on that data while it remains encrypted, despite not having the secret
decryption key. Several fully homomorphic encryption (FHE) schemes appeared recently [3, 17, 14, 5], all
following the same blueprint as Gentry’s original construction [3, 2]:

1. SWHE. Construct a somewhat homomorphic encryption (SWHE) scheme – roughly, a scheme that can
evaluate low-degree polynomials homomorphically.

2. Squash. “Squash” the decryption function of the SWHE scheme, until decryption can be expressed as
polynomial of degree low enough to be handled within the homomorphic capacity of the SWHE scheme,
with enough capacity left over to evaluate a NAND gate. This is done by adding a “hint” to the public key
– namely, a large set of elements that has a secret sparse subset that sums to the original secret key.

3. Bootstrap. Given a SWHE scheme that can evaluate its decryption function (plus a NAND), apply
Gentry’s transformation to get a “leveled”1 FHE scheme.

Here, we describe a new blueprint for FHE: we construct leveled FHE by combining a SWHE scheme
with a “compatible” multiplicatively homomorphic encryption (MHE) scheme (such as Elgamal) in a sur-
prising way. Our construction does not use squashing, and does not rely on the assumed hardness of the
sparse subset sum problem (SSSP). With our new blueprint, we construct a “simple” leveled FHE scheme
where SSSP is replaced with Decision Diffie-Hellman. We also construct the first leveled FHE scheme
whose security is based entirely on the worst-case hardness of the shortest independent vector problem over
ideal lattices (ideal-SIVP) (compare [4]). Finally, we get shorter ciphertexts: at one point during the boot-
strapping process, the entire leveled FHE ciphertext consists of a single MHE (e.g., Elgamal) ciphertext!

We do not eliminate the bootstrapping step. Whether this can be done remains an intriguing open
problem. As in Gentry’s original blueprint, we obtain a pure FHE scheme by assuming circular security.
At present, our new approach does not improve efficiency, aside from the optimization that reduces the
ciphertext length.

1.1 Our Main Technical Innovation

Our main technical innovation is a new way to (homomorphically) evaluate the decryption circuits of the
underlying SWHE schemes. Decryption in these schemes involves computing a threshold function, that can
be expressed as a multilinear symmetric polynomial. Previous works [3, 17, 14, 5] evaluated those poly-
nomials in the “obvious way” using boolean circuits. Instead, here we use Ben-Or’s observation (reported
in [10]) that multilinear symmetric polynomials can be computed by depth-3 (

∑∏∑
) arithmetic circuits

over Zp for large enough prime p. Let ek(·) be the n-variable degree-k elementary symmetric polynomial,
and consider a vector ~x = 〈x1, . . . , xn〉 ∈ {0, 1}n. The value of ek(~x) is simply the coefficient of zn−k in
the univariate polynomial P (z) =

∏n
i=1(z+xi). This coefficient can be computed by fixing an arbitrary set

A = {a1, . . . , an+1} ⊆ Zp, then evaluating the polynomial P (z) at the points in A to obtain tj = P (aj),
and finally interpolating the coefficient of interest as a linear combination of the tj’s. The resulting circuit
has the form ek(~x) =

∑n+1
j=1 λjk

∏n
i=1(aj + xi) (mod p), where λjk’s are the interpolation coefficients

(which are some known constants in Zp). Any multilinear symmetric polynomial over ~x can be computed
as a linear combination of the ek(~x)’s, and thus has the same form (with different λ’s).

1In a “leveled” FHE scheme, the size of the public key is linear in the depth of the circuits that the leveled FHE scheme can
evaluate. One can obtain a “pure” FHE scheme (with a constant-sized public key) from a leveled FHE scheme by assuming “circular
security” – namely, that it is safe to encrypt the leveled FHE secret key under its own public key.

1

By itself, Ben-Or’s observation is not helpful to us, since (until now) we did not know how to bootstrap
unless the polynomial degree of the decryption function is low. Ben-Or’s observation does not help us
lower the degree (indeed it increases the degree).2 Our insight is that to evaluate Ben-Or’s high-degree∑∏∑

circuit, we can evaluate the
∏

part by temporarily working with a MHE scheme, such as Elgamal
[1]. We first use a simple trick to get an encryption under the MHE scheme of all the (aj + xi) terms in
Ben-Or’s circuit, then use the multiplicative homomorphism to multiply them, and finally convert them back
to SWHE ciphertexts to do the final sum. Conversion back from MHE to SWHE is done by running the
MHE scheme’s decryption circuit homomorphically within the SWHE scheme, which may be expensive.
However, the key point is that the degree of the translation depends only on the MHE scheme and not on
the SWHE scheme. This breaks the self-referential requirement of being able to evaluate its own decryption
circuit, hence obviating the need for the squashing step. Instead, we can now just increase the parameters of
the SWHE scheme until it can handle the MHE scheme’s decryption circuit.

1.2 Example: An Elgamal-Based Instantiation

Perhaps the simplest illustration of our idea is using Elgamal encryption to do the multiplication. So, we
sketch a non-optimized Elgamal-based instantiation here in the Introduction.

Let p = 2q + 1 be a safe prime. Elgamal messages and ciphertext components will live in QR(p), the
group of quadratic residues modulo p. We also use a SWHE scheme with plaintext space Zp. (All previous
SWHE schemes without squashing [3, 17, 14, 5] can be adapted to handle this large plaintext space).

We require the SWHE scheme to have a decryption function that can be expressed as a “restricted”
depth-3 arithmetic circuit. We define “restricted” in Section 2. For now, we just mention that Ben-Or’s
observation implies that all multilinear symmetric polynomials can be evaluated by depth-3 circuits that are
“restricted” according to our definition. Also, we will show that many lattice-based decryption schemes,
including all known SWHE schemes [3, 17, 14, 5], have decryption functions that can expressed in this way.

For simplicity of presentation here, imagine that the SWHE secret key is a bit vector ~s = (s1, . . . , sn) ∈
{0, 1}n, the ciphertext that we want to decrypt is also a bit vector ~c = (c1, . . . , cn) ∈ {0, 1}n, and that
decryption works by first computing xi ← si · ci for all i, and then running the

∑∏∑
circuit, taking ~x as

input. Imagine that decryption can be expressed as a depth-3 circuit that is “restricted” in the sense that the
bottom level of sums are of the form aj + xi – i.e., linear equations with only one variable xi. Assume the
circuit simply performs something like interpolation – namely, it computes f(~x) =

∑n+1
j=1 λj

∏n
i=1(aj+xi),

where the aj’s and λj’s are publicly known constants in Zp.
To enable bootstrapping, we provide (in the public key) the Elgamal secret key encrypted under the

SWHE public key, namely we encrypt the bits of the secret Elgamal exponent e individually under the
SWHE scheme. We also use a special form of encryption of the SWHE secret key under the Elgamal public
key. Namely, for each secret-key bit si and each public constant aj , we provide an ElGamal encryption of
the value aj + si ∈ Zp. The public values aj’s are chosen so that both aj , aj + 1 ∈ QR(p), hence that
aj + si is always in the Elgamal plaintext space.3

Now let ~c ∈ {0, 1}n be a SWHE ciphertext that we want to decrypt homomorphically. First, for each
(i, j), we obtain an Elgamal ciphertext that encrypts aj + (si · ci) as follows: if ci = 0 then aj + (si · ci) =
aj , so we simply generate a fresh encryption of the public value aj . On the other hand, if ci = 1 then

2The degree of P (z) is n, whereas in the previous blueprint Gentry’s squashing technique is used to ensure that the Hamming
weight of ~x is at most m� n, so that it suffices to compute ek(~x) only for k ≤ m.

3An amusing exercise: Prove that the number of aj’s with aj , aj +1 ∈ QR(p) is (p− 3)/4 when p = 3 mod 4 and (p− 5)/4
when p = 1 mod 4.

2

aj + (si · ci) = aj + si, so we use the encryption of aj + si from the public key. (Note how the “restricted”
form of these sums aj + xi makes it easy to obtain Elgamal ciphertexts that encrypt these sums.)

Next we use Elgamal’s multiplicative homomorphism for the
∏

part of the circuit, thus getting Elgamal
encryptions of the values λj · P (aj) (where P (z) =

∏
i(z + xi)). We now need to convert these Elgamal

encryptions into SWHE encryptions of the same values in Zp. To do that we use the SWHE ciphertexts
that encrypt the bits of the Elgamal secret exponent. Denote by ei the i’th bit of the secret exponent e, and
let (y, z) = (gr,m · g−er) be an Elgamal ciphertext to be converted. We compute y2

i − 1 mod p for all
i ∈ [1, blog qc]. Using the SWHE encryptions of the bits ei, we compute SWHE ciphertexts that encrypt the
powers

yei·2
i
= eiy

2i + (1− ei)y0 = ei(y
2i − 1) + 1,

and then use multiplicative homomorphism of the SWHE scheme to multiply these powers and obtain an en-
cryption of ye. (This requires degree dlog qe). Finally, inside the SWHE scheme, we multiply the encryption
of ye by the known value z, thereby obtaining a SWHE ciphertext that encrypts m.

At this point, we have SWHE ciphertexts that encrypt the results of the
∏

operations – the values
λj · P (aj). We now use the SWHE scheme’s additive homomorphism to finish off the depth-3 circuit, thus
completing the homomorphic decryption. We can now compute another MULT or ADD operation, before
running homomorphic decryption again to “refresh” the result, ad infinitum.

As explained above, in our new blueprint, the SWHE scheme only needs to evaluate polynomials that
are slightly more complex than the MHE scheme’s decryption circuit. Specifically, for Elgamal we need to
evaluate polynomials of degree 2 dlog qe. We can use any of the prior SWHE schemes from the literature,
and set the parameters large enough to handle these polynomials. The security of the resulting leveled FHE
scheme is based on the security of its component SWHE and MHE schemes.

1.3 Leveled FHE Based on Worst-Case Hardness

We use similar ideas to get a leveled FHE scheme whose security is based entirely on the (quantum) worst-
case hardness of ideal-SIVP. At first glance this may seem surprising: how can we use a lattice-based scheme
as our MHE scheme when current lattice-based schemes do not handle multiplication very well? (This was
the entire reason the old blueprint required squashing!) We get around this apparent problem by replacing
the MHE scheme with an additively homomorphic encryption (AHE) scheme, applied to discrete logs.

In more detail, as in the Elgamal-based instantiation, the SWHE scheme uses plaintext space Zp for
prime p = 2q+ 1. But p is chosen to be a small prime, polynomial in the security parameter, so it is easy to
compute discrete logs modulo p. The plaintext space of the AHE scheme is Zq, corresponding to the space
of exponents of a generator g of Z∗p. Rather than encrypting in the public key the values aj + si (as in the
Elgamal instantiation), we provide AHE ciphertexts that encrypt the values DLg(aj + si) ∈ Zq, and use the
same trick as above to get AHE ciphertexts that encrypt the values DLg(aj+(si ·ci)). We homomorphically
add these values, getting an AHE encryption of DLg(λj · P (aj)). Finally, we use the SWHE scheme to
homomorphically compute the AHE decryption followed by exponentiation, getting SWHE encryption of
the values λj · P (aj), which we add within the SWHE scheme to complete the bootstrapping.

As before, the SWHE scheme only needs to support the AHE decryption (and exponentiation modulo the
small prime p), thus we don’t have the self-referential property that requires squashing. We note, however,
that lattice-based additively-homomorphic schemes are not completely error free, so there is a new subtlety
here. The noise in these schemes grows with the number of summands (and the number of summands
is roughly equal to the size of the SWHE ciphertext), so increasing the SWHE parameters will result in
more summands and therefore a more noisy AHE ciphertext after addition. This in turn may require larger

3

parameters of the AHE scheme to handle this more noisy ciphertext, which again means that we need larger
SWHE parameters to evaluate the AHE decryption. This may seem like it would yield self-referential
dependence again, but the dependence of the AHE noise on the number of summands is very weak (only
logarithmic), so the self-referential property can be addressed without the need for squashing. See Appendix
A.2 for more details on this construction.

2 Decryption as a Depth-3 Arithmetic Circuit

Recall that, in Gentry’s FHE, we “refresh” a ciphertext c by expressing decryption of this ciphertext as
a function Dc(s) in the secret key s, and evaluating that function homomorphically. Below, we describe
“restricted” depth-3 circuits, sketch a “generic” lattice based construction that encompasses known SWHE
schemes (up to minor modifications), and show how to express its decryption function Dc(s) as a restricted
depth-3 circuit over a large enough ring Zp. We note that Klivans and Sherstov [8] have already shown that
the decryption functions of Regev’s cryptosystems [12, 13] can be computed using depth-3 circuits.

2.1 Restricted Depth-3 Arithmetic Circuits

In our construction, the circuit that computes Dc(s) depends on the ciphertext c only in a very restricted
manner. By “restricted” we roughly mean that the bottom sums in the depth-3 circuit must come from a
fixed (polynomial-size) set L of polynomials, where L itself is independent of the ciphertext. Thus, the
bottom sums used in the circuit can depend on the ciphertext only to the extent that the ciphertext is used to
select which and how many of the polynomials in L are used as bottom sums in the circuit.

Definition 1 (Restricted Depth-3 Circuit). Let L = {Lj(x1, . . . , xn)} be a set of polynomials, all in the
same n variables. An arithmetic circuit C is an L-restricted depth-3 circuit over (x1, . . . , xn) if there exists
multisets S1, . . . , St ⊆ L and constants λ0, λ1, . . . , λt such that

C(~x) = λ0 +

t∑
i=1

λi ·
∏
Lj∈Si

Lj(x1, . . . , xn),

The degree of C with respect to L is d = maxi |Si| (we also call it the L-degree of C).

Remark 1. In our generic construction (Section 3), the Lj’s are not required to be linear. However, they
are linear in our actual instantiations, in the depth-3 decryption circuits for known SWHE schemes.

We will use Ben-Or’s observation that multilinear symmetric polynomials can be computed by restricted
depth-3 arithmetic circuits that perform interpolation. Recall that a multilinear symmetric polynomialM(~x)
is a symmetric polynomial where, for each i, every monomial is of degree at most 1 in xi; there are no high
powers of xi. A simple fact is that every multilinear symmetric polynomial M(~x) is a linear combination
of the elementary symmetric polynomials: M(~x) =

∑n
i=0 `i · ei(~x), where ei(~x) is the sum of all degree-i

monomials that are the product of i distinct variables. Also, for every symmetric polynomial S(~x), there
is a multilinear symmetric polynomial M(~x) that agrees with S(~x) on all binary vectors ~x ∈ {0, 1}. The
reason is that xki = xi for xi ∈ {0, 1}, and therefore all higher powers in S(~x) can be “flattened”; the end
result is multilinear symmetric. The following lemma states Ben-Or’s observation formally.

Lemma 1 (Ben-Or, reported in [10]). Let p ≥ n + 1 be a prime, let A ⊆ Zp have cardinality n + 1, let

~x = (x1, . . . , xn) be variables, and denote LA
def
= {(a + xi) : a ∈ A, 1 ≤ i ≤ n}. For every multilinear

symmetric polynomial M(~x) over Zp, there is a circuit C(~x) such that:

4

• C is a LA-restricted depth-3 circuit over Zp such that C(~x) ≡M(~x) (in Zp).
• C has n + 1 product gates of LA-degree n, one gate for each value aj ∈ A, with the j’th gate

computing the value λj · P (aj) =
∏
i(aj + xi) for appropriate scalar λj .

• A description of C can be computed efficiently given the values M(~x) at all ~x = 1i0n−i.

The final bullet clarifies that Ben-Or’s observation is constructive – we can compute the restricted depth-
3 representation from any initial representation that allows us to evaluate M . For completeness, we prove
Lemma 1 in Appendix B.

In some cases, it is easier to work with univariate polynomials. The following fact, captured in Lemma
2, will be useful for us: Suppose f(x) is univariate and we want to compute f(

∑
bi · ti), where the bi’s

are bits and the ti’s are small (polynomial). Then, we can actually express this computation as a multilinear
symmetric polynomial, and hence a restricted depth-3 circuit.

Lemma 2. Let T be a positive integer. Associated to inputs ~x ∈ {0, 1}Tn, there is a “universal” multilinear
symmetric polynomial M(~x) such that for all univariate polynomials f(x) and all t1, . . . , tn ∈ {0, . . . , T},

f(b1 · t1 + · · ·+ bn · tn) =M(b1, . . . , b1︸ ︷︷ ︸
t1 times

, 0, . . . , 0︸ ︷︷ ︸
T−t1 times

, b2, . . . , b2︸ ︷︷ ︸
t2 times

, 0, . . . , 0︸ ︷︷ ︸
T−t2 times

, . . . , bn, . . . , bn︸ ︷︷ ︸
tn times

, 0, . . . , 0︸ ︷︷ ︸
T−tn times

)

for all ~b ∈ {0, 1}n. Moreover, a representation of M as a LA-restricted depth-3 circuit can be computed
efficiently given input 1Tn and oracle access to f .

Proof. For ~x ∈ {0, 1}Tn, let g(~x) = f(
∑
xi). Then, we have

f(b1 · t1 + · · ·+ bn · tn) = g(b1, . . . , b1︸ ︷︷ ︸
t1 times

, 0, . . . , 0︸ ︷︷ ︸
T−t1 times

, b2, . . . , b2︸ ︷︷ ︸
t2 times

, 0, . . . , 0︸ ︷︷ ︸
T−t2 times

, . . . , bn, . . . , bn︸ ︷︷ ︸
tn times

, 0, . . . , 0︸ ︷︷ ︸
T−tn times

)

The polynomial g(~x) is symmetric. There is a multilinear symmetric polynomialM(~x) that agrees with g(~x)
on the boolean cube (this comes from “flattening” the high powers of g(~x)). By Lemma 1, we can compute
a LA-restricted depth-3 circuit representation of M(~x) by evaluating g(~x) over the vectors ~x = 1i0Tn−i,
which we can accomplish using the f -oracle.

2.2 Decryption in Lattice-Based Cryptosystems

In GGH-type [7] lattice-based encryption schemes, the public key describes some lattice L ⊂ Rn and the
secret key is a rational matrix S ∈ Qn×n (related to the dual lattice L∗). In the schemes that we consider,
the plaintext space is Zp for a prime p, and an encryption of m is a vector ~c = ~v + ~e ∈ Zn, where ~v ∈ L
and ~e is a short noise vector satisfying ~e = ~m (mod p). In Appendix C we show that decryption can be
implemented by computing ~m← ~c− d~c · Sc mod p, where d·c means rounding to the nearest integer.

Somewhat similarly to [3], such schemes can be modified to make the secret key a bit vector ~s ∈ {0, 1}N ,
such that S =

∑N
i=1 si · Ti with the Ti’s public matrices. For example, the si’s could be the bit description

of S itself, and then each Ti’s has only a single nonzero entry, of the form 2j or 2−j (for as many different
values of j as needed to describe S with sufficient precision). Differently from [3], the Ti’s in our setting
contain no secret information – in particular we do not require a sparse subset that sums up to S. The
ciphertext ~c from the original scheme is post-processed to yield (~c, {~ui}Ni=1) where ~ui = ~c · Ti, and the

decryption formula becomes ~m← ~c−
⌈∑N

i=1 si · ~ui
⌋
mod p.

Importantly, the coefficients of the ~u’s are output with only κ = dlog(N + 1)e bits of precision to the
right of the binary point, just enough to ensure that the rounding remains correct in the decryption formula.

5

(We also need to ensure that ciphertexts are close enough to the lattice so that using the decryption formula
with full-precision ~u’s would have resulted in a vector which is less than 1/2(N + 1) away from Zn.)

For simplicity hereafter, we will assume ~m = 〈0, . . . , 0,m〉 – i.e., it has only one nonzero coefficient.
Thus, the post-processed ciphertext becomes (c, {ui}) (numbers rather than vectors).

2.3 Decryption Using a Restricted Depth-3 Circuit

For the rest of this section, the details of the particular encryption scheme E are irrelevant except insofar
as it has the following decryption formula: The ciphertext is post-processed to the form (c, {ui}), and each
ui is split into an integer part and a fractional part, ui = u′i•u

′′
i , such that the fractional part has only

κ = dlog(N + 1)e bits of precision (namely, u′′i is a κ-bit integer). The secret key is ~s ∈ {0, 1}N , and the
plaintext is recovered as:

m ← c−
∑

si · u′i︸ ︷︷ ︸
“simple part”

−
⌈
2−κ ·

∑
si · u′′i

⌋
︸ ︷︷ ︸
“complicated part”

modp. (1)

We now show that we can compute Equation (1) using a LA-restricted circuit.

Lemma 3. Let prime p > 2N2. Regarding the “complicated part” of Equation (1), there is a univariate
polynomial f(x) of degree ≤ 2N2 such that f(

∑
si · u′′i) = d2−κ ·

∑
si · u′′i c mod p.

Proof. Since p > 2N2, there is a polynomial f of degree at most 2N2 such that f(x) = d2−κ · xc mod p
for all x ∈ [0, 2N2]. The lemma follows from the fact that

∑
si · u′′i ∈ [0, N · (2κ − 1)] ⊆ [0, 2N2].

Theorem 1. Let prime p > 2N2. For any A ⊆ Zp of cardinality at least 2N2 + 1, E’s decryption function
(Equation (1)) can be efficiently expressed as and computed using a LA-restricted depth-3 circuit C of
LA-degree at most 2N2 having at most 2N2 +N + 1 product gates.

Proof. First, consider the “complicated part”. By Lemma 3, there is a univariate polynomial f(x) of degree
2N2 such that f(

∑
si · u′′i) = d2−κ ·

∑
si · u′′i c mod p. Since all u′′i ∈ {0, . . . , 2N}, by Lemma 2, there is

a universal multilinear symmetric polynomial M(~x) taking 2N2 inputs such that

f(
∑

si · u′′i) =M(s1, . . . , s1︸ ︷︷ ︸
u′′1 times

, 0, . . . , 0︸ ︷︷ ︸
2N−u′′1 times

, s2, . . . , s2︸ ︷︷ ︸
u′′2 times

, 0, . . . , 0︸ ︷︷ ︸
2N−u′′2 times

, . . . , sN , . . . , sN︸ ︷︷ ︸
u′′N times

, 0, . . . , 0︸ ︷︷ ︸
2N−u′′N times

)

for all ~s ∈ {0, 1}N . By Lemma 2, we can compute M ’s representation as a LA-restricted depth-3 circuit C
efficiently. By Lemma 1, C has LA-degree at most 2N2 and has at most 2N2 + 1 product gates. We have
proved the theorem for the complicated part. To handle the “simple part” as an LA-restricted circuit, we can
re-write it as (c+N · a1)−

∑
(a1 + si) · u′i mod p with the constant term λ0 = (c+N · a1). The circuit

for the simple part has LA-degree 1 and N “product” gates.

In Section 4.2, we show how to tweak the “generic” lattice-based decryption further to allow a purely
multilinear symmetric decryption formula. (Above, only the complicated part is multilinear symmetric.)
While not essential to construct leveled FHE schemes within the new blueprint, this tweak enables interest-
ing optimizations. For example, in 4.1 we show that we can get a very compact leveled FHE ciphertext –
specifically, at one point, it consists of a single MHE ciphertext – e.g., a single Elgamal ciphertext!

6

3 Leveled FHE from SWHE and MHE

Here, we show how to take a SWHE scheme that has restricted depth-3 decryption and a MHE scheme,
and combine them together into a “monstrous chimera” [18] to obtain leveled FHE. The construction works
much like the Elgamal-based example given in the Introduction. That is, given a SWHE ciphertext, we
“recrypt” it by homomorphically evaluating its depth-3 decryption circuit, pre-processing the first level of
linear polynomials Lj(~s) (where ~s is the secret key) by encrypting them under the MHE scheme, evaluating
the products under the MHE scheme, converting MHE ciphertexts into SWHE ciphertexts of the same
values by evaluating the MHE’s scheme’s decryption function under the SWHE scheme using the encrypted
MHE secret key, and finally performing the final sum (an interpolation) under the SWHE scheme. The
SWHE scheme only needs to be capable of evaluating the MHE scheme’s decryption circuit, followed by
a quadratic polynomial. Contrary to the old blueprint, the required “homomorphic capacity” of the SWHE
scheme is largely independent of the SWHE scheme’s decryption function.

3.1 Notations

Recall that an encryption scheme E = (KeyGen,Enc,Dec,Eval) with plaintext space P is somewhat-
homomorphic (SWHE) with respect to a classF of multivariate functions4 overP , if for every f(x1, . . . , xn) ∈
F and every m1, . . . ,mn ∈ P , it holds (with probability one) that

Dec(sk,Eval(pk, f, c1, . . . , cn)) = f(m1, . . . ,mn),

where (sk, pk) are generated by KeyGen(1λ) and the ci’s are generated as ci ← Enc(pk,mi). We refer to
F as the “homomorphic capacity” of E . We say that E is multiplicatively (resp. additively) homomorphic if
all the functions in F are naturally described as multiplication (resp. addition).

Given the encryption scheme E , we denote by CE(pk) the space of “freshly-encrypted ciphertexts” for
the public key pk, namely the range of the encryption function for this public key. We also denote by CE the
set of freshly-encrypted ciphertexts with respect to all valid public keys, and by CE,F the set of “evaluated
ciphertexts” for a class of functionsF (i.e. those that are obtained by evaluating homomorphically a function
from F on ciphertexts from CE). That is (for implicit security parameter λ),

CE
def
=

⋃
pk∈KeyGen

CE(pk), CE,F
def
=
{
Eval(pk, f,~c) : pk ∈ KeyGen, f ∈ F , ~c ∈ CE(pk)

}
3.2 Compatible SWHE and MHE Schemes

To construct “chimeric” leveled FHE, the component SWHE and MHE schemes must be compatible:
Definition 2 (Chimerically Compatible SWHE and MHE). Let SWHE be an encryption scheme with plain-
text space Zp, which is somewhat homomorphic with respect to some class F . Let MHE be a scheme with
plaintext space P ⊆ Zp, which is multiplicatively homomorphic with respect to another class F ′.

We say that SWHE and MHE are chimerically compatible if there exists a polynomial-size set L = {Lj}
of polynomials such that the following hold:

• There is a polynomial bound D such that, for every ciphertext c ∈ CSWHE,F , the function Dc(sk) =
SWHE.Dec(sk, c) can be evaluated by an L-restricted circuit over Zp with L-degree D. Moreover,
an explicit description of this circuit can be computed efficiently given c.

4The class F may depend on the security parameter λ.

7

• For any secret key sk ∈ SWHE.KeyGen and any polynomial Lj ∈ L we have Lj(sk) ∈ P .

• The homomorphic capacity F ′ of MHE includes all products of D or less variables.

• The homomorphic capacity of SWHE is sufficient to evaluate the decryption of MHE followed by a
quadratic polynomial (with polynomially many terms) over Zp. Formally, there is a polynomial upper
bound B on the number of product gates in all the L-restricted circuits from the first bullet above,
such that for any two vectors of MHE ciphertexts ~c = 〈c1, . . . cb〉 and ~c′ =

〈
c′1, . . . c

′
b′
〉
∈ C≤BMHE,F ′ ,

the two functions

DAdd~c,~c′(sk)
def
=

b∑
i=1

MHE.Dec(sk, ci) +
b′∑
i=1

MHE.Dec(sk, c′i) mod p

DMul~c,~c′(sk)
def
=

(b∑
i=1

MHE.Dec(sk, ci)
)
·
(b′∑
i=1

MHE.Dec(sk, c′i)
)
mod p

are within the homomorphic capacity of SWHE – i.e., DAdd~c,~c′(sk),DMul~c,~c′(sk) ∈ F .

3.3 Chimeric Leveled FHE: The Construction

Let SWHE and MHE be chimerically compatible schemes. We construct a leveled FHE scheme as follows:

FHE.KeyGen(λ, `): Takes as input the security parameter λ and the number of circuit levels ` that the
composed scheme should be capable of evaluating. For i ∈ [1, `], run(

pk
(i)
SW , sk

(i)
SW

)
R← SWHE.KeyGen ,

(
pk

(i)
MH , sk

(i)
MH

)
R← MHE.KeyGen .

Encrypt the i’th MHE secret key under the (i + 1)’st SWHE public key, sk
(i)
MH ← SWHE.Enc(pk

(i+1)
SW ,

sk
(i)
MH). Also encrypt the i’th SWHE secret key under the i’th MHE public key, but in a particular format

as follows: Recall that there is a polynomial-size set of polynomials L such that SWHE decryption can
be computed by L-restricted circuits. To encrypt sk(i)SW under pk(i)MH , compute for all Lj ∈ L the value

mij ← Lj(sk
(i)
SW) and then encrypt it cij ← MHE.Enc(pk

(i)
MH ,mij). Let sk

(i)
SW denote the collection of all

the cij’s. The public key pkFH consists of (pk(i)SW , pk
(i)
MH) and the encrypted secret keys (sk

(i)
SW , sk

(i)
MH)

for all i. The secret key skFH consists of sk(i)SW for all i.

FHE.Enc(pkFH ,m): Takes as input the public key pkFH and a message in the plaintext space of the SWHE

scheme. It outputs SWHE.Enc(pk
(1)
SW ,m).

FHE.Dec(skFH , c): Takes as input the secret key skFH and a SWHE ciphertext. Suppose the ciphertext is

encrypted under pk(i)SW . It is decrypted directly using SWHE.Dec(sk
(i)
SW , c).

FHE.Recrypt(pkFH , c): Takes as input the public key and a ciphertext c that is a valid “evaluated SWHE

ciphertext” under pk(i)SW , and outputs a “refreshed” SWHE ciphertext c′, encrypting the same plaintext but
under pk(i+1)

SW . It works as follows:

Circuit-generation. For a SWHE ciphertext c, generate a description of the L-restricted circuit C over Zp
that computes the decryption of c.

Denote it by Cc(sk) = λ0 +
∑t

k=1 λk
∏
Lj∈Sk Lj(sk) mod p (= SWHE.Dec(sk, c)).

8

Products. Pick up from the public key the encryptions under the MHE public key pk(i)MH of the values
Lj(sk

(i)
SW). Use the homomorphism of MHE to compute MHE encryptions of all the terms λk ·∏

Lj∈Sk Lj(sk
(i)
SW). Denote the set of resulting MHE ciphertexts by c1, . . . , ct.

Translation. Pick up from the public key the encryption under the SWHE public key pk(i+1)
MH of the MHE

secret key sk(i)MH . For each MHE ciphertext ci from the Products step, use the homomorphism of
SWHE to evaluate the function Dci(sk) = MHE.Dec(sk, ci) on the encrypted secret key. The results
are SWHE ciphertexts c′1, . . . c

′
t, where c′j encrypts the value λk ·

∏
Lj∈Sk Lj(sk

(i)
SW) under pk(i+1)

SW .

Summation. Use the homomorphism of SWHE to sum up all the c′j’s and add λ0 to get a ciphertext c∗ that

encrypts under pk(i+1)
SW the value λ0+

∑t
k=1 λk

∏
Lj∈Sk Lj(sk

(i)
SW) mod p = SWHE.Dec(sk

(i)
SW , c).

Namely, c∗ encrypts under pk(i+1)
SW the same value that was encrypted in c under pk(i)SW .

FHE.Add(pkFH , c1, c2) and FHE.Mult(pkFH , c1, c2): Take as input the public key and two ciphertexts that

are valid evaluated SWHE ciphertexts under pk(i)SW . Ciphertexts within the SWHE scheme (at any level)
may be added and multiplied within the homomorphic capacity of the SWHE scheme. Once the capacity is
reached, they can be recrypted and then at least one more operation can be applied.

Theorem 2. If SWHE and MHE are chimerically compatible schemes, then the above scheme FHE is a
leveled FHE scheme. Also, if both SWHE and MHE are semantically secure, then so is FHE.

Correctness follows in a straightforward manner from the definition of chimerically compatible schemes.
Security follows by a standard hybrid argument similar to Theorem 4.2.3 in [2]. We omit the details.

4 Optimizations

In the Products step of the Recrypt process (see Section 3), we compute multiple products homomorphically
within the MHE scheme. In Section 4.1, we provide an optimization that allows us to compute only a single
product in the Products step. In Section 4.2, we extend this optimization so that the entire leveled FHE
ciphertext after the Products step can consist of a single MHE ciphertext.

4.1 Computing Only One Product

For now, let us ignore the “simple part” of our decryption function (Equation 1), which is linear and therefore
does not involve any “real products”.

The products in the “complicated part” all have a special form. Specifically, by Theorem 1 and the
preceding lemmas, for secret key ~s ∈ {0, 1}N , ciphertext (c, {ui}), set A ⊂ Zp with |A| > 2N2, and fixed
scalars {λj} associated to a universal multilinear symmetric polynomial, the products are all of the form:

λj · P (aj) for all a ∈ A, where P (z) =
∏

(z + si)
u′′i · z2N−u′′i

We will show how to choose the aj’s so that we can compute P (aj) for all j given only P (a1). This
may seem surprising, but observe that the P (aj)’s are highly redundant. In terms of discrete logs, we have
DL(P (aj)) = DL(aj)·2N2+((DL(aj+1)−DL(aj))·

∑
si=1 u

′′
i . That is, all of the P (aj)’s are determined

by the small integer
∑

si=1 u
′′
i , a number implicit in P (a1).

9

We choose the aj’s in a very simple way: so that, for all j > 1, we know integers (wj , ej) such that:

aj = wj · a
ej
1 and aj + 1 = wj · (a1 + 1)ej

We store (wj , ej) in the public key. Observe: P (aj) = w2N2

j · P (a1)ej .
Importantly for our application to chimeric FHE, we can compute an encryption of P (aj) from an

encryption of P (a1) within the MHE scheme – simply use the multiplicative homomorphism to exponentiate
by ej (using repeated doubling as necessary) and then multiply the result by w2N2

j .
Generating suitable tuples (aj , wj , ej) for j > 1 from an initial value a1 is straightforward: We choose

the ej’s arbitrarily and then solve for the rest. Namely, we generate distinct ej’s, different from 0,1, then set
aj ← a

ej
1 /((a1 +1)ej − aej1) and wj = aj/a

ej
1 . Observe that aj +1 = (a1 +1)ej/((a1 +1)ej − aej1) – i.e.,

the ratio (aj + 1)/aj = ((a1 + 1)/a1)
ej , as required.

Some care must be taken to ensure that the values aj , aj + 1 are in plaintext space of the MHE scheme
– e.g., for Elgamal they need to be quadratic residues. Recall the basic fact that for a safe prime p there
are (p − 3)/4 values a for which a, a + 1 ∈ QR(p). Therefore, finding suitable a1, a1 + 1 ∈ QR(p) is
straightforward. Since aej1 , (a1 + 1)ej ∈ QR(p), we have

aj , aj + 1 ∈ QR(p) ⇔ (a1 + 1)ej − aej1 ∈ QR(p) ⇔ ((a1 + 1)/a1)
ej − 1 ∈ QR(p).

If (a1 + 1)/a1 generates QR(p) (which is certainly true if p is a safe prime), then (re-using the basic fact
above) we conclude that aj , aj + 1 ∈ QR(p) with probability approximately 1/2 over the choices of ej .

Observe that the amount of extra information needed in the public key is small. The ej’s need not be
truly random – indeed, by an averaging argument over the choice of a1, one will quickly find an a1 for which
suitable ej’s are O(1)-dense among very small integers. Hence it is sufficient to add to the public key only
O(log p) bits to specify a1.

4.2 Short FHE Ciphertexts: Decryption as a Pure Symmetric Polynomial

Here we provide an optimization that allows us to compress the entire leveled FHE ciphertext down to a
single MHE ciphertext – e.g., a single Elgamal ciphertext! (The optimization above only compresses only
representation of the “complicated part” of Equation 1, not the “simple part”.) Typically, a MHE ciphertext
will be much much shorter than a SWHE ciphertext: a few thousand bits vs. millions of bits.

The main idea is that we do not need the full ciphertext (c, {u′i}, {u′′i }) to recover m if we know a priori
thatm is in a small interval – e.g.,m ∈ {0, 1}. Rather, we can recoverm just from (h(c), {h(u′i)}, {h(u′′i)}),
where h(x) = x mod r ∈ {0, . . . , r − 1} is a “hash” function associated to a “large-enough” polynomial-
size prime r. Moreover, after hashing the ciphertext components down smaller than r, we can invoke Lemma
2 to represent decryption as a purely multilinear symmetric polynomial, whose output after the product step
can be represented by a single product P (a1) (like the complicated part in the optimization of Section 4.1).
Lemma 4. Let prime p = ω(N2). There is a prime r = O(N) and a univariate polynomial f(x) of degree
O(N2) such that, for all ciphertexts (c, {u′i}, {u′′i }) that encrypt m ∈ {0, 1}, we have m = f(tr) mod p
where tr = h(2κ · c) +

∑
si · h(−2κ · u′i − u′′i) for h(x) = x mod r ∈ {0, . . . , r − 1}.

Proof. Let t = 2κ
(
c−

∑
si · u′i

)
−
∑
si · u′′i . The original decryption formula (Equation 1) is

m = c−
∑

si · u′i − b2−κ ·
∑

si · u′′i e = b2−κ · te mod p

Thus, m can be recovered from t. Since there are only 2 possibilities for m, the (consecutive) support of t
has size 2κ+1 = O(N). Set r to be a prime ≥ 2κ+1. Since h has no collisions over the support of t, t can be

10

recovered from h(t). Note that h(t) = h(tr). Thus m can be recovered from tr (via h(tr) = h(t), then t).
Since there are O(N · r) = O(N2) possibilities for tr, the lemma follows.

Theorem 3. Let prime p = ω(N2). There is a prime r = O(N) and a multilinear symmetric polynomial
M such that, for all “hashed” ciphertexts (h(2κ · c), {h(−2κ · u′i− u′′i)}) that encrypt m ∈ {0, 1}, we have

m =M(1, . . . , 1︸ ︷︷ ︸
h(2κ·c)

, 0, . . . , 0︸ ︷︷ ︸
r−h(2κ·c)

, . . . s1, . . . , s1︸ ︷︷ ︸
h(−2κ·u′1−u′′1)

, 0, . . . , 0︸ ︷︷ ︸
r−h(−2κ·u′1−u′′1)

, . . . sN , . . . , sN︸ ︷︷ ︸
h(−2κ·u′N−u

′′
N)

, 0, . . . , 0︸ ︷︷ ︸
r−h(−2κ·u′N−u

′′
N)

) mod p

Proof. This follows easily from Lemmas 4 and 2.

Thus, decryption can be turned into a purely multilinear symmetric polynomial M whose product gates
output λj ·P (aj) (for known ciphertext-independent λj’s), where P (z) is similar to the polynomial described
in Section 4.1. Using the optimization of Section 4.1, we can compress the entire leveled FHE ciphertext
down to a single MHE ciphertext that encrypts P (a1).

References

[1] Taher Elgamal. A public key cryptosystem and a signature scheme based on discrete logarithms. In
CRYPTO, pages 10–18, 1984.

[2] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University, 2009.
crypto.stanford.edu/craig.

[3] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher, editor,
STOC, pages 169–178. ACM, 2009.

[4] Craig Gentry. Toward basing fully homomorphic encryption on worst-case hardness. In Advances
in Cryptology - CRYPTO’10, volume 6223 of Lecture Notes in Computer Science, pages 116–137.
Springer, 2010.

[5] Craig Gentry and Shai Halevi. Implementing gentry’s fully-homomorphic encryption scheme.
manuscript, https://researcher.ibm.com/researcher/view_project.php?id=1548, 2010.
To appear in Eurocrypt 2011.

[6] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new crypto-
graphic constructions. In STOC, pages 197–206. ACM, 2008.

[7] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Public-key cryptosystems from lattice reduction
problems. In Advances in Cryptology - CRYPTO’97, volume 1294 of Lecture Notes in Computer
Science, pages 112–131. Springer, 1997.

[8] Adam R. Klivans and Alexander A. Sherstov. Cryptographic hardness for learning intersections of
halfspaces. In FOCS, pages 553–562. IEEE Computer Society, 2006.

[9] Daniele Micciancio. Improving lattice based cryptosystems using the hermite normal form. In
Joseph H. Silverman, editor, CaLC, volume 2146 of Lecture Notes in Computer Science, pages 126–
145. Springer, 2001.

11

[10] Noam Nisan and Avi Wigderson. Lower bounds on arithmetic circuits via partial derivatives. Compu-
tational Complexity, 6(3):217–234, 1997. Cites “M. Ben-Or, Private communication”.

[11] Chris Peikert, 2011. Private communication.

[12] Oded Regev. New lattice-based cryptographic constructions. J. ACM, 51(6):899–942, 2004.

[13] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In Harold N.
Gabow and Ronald Fagin, editors, STOC, pages 84–93. ACM, 2005.

[14] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic encryption with relatively small key and
ciphertext sizes. In Public Key Cryptography - PKC’10, volume 6056 of Lecture Notes in Computer
Science, pages 420–443. Springer, 2010.

[15] Damien Stehlé and Ron Steinfeld. Faster fully homomorphic encryption. Cryptology ePrint Archive,
Report 2010/299, 2010. http://eprint.iacr.org/.

[16] Vinod Vaikuntanathan, 2011. Private communication.

[17] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homomorphic en-
cryption over the integers. In Advances in Cryptology - EUROCRYPT’10, volume 6110 of Lec-
ture Notes in Computer Science, pages 24–43. Springer, 2010. Full version available on-line from
http://eprint.iacr.org/2009/616.

[18] Wikipedia. Chimera. http://en.wikipedia.org/wiki/Chimera, 2011.

A Instantiations of Chimeric FHE

A.1 Elgamal-based Instantiation

In the Introduction, we specified (in a fair amount of detail) an instantiation of chimeric leveled FHE that
uses Elgamal as the MHE scheme. Here, we provide a supporting lemmas and theorems to show that
Elgamal is chimerically compatible with known SWHE schemes, as needed for the chimeric combination to
actually work.

The first lemma is designed to cover a common case. Known SWHE schemes [3, 14, 17, 4, 5] are
capable of evaluating polynomials of degree up to α(λSWHE) having up to 2α(λSWHE) monomials, where α is
some polynomial and λSWHE is the security parameter of the SWHE scheme. Also, for our chimeric leveled
FHE construction to work, we need the decryption function of the MHE scheme to be not-too-complex: we
need that MHE’s decryption function can be expressed as a (ciphertext-dependent) polynomial of degree at
most β(λMHE) having at most 2β(λMHE) monomials, where β is some polynomial and λMHE is the security
parameter of the MHE scheme. The following lemma answers, in general, what further properties SWHE
and MHE need to have to be chimerically compatible.

Lemma 5. Let SWHE and MHE be encryption schemes with security parameters λSWHE and λMHE, and
plaintext spaces Zp and P ⊂ Zp. Suppose that SWHE’s decryption can be expressed as an L-restricted
circuit over Zp with L-degree D and B product gates, where |L|, D and B are polynomial in λSWHE.
Suppose also that, for some functions α, β, γ:

• SWHE’s homomorphic capacity includes all polynomials over Zp of degree at most α(λSWHE) having
at most 2α(λSWHE) monomials.

12

• MHE’s decryption function can be expressed as a (ciphertext-dependent) polynomial of degree at most
β(λMHE) having at most 2β(λMHE) monomials.

• MHE’s homomorphic capacity includes products of degree up to γ(λMHE).

Then, the schemes SWHE and MHE are chimerically compatible if the following hold:

• Property 1: The plaintext spaces of SWHE and MHE are compatible (i.e., for any secret key sk ∈
SWHE.KeyGen and any polynomial Lj ∈ L we have Lj(sk) ∈ P).

• Property 2: γ(λMHE) ≥ D(λSWHE).

• Property 3: α(λSWHE) exceeds both 2β(λMHE) and β(λMHE) + 2 logB(λSWHE).

Proof. Property 2 implies that the homomorphic capacity MHE includes all products of D or less variables,
as required for chimeric compatibility. It remains to show that Property 3 implies that SWHE has the
required homomorphic capacity – namely, that for any two vectors of MHE ciphertexts ~c = 〈c1, . . . cb〉 and
~c′ =

〈
c′1, . . . c

′
b′
〉

with b, b′ ≤ B the two functions

DAdd~c,~c′(sk)
def
=

b∑
i=1

MHE.Dec(sk, ci) +
b′∑
i=1

MHE.Dec(sk, c′i) mod p

DMul~c,~c′(sk)
def
=

(b∑
i=1

MHE.Dec(sk, ci)
)
·
(b′∑
i=1

MHE.Dec(sk, c′i)
)
mod p

are within the homomorphic capacity of SWHE. The functions DAdd~c,~c′(sk) and DMul~c,~c′(sk) can each
be expressed as a polynomial of degree at most 2β(λMHE) with B2 · 2β(λMHE) monomials. These functions
are with SWHE’s homomorphic capacity as long α(λSWHE) exceeds 2β(λMHE) and logB2 · 2β(λMHE) =
β(λMHE) + 2 logB(λSWHE).

Now we address the Elgamal instantiation.

Theorem 4. Let p = 2q + 1 be a safe prime. Let τ = dlog qe. Let MHE be Elgamal with plaintext space
QR(p). Suppose SWHE is a SWHE scheme with plaintext space Zp such that

• SWHE’s decryption can be expressed (for any A ⊂ Zp of cardinality at least NA ≤ q − 1 and
LA = {(a + xi) : a ∈ A, 1 ≤ i ≤ n}) as an LA-restricted circuit over Zp with LA-degree D
and B product gates, where the secret key bits {xi} are restricted to {0, 1}, and NA, D and B are
polynomial in the security parameter.

• SWHE’s homomorphic capacity includes all polynomials over Zp of degree up to α(λSWHE) with up
to 2α(λSWHE) monomials, where α(λSWHE) exceeds both 4τ + 2 and 2τ + 1 + 2 logB(λSWHE).

Then, SWHE and and MHE are chimerically compatible schemes.

Proof. Regarding Property 1 of Lemma 5, we need to establish that we can choose A so that, for any
sk ∈ SWHE.KeyGen and any polynomial Lj ∈ L we have Lj(sk) ∈ QR(p). In Lemma 6 below, we show
that there are q − 1 = (p− 3)/4 values a such that a, a+ 1 ∈ QR(p). Since NA is polynomial and at most
q − 1, we can populate A with NA such values efficiently. The value a+ xi for a ∈ A and secret key bit xi
is always in QR(p), MHE’s plaintext space. Therefore Property 1 is satisfied.

13

Property 2 of Lemma 5 is satisfied trivially since the multiplicative homomorphic capacity of Elgamal
is infinite.

Finally, we need to show that Property 3 is satisfied. It suffices to show that Elgamal decryption can be
computed using a polynomial of degree β(τ) with at most 2β(τ) monomials for β(τ) = 2τ + 1.

To prepare for decryption, we post-process each Elgamal ciphertext as follows: Given a ciphertext
(y = gr, z = m · g−er) ∈ Z2

p, we compute yi = y2
i − 1 mod p for i = 0, 1, . . . , dlog qe − 1, and the

post-processed ciphertext is 〈z, y0, . . . , yτ−1〉 with τ = dlog qe. Given an Elgamal secret key e ∈ Zq with
binary representation eτ−1 . . . e1e0, decryption of the post-processed ciphertext now becomes

MHE.Dec(e; z, y0, . . . , yτ−1) = z ·
τ−1∏
i=0

(ye·2
i
) = z ·

τ−1∏
i=0

(ei · yi + 1) (2)

We will be overly conservative and treat z, y0, . . . , yτ−1 as variables; then the degree of the polynomial
above is 2τ + 1, and it has 2τ monomials. Setting β(τ) = 2τ + 1, the theorem follows.

Lemma 6. Let p be a prime, and let S = {(X,Y) : X = Y + 1;X,Y ∈ QR(p)}. Then, |S| = (p− 3)/4
if p = 3 mod 4, and |S| = (p− 5)/4 if p = 1 mod 4.

Proof. Let T = {(u, v) : u 6= 0, v 6= 0, u2 − v2 = 1 mod p}. Since X and Y each have exactly two
nonzero square roots if they are quadratic residues, we have that |T | = 4 · |S|. It remains to establish the
cardinality of T .

For each pair (u, v) ∈ T , let auv = u+ v. We claim that distinct pairs in T cannot have the same value
of auv. In particular, each auv completely determines both u and v as follows. We have u2 − v2 = 1 →
(u − v)(u + v) = 1 → u − v = 1/auv, and therefore u = (auv + a−1uv)/2, and v = (auv − a−1uv)/2. We
therefore have |U | = |T |, where U = {a 6= 0 : a+ a−1 6= 0, a− a−1 6= 0}.

We have that a ∈ U , unless a 6= 0, a2 6= −1 mod p, or a 6= ±1. If p = 1 mod 4, then −1 ∈ QR(p),
and therefore there are 5 prohibited values of a – i.e., |U | = p− 5. If p = 3 mod 4, then −1 /∈ QR(p), and
therefore |U | = p− 3.

From Theorem 4, it should be clear that we can instantiate chimeric leveled FHE with Elgamal and
known SWHE schemes. In particular, the homomorphic capacity required of SWHE is independent of its
own decryption function, except that the number of monomials SWHE must sum grows quadratically with
B (the number of product gates in its restricted circuit). However, the parameters of SWHE only need to
grow logarithmically with B, and therefore this weak dependence is not a problem. We formalize this in the
following theorem.

Theorem 5. Chimeric leveled FHE can be instantiated with Elgamal and known SWHE schemes.

Proof. Let p = 2q + 1 be a safe prime, and τ = dlog qe. Let MHE be Elgamal with plaintext space QR(p).
We only need to show the existence of a SWHE scheme SWHE that is compatible with MHE – that is, a
scheme with plaintext space Zp such that

• SWHE’s decryption can be expressed (for any A ⊂ Zp of cardinality at least NA ≤ q − 1 and
LA = {(a+ xi) : a ∈ A, 1 ≤ i ≤ n}) as an LA-restricted circuit over Zp with LA-degree D and B
product gates, where the secret key bits {xi} are restricted to {0, 1}, andNA,D andB are polynomial
in the security parameter.

• SWHE’s homomorphic capacity includes all polynomials over Zp of degree up to α(λSWHE) with up
to 2α(λSWHE) monomials, where α(λSWHE) exceeds both 4τ + 2 and 2τ + 1 + 2 logB(λSWHE).

14

We saw (Section 2.2, also Appendix C) that known SWHE schemes [3, 14, 17, 4, 5] have decryption func-
tions that can be expressed as suitable LA-restricted circuits where the associated values NA(λSWHE),
D(λSWHE), and B(λSWHE) are polynomial in SWHE’s security parameter λSWHE. Moreover, for some
polynomial α, these schemes can evaluate polynomials of degree α(λSWHE) with 2α(λSWHE) monomials. It
suffices to set λSWHE so that α(λSWHE) exceeds 4τ + 2 and 2τ + 1 + 2 logB(λSWHE).

A.2 Leveled FHE Based on Worst-Case Hardness

We now describe an instantiation where both the SWHE and the MHE schemes are lattice-based encryption
schemes with security based (quantumly) on the hardness of worst-case problems over ideal lattices, in
particular ideal-SIVP. This scheme could be Gentry’s SWHE scheme [3, 4] one of its variants [15, 14, 5],
or one of the more recent proposals based on the ring-LWE problem [16, 11]. As mentioned above, these
schemes have the property that, for some polynomial α, they can evaluate polynomials of degree up to α(λ)
with up to 2α(λ) monomials, where λ is the security parameter.

The main idea of this construction is to use an additively homomorphic encryption (AHE) scheme
(e.g., one using lattices) as our MHE scheme. For a multiplicative group G with order q and genera-
tor g, we can view an additively homomorphic scheme AHE with plaintext space Zq as a multiplicative
homomorphic scheme MHE with plaintext space G: In the MHE scheme, a ciphertext c is decrypted as
MHE.Decrypt(c) ← gAHE.Decrypt(c). The additive homomorphism mod q thus becomes a multiplicative
homomorphism in G. We can therefore use MHE as a component in chimeric leveled FHE, assuming it is
compatible with a suitable SWHE scheme. The only caveat is that MHE’s Encrypt algorithm is not obvious.
Presumably, to encrypt an element x ∈ G, we encrypt its discrete log using AHE’s Encrypt algorithm, but
this requires computing discrete logs in G. Fortunately, in our instantiation we can choose a group G of
polynomial size, so computing discrete log in G can be done efficiently.

The main difficulty is showing that the component schemes are compatible – in particular, that the com-
ponent schemes each have enough homomorphic capacity to do their jobs. This sort of compatibility was
easy to see for the Elgamal-based instantiation, since the parameters of the Elgamal scheme (and hence the
homomorphic capacity required of the SWHE scheme) do not grow with the multiplicative homomorphic
capacity required of the Elgamal scheme; Elgamal’s multiplicative homomorphic capacity is infinite, re-
gardless of parameters. On the other hand, the additive homomorphic capacity of a lattice-based scheme
is limited. The additive homomorphic capacity is almost unlimited, in that such schemes can handle a
super-polynomial number of additions with reasonable parameter choices – quite unlike the situation with
multiplicative homomorphic capacity, where current SWHE schemes can handle only polynomial degree.
But still, some care is necessary to deal with a minor feedback loop in our parameter choices.

We begin with a high-level overview. Let λSWHE and λAHE be the security parameters of the our SWHE
and AHE schemes. Consider the operations that SWHE must perform homomorphically as part of SWHE’s
depth-3 decryption circuit. First, it decrypts MHE ciphertexts, where MHE is implemented as an AHE
scheme followed by exponentiation. For some polynomial β, AHE decryption – i.e., decrypting an AHE
ciphertext to a plaintext in [0, q) represented in binary – can be expressed as a polynomial with degree
at most β(λAHE) and at most 2β(λAHE) monomials. To perform MHE decryption, we then need to expo-
nentiate by the result, which increases the degree to β(λAHE) · log q and the number of monomials to about
2β(λAHE)·log q. Next, we need to perform some polynomial numberB(λSWHE) of additions in the Summation
step of SWHE’s decryption circuit, which does not further increase the degree, but increases the number of
monomials by a factor ofB(λSWHE). Finally, we need to be able to perform at least one Mult inside SWHE,
which doubles the degree and squares the number of monomials. Overall, the SWHE scheme needs to be ca-
pable of handling polynomials of degree k with 2k monomials for k = O(logB(λSWHE)+β(λAHE) · log q).

15

Fortunately, for some polynomial α, SWHE can be made to handle polynomials of degree up to α(λSWHE)
with 2α(λSWHE) monomials, and it suffices to make α(λSWHE) larger than logB(λSWHE) + β(λAHE) · log q.
For this, it suffices to take λSWHE to be a sufficiently large polynomial of λAHE. We also need to make
sure that the MHE scheme has sufficient homomorphic capacity to handle D(λSWHE) multiplications for
some polynomial D, but this is easy to do since the capacity of a lattice-based AHE scheme can be made
super-polynomial. More details are provided in the following subsections.

A.2.1 Gentry’s Somewhat-Homomorphic Scheme

Recall that Gentry’s scheme [3, 4] works over the Euclidean space Rd for some dimension d, polynomial in
the security parameter, and uses some ringR which is defined over Zd. (For example, one may use the ring
of polynomials modulo xd + 1 where d is a power of two.)

The plaintext space can be set to any Zp (as long as p can be represented by poly(d) bits), but in our
case we will use a small plaintext space, say p = O(d10). The public key specifies an (ideal) lattice J ⊆ Zd,
and a ciphertext encrypting a message m ∈ Zp is a point in Zd whose distance from J is congruent to
the vector m · ~e1 modulo p. Homomorphic addition and multiplication is implemented via additions and
multiplications in the ringR, and the decryption formula of the scheme has the form of Equation (1).

Below let p be a small prime number, say d10 < p < 2d10, denote q = p − 1, and let g be a generator
for Z∗p. For the SWHE we use an instance of Gentry’s scheme with “large” parameters and input space Zp,
and for the AHE scheme we use another instance with “small” parameters and message space Zq. Below
we denote the “large” instance by Lrg and the “small” instance by Sml.

The parameters are chosen so that the homomorphic capacity of Lrg is enough to evaluate the decryption
of Sml followed by exponentiation mod p and then a quadratic polynomial. The parameters of Sml can be
chosen much smaller, since it only needs to support addition of polynomially many terms and not even a
single multiplication.5

A.2.2 Decryption under Sml

The small instance has n bits of secret key, where n is some parameter to be determined later (selected to
support large enough homomorphic capacity to evaluate linear polynomials with polynomially many terms.)
As explained above, the native message space of this instance of Gentry’s scheme is Zq (where q = p− 1),
but we use it implicitly to encrypt elements in Z∗p. To encrypt an element x ∈ Z∗p under Sml, we first find
the exponent e ∈ Zq such that ge = x (mod p) and then use the native encryption to encrypt −e. (The
negation is used just for convenience, so that the secret-key dependent parts of Equation (1) appear with a
positive sign.)

To decrypt a ciphertext under Sml we first use the native decryption to recover the exponent e and then
exponentiate. Since the native decryption in Gentry’s scheme is of the form of Equation (1), then decryption
under Sml has the following formula

Sml.Decsk(c) = g
∑n
i=1 u

′
isi · gd2−κ

∑n
i=1 u

′′
i sic · g−c mod p

where (c, {u′i•u
′′
i }) is the post-processed ciphertext (with u′i ∈ Zq and u′′i ∈ Z2κ , and κ = dlog(n+ 1)e).

Below we show how this formula can be evaluated as a rather low-degree arithmetic circuit.
5The “small” scheme could also be instantiated from other additively homomorphic lattice-based schemes, e.g., one of Regev’s

schemes [12, 13], or the GPV scheme [6], etc.

16

The complicated part. To evaluate the “complicated part”, d2−κ
∑n

i=1 u
′′
i sic, as an arithmetic circuit

mod p (with input the bits si), we imitate the binary circuit for evaluating it. We have n numbers (represented
in binary), each with κ bits, and we need to add them over the integers and then ignore the lower κ bits.
Hence the result will be κ-bits long (and for all the intermediate calculations we only need to keep 2κ bits
for each number).

We first use the 3-for-2 trick, repeatedly replacing each three of these numbers by two numbers corre-
sponding to the XOR and CARRY bits. Over Zp this is done using the formulas

XOR(x, y, z) = 4xyz − 2(xy + xz + yz) + x+ y + z

CARRY (x, y, z) = xy + xz + yz − 2xyz

Arranging these 3-to-2 reductions in a tree structure, we have a tree of depth log3/2 n, at the end of which
we are left with only two numbers to add, each with 2κ bits. Since each level multiplies the degree by 3,
then the bits of these final numbers are polynomials in the initial bits, of degree 3log3/2 n = nlog3/2 3 ≈ n2.47.

Using the XOR and CARRY formulas from above, we can add these two numbers in binary, and each
bit of the result will be a multi-linear polynomial of the bits of the two numbers, and hence of degree at most
4κ in those bits. Therefore each bit in the result of the “complicated part” can be computed as a polynomial
mod p of degree at most n2.47 · 4 dlog(n+ 1)e in the secret key bits. It can also be verified that the number
of terms in these polynomials is less than 22·degree.

The simple part and exponentiation. Although it is possible to compute the simple part similarly to the
complicated part, it is easier to just push this computation into the exponentiation step. Specifically, we
now have a κ-bit number v0 that we obtained as the result of the “complicated part”, and we also have
the dlog qe-bit numbers vi = u′isi for i = 1, . . . , n (all represented in binary), and we want to compute
g
∑n
i=0 vi · g−c mod p. Let us denote the binary representation of each vi by (vit . . . vi1vi0), namely vi =∑
j vij2

j . Then we have

g(
∑n
i=0 vi)−c = g(

∑
i,j vij2

j)−c = g−c
∏
i,j

(g2
j
)vij = g−c

∏
i,j

(
vi,j · g2

j
+ (1− vij) · 1

)

=

κ∏
j=0

(
1 + v0,j · (g2

j − 1)
)

︸ ︷︷ ︸
“complicated part′′

·
n∏
i=1

dlog qe∏
j=0

(
1 + vi,j · (g2

j − 1)
)
· g−c︸ ︷︷ ︸

“simple part′′

The terms g−c and (g2
j − 1) are known constants in Zp, hence we have a representation of the decryption

formula as an arithmetic circuit mod p.
To bound the degree of the complicated part, notice that v0 has κ bits, each a polynomial of degree at

most n2.47 · 4κ), hence the entire term has degree bounded by n2.47 · 4κ · κ. For the simple part, all the vi’s
together have n dlog qe bits (each is just a variable), so the degree of that term is bounded by just n dlog qe.
Hence the total degree of the decryption formula is bounded below n2.47 ·4κ2+n log q < n3. Again one can
verify that since all the coefficients are from Zp then the number of terms is bounded by pO(degree) < 2n

3
.

A.2.3 The SWHE scheme Lrg.

The large instance has N bits of secret key, where N is some parameter to be determined later, selected
to support large enough homomorphic capacity to be compatible with Sml. As explained in Section 2,

17

the decryption of Lrg can be expressed as a restricted depth-3 circuit of degree at most 2N2 and with
at most 2N2 + N + 1 product gates. Note that the number of summands in the top addition is at most
2N2 +N + 1 < 3N2.

A.2.4 Setting the parameters.

Theorem 6. Let Lrg and Sml be as above. We can choose the parameters of Lrg and Sml so that they are
chimerically compatible schemes.

Proof. Denote the security parameters λLrg and λSml. It is clear that the plaintext spaces of the scheme are
compatible and Lrg has a suitable restricted decryption circuit with degree D(λLrg) and B(λLrg) products
gates for polynomials D andB. It remains to establish that the schemes can satisfy Properties 2 and 3 of
Lemma 5. Let α, β, γ be some functions such that:

• Lrg’s homomorphic capacity includes all polynomials over Zp of degree at most α(λLrg) having at
most 2α(λLrg) monomials.

• Sml’s decryption function can be expressed as a (ciphertext-dependent) polynomial of degree at most
β(λSml) having at most 2β(λSml) monomials.

• Sml’s homomorphic capacity includes products of degree up to γ(λSml).

We have seen that α and β are polynomial functions, and γ can be super-polynomial For convenience, say
α(x) = θ(xcα) and β(x) = θ(xcβ). Asymptotically, Properties 2 and 3 are satisfied by setting λLrg = λcSml

for some constant c > cβ/cα.

B Proof of Lemma 1

Proof. (Lemma 1) Every multilinear symmetric polynomialM(~x) is a linear combination of the elementary
symmetric polynomials: M(~x) =

∑n
i=0 `i · ei(~x). Given the evaluation M(~x) over binary vectors ~x =

1i0n−i, we can compute the `i’s as follows. We obtain the constant term `0 · e0(~x) = `0 by evaluating M at
0n. We obtain `k recursively via

M(1k0n−k) =
n∑
i=0

`i · ei(1k0n−k) = `k +
k−1∑
i=0

`i · ei(1k0n−k)

⇒ `k =M(1k0n−k)−
k−1∑
i=0

`i · ei(1k0n−k) =M(1k0n−k)−
k−1∑
i=0

`i ·
(
k

i

)
At this point, it suffices to prove the lemma just for the elementary symmetric polynomials. This is because
we have shown that we can efficiently obtain a representation of M(~x) as a linear combination of the
elementary symmetric polynomials, and we can clearly use the known `j values to “merge” together the
depth-3 representations of the elementary symmetric polynomials that satisfy the constraints of Lemma 1
into a depth-3 representation of M that satisfies the constraints.

For each i, the value ei(~x) is the coefficient of zn−i in the polynomial P (z). We can compute the
coefficients of P (z) via interpolation from the values P (a), a ∈ A. Therefore, each value ei(~x) can be
computed by a LA-restricted depth-3 arithmetic circuit as follows: using n + 1 product gates, compute the
values P (a), a ∈ A, and then (as the final sum gate), interpolate the coefficient of zn−i from the P (a)
values.

18

C Background on Lattice-Based Encryption

C.1 Background on Lattices

Before sketching a generic lattice-based encryption scheme, we recall some basic facts about lattices.
A full-rank (all lattices here all full-rank) n-dimensional lattice is a discrete subgroup of Rn, concretely

represented as the set of all integer linear combinations of some basis B = (~b1, . . . ,~bn) ∈ Rn of linearly
independent vectors. Viewing the vectors~bi as the rows of a matrix B ∈ Rn×n, we have:

L = L(B) = {~y ·B : ~y ∈ Zn}

An independent set of L is a set of n linearly independent vectors from L.
To B we associate the half-open parallelepiped P(B)← {

∑n
i=1 xi

~bi : xi ∈ [−1/2, 1/2)}. The volume
of P(B) is |det(B)| and is invariant among bases of L; thus, we denote it by det(L). For integer lattices,
det(L) is the size of the quotient group Zn/L.

For ~c ∈ Rn and basis B of L, we use ~c mod B to denote the unique vector ~c′ ∈ P(B) such that
~c−~c′ ∈ L. Given ~c and B, ~c mod B can be computed efficiently as ~c− b~c ·B−1e ·B = [~c ·B−1] ·B. (We
will use the notation b·e for rounding to the nearest integer or integer vector and [·] for the fractional part,
mapped to [−1/2, 1/2).)

Every lattice has a unique Hermite normal form (HNF) basis where bi,j = 0 for all i < j (lower-
triangular), bj,j > 0 for all j, and for all i > j bi,j ∈ [−bj,j/2,+bj,j/2). Given any basis B of L, one can
compute HNF(L) efficiently via Gaussian elimination. For this reason, the HNF is in some sense the “least
revealing” basis of L, and is therefore often used as a public key [9].

Every lattice L has a dual lattice L∗, consisting of all vectors in Rn that have integer dot product with
all vectors in L. For example, if L = pZn, then L∗ = p−1Zn. In general, if B is a basis of L, then the
inverse transpose of B is a basis of L∗. If L is an integer lattice with basis B, L∗ is its dual with basis B∗,
then det(B) · ~ei ∈ L for all i, and det(B) ·B∗ is an integer matrix.

C.2 A Generic Lattice-Based Encryption Scheme

Here, we sketch a generic lattice-based encryption scheme Elat. There is nothing new here – quite the
opposite. Our goal here is generality, to make it obvious that our techniques apply to many natural lattice-
based encryption schemes – in particular, to SWHE schemes. Thus, Elat is designed to encompass many
natural lattice-based encryption schemes, in the sense that these schemes can be seen as an instance of Elat.
Since it is generic, Elat does not include many natural optimizations, such as compactly representing the
secret key as a vector, rather than as a matrix.

Elat: A Generic Lattice-Based Encryption Scheme.

KeyGen: Generate a n-dimensional lattice L together with a “good” basis (or independent set) R of the
dual lattice L∗. Generate p ← Z+ relatively prime to det(L), such that Znp is a suitable plaintext space.
Output pk ← (HNF(L), p) as the public key and keep sk ← R secret.

Encrypt(pk, ~m ∈ Znp): Generate a random short “error” or “noise” vector ~e, subject to the constraint that
~m = ~e mod p. Output the ciphertext ~c← ~e mod HNF(L).

Decrypt(sk,~c): Output ~m← [~c ·R] ·R−1 mod p. (R−1 is computed over Qn×n.)

Correctness: We are being informal about the scheme’s parameters, using terms like “good” and “short”.
What we need for correctness is the following: all of the coefficients of ~e ·R are less than 1/2 in magnitude

19

when ~e is a properly short noise vector of a valid ciphertext. Then, assuming ~c = ~v + ~e is a valid ciphertext
with ~v ∈ L and properly bounded noise ~e, we have [~c · R] · R−1 mod p = [~e · R] · R−1 mod p = ~e · R ·
R−1 mod p = ~e mod p = ~m.

C.3 Tweak to the Generic Scheme

To express decryption as a depth-3 circuit, we tweak the scheme slightly (similar to [3]) to obtain a simpler
decryption formula. Currently, decryption computes ~m← [~c ·R] ·R−1 mod p = ~c− b~c ·Re ·R−1 mod p.
After the tweak, decryption will compute ~m← ~c− b~c · Se mod p, where S is the new secret key.

E∗lat: Tweaked Version of Elat.

KeyGen: Run Elat’s KeyGen algorithm to obtain pk = (HNF(L), p) and R. Let q be an integer such that
q · R is an integer matrix (this is true if q is a multiple of det(L)) and q = 1 mod p (this is possible by the
Chinese Remainder Theorem). LetA = (q ·R)−1 mod p, with entries in [−p/2, p/2). Set sk ← S = A ·R.

Encrypt(pk, ~m ∈ Znp): As in Elat.

Decrypt(sk,~c): Output ~m← ~c− b~c · Se mod p.

Correctness: First, note that (assuming the parameters are chosen properly), S works as a decryption key in
the original Elat scheme – that is, m ← ~c − b~c · Se · S−1 mod p. This is because, as required for an Elat
secret key, S is an independent set of L∗. Moreover, though we will again be informal about the parameters
here, it is clear that the parameters can be chosen so that, despite the fact that S has entries that are about
p ·
√
n times as large as R, its entries are still small enough to ensure correctness of decryption.

To show that our new decryption formula works, we need to establish that b~c ·Se ·S−1 = b~c ·Se mod p.
Clearly b~c · Se · S−1 and b~c · Se are both integer matrices if ~c is a valid ciphertext. Set C = q · S. C is an
integer matrix that equals I modulo p. We have:

b~c · Se · S−1 = b~c · Se · S−1 · C mod p

= b~c · Se · q mod p

= b~c · Se mod p

C.4 Post-Processing a Generic Ciphertext

In the old blueprint, as part of the squashing step, the public key is augmented to include a “hint” about the
original secret key, and a ciphertext is post-processed by combining it with that hint [3]. Specifically, sup-
pose that S is the initial secret key, as in E∗lat. The “hint” is a polynomial-size set of matrices {T1, . . . , TN}
such that there is a secret sparse subset that sums to S. The post-processed ciphertext is:

Post-processed ciphertext: ~c and ~ui ← ~c · Ti for all i.

The new secret key is the incidence vector ~s ∈ {0, 1}N such that
∑
si · Ti = S. Decryption computes

~c− b
∑N

i=1 si · ~uie = ~c− b~c · Se = ~m mod p.
In the new blueprint, we also use this post-processing step, but with an important difference: the subset

summing to S is not necessarily sparse. The matrices Ti in the new blueprint contain no secret information,
and therefore can be provided publicly as parameters without necessitating any new assumptions – e.g., an
assumption about the hardness of the sparse subset sum problem (SSSP) [3]. In particular, the Ti’s could
simply be the set {E(ijkb)}, where E(ijkb) is an n× n matrix of all zeros, except that the entry (i, j) equals

20

(−1)b · 2k/q, where k ranges from 0 to blog qc. All we need from the Ti’s is the guarantee that, for any
possible initial secret key S, there is some subset of the Ti’s that sums to S.

E†lat: E
∗
lat with Post-Processing.

ParamSetup: Output a suitable set {T1, . . . , TN} of matrices, as described above.

KeyGen: Run E∗lat’s KeyGen algorithm to obtain pk = (HNF(L), p) and S. Compute ~s ∈ {0, 1}N such
that S =

∑N
i=1 si · Ti. Set sk ← ~s.

Encrypt(pk, ~m ∈ Znp): As in Elat.

PostProcess(pk, ~c): Output ~c and the vectors ~ui ← ~c · Ti for all i, where the ~ui’s are formatted as follows.
For each coefficient uij of ~ui, split it into an integer part u′ij and a fractional part u′′ij . Furthermore, for
the fractional part, preserve only κ ← dlog(N + 1)e bits of precision: uij = u′ij•u

′′
ij , where u′′ij is a κ-bit

integer.

Decrypt(sk,~c, {~ui}): For the j-th coordinate,

mj ← cj −
∑

si · u′ij −
⌈
2−κ ·

∑
si · u′′ij

⌋
mod p. (3)

Correctness: If the u′′ij values had infinite precision, correctness would follow from the correctness of E∗lat.
We would have

mj ← cj −
∑

si · u′ij −
⌈
2−κ ·

∑
si · u′′ij

⌋
mod p

⇔ mj ← cj − b(
∑
i

si · uij)e mod p

⇔ mj ← cj − b~c · Sje mod p

where Sj is the j-th column of S.
It remains to show that the lost precision does not affect the result – in particular, the rounding part. For

this, we need one more tweak to the scheme. We require that the parameters in E∗lat are such that, if ~e is the
properly bounded noise of a valid ciphertext, then ~e · S has entries all less than 1/2(N + 1) in magnitude
(versus merely less than 1/2 in magnitude). Then, correctness holds, because the maximum magnitude of
the lost precision is at most N/2κ+1 ≤ N/2(N + 1) = 1/2 − 1/2(N + 1). Combined with the fact that
b~c · Sje is within 1/2(N + 1) of an integer (this was the tweak), it is clear that the lost precision does not
change the rounding.

21

