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Abstract. We introduce and study a new type of DDH-like assumptions based on groups of prime
order q. Whereas standard DDH is based on encoding elements of Fq “in the exponent” of elements
in the group, we ask what happens if instead we put in the exponent elements of the extension ring
Rf = Fq[X]/(f) where f can be any degree-d polynomial. We show that solving the decision problem
that follows naturally reduces to the case where f is irreducible. This variant is called the d-DDH
problem, where 1-DDH is standard DDH. Essentially any known cryptographic construction based
on DDH can be immediately generalized to use instead d-DDH, and we show in the generic group
model that d-DDH is harder than DDH. This means that virtually any application of DDH can now
be realized with the same (amortized) efficiency, but under a potentially weaker assumption. On the
negative side, we also show that d-DDH, just like DDH, is easy in bilinear groups. This motivates our
suggestion of a different type of assumption, the d-vector DDH problems (d-VDDH), which are based
on f(X) = Xd, but with a twist to avoid the problems with reducible polynomials. We show in the
generic group model that d-VDDH is hard in bilinear groups and that in fact the problems become
harder with increasing d and hence form an infinite hierarchy. We show that hardness of d-VDDH
implies CCA-secure encryption, efficient Naor-Reingold style pseudorandom functions, and auxiliary
input secure encryption, a strong form of leakage resilience. This can be seen as an alternative to the
known family of k-linear assumptions.
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1 Introduction

The computational Diffie-Hellman assumption (proposed by Diffie and Hellman in [DH76]), says
that if one chooses random g in a finite group G and random exponents a, b, then given g, ga, gb it
is hard to compute gab. The assumption was introduced as basis for the well-known Diffie-Hellman
key exchange, but to get efficient public-key encryption one needs the stronger Decisional Diffie-
Hellman assumption (DDH, studied by Naor and Reingold in [NR97]). It says that given g, ga, gb,
the group element gab is pseudorandom, i.e., cannot be efficiently distinguished from gc for a random
c. In some groups, the DDH assumption is clearly false, but it is widely conjectured to hold when
G is, for instance, a large prime order subgroup of F∗

p.
DDH has been used as the basis for a very wide range of cryptographic primitives, such as

pseudorandom functions (PRF) [NR97], hash-proof systems and CCA-secure public-key Encryp-
tion [CS98], leakage resilient cryptography (in particular, auxiliary input security [DGK+10]), and
circular secure encryption [BHHO08].

Clearly, the DDH-assumption is false in groups where discrete log is easy. However, in so-
called bilinear groups (that can be constructed from certain elliptic curves), DDH is easy, even
though discrete log is still conjectured to be hard. This has lead to a large body of research on
weaker variants of the DDH assumption of which some can be used in bilinear groups. A well-
known example is a family of assumptions called the k-linear assumptions (where k = 1 is simply



DDH) [BBS04,HK07,Kil07,Sha07]. In the generic group model, these assumptions are shown to
become progressively weaker for increasing k. Most of the primitives we mentioned above can be
based on the k-linear assumptions, but with a loss of efficiency that increases with k. Several other
assumptions related to discrete log in bilinear groups have been proposed, for instance to support
variants of identity-based encryption or signature schemes. These assumptions sometimes seem to
be conceived specifically to support a particular scheme. While this is not necessarily a bad idea,
we believe there is good motivation to complement this by taking the opposite approach, namely
start from a large class of assumptions and study which of them are useful and plausible.

In this paper we initiate such a study of a new family of assumptions that form natural gen-
eralizations of DDH in prime order groups: if G has prime order q, and we fix a generator h, then
an element g ∈ G “encodes” an element a ∈ Fq namely the a for which g = ha. Intuitively we
can think of a copy of Fq sitting in the exponent, and we can add field elements by multiply-
ing in G, and multiply by known constants by doing exponentiation. However, if CDH is hard,
we cannot do general multiplication, i.e., compute gab from ga, gb. If DDH is hard, we cannot
even distinguish the correct result from random. Now, let us instead consider the extension ring
Rf = Fq[X]/(f) where f is a degree-d polynomial. It is well-known that an element w ∈ Rf

can be represented as a vector (w0, ..., wd−1) ∈ Fd
q . We can therefore represent w by a tuple of

d group elements (hw0 , ..., hwd−1) ∈ Gd. Addition in Rf now becomes multiplication in Gd, and
multiplication by a known constant a ∈ Rf can be done (as we shall see) by applying a linear
function in the exponent. This is simply because in Rf multiplication by a constant a acts as a
linear mapping on the vector (w0, ..., wd−1). More details will be given below, but the essence is
that if we set g = (hw0 , ..., hwd−1) ∈ Gd and take any a ∈ Rf , we can define ga in a completely
natural way, namely as the d-tuple of elements in G that represent wa. This leads to defining the
f -DDH problem as follows: given

(
g,ga,gb,gc

)
, where a,b,c ∈ Fqd ,g ∈ Gd, decide if c is random

or c = ab.
We show that f -DDH and f ′-DDH are equivalent whenever Rf is isomorphic to Rf ′ , and also

that f -DDH is no harder than f0-DDH where f0 is an irreducible factor in f . So it is natural to
consider only the case where f is irreducible of degree d, in which case Rf = Fqd . This variant is
called d-DDH. We show that if d2 divides d1, so that Fqd2 is a subfield of Fqd1 , then d1-DDH is
at least as hard as d2-DDH. We also show in the generic group model that d-DDH for d > 1 is in
fact harder than DDH. The proof of this is interesting from a technical point of view: proofs in the
generic group model usually work by arguing that the adversary fails because he cannot compute
expressions “in the exponent” of sufficiently high degree. This approach completely fails in our case,
instead we have to solve a much harder task, namely we show that the ability to verify whether
certain degree-2 equations are satisfied, does not allow verification of a different class of degree-2
equations.

The result also has a number of interesting consequences: since d-DDH is syntactically so similar
to DDH, it can be directly plugged into virtually any cryptographic construction based on DDH,
and security would now be reducible to d-DDH. An important point is that using d-DDH, you
can produce several pseudorandom elements at essentially the same cost per element as with DDH.
Therefore all applications we are aware of can now be realized under the weaker d-DDH assumption,
but - in an amortized sense - with the same efficiency. We explain this in more detail in Section 5.

Note that the d-DDH assumption should not be confused with the previously known k-DDH
assumption which is completely different and is stronger than DDH (see, e.g., [BB04,DY05,BMR10]
for details on and applications of this assumption).
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On the negative side, however, we also show that d-DDH, just like DDH, is easy in bilinear
groups. This fact motivates our suggestion of the following alternative family of problems: we
observe that by omitting some group elements from an instance of f -DDH, one can obtain a
problem that is hard, even if f is reducible. Based on this, we propose the d-vector DDH (d-
VDDH) assumptions, based on f(X) = Xd. We show in the generic group model that the d-
VDDH assumption holds even in bilinear groups. In fact, it holds even given a d-linear map, which
can be thought of as an oracle allowing the adversary to compute expressions of degree d in the
exponent. This means that the d-VDDH assumptions become progressively weaker for increasing d.
We show that the d-VDDH assumption implies CCA-secure encryption and efficient Naor-Reingold
style pseudorandom functions. We also construct another cryptosystem based on the d-VDDH
assumption, very similar to the BHHO scheme [BHHO08]. We show that this scheme is auxiliary
input secure, a strong form of leakage resilience where full information on the secret key can be
leaked, as long as the key remains hard to compute.

The family of d-VDDH assumptions can therefore be seen as an alternative to the (incomparable)
family of k-linear assumptions.

A final related work that should be mentioned is [HYZX08] in which an assumption called
EDDH is proposed, which is our 2-DDH assumption. This is the only prior work we know of that
mentions a DDH variant based on ring extensions. It is claimed in [HYZX08] that DDH reduces
to EDDH and that in the generic group model EDDH is hard, even in bilinear groups. The first
result is correct, but we could not verify the proof. In this paper, we give a different proof of a more
general statement. The second claim is false, and is refuted by our result that d-DDH for any d is
easy in bilinear groups.

2 Preliminaries

2.1 Notation

If S is a set, we write x ← S meaning that x is sampled uniformly from S. If x ∈ Fm
q is a vector,

we write x[i] for the ith entry of x. We say that a function f : N → R is negligible if, for every
polynomial p, there exists an integer np ∈ N such that f(n) < 1/p(n) for every n > np. If X and Y

are two random variables, we say that X and Y are computationally indistinguishable (X
c
≈ Y ) if

their computational distance is negligible. Furthermore, throughout the paper, vectors are denoted
by bold lowercase letters.

A d-linear map e : Gd → GT is an efficiently computable map such that e(g, . . . , g) 6= 1 and
e(ga1

1 , . . . , gad
d ) = e(g1, . . . , gn)

Q
ai , for all gi in G and for all ai in Fq. A d-linear group G is a group

G together with a d-linear map.

3 Extension Rings and DDH

We consider here a finite field Fq of prime order q and its extension with a polynomial f of degree
d. By this we obtain the ring Rf = Fq[X]/(f), where an element v can be written as v0 + · · · +
vd−1X

d−1 +(f). However, we can also represent v by the matrix V = v0Id +v1Af + · · ·+vd−1A
d−1
f ,

where Id is the d-dimensional identity matrix and Af is the so-called companion matrix of f . The
companion matrix of a monic polynomial f = Xd + αd−1X

d−1 + · · · + α1X
1 + α0 is given by the
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d× d matrix

Af =


0 0 · · · 0 −α0

1 0 · · · 0 −α1

0 1 · · · 0 −α2
...

...
. . .

...
...

0 0 · · · 1 −αd−1

 .

Action of matrices on Gd Given a group G of order q and a tuple of elements g = (g0, . . . , gd−1) ∈
Gd, any matrix M = (mij) of dimension n× d defines a mapping Gd → Gn as follows:

gM :=

 d∏
j

g
m1j

j , . . . ,

d∏
j

g
mnj

j

 . (1)

In particular this means that Rf can act on Gd: we write the element v ∈ Rf in its matrix
representation V and compute gv := gV as above. It is straightforward to verify that this map
behaves according to the standard rules for exponentiation:

(ga)b = gab, gagb = ga+b.

Note that this action can also be understood as implementing a product in Rf in a slightly different
way: if we choose a generator h of G, then we can write any g as (g0, . . . , gd−1) = (hw0 , . . . , hwd−1).
Once we fix h, we can therefore think of g as representing an element w in Rf , namely w =
wd−1X

d−1 + . . . + w0 + (f). We will write this as g = h(w). It now turns out that we have

gv = h(w)v = h(wv).

This follows because we can think of Rf as a d-dimensional vector space over Fq. In that in-
terpretation, multiplication by v is a linear mapping which has a matrix, namely V . Since the
action gv is defined to be multiplication by V “in the exponent”, it follows that by computing
gv = (hw0 , . . . , hwd−1)v, we are in fact multiplying w by v.

3.1 The f-DDH Problem

Given the above, we can now define an new variant of the DDH problem:

Definition 1 (The f-DDH Problem). Let f be a d-degree polynomial. Let G be a PPT algorithm,
which given the security parameter λ, outputs the description of a group G of order q = q(1λ). Let
A be a probabilistic algorithm that takes as input (a description of) G and a 4-tuple of elements in
Gd, and outputs 0 or 1. We say that A solves the f-DDH problem with advantage εA(λ), where

εA(λ) = |Pr[A(G, (g, ga, gb, gc)) = 1]− Pr[A(G, (g, ga, gb, gab)) = 1]|

where g ← Gd and a ← Rf , b ← Rf , c ← Rf . In other words, given
(
g, ga, gb, gc

)
, the problem is

to decide whether c = ab or c is a random element in Rf .

Equivalently, we can think of the problem instance as being given in the alternative represen-
tation (h(w), h(wa), h(wb), h(wc)). This makes no difference to the adversary, as he would not be
given w – but he knows that such a w exists. From the above we construct the following assumption.
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Definition 2 (The f-DDH Assumption). For any probabilistic polynomial time algorithm A
as in Definition 1, it holds that εA(λ) is negligible as a function of λ.

Note that this is a generalization of the DDH problem: for a polynomial f of degree 1, Rf = Fq

and f -DDH is just the standard DDH problem in G.
Now we look a bit closer at the polynomial f . We can distinguish between two different cases:

one where f is reducible and one where f is irreducible. For the first case we have the following
theorem:

Theorem 1 (f-DDH for reducible f). Let f be a d-degree reducible polynomial and suppose f0

divides f , then solving f-DDH is polynomial time reducible to solving f0-DDH.

Proof. Let d0 and d be the degrees of f0 and f respectively. Let us consider an element w in Rf .
We know that w can be written as wd−1x

d−1 + · · · + w0 + (f). If we map w to Rf0 by reducing
modulo f0 we get an element v = vd0−1x

d0−1 + · · · + v0 + (f0). In fact, reduction modulo f0

is a ring homomorphism φ : Rf → Rf0 . It particular, it is linear and therefore has a matrix
M . By (1) we can let M act on w, so we get h(w)M = h(φ(w)) = h(v). Hence, M can be
used to efficiently map an f -DDH instance (h(w), h(wa), h(wb), h(wc)) to an f0-DDH instance
(h(φ(w)), h(φ(wa)), h(φ(wb)), h(φ(wc))) = (h(φ(w)), h(φ(w)φ(a)), h(φ(w)φ(b)), h(φ(w)φ(c))). If
c = ab, then φ(c) = φ(a)φ(b), while if c is uniform in Rf , then φ(c) is uniformly chosen in Rf0 .
Thus, if we can solve f0-DDH, we can solve f -DDH with the same advantage.

4 The d-DDH Problem

Theorem 1 implies that f -DDH is no harder than f0-DDH, where f0 is the smallest irreducible factor
in f . The natural conclusion is therefore that we should only look at the irreducible polynomials.
In this case we know that our ring Rf is a field, namely the extension field Fqd where d is the
degree of f . In fact, since all fields with qd elements are isomorphic, f -DDH is equivalent f ′-DDH
for any f ′ which is also irreducible and of the same degree as f . This is because the isomorphism
can be implemented as a linear mapping in the same fashion as in the proof of Theorem 1. We can
thus efficiently map an f -DDH instance to an f ′-DDH instance and hence the only thing that may
matter to the hardness of the problem is the degree of the extension. In the following, we will talk
about d-DDH. In this definition we do not fix f ; we can use any d-degree irreducible polynomial
and otherwise the game is the same as in Definition 1.

Theorem 2. Let d′ divide d, so Fqd′ is a subfield of Fqd, then d′-DDH is no harder than d-DDH.

We refer to Appendix D for the proof of this theorem.
We now show that d-DDH for d > 1 is, in fact, harder than DDH in the generic group model.

For this, we need two auxiliary results. The first is a standard result, known as the Schwartz-Zippel
lemma [Sch80,Zip79]:

Theorem 3. For a non-zero multivariate polynomial over a finite field K of degree at most t, if
uniformly random and independent values are assigned to the variables, the probability that this
produces a root is at most t/|K|.

The second is our main technical result supporting the hardness of d-DDH:
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Theorem 4. Let f1, f2, f3, f4 be affine functions, where fi : (Fqd)3 7→ Fq, where d > 1. Call the
inputs x,y, z, and assume that xy = z implies (f1f2−f3f4)(x,y, z) = 0. Then (f1f2−f3f4)(x,y, z) =
0 for all inputs.

The proof can be found in Appendix A.

Theorem 5. In the generic group model, the d-DDH assumption holds for d > 1, even when the
adversary is given an oracle allowing him to solve the DDH problem.

Proof. Recall that an instance to the d-DDH problem can be written as (h(w), h(wa), h(wb), h(wc))
for a fixed generator h of G. A way to phrase the problem that will be convenient here is to assume
that a random bit b has been chosen, if b = 0 then c = ab and otherwise c is uniform. It will be
sufficient to show that a polynomial-time adversary cannot guess b with non-negligible advantage
over 1/2.

We will show in the generic group model that the problem remains hard even if the adversary
is given w. From w, it is easy to compute w−1. As we have seen, it is easy to multiply a known
field element “into the exponent” since this is a linear operation, so we can equivalently think of
the problem as being given instead as (h(x), h(y), h(z)), where the adversary now has to decide
whether z = xy.

The adversary A will be a polynomial-time generic group adversary, which (as is standard) is
formalized by giving him random strings representing group elements and access to computing the
group operation and inversion via oracles. In our case, we also give A access to an oracle for solving
DDH. In fact we will provide something a bit stronger: Given g, gi, gj , gk ∈ G, the oracle will say
whether k = ij mod q. Since we are representing all elements as powers of the fixed generator h, it
is easy to see that we can equivalently state this as follows: given hα1 , hα2 , hα3 , hα4 , is it the case
that α1α2 = α3α4 mod q? We will provide A with an oracle for this question in the following.

We now consider an algorithm B playing the following game with the adversary A. B chooses
3d + 1 bit strings σ0, . . . , σ3d+1 uniformly in {0, 1}m, for a sufficiently large m. These strings
represent the encoded elements which algorithm A will work with. Internally, B keeps track of
the encoded elements using polynomials in the ring Fq[X1, . . . , Xd−1, Y0, . . . , Yd−1, Z0, . . . , Zd−1].
Externally, the elements that B gives to A are just bit strings in {0, 1}m. To maintain consis-
tency, B creates a list L of pairs (F, σ) where F is a polynomial in the ring specified above
and σ is a bit string. List L represents elements in G. Initially, L is populated by the elements
{(1, σ0), (X1, σ1), . . . , (Xd−1, σd−1), (Y0, σd), . . . , (Yd−1, σ2d−1), (Z0, σ2d), . . . , (Zd−1, σ3d−1)}. The al-
gorithm B starts the game providing A with σ0, . . . , σ3d+1. The simulation of the oracles goes as
follows:

Group action: Given two elements σi, σj in G, B recovers the corresponding polynomials Fi and
Fj and computes Fi + Fj . If Fi + Fj is already in L, B returns to A the corresponding bit string;
otherwise it returns a uniform element σ in {0, 1}m and stores (Fi + Fj , σ) in L.
Inversion: Given an element σ in G, B recovers its internal representation F and computes −F .
If the polynomial −F is already in L, B returns the corresponding bit string; otherwise it returns
a uniform string σ and stores (−F, σ) in L.
DDH oracle: Given elements σ1, σ2, σ3, σ4 in G, algorithm B recovers the corresponding polyno-
mials F1, F2, F3, F4, tests if F1F2 = F3F4 and sends “yes” or “no” to A accordingly.

In the final stage, A outputs a bit b′. At this point, B chooses uniform values x = (x1, . . . , xd−1),
y = (y0, . . . , yd−1), z = (z0, . . . , zd−1) in Fqd and a bit b; then, it sets X1 = x1, . . . , Xd−1 = xd−1,
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Y0 = y0, . . . , Yd−1 = yd−1. Finally, if b = 1 it sets Z0 = z0, . . . , Zd−1 = zd−1, otherwise it sets
Z0 = (xy)0, ..., Zd−1 = (xy)d−1.

Trivially, in the simulation, b = b′ with probability 1/2. We can, however, also argue that what
the adversary sees in a real attack where b = 0 is statistically indistinguishable from the simulation,
and that this is also the case when b = 1. This will clearly imply the theorem.

If b = 1, it is clear that the only way in which the simulation could be inconsistent with a real
attack is if, after we choose value for x,y, z, either two different polynomials in L, Fi, Fj , happen to
produce the same value or some query to the DDH oracle F1, F2, F3, F4 satisfies that F1F2 − F3F4

is not the 0 polynomial, but produces 0 after assigning values. In the b = 1 case, all values for
coordinates of x,y, z are chosen independently, so Theorem 3 applies to show that for a single
oracle query F1F2 − F3F4 or a single difference Fi − Fj , the probability of having 0 after assigning
values is negligible because q is exponentially large and all polynomials involved have degree at
most 2. Further, by the union bound, since we only have a polynomial number of polynomials to
consider, the overall probability of having 0 after assigning values is also negligible.

For the b = 0 case, some notation: let X = (X0, ..., Xd−1), Y = (Y0, ..., Yd−1), Z = (Z0, ..., Zd−1),
and XY = (g0(X, Y ), ..., gd−1(X, Y )), where gi(X, Y ) is a degree-2 polynomial describing how the
i’th coordinate of the product of two field elements is computed from the input coordinates.

Now, if b = 0, there are two initial possibilities for inconsistency between simulation and
real attack. The first is if some query F1, F2, F3, F4 to the DDH oracle satisfies that (F1F2 −
F3F4)(X, Y, Z) 6= 0, but (F1F2−F3F4)(X, Y,XY ) is the 0-polynomial. This is ruled out by Theorem
4, since the Fi’s have degree at most 1 and can therefore be thought of as affine functions. The sec-
ond potential inconsistency is if two distinct polynomials Fi, Fj in L satisfy that (Fi−Fj)(X, Y,XY )
is the 0 polynomial. To see that this cannot happen, note that since each Fi has degree at most
1, it can be decomposed uniquely as as Fi(X, Y, Z) = F x

i (X) + F y
i (Y ) + F z

i (Z) + ci for a constant
ci and polynomials F x

i (X), F y
i (Y ), F z

i (Z) of degree at most 1 and constant term 0. A collision as
described here can only happen if (F z

i − F z
j )(Z) 6= 0, but (F z

i − F z
j )(XY ) = 0. This leads to a

contradiction: we can assign values Y0 = 1, Y1 = 0, ..., Yd−1 = 0, corresponding to the 1-element in
Fqd . With this assignment, we get that (F z

i − F z
j )(X) = 0, contradicting that (F z

i − F z
j )(Z) 6= 0.

Having ruled out the two initial possibilities for inconsistency, the only remaining possibility is that
an unfortunate choice of values for the variables lead to collisions, as in the b = 1 case. Again by
Theorem 3, this happens with negligible probability since the involved polynomials have degree at
most 4. ut

We now look at what happens to d-DDH in a bilinear group. In such a group it is well-known
that DDH is easy, and we show that this is also the case for d-DDH. The EDDH assumption
presented in [HYZX08] is equivalent to d-DDH for d = 2. It was claimed that EDDH is hard also
in generic bilinear groups, which is however refuted by the following result:

Theorem 6. d-DDH over any bilinear group can be solved in polynomial time.

Proof. We assume that the extension field Fqd has been constructed using some fixed irreducible
polynomial f . Consider any two elements x,y ∈ Fqd as vectors x = (x0, ..., xd−1),y = (y0, ..., yd−1)
and write the product as xy = (z0, ..., zd−1). Now, multiplication of x and y takes place by mul-
tiplying the polynomials x0 + ... + xd−1X

d−1 and y0 + ... + yd−1X
d−1 and reducing modulo f(X).

From this it follows that we can write

zk =
∑

αk
ijxiyj
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for coefficients αk
ij ∈ Fq that depend only on f(x). Now, if we are given d-tuples h(x), h(y), it

follows from the above that we can efficiently compute a representation in the target group GT of
xy. Namely, for every k, we have

e(h, h)zk =
∏
ij

(e(h, h)xiyj )αk
ij =

∏
ij

e(hxi , hyj )αk
ij

and hxi , hyj can be taken directly from h(x), h(y). So if we define

e(h, h)(xy) = (e(h, h)z0 , ..., e(h, h)zd−1)

what we have shown is that we can compute e(h, h)(xy) efficiently from h(x), h(y).
Now, consider an input instance of d-DDH, in the form h(w), h(wa), h(wb), h(wc). Observe

that we have c = ab if and only if wa wb = w wc = w2ab. It now follows immediately from
the above that we can decide if ab = c by computing e(h, h)(wa wb) and e(h, h)(w wc) and
comparing the two.

Although of course not all groups are bilinear, this result nevertheless motivates looking for
alternative assumptions with similar properties that can be assumed to be hard in bilinear groups.
We do this in Section 6.

5 Applications of d-DDH

In this section we present a number of applications for the d-DDH assumption. We will see that its
similarity to the DDH problem allows us to use it in virtually any context where DDH can be used.
We thus show that we can achieve a variety of constructions with the same amortized efficiency
but based on a weaker assumption.

5.1 Pseudorandom Functions

We construct pseudorandom functions (PRF) from d-DDH by taking the construction from [NR97]
and showing that the natural modification where we work in the extension field also gives a PRF.

Definition 3. Let F = {Fk} be a family of keyed functions where Fk : Ak → Bk, for every k in
the key space K. We say that F is a family of pseudorandom functions if for all PPT algorithms
D, any polynomial p and large enough λ,

|Pr[DFk(·)(1λ) = 1]− Pr[Df(·)(1λ) = 1]| < 1/p(λ),

where k is chosen uniformly in K and f is chosen uniformly from the set of functions mapping Ak

to Bk.

PRF Construction We construct a function family F = {fk} as follows. The index k specifies a
tuple (q, Gd,g,a0, . . . ,an) where q is a prime number, G is a group of order q, g is an element of Gd

and a0, . . . ,an are random in Fqd . Finally, we define fk : {0, 1}n → Gd, fk(x1, . . . , xn) = ga0
Q

xi=1 ai .

Theorem 7. Under the d-DDH assumption, the family F = {fk} defined above is a family of
pseudorandom functions.
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The proof of the theorem follows the exact same line as in [NR97]. Essentially the proof is done
by a hybrid argument in which we define a sequence of functions {hi} where h0 is fk and hn is a
uniformly random function. An adversary that distinguishes between h0 and hn will also distinguish
between hi and hi+1, for some i, which reduces to the d-DDH problem.

5.2 Public Key Encryption

We now apply d-DDH to public key encryption. If we modify in the natural way the Elgamal
[Gam84] scheme, we obtain CPA secure encryption based on d-DDH.

– Gen(1λ): Let G ← G(1λ). Choose a random element g ← Gd and random x ← Fqd
. Compute

h = gx. The secret key is then sk = x and the public key is pk = (h), where G can be considered
public parameters.

– Enc(pk ,M): Let the message be M ∈ Gd. Choose randomly r ← Fqd
. Output the ciphertext

CT = (gr,hr ·M).
– Dec(sk ,CT ): Write the ciphertext as CT = (e, c). Output M ′ = c · (ex)−1

The proof of correctness and security follows immediately as for standard Elgamal.

5.3 Applications in general

Having seen the two examples above, it should not be surprising that all DDH-based cryptographic
schemes we are aware of can be based on d-DDH instead. This is basically because all involved
algorithms (such as key generation, encryption, and security reduction) will work given only black-
box access to a group G and a finite field K. We just need that for g ∈ G and x ∈ K, gx ∈ G is
well-defined and standard “axioms” such as gx+y = gxgy and (gx)y = gxy hold. The exact same
scheme and security proof can be run, based on (G,K) = (G, Fq) or based on (G,K) = (Gd, Fqd).
The only difference is that we need the d-DDH assumption in the latter case. Thus, for instance,
CCA secure encryption [CS98] and circular secure or auxiliary input secure encryption [BHHO08]
follow immediately from d-DDH.

5.4 Efficiency

For all constructions mentioned here, we can define a notion of amortized complexity. For a PRF,
this is the computation time needed to produce a single pseudorandom group element; for an
encryption scheme it is the computation time needed to encrypt a group element.

An important point is that in all applications we are aware of, the amortized complexity is
essentially the same for constructions based on DDH and on d-DDH. This is because for g ∈ Gd

and a ∈ Fqd , ga corresponds to a tuple of length d where each entry is an expression of the form∏
gαi
i . By a well-known algorithm (see [Pip76]) such a value can be computed in time roughly what

you need for a single exponentiation in G.
As a concrete example, computing the PRF defined above requires essentially a single expo-

nentiation: g(a0
Q

xi=1 ai). This produces d pseudorandom elements at amortized cost roughly 1
exponentiation in G, which is the same cost as the DDH based version.

Various optimizations are known that save computation in the constructions we consider here.
However, all the optimizations we are aware of can be applied to both variants based on DDH and
d-DDH, and therefore do not affect our conclusion on the amortized complexities.
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6 The Vector DDH Problem

The main observation in this section is that we can construct a problem that is generically harder
than DDH by revealing only the last entry of the final vector in an f -DDH instance. In the following,
we study in detail what happens if we choose f to be xd. It turns out that there is a simple way
of expressing products in Rd = Fq[X]/(xd). If we take x = (x0, . . . , xd−1) and y = (y0, . . . , yd−1) in
Rd, we have:

xy =

(
x0y0, . . . ,

i−1∑
k=0

xkyi−1−k, . . . ,

d−1∑
k=0

xkyd−1−k

)
. (2)

We define the d-VDDH problem just like d-DDH, except that the problem instance is now of the
form (h(w), h(wa), h(wb), h(wc))[d]), where we recall that x[d] is the dth entry of the vector x,
that is xd−1 if we start numbering from 0.

Definition 4 (The d-VDDH Problem). Let d be an integer. Let G be a PPT algorithm, which
given the security parameter λ, outputs the description of a group G of order q = q(1λ). Let A be a
probabilistic algorithm that takes as input (a description of) G and a 3-tuple in Gd plus an element
in G, and outputs 0 or 1.

We say that A solves the d-VDDH problem with advantage εA(λ), where

εA(λ) = |Pr[A(G, (g, ga, gb, gc[d])) = 1]− Pr[A(G, (g, ga, gb, gab[d])) = 1]|

where g← Gd and a← Rd, b← Rd, c← Rd.

Definition 5 (The d-VDDH Assumption). For any probabilistic polynomial time algorithm A
as in Definition 4, it holds that εA(λ) is negligible as a function of λ.

Recall the notation introduced in Section 3: g = (g0. . . . , gd−1) = (hw0 , . . . , hwd−1). Note that
we WLOG can choose w0 = 1, so h(w) = (g0, g

w1
0 . . . , g

wd−1

0 ). To prove that d-VDDH is generically
hard, even in d-linear groups, it is useful to do the following parameter substitution: set x = wa,
y = wb. The d-VDDH problem now becomes deciding whether the last element is the dth coordinate
of xyw−1 or is random.

Now, set w−1 = (z0, z1, ..., zd−1) and consider the zi as unknowns. Since ww−1 = 1 = (1, 0, ..., 0)
we get d− 1 equations involving the zi’s, using the product introduced in (2):

z0 = 1
z1 = −w1

...
zi = −wi −

∑
j+l=i zlwj

...
zd−1 = −wd−1 −

∑
j+l=d−1 zlwj

In particular, zi = −w1zi−1 − · · · − wi−1z1 − wi. Hence, it can be proved by simple induction that
zi has degree i as a function of the wj ’s. Now, let pi(w,x,y) be the ith entry of w−1xy. Then
pd(w,x,y) has degree d + 1 in w,x, and y.
We are now ready to prove the generic hardness of d-VDDH.

Theorem 8. Even given a d-linear mapping, the d-VDDH holds in the generic group model.
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The proof can be found in Appendix B.
Later, we will need a lemma stating that a generalization of the d-VDDH which considers several

generators is equivalent to the original assumption.

Lemma 1. If d-VDDH is hard for G, then for any positive integer m{
(g1, . . . , gm, gr

1[d], . . . , gr
m[d]) | gi ← Gd, r← Rd

}
c
≈ (3){

(g1, . . . , gm, gr1
1 [d], . . . , grm

m [d]) | gi ← Gd, ri ← Rd

}
. (4)

The proof can be found in Appendix C.

7 Applications of d-VDDH

In this section we discuss a number of natural application of our d-VDDH assumption. Throughout
this section we will use the ring Rd = Fq[X]/(f) for f = Xd.

7.1 Public Key Encryption

It is immediate how to construct a CPA-secure encryption schemes from the d-VDDH assumption
family. We now show how to extend them to chosen-ciphertext (CCA) secure schemes. Let us first
recall the definition of chosen-ciphertext security for encryption schemes.

Definition 6. A scheme PKE is CCA secure if for any PPT adversary A = (A1,A2), any polyno-
mial p and large enough λ,

AdvA,h :=
∣∣∣Pr[CCA0(PKE,A, 1λ)]− Pr[CCA1(PKE,A, 1λ)]

∣∣∣ < 1/p(λ),

where CCAb(PKE,A, 1λ) is output from the following experiment:

(pk , sk)←G(1λ)

(m0,m1, state)←ADec(sk ,·)
1 (1λ, pk) with |m0| = |m1|

CT ∗ ←Encpk (mb),

Output b′ ←ADec(sk ,·)
2 (1λ, state, CT ∗)

In the second phase the decryption oracle Dec(sk , ·) returns ⊥ when queried on the challenge
ciphertext CT ∗.

We now give the construction of our CCA secure encryption scheme. Let (E,D) be a symmetric
encryption scheme with key-space K ∈ G. Let T : Gd → Fq be a target collision resistant hash
function (see [HK07] for a definition) and define T̂(x) := (T(x), 0, . . . , 0) ∈ Rd. (Note that for two
elements x 6= y we have that T̂(x)− T̂(y) is invertible in Rd unless T(x) = T(y)).

– Gen(1λ): Let G ← G(1λ). Choose a random generator g1 ← Gd and random indices w,x,y ←
Rd. Compute g2 = gw,u = gx,v = gy. The secret key is then sk = w,x,y and the public key
is pk = (G,g1,g2,u,v).
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– Enc(pk ,M): Choose randomly r ← Rd. Compute c1 = gr and c2 = (utv)r, where t = T̂(c1) ∈
Rd. Compute the symmetric part as C = EK(m), where K = g2[d]. Output the ciphertext
CT = (c1, c2, C).

– Dec(sk ,CT ): Write the ciphertext as CT = (c1, c2, C). If cx·t+y
1 6= c2 then return ⊥. Otherwise

return DK(C), where K = cw
1 [d].

It is easy to see that correctness follows by the definition of the public/secret key and by the
correctness of the symmetric scheme. To prove the theorem we need that symmetric scheme is secure
in the sense of authenticated encryption. That is, it acts as a one-time pad plus any decryption
query (with respect to a uniform random key) is rejected. We refer again to [HK07] for a formal
definition.

Theorem 9. If (E,D) is a symmetric encryption scheme secure in the sense of authenticated en-
cryption, T is a target collision resistant hash function and the d-VDDH holds in G, then the
encryption scheme is IND-CCA secure.

The proof is exactly the same as Theorem 2 in [HK07] where an encryption scheme is proved CCA
secure from the DDH assumption. We give some intuition about the proof.

The difficulty in the security reduction is that an adversary against the d-VDDH assumption
has to answer the decryption queries and hence has to distinguish between consistent ciphertexts
(i.e., ciphertexts for that cxt+y

1 = c2 holds) and inconsistent ones, without knowing w = logg1
g2.

The simulator inputs (g1,g2, c
∗
1 = gr

1,K
∗) and wants to distinguish K∗ = gr∗

2 [d] from a uniform
element in G. In the simulation the values u,v from the public-key are set-up such that the tuple
c∗1, c

∗
2 can be used as the challenge ciphertext for some efficiently computable c∗2 and the value K∗

as the symmetric key. More precisely, we define u = gx1
1 gx2

2 ,v = gy1
1 g−t·x2

2 for uniform x1,y1 ∈ Rd,
x2 ∈ R∗

d and t∗ = T̂(c∗1). By construction, the corresponding real session key is gr∗
2 [d] so breaking

the indistinguishability of the scheme is equivalent to solving the d-VDDH problem. It leaves to
deal with the decryption queries for CT = (c1, c2, C). The simulator is not able to distinguish
consistent from inconsistent ciphertexts. However, for ciphertexts with t = T̂(c1) 6= t∗ (these are the
interesting cases) the simulator implements an alternative decryption algorithm by computing the
symmetric key as K = (c1c

−x1t+y1
2 )(x2(t−t∗))−1

[d]. (Note that by the properties of T̂, x2(t−t∗) ∈ R∗

so its inverse is well-defined.) This has the following consequences.
It is easy to verify that if the queried ciphertext is consistent then the alternative decryption

algorithm yields the correct symmetric key K = cw
1 . If the queried ciphertext is inconsistent then the

alternative decapsulation algorithm yields one single symmetric key K that is uniformly distributed
over G. (The probability space is taken over all possible x1,x2,y1 that yield u,v from the public-
key given to the adversary.) Returning this key K to the adversary would completely determine the
simulator’s secret key and hence also the virtual symmetric key K ′ for the next decapsulation query.
However, this key K is used to decrypt the symmetric part C of the decryption query and by the
authenticity property of the latter this will always lead to a rejection. Hence the decryption query
is answered correctly and no information about the secret key is leaked which makes it possible to
apply the same argument again.

7.2 Generalized BHHO Encryption

In this section we define a public-key encryption scheme which is heavily inspired by the scheme in
[BHHO08]. Here, however, the cryptosystem is based on d-VDDH, instead of DDH.
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Let λ be the security parameter and m = m(λ) be a parameter of the scheme. The encryption
scheme is PKE = (Gen,Enc,Dec).

– Gen(1λ): Let G← G(1λ). Choose a vector of random generators g = (g1, . . . ,gm),gi ← Gd and
random bit string s = (s1, . . . , sm)← {0, 1}m. Compute y =

∏m
i=1 g(si,0,...,0)

i , where (s1, 0, . . . , 0)
is viewed as an element in Rd. The secret key is then sk = s and the public key is pk = (G,g,y),
where G and g can be considered public parameters.

– Enc(pk ,M): Let the message be M ∈ G. Choose randomly r ← Rd. Compute fi = gr
i [d] and

output the ciphertext CT = (f1, . . . , fm,yr[d] ·M).
– Dec(sk ,CT ): Write the ciphertext as CT = (f1, . . . , fm, c). Output M ′ = c · (

∏m
i=1 fsi

i )−1

Correctness of decryption follows since

m∏
i=1

fsi
i =

m∏
i=1

(gr
i [d])si =

m∏
i=1

(
grd
i1 · g

rd−1

i2 · · · gr1
id

)si =
m∏

i=1

(
grdsi
i1 · grd−1si

i2 · · · gr1si
id

)
=

m∏
i=1

(
gsi
i1, . . . , g

si
id

)(r1,...,rd) [d] =
m∏

i=1

(gi1, . . . , gid)
(si,0...,0)(r1,...,rd) [d] =

m∏
i=1

g(si,0,...,0)r
i [d] = yr[d]

CPA security in the usual sense follows immediately from Lemma 1. We will, however, argue
that the scheme is also leakage resilient in the auxiliary input model.

Auxiliary Input Security The definition of security w.r.t auxiliary inputs is exactly as in
[DGK+10].

Definition 7. A scheme PKE is CPA secure w.r.t. auxiliary inputs from a function class H if for
any function h ∈ H, any PPT adversary A = (A1,A2), any polynomial p and large enough λ,

AdvA,h :=
∣∣∣Pr[CPA0(PKE,A, 1λ, h)]− Pr[CPA1(PKE,A, 1λ, h)]

∣∣∣ < 1/p(λ),

where CPAb(PKE,A, 1λ, h) is output from the following experiment:

(pk, sk)←Gen(1λ)

(m0,m1, state)←A1(1λ, pk, h(sk , pk)) with |m0| = |m1|
CT ∗ ←Encpk (mb),

Output b′ ←A2(1λ, state,CT ∗)

The functions we will consider are those where the secret key is hard to compute even given
the leakage. More precisely, How(f(k)) consists of all PT functions h : {0, 1}|sk |+|pk | → {0, 1}∗ s.t.
given h(sk , pk) (for (sk , pk) ← Gen(1λ)), no PPT algorithm can find sk with probability greater
that f(k). A scheme secure w.r.t auxiliary inputs from How(f(k)) is called f(k)-AI-CPA secure.

We are now ready to state the theorem about the security of our scheme.

Theorem 10. Let m = (4 log qd)1/ε, for some ε > 0. Assuming that d-VDDH is hard for G, the
scheme above is

(
2−mε)

-AI-CPA secure.
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The complete details of the proof of Theorem 10 are given in the appendix of the full version.
It follows the exact same lines as in the proof in [DGK+10]. Essentially, the security follows by
first using Lemma 1 to argue that the first m elements in the ciphertext are indistinguishable from
random. Finally we argue that if we can distinguish the last element from a random element, then
we can invert h, which by assumption is hard. This reduction is done by using a Goldreich-Levin
Theorem for large fields, which is proved in [DGK+10]. The theorem basically says that if we can
distinguish the inner product 〈r, s〉 from a uniformly random element given h(s), then we can invert
h.

There is a trade-off between the ciphertext size and the hardness of the leakage functions that
we can protect against. Obtaining security against functions that are 2−mε

-hard to invert, requires
that m = (4 log qd)1/ε instead of m = (4 log q)1/ε, which is a polynomial overhead in the ciphertext
size.

7.3 Pseudorandom Functions

In this section we present a construction for pseudorandom functions (see Definition 3) based on
the d-VDDH assumption. This construction is a modification of the DDH-based one in [NR97].

PRF Construction We construct a function family F = {fk} as follows. The index k specifies a
tuple (q, G, g1, g2, e,a0, . . . ,an) where q is a prime number, G is a group of order q, g1, g2 are two
generators of G, e : G2 → GT is a bilinear map and a0, . . . ,an are random in R2. For any such
index k we denote t1 = e(g1, g1), t2 = e(g2, g1) and t = (t1, t2). Finally, we define fk : {0, 1}n → GT ,
fk(x1, . . . , xn) = ta0

Q
xi=1 ai [2].

Theorem 11. Under the 2-VDH assumption, the family F = {fk} defined above is a family of
pseudorandom functions.

Proof. Let k = (q,g,a0, . . . ,an) be some random index. We have to prove that fk cannot be
distinguished from a uniformly random map from {0, 1}n to GT . To prove this, we define for
j ∈ {0, . . . , n} the map hj : {0, 1}n → GT . In order to compute hj , we choose aj+1, . . . ,an in R2

and we parse every input x ∈ {0, 1}n as x = yxj+1 . . . xn, where y ∈ {0, 1}j . For every such y we

choose ty uniformly in GT . Finally, we define hj(y, xj+1, . . . , xn) = t
Q

xi=1 ai

y [2]. Notice that h0 = fk

while hn is a uniformly random function. If there exists a PPT adversary A that can distinguish h0

from hn with some non-negligible advantage ε, then there must be a j for which A can distinguish
with advantage at least ε/n between hj and hj+1. We will show that such an adversary can be used
to distinguish tuples as in Lemma 1 where the elements of the tuples are in G.

We define a distinguisher D as follows. On input (g,ga,gb1 , . . . ,gbm ,gc1 [2], . . . ,gcm [2]), D in-
vokes A with input 1λ and chooses aj+2, . . . ,an ← R2. When A sends a query x ∈ {0, 1}n, dis-
tinguisher D parses x as yxj+1 . . . xn. If y was not queried before, D considers the next fresh gbl

otherwise it takes the element that was used before. Finally, D computes h(x) as tbl
Q

xi=1 ai [2]
if xj+1 = 0. Note that tbl can be computed using e as follows:

(
e(gbl [1], g1), e(gbl [2], g1)

)
=(

e(gbl,1

1 , g1), e(g
bl,2

1 g
bl,1

2 , g1)
)

=
(
t
bl,1

1 , t
bl,1

2 t
bl,2

1

)
= tbl . If xj+1 = 1, distinguisher D first computes

tabl [1] as e(ga[1],gbl [1]) = (ga1
1 , g

bl,1

1 ) = t
a1bl,1

1 , then it sets h(x) = (tabl [1], e(gcl [2], g1))
Q

xi=1 ai [2].
We want to argue that if cl = abl then h(x) = hj(x), while if cl is random, we have h(x) = hj+1(x).
Notice that this is clearly true whenever xj+1 = 0, so let’s assume that xj+1 = 1. If cl = abl then
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(
t
a1bl,1

1 , e(ga1bl,2+a2bl,1

1 g
a1bl,1

2 , g1)
)

=
(
t
a1bl,1

1 , t
a1bl,1

2 t
a1bl,2+a2bl,1

1

)
= tabl , thus h(x) = tabl

Q
xi=1 ai [2] =

hj(x), where aj+1 = a. When instead cl is a random element, we notice that even with tabl [1] in
the first component, the output of h will still be of the form gr

Q
xi=1 ai [2] for a random r.
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A Proof of Theorem 4

We restate the Theorem here with slightly different notation that will be convenient later:

Theorem 12. Let f1, f2, f3, f4 : F3
qd −→ Fq be affine functions with q > 2 and d > 2. Suppose that

the function (f1f2 − f3f4)(X, Y,XY ) vanishes on F2
qd. Then the function (f1f2 − f3f4)(X, Y, Z)

vanishes on F3
qd.

Proof. An affine function f : F3
qd −→ Fq is of the form

f(X, Y, Z) = e + φ(X, Y, Z),

where e ∈ Fq is a constant and where φ : F3
qd −→ Fq is an Fq-linear function. Clearly, φ is of the

form
φ(X, Y, Z) = φ′(X) + φ′′(Y ) + φ′′′(Z),

where φ′, φ′′, φ′′′ : Fqd −→ Fq are Fq-linear functions.
It is an elementary fact from the theory of finite fields that any Fq-linear function g(X) mapping

Fqd to Fq is of the form g(X) = Tr(aX) for some a ∈ Fqd . Here, Tr : Fqd −→ Fq denotes the trace-
function, i.e., Tr(x) = x + xq + · · ·+ xqd−1

for all x ∈ Fqd .
Hence, there exist a,b, c ∈ Fqd such that

φ′(X) = Tr(aX) , φ′′(Y ) = Tr(bY ) , φ′′′(Z) = Tr(cZ).

Putting it all together, it follows that an affine function f : F3
qd −→ Fq is of the form

f(X, Y, Z) = e + Tr(aX) + Tr(bY ) + Tr(cZ).

Let ei ∈ Fq,ai,bi, ci ∈ Fqd (i = 1, 2, 3, 4) be such that

fi(X, Y, Z) = ei + Tr(aiX) + Tr(biY ) + Tr(ciZ) (i = 1, 2, 3, 4).

Substituting the (polynomial) expression for the trace-function, it follows there is a constant
e ∈ Fq and there are polynomials

h′(X) ∈ Fq[X] , h′′(Y ) ∈ Fq[Y ] , h′′′(Z) ∈ Fq[Z] ,

h1(X, Y ) ∈ Fq[X, Y ] , h2(X, Z) ∈ Fq[X, Z] , h3(Y, Z) ∈ Fq[Y, Z]

such that
(f1f2 − f3f4)(X, Y, Z) = F (X, Y, Z),

as functions on F3
qd , where

F (X, Y, Z) = e + h′(X) + h′′(Y ) + h′′′(Z) + h1(X, Y ) + h2(X, Z) + h3(Y, Z) ∈ Fq[X, Y, Z].

Note that the total degree of F (X, Y, Z) is at most 2qd−1. Substituting XY = Z, the condition
of the theorem implies that

F (X, Y,XY ) ≡ 0,
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the zero-polynomial. This implies, in particular, that the polynomial F (X, Y, Z) has many zeroes.
Unfortunately, however, this number is not large enough compared to its total degree for Theorem 3
(Schwartz-Zippel) to imply that F must be the zero-polynomial.

Exploiting the fact that the bi-degrees of the monomials are of a special form (resulting from
the expression for the trace-function), we first argue that several terms must vanish individually.
This will simplify matters significantly.

First, observe that (disregarding their coefficients),

– We can write h′(X) = g′1(X) + g′2(X), where the monomials of g′1(X) are all of the form Xqi
,

and the monomials of g′2(X) are all of the form Xqi+qj
.

– We can write h′′(Y ) = g′′1(Y ) + g′′2(Y ), where the monomials of g′′1(Y ) are all of the form Y qi
,

and the monomials of g′′2(Y ) are all of the form Y qi+qj
.

– We can write h′′′(Z) = g′′′1 (Z) + g′′′2 (Z), where the monomials of g′′′1 (Z) are all of the form Zqi
,

and the monomials of g′′′2 (Z) are all of the form Zqi+qj
.

– The monomials of h1(X, Y ) are all of the form Xqi
Y qj

.
– The monomials of h2(X, Z) are all of the form Xqi

Zqj
.

– The monomials of h3(Y, Z) are all of the form Y qi
Zqj

.

Second, after substituting XY = Z, observe that (disregarding their coefficients),

– The monomials of g′1(X) are of the form Xqi
, while monomials of g′2(X) are of the form Xqi+qj

.
– The monomials of g′′1(Y ) are of the form Y qi

, while monomials of g′′2(Y ) are of the form Y qi+qj
.

– The monomials of g′′′1 (XY ) are of the form Xqi
Y qi

, while monomials of g′′′2 (XY ) are of the form
Xqi+qj

Y qi+qj
.

– The monomials of h1(X, Y ) are all of the form Xqi
Y qj

.
– The monomials of h2(X, XY ) are all of the form Xqi+qj

Y qj
.

– The monomials of h3(Y, XY ) are all of the form Xqi
Y qi+qj

.

Since F (X, Y,XY ) ≡ 0, the first (trivial) consequence is that e = 0, since the constant terms
of the polynomials h′, h′′, h′′, h1, h2, h3 are all equal to 0. Next,

g′1(X) ≡ 0 , g′2(X) ≡ 0, g′′1(Y ) ≡ 0, g′′2(Y ) ≡ 0,

since, for each of these polynomials, it clearly holds that its monomials cannot be “canceled” by
any monomials from any of the other polynomials. The same holds for h2(X, XY ) and h3(X, XY ),
this can be seen using the uniqueness of q-ary representation of the integers. So we have

h2(X, XY ) ≡ 0 , h3(Y, XY ) ≡ 0.

We then consider what this means for h2(X, Z). The total degree of the polynomial is at most
2qd−1. Yet, if we set X to be any non-zero value, then if we let Y run through all values in Fqd

XY runs through all values as well. By the above observation that h2(X, XY ) = 0, this gives us
(qd − 1)qd choices of values for (X, Z) where h2(X, Z) = 0. So the number of zeros for h2(X, Z) is
at least (counting also (X, Z) = (0, 0)):

1 + (qd − 1)qd = q2d − qd + 1 >
2qd−1

qd
· q2d,
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where for the sharpness of the inequality it is used that q > 2. This means, by Theorem 3 (Schwartz-
Zippel), that h2(X, Z) has too many zeroes to be anything else than the zero-polynomial. The same
holds for h3(Y, Z) by the same argument. Thus,

h2(X, Z) ≡ 0 , h3(Y, Z) ≡ 0.

Finally we conclude, again by uniqueness of q-ary representation, that g′′′2 (XY ) ≡ 0, whence
g′′′2 (Z) ≡ 0. Substituting all this back, it follows that

F (X, Y, Z) = g′′′1 (Z) + h1(X, Y )

as polynomials.
Since F (X, Y,XY ) ≡ 0,

g′′′1 (XY ) + h1(X, Y ) ≡ 0, (5)

and since h1(X, Y ) = Tr(a1X)Tr(b2Y ) + Tr(a2X)Tr(b1Y )−Tr(a3X)Tr(b4Y )−Tr(a4X)Tr(b3Y ),
we get

−g′′′1 (XY ) = Tr(a1X)Tr(b2Y ) + Tr(a2X)Tr(b1Y )− Tr(a3X)Tr(b4Y )− Tr(a4X)Tr(b3Y ) (6)

as polynomials.

Proof for d > 4. Recall that if ai 6= 0 then Tr(aiX) is a (non-trivial) Fq-linear function from Fqd to
Fq, whence its kernel has dimension d−1. Therefore, if d > 4, the intersection of the 4 kernels of the
Tr(aiX)’s is non-trivial: there exists x0 6= 0 which is in all 4 kernels. This implies that h′′′(x0y) = 0
for all y ∈ Fqd . Hence, g′′′1 (Z) ≡ 0 as a polynomial as well.

But then
F (X, Y, Z) = g′′′1 (Z) + h1(X, Y ) = h1(X, Y )

which means that in fact F (X, Y, Z) = F (X, Y,XY ) as polynomials, and so F (X, Y, Z) must vanish
on F3

qd , as claimed.

Proof for d = 3, 4. To get the result in this case, we exploit some more of the information we get
from the fact that F (X, Y,XY ) vanishes: Since g′2(X) ≡ 0 we get that

0 ≡ g′2(X) = Tr(a1X)Tr(a2X)− Tr(a3X)Tr(a4X)

as polynomials. Note that if either Tr(a1X) ≡ 0 or Tr(a2X) ≡ 0, then Tr(a3X)Tr(a4X) ≡ 0. Hence,
since the polynomial ring Fq[X] is a domain, either Tr(a3X) ≡ 0 or Tr(a4X) ≡ 0

Two of the 4 polynomials being zero is sufficient to complete the argument later on, so assume
for the moment that all 4 polynomials are non-zero, i.e, ai 6= 0 (i = 1, 2, 3, 4). Then the polynomial
Tr(a1X) must divide the polynomial Tr(a3X)Tr(a4X). But in fact, Tr(a1X) must divide either
Tr(a3X) or Tr(a4X).

To see this, note that, since Tr(aiX) is a (non-trivial) Fq-linear function from Fqd to Fq, its zeros
form an Fq-linear subspace of dimension d−1 in Fqd . Two such distinct subspaces can intersect in a
subspace of dimension at most d−2. Hence, if the zeros of Tr(a1X) did not overlap completely with
the zeros of Tr(a3X) nor completely with the zeros of Tr(a4X), it could have at most 2qd−2 < qd−1

zeros, which is a contradiction. So without loss of generality, Tr(a1X) = αTr(a3X) for some non-
zero constant α ∈ Fqd , whence also Tr(a2X) = βTr(a4X) for some β ∈ Fqd . But since the functions
Tr(aiX) are surjective (onto Fq), it must hold that α, β ∈ Fq.
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Now, consider again equation (6) proved above. If ai = 0 for some i ∈ {1, 2, 3, 4}, then, as noted
above, aj = 0 for some j ∈ {1, 2, 3, 4} with j 6= i. Hence, two of the 4 terms in (6) vanish. If ai 6= 0
for all i ∈ {1, 2, 3, 4}, the substitutions Tr(a1X) = αTr(a3X) and Tr(a2X) = βTr(a4X) are made.
In both cases, it follows that

g′′′1 (XY ) = u1(X)v1(Y ) + u2(X)v2(Y )

for Fq-linear functions u1, u2, v1, v2. Now, the argument is completed as we did before for d > 4,
since the kernels of u1, u2 must intersect non-trivially if d > 2.

Proof for d = 2. To show the result in this case we do a more elaborate case analysis. To make
notation more compact in the following, we let Xi = Tr(aiX), Yi = Tr(biY ) and Zi = Tr(ciZ)
for i = 1, .., 4, so Xi, Yi, Zi are polynomials and equalities in the following involving these are
understood to as equalities of polynomials.

Note that to show the result we want it is enough to show that g′′′1 (XY ) = u(X)v(Y ) for linear
functions u, v, since then it follows that g′′′1 (Z) ≡ 0 in the same way as for d > 2. It is also enough
to show that all Zi are 0, since then we would have g′′′1 (Z) = d1Z2 + d2Z1 − d3Z4 − d4Z3 = 0

To identify the cases we have to consider, note that the argument exploiting g′2(X) ≡ 0 we used
to show the theorem for d = 3, 4 can also be based on g′′2(Y ) ≡ 0. In fact, that argument implies
that one of the three following cases must occur:

1. One of Y1, Y2 is 0 and one of Y3, Y4 is 0,
2. All Yi are non-zero and Y1 = αY3, Y2 = βY4, with α = β−1

3. All Yi are non-zero and Y1 = αY4, Y2 = βY3, with α = β−1,

and the same 3 cases apply to the Xi’s:

1. One of X1, X2 is 0 and one of X3, X4 is 0,
2. All Xi are non-zero and X1 = γX3, X2 = δX4, with γ = δ−1

3. All Xi are non-zero and X1 = γX4, X2 = δX3, with γ = δ−1,

So we now consider all combined possibilities, where fortunately some can be handled together due
to symmetries.

Case 2 or 3 applies to both the Xi’s and the Yi’s. Without loss of generality, assume case 2 applies
to the Yi’s. Plugging into (6), we get

−g′′′1 (XY ) = (βX1 −X3)Y4 + (αX2 −X4)Y3 (7)

If Y3 = λY4 for some constant λ we are clearly done, so we may assume this is not the case, i.e.,
ker(Y3) 6= ker(Y4). From our earlier arguments, we also have that h3(Y, Z) = Z1Y2 +Z2Y1−Z3Y4−
Z4Y3 = 0. Since case 2 applies the the Yi’s, we get

(βZ1 − Z3)Y4 + (αZ2 − Z4)Y3 = 0

This, and that Y3, Y4 are non-zero with ker(Y3) 6= ker(Y4) implies that

βZ1 = Z3, αZ2 = Z4, (8)

because we can choose a y such that y ∈ ker(Y3) but y 6∈ ker(Y4), and vice versa.
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Now, if case 2 also applies to the Xi’s, the argument we just applied to h3(Y, Z) can also be
applied to h2(X, Z), and will give us that δZ1 = Z3, γZ2 = Z4. If all Zi = 0, we are already done,
so assume without loss of generality that Z1 6= 0. Then we have δ = β and therefore X2 = βX4.
Plugging this into (7) and using αβ = 1 we get −g′′′1 (XY ) = (βX1 −X3)Y4 and we are done.

We then assume instead that case 3 applies to the Xi’s. Plugging this into (7), we get

−g′′′1 (XY ) = (βγX4 −X3)Y4 + (αδX3 −X4)Y3

From αβ = 1, γδ = 1 follows that (βγ)−1 = αδ, and hence (βγX4 − X3) and (αδX3 − X4) seen
as linear mappings have the same kernel. We can therefore choose x 6= 0 in the kernel of both
mappings and conclude that −g′′′1 (xY ) is identically 0, hence g′′′1 (Z) is 0 and we are done.

Case 1 applies to the Xi’s or the Yi’s. Assume without loss of generality that case 1 applies to the
Yi’s and that in fact Y1 = 0, Y3 = 0. Plugging this into (6), we get

−g′′′1 (XY ) = X1Y2 −X3Y4 (9)

As a first observation, note that if one of Y2, Y4 is 0, or if Y2 = κY4 for a constant κ, we are clearly
done. So we may assume this is not the case, in other words Y2, Y4 are non-zero and have distinct
kernels. Exactly the same can be assumed about X1, X3.

Consider now that h3(Y, Z) = Z1Y2 + Z2Y1 − Z3Y4 − Z4Y3 = 0 in this case means that Z1Y2 −
Z3Y4 = 0. By our assumption on Y2, Y4 this implies Z1 = Z3 = 0. We also know that h2(X, Z) =
X1Z2 + X2Z1 −X3Z4 −X4Z3 = 0. Plugging in Z1 = Z3 = 0, we get

X1Z2 −X3Z4 = 0

By our assumption on X1, X3, we get Z2 = Z3 = 0 and we are done.

B Proof of Theorem 8

Proof. Let G be a cyclic group of order q. Let g be a generator, and let e : Gd → GT be a d-linear
map. We consider an algorithm B playing the following game with A. Algorithm B chooses 3d+2 bit
strings σ0, . . . , σ3d+1 uniformly in {0, 1}m, for a sufficiently large m. These strings represent the en-
coded elements which algorithm A will work with. Internally, B keeps track of the encoded elements
using polynomials in the ring Fq[W1, . . . ,Wd−1, X0, . . . , Yd−1, X0, . . . , Yd−1, T0, T1]. Externally, the
elements that B gives to A are just bit strings in {0, 1}m. To maintain consistency, B creates two lists
L1 and L2 of pairs (F, σ) where F is a polynomial in the ring specified above and σ is a bit string. List
L1 represents elements in G while L2 represents elements in GT . Initially, L2 is empty and L1 is set
to {(1, σ0), (W1, σ1), . . . , (Wd−1, σd−1), (X0, σd), . . . , (Xd−1, σ2d−1), (Y0, σ2d), . . . , (Yd−1, σ3d−1), (T0,
σ3d), (T1, σ3d+1)}. Algorithm B starts the game providing A with σ0, . . . , σ3d+1. The simulation of
the oracles goes as follows:

Group action: Given two elements σi, σj in G, B recovers the corresponding polynomials Fi and
Fj and computes Fi + Fj . If Fi + Fj is already in L1, B returns to A the corresponding bit string;
otherwise it returns a uniform element σ in {0, 1}m and stores (Fi + Fj , σ) in L1. Multiplication in
GT is handled similarly.
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Inversion: Given an element σ in G, B recovers its internal representation F and computes −F .
If the polynomial −F is already in L1, B returns the corresponding bit string; otherwise it returns
a uniform string σ and stores (−F, σ) in L1. Inversion in GT is handled analogously.

d-linear Map: Given d elements σi1 , . . . , σid in G, adversary B recovers the corresponding polyno-
mials Fi1 , . . . , Fid and computes F =

∏
j Fij . If F is already in L2, B returns to A the corresponding

bit string; otherwise it returns a uniform element σ in {0, 1}m and stores (F, σ) in L2.

Note that all polynomials in L1 have degree at most 1, while all polynomials in L2 have degree at
most d. FinallyA outputs a bit b′. At this point, B chooses uniform values w1, . . . , wd−1, x0, . . . , xd−1,
y0, . . . , yd−1, s in Fq and a bit b; then, it sets W1 = w1, . . . ,Wd−1 = wd−1, X0 = x0, . . . , Xd−1 = xd−1,
Y0 = y0, . . . , Yd−1 = yd−1, Tb = pd(w,x,y), T1−b = s.

The simulation provided by B is consistent and reveals nothing about b unless two distinct
polynomials F1 and F2 in L1 or L2 take on the same value after the substitution.

First, we argue that A is not able to intentionally cause a collision. The values that we substitute
in the variables W,X, Y and T are all independent except that of Tb. This means that the only
collision that A can engineer consists in producing pd(w,x,y) using a combination of the other
polynomials in the list. In fact, for any collision Fi = Fj , Tb has to appear as one of the variables,
since Tb is the only variable that depends on the value of the other assignments. Then, the equation
Fi = Fj reduces to a relation of the kind

T d
b = T d−1

b p1 + · · ·+ pd (10)

for polynomials pi of degree at most i. Equation (10), can be reduced to Tb = p̃(W,X, Y ). However,
as we noticed before, the polynomials in the lists have degree at most d, while pd(w,x,y) has degree
d + 1. Therefore, A is not able to cause a collision.

Now, it only remains to bound the probability that an unlucky choice of values causes a collision.
We know that two polynomials Fi, Fj in L1 have degree at most 1, so, by theorem ..., the probability
that they have the same value is at most 1/q. Similarly, the probability that two polynomials in
L2 take on the same value after the substitution is at most d/q, since every polynomial in L2 has
degree at most d. Assuming that A makes Qg queries to the group operation oracle and Qb queries
to the bilinear oracle, the probability ε of a collision can be bounded as follows:

εA ≤
(

Qg + 3d + 2
2

)
1
q

+
(

Qb

2

)
d

q
≤
((

(Qg + 3d + 2)
2

)
+
(

Qb

2

))
d

q
≤

d((Qg + 3d + 2)2 + Q2
b)

2q
.

Since the probability of A outputting the correct b′ is at most 1/2 + εA, the above shows that the
advantage of A is negligible in the security parameter, concluding the proof.

C Proof of Lemma 1

Proof. We prove the lemma above by the following hybrid argument.
Assume we have a PPT distinguisher D that can distinguish with significant advantage ε = ε(λ)

between the two tuples (3) and (4). Then there exists an i s.t. D can distinguish with advantage
at least ε/m between{(

g1, . . . ,gm,gr
1[d], . . . ,gr

i [d],gri+1

i+1 [d], . . . ,grm
m [d]

)}
and (11){(

g1, . . . ,gm,gr
1[d], . . . ,gr

i−1[d],gri
i [d], . . . ,grm

m [d]
)}

. (12)
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This can be used to solve a given d-VDDH instance (g,ga,gb,h[d]), where h[d] is either gab[d] or
some random value in G. We construct and give to D the following tuple{(

g′
1, . . . ,g

′
m,g

′r1
1 [d], . . . ,g

′rm
m [d]

)}
.

We set g′
1 = g, g′

i = ga. For j = 2, . . . , i − 1, we choose random xj and set g′
j = gxj . Next we

set g
′r1
1 [d] = gb[d], g

′ri
i [d] = h[d]. For j = 2, . . . , i − 1, we let g

′rj

j [d] =
(
gb
)xj [d] = (gxj )b [d]. The

rest of the entries in the tuple will just be random values in the appropriate groups, that is, for
j > i we let g′

j = gwj and g
′rj

j [d] = gzj , for random wj ← Fd
q , zj ← Fq, and generator g ← G.

It is now clear that if h[d] is gab[d], then the constructed tuple is as in (11), whereas if h[d] is a
random value in G the tuple is like (12). Therefore, giving this to D enables us to distinguish the
d-VDDH instance with same significant advantage ε/m, contradicting that d-VDDH is hard.

D Proof of Theorem 2

Proof. We prove here that 1-DDH is not harder than k-DDH for any k, and then we argue that
this can be generalized to the statement above.

Assume we have some PPT algorithm A that solves the k-DDH problem with some non-
negligible advantage ε. Then we can use this to solve a 1-DDH instance. So let a 1-DDH instance
be given: (g, ga, gb, gc), where c is either ab or random in Fq. We construct with this a k-DDH
instance:

(
(g, 1, . . . , 1), (ga, 1, . . . , 1), (gb, 1, . . . , 1), (gc, 1, . . . , 1)

)
, where each of the four tuples are

elements in Gk. It can easily be seen, that for a fixed generator h of G with g = hw0 , the above
is a valid instance (h(w), h(wa), h(wb), h(wc)), for k-dimensional vectors w = (w0, 0, . . . , 0),a =
(a, 0, . . . , 0),b = (b, 0, . . . , 0), c = (c, 0, . . . , 0).

The only problem left is that the values a,b, c are not sampled as specified in the definition.
Therefore, we need to randomize the instance so we get the right distribution. We can do this
by using the technique of random self-reducibility of DDH introduced by [Sta96,NR97]. First we
choose three elements r1, r2, r3 ← Fqk . Then we compute

ga′ = (ga)r1gr2 ,

gb′ = gbgr3 ,

gc′ = (gc)r1(ga)r1r3(gb)r1gr2r3 .

Writing c = ab + e we create from the above the instance (h(w), h(wa′), h(wb′), h(wc′)), where
a′ = r1a + r2, b′ = b + r3, and c′ = a′b′ + er1. If c = ab, such that e = 0, then a′,b′ are random
elements in Fqk and c′ = a′b′. Otherwise, if e 6= 0, then a′,b′, c′ are all uniformly distributed in
Fqk . Now, we can give the instance to A, which will decide with probability ε whether c′ = a′b(⇔
c = ab⇔ c = ab). Thus, we can solve the original instance with the same advantage as A.

Finally, note that the argument does not depend on the basis field being Fq. We might as well
have started from some other Fqd′ and extended to Fqd , for some d = kd′. Therefore, this completes
the proof.
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