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Abstract

Biehl et al.[2] proposed a fault-based attack on elliptic curve cryptog-

raphy. In this paper, we refined the fault attack method. An elliptic curve

E is defined over prime field Fp with base point P ∈ E(Fp). Applying the

fault attack on these curves, the discrete logarithm on the curve can be

computed in subexponential time of Lp(1/2, 1+o(1)). The runtime bound

relies on heuristics conjecture about smooth numbers similar to the ones

used in [9].
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1 Introduction

In 1996 a fault analysis attack was introduced by Boneh et al. [3]. Biehl et

al.[2] proposed the first fault-based attack on elliptic curve cryptography [8, 12].

Their basic idea is to change the input points, elliptic curve parameters, or the

base field in order to perform the operations in a weaker group where solving

the elliptic curve discrete logarithm problem (ECDLP) is feasible. A basic

assumption for this attack is that one of the two parameters of the governing

elliptic curve equation is not involved for point operations formulas. In this way,
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the computation could be performed in a cryptographically less secure elliptic

curve.

In [2], it is claimed that the attacker can get the secret multiplier k with

subexponential time, but the authors did not give the proof or even an outline

of the proof. I find that this is not a trivial result. Since the distribution of the

cardinality of elliptic curves over finite field Fq is not uniform in the interval

[q + 1− 2
√
q, q + 1 + 2

√
q].

In practice, in order to get a better function, the cryptosystem maybe based

on some special family of elliptic curve. Here, we assume that the fault attack

is restricted on the following elliptic curve defined over prime field Fp

y2 = x3 +Ax2 +B, (1)

which is denoted by EA,B . In this paper, we prove that the attacker can get the

secret multiplier k with subexponential time when the fault attack is restricted

to the elliptic curve family of EA,B . It is noted that we can get a simpler proof

when the fault attack is based on the general elliptic curves.

In section 2, the fault attack method is described in detail and some im-

provements of the fault attack are introduced. Firstly, we can control the order

of the fault point in EA,B̂ by a suitable choice of the random key d. On the

other hand, some points in EA,B can be chosen as fault point to increase the

probability of success of the fault attack.

Our analysis depends on the number of ]EA,B̂(Fp) with B̂ ∈ Fp. In Section

3, we research the isomorphism classes of the elliptic curves expressed by form

(1). By Deuring [5], we find that the density of ]EA,B̂(Fp) with B̂ ∈ Fp in

[p+ 1− 2
√
p, p+ 1 + 2

√
p] is large enough to ensure our method success.

The analysis of our method in this paper shows that the performance of the

algorithm is largely determined by the density of numbers built up from small

primes in the neighborhood of p+ 1 and the number of isomorphism classes of

the elliptic curves which can be expressed by form (1). If a reasonable conjecture

concerning the density of smooth integers is assumed, then the following can be

proved.

For 0 ≤ α ≤ 1, let Lx(α, c) denote

exp(c(log x)α(log log x)1−α),

where c is a constant. There is a function K : R>0 → R>0 with K(x) =

Lx(1/2, 1+o(1)) for x→∞. Then, with a suitable choice of parameters , ECDLP

in the family of elliptic curves (1) can be determined by the attacker with

probability at least 1− e−h within time K(p)M(p), where M(p) = O((log p)11)

and h is the number of repeating Algorithm 2.

The paper is organized as follows. In Section 2, we describe the scalar

multiplication algorithm, elliptic curve discrete logarithm problem, and refine
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the fault attack method. In Section 3, we discuss the isomorphism class of

elliptic curves expressed by form (1). In section 4, the efficiency of the attack

algorithm is considered.

2 Preliminaries

2.1 Scalar Multiplication Algorithm

An elliptic curve E can be defined as following equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

and Pi =: (xi, yi) ∈ E(Fp), i = 1, 2, 3, such that P1 + P2 = P3. The algorithm

below is a description of the elliptic curve scalar multiplication(ECSM) on curves

defined in its most common form.

x3 = λ2 + a1λ−A− x1 − x2
y3 = −y1 − (x3 − x1)λ− a1x3 − a3

with

λ =

{ 3x2
1+2a2x1+a4−a1y1
2y1+a1x1+a3

if x1 = x2 and y1 = y2,
y1−y2
x1−x2

otherwise.

The fault attack is based on the fact that the curve coefficient a6 is not used

in any of the addition formulas given above.

2.2 Elliptic Curve Discrete Logarithm Problem

Let E be an elliptic curve and P = (xP , yP ) ∈ E. Given Q = (xQ, yQ) ∈ 〈P 〉,
the discrete logarithm problem asks for the integer k such that Q = kP .

If the order of the base point P does not contain at least a large prime

factor, then it is possible to use an extension for ECC of the Silver-Pohlig-

Hellman algorithm [15] to solve the ECDLP as presented in Algorithm 1. Let

n be the order of the base point P with a prime factor n =
∏j−1
i=0 p

ei
i , where

pi < pi+1.

Without losing generalization, we assume that the order of the base point P

is a large prime number.

2.3 Fault attack

In this section, we consider the following EC EIGamal cryptosystem. Let EA,B
be an elliptic curve of form (1) defined over a prime field Fp. Given a point

P = (xP , yP ) ∈ EA(Fp), we assume that Q = (xQ, yQ) = kP is the public key

and 1 ≤ k < ord(P ) the secret key of some user.
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Algorithm 1 Silver-Pohlig-Hellmans algorithm for solving the ECDLP

Input: P ∈ E(Fp), Q ∈ 〈P 〉, n =
∏j−1
i=0 p

ei
i , where pi < pi+1.

Output: k mod n.

1. For i = 0 to j − 1 do

1.1 Q′ ← O, ki ← 0.

1.2 Pi ← (n/pi)P.

1.3 For t = 0 to (ei − 1) do

1.3.1 Qt,i ← (n/pt+1
i )(Q+Q′).

1.3.2 Wt,i ← logPi Qt,i. {ECDLP in a subgroup of order ord(Pi).}
1.3.3 Q′ ← Q′ −Wt,ip

t
iP.

1.3.4 ki ← ki + ptiWt,i.

2. Use the CRT to solve the system of congruences k ≡ ki mod peii .

This gives us k mod n

3. Return (k)

Encryption: Input message m, choose 1 < d < ord(P ) randomly, return

(dP, xdQ
⊕
m).

Decryption: Input (H,m′), compute kH , return (m′
⊕
xkH).

The fault attack is that the attacker randomly choose an elliptic curve EA,B̂
defined over prime field Fp, find a point P̂ = (xP̂ , yP̂ ) ∈ EA,B̂(Fp) and input

(dP̂ ,m′) to the decryption oracle, then the attacker can get the x-coordinate of

kdP̂ . Having xkdP̂ , we compute ykdP̂ by

ykdP̂ =
√
x3
kdP̂

+Ax2
kdP̂

+ B̂.

In practice, we can compute EA,B̂ and P̂ ∈ EA,B̂(Fp) as follows, fix an

element xP̂ ∈ Fp, for any yP̂ ∈ Fp and define

B̂ =: y2
P̂
− x3

P̂
−Ax2

P̂
.

Let EA,B̂ be an elliptic curve of form (1) as follows:

y2 = x3 +Ax2 + B̂,

clearly P̂ =: (xP̂ , yP̂ ) ∈ EA,B̂(Fp).
Having the points pair dP̂ , kdP̂ ∈ EA,B̂(Fp), one can obtain k mod n, where

n = ord(dP̂ ). This would be possible if all the prime factors of ]EA,B̂(Fp)
are smaller than order of P . The complete attack procedure is presented as

Algorithm 2.

By repeating Algorithm 2, then applying CRT, we can get k from the congru-

ences k mod n. The following Lemma is useful for us to increase the efficiency

of Algorithm 2.

4



Algorithm 2 Basic fault attack on ECSM algorithm

Input: EA and P = (xP , yP ) ∈ EA(Fp), Q = (xQ, yQ) = kP ,

w is a parameter to be chosen later and q is the order of point P .

Output: Scalar k partially with a probability.

1. Randomly choose xP̂ , yP̂ ∈ Fp.
1.1 B̂ ← y2

P̂
− x3

P̂
−Ax2

P̂
.

2. P̂ ← (xP̂ , yP̂ ).

2.1 Obtain n = ord(P̂ ) in elliptic curve EA,B̂(Fp).
2.2 choose an integer 1 < d < ord(P̂ ), compute dP̂ .

3. Apply decryption oracle to compute xkdP̂ .

3.1 ykdP̂ ←
√
x3
kdP̂

+Ax2
kdP̂

+ B̂.

4. If all the prime factors of n are smaller than w, then

4.1 Utilize Algorithm 2 with (dP̂ , kdP̂ , n) to obtain k mod n.

5. Return (k mod n)

Lemma 1 Let E be an elliptic curve defined over finite filed Fq. Then

E(Fq) ' Zn1
× Zn2

with n1|n2 and n1|q − 1.

For given an elliptic curve EA,B̂ defined over finite field Fp, we assume that

EA,B̂(Fq) ' Zn1
× Zn2

. Then there exists a point P̂ such that ord(P̂ ) = n2.

The number of such points is n1φ(n2), where φ(·) is the Euler function. Let

n2 = n2wn
′
2, where n2w is the product of all the prime factors of n2 which are

smaller than w. In step 2.2, we can choose d satisfying n′2|d and (d, n2w) = 1,

then the order of dP̂ is a w smooth integer.

Certainly of course, we can choose a point P̂ in EA,B(Fp). The procedure

of choosing such point is similar as above.

3 The isomorphism classes

In this section, we count the number of isomorphism classes over Fp of elliptic

curves (1) defined over a prime field Fp.
It is easy to see that the discriminant 4 and the j invariant of the formula

(1) equal to 4A3 + 27B and − 162A6

4A3B+27B2 respectively. Hence the number of

elliptic curve over prime field Fp with B fixed is the number of A ∈ Fp with

4A3 + 27B 6= 0. Let T be the number of the solutions of the following equation

in Fp
x3 +

27

4
B = 0.
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It is easy to see that

T =

{
0 or 3, if p ≡ 1(mod3),

1, if p ≡ −1(mod3).

Hence we conclude that the number of elliptic curves over Fp with B fixed equals

to p− T .

EA,B isomorphic to EA,B̂ if and only if there exists an admissible transform{
x = u2x+ r,

y = u3y + u2sx+ t,

where r, s, t ∈ Fp and u ∈ F∗p. Therefore, EA,B ∼= EA,B̂ if and only if there

exists u ∈ F∗p, r ∈ Fp such that the following conditions hold:

(i) u6 = 1 and A = Au4 + 3u4r;

(ii) 3u2r2 + 2u2rA = 0, and Ar2 + r3 + B̂ = B.

Let T ′ denote the solutions of (i) and (ii), it is easy to see that T ′ ≤ 12. For

any p 6= 2, 3, the automorphism of these elliptic curves is at most 3. Hence we

have ∑′

EA,B̂

1

]Aut(EA,B̂)
≥ p− T

12
,

where
∑′
EA,B̂

is over a set of representative of the isomorphism classes. We

express this by writing

]′{EA,B̂ : EA,B̂ elliptic curve of form (1) with B̂ ∈ Fp}/ ∼=Fp

and in similar expression below, ]′ denotes the weighted cardinality, the isomor-

phism class of EA,B̂ being counted with the weight 1
]Aut(EA,B̂) .

For any elliptic curve E over Fp, we have

]E(Fp) = p+ 1− t, with t ∈ Z, |t| ≤ 2
√
p.

which is obtained by a theorem of Hasse. Let, conversely, p be a prime > 3

and t be an integer satisfying |t| ≤ 2
√
p. Then the weighted number of elliptic

curves E over Fp with ]E(Fp) = p + 1 − t, up to isomorphism, is given by a

formula that is basically due to Deuring [5]; see also[1, 17, 22]:

]′{E : E elliptic curve over Fp, ]E(Fp) = p+ 1− t}/ ∼=Fp= H(t2 − 4p),

where H(t2 − 4p) denotes the Kronecker class number of t2 − 4p.

To the Kronecker class number, the following result is useful.

Lemma 2 [9] There exist effectively computable positive constants c1, c2 such

that for each z ∈ Z>1 there is ∆∗ = ∆∗(z) < −4 such that

c1
√
−∆

log z
≤ H(∆) ≤ c2

√
−∆ log |∆| log log |∆|
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for all ∆ ∈ Z with −z ≤ ∆ < 0, ∆ ≡ 0, or 1 mod 4,except that the left inequality

may be invalid if ∆0 = ∆∗, where ∆0 is the unique number related to ∆.

Let

]′{EA,B̂ : B̂ ∈ Fp, ]EA,B̂(Fp) = p+ 1− t}/ ∼=Fp=: Ht.

In order to apply Algorithm 2, we divide Fp into two parts SpQR and SpNQR as

follows:

SpQR = {B̂ : B̂ ∈ Fp, and x3
P̂

+Ax2
P̂

+ B̂ is a quadratic residue in Fp},

SpQNR = {B̂ : B̂ ∈ Fp, and x3
P̂

+Ax2
P̂

+ B̂ is a quadratic nonresidue in Fp}.

Since Ht ≤ H(t2−4p), Lemma 1 can not be applied directly in the following

estimation. In order to apply Lemma 1, SpQR should be partitioned into two

parts SpQR1 and SpQR2 as follows

SpQR1 = {B̂ : B̂ ∈ SpQR, ]EA,B̂(Fp) = p+ 1− t, with Ht ≥
√
p

log p
},

SpQR2 = {B̂ : B̂ ∈ SpQR, ]EA,B̂(Fp) = p+ 1− t, with Ht <

√
p

log p
}.

Let

T pQR1 = {s : s ∈ Z, and there exists B̂ ∈ SpQR1 such that s = ]EA,B̂(Fp)}.

Theorem 1 There exist an effectively computable positive constant c3 such that

for each prime number p > 3, the following assertion is valid. If S is a set of

integers s ∈ T pQR1 with

|s− (p+ 1)| ≤ √p,

then

{EA,B̂ : B̂ ∈ SpQR1, ]EA,B̂(Fp) ∈ S} ∼=Fp≥ c3(]S − 2)

√
p

log p
.

Proof. The proof of Theorem 2 is similar to the proof of (1.9) in [9], for self-

contained, we give it here. The left hand side of the inequality equals∑
t∈Z,p+1−t∈S

Ht.

Applying Lemma 1 with z = 4p, we note that |t2−4p| ≥ 3p if p+1−t ∈ S. Since

S ⊆ T pQR1, it suffices to prove that there are at most two integers t, |t| ≤ √p,
for which the fundamental discriminant associated to t2 − 4p equals ∆∗. Let

L =
√

∆∗, and let t be such an integer. Then the zeros α, α of

X2 − tX + p
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belong to the ring of integers OL of L. Also, αα = p, and by the unique prime

ideal factorization in OL and the fact that A∗ = {1,−1}(because ∆∗ < −4) this

determines α up to conjugation and sign. Hence t = α+ α is determined up to

sign, as required. This completes the proof.

Theorem 2 There is a positive effectively computable constant c4 such that for

each prime number p > 3, the following assertion is valid. If S is a set of

integers s ∈ T pQR1 with

|s− (p+ 1)| ≤ √p,

and let yP̂ be defined as above. Then the number N of triple (B̂, xP̂ ) ∈ F2
p for

which

4A2 + 27B̂ 6= 0, ]EA,B̂(Fp) ∈ S,

where x3
P̂

+Ax2
P̂

+ B̂ = y2
P̂
, is at least c4(]S − 2)

√
p3

log p .

Proof. The number to be estimated equals the number of double-tuples (B̂, yP̂ ) ∈
F2
p for which EA,B̂ is an elliptic curve over Fp with (xP̂ , yP̂ ) ∈ EA,B̂(Fp) and

]EA,B̂(Fp) ∈ S. Each elliptic curve EA over Fp is isomorphic to EA,B̂ for exactly

T ′/]AutE, where A ∈ Fp. Each EA,B̂ exactly gives rise to two points (xP̂ , yP̂ ).

Thus the number to be estimated equals∑′

EA,B̂

2T ′

]Aut(EA,B̂)
,

where the sum ranges over the elliptic curves EA,B̂ over Fp, up to isomorphism,

for which ]EA,B̂(Fp) ∈ S. Applying Theorem 2, we obtain the result.

Theorem 3 There exists a positive effectively computable constant c5. Let

Sw = {s ∈ T pQR1 : |s− (p+ 1)| < √p, and each prime dividing s is ≤ w}

and yP̂ be defined as above. Then the number N of triple (B̂, xP̂ ) ∈ F2
p for which

4A2 + 27B̂ 6= 0, ]EA,B̂(Fp) ∈ Sw,

where x3
P̂

+Ax2
P̂

+ B̂ = y2
P̂
, is at least c5(]Sw − 2)

√
p3

log p .

Proof. This can be deduced form Theorem 2 immediately.

Theorem 4 There exists a positive effectively computable constant c6. The

cardinality of T pQR1 is at least c6
√
p

log p(log log p) .

Proof. Since the map

φ : Fp 7→ Fp, B̂ 7→ x3
P̂

+Ax2
P̂

+ B̂
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is a bijective map. By the definition of SpQR and SpQNR, we have ]SpQR =

]SpQNR = p−1
2 . By a theorem of Hasse, the trace t of any elliptic curve E over

Fp satisfies |t| ≤ 2
√
p, hence, the cardinality of SpQR2 is at most

2
√
p

√
p

log p
≤ 2

p

log p
.

Therefore, the cardinality of SpQR1 is

SpQR − S
p
QR2 ≥ p− 2

p

log p
.

From the discuss of isomorphism classes of elliptic curves and the fact Ht ≤
H(t2 − 4p), we have

]T pQR1 ≥
]SpQR1 − T
H(∆)

.

Applying Lemma 1, we get the proof of the result.

Let T1 = T pQR1

⋂
(p + 1 −√p, p + 1 +

√
p). Our attack method depends on

the following reasonable heuristic assumption.

Heuristic assumption:The set T pQR1 is uniform distribution in the interval

(p+ 1− 2
√
p, p+ 1 + 2

√
p).

By the assumption, one can deduce that ]T pQR1 ≈ 2]T1.

Theorem 5 There exists an effectively computable constant c7 > 1 with the

following property. Let w ∈ Z>1 and

]Sw = {s ∈ T pQR1 : |s− (p+ 1)| < √p, and each prime dividing s is ≤ w}.

Let f(w) = ]Sw
]T1

denotes the probability that a random integer in the interval

(p+1−√p, p+1+
√
p) has all its prime factors < w. The probability of success

of Algorithm 2 on input P,Q ∈ EA,B , w, is at least 1 − c−hf(w)/(log p)2(log log p)
7 ,

where h is the number of repeating Algorithm 2.

Proof. By Theorem 4, the failure probability of repeating Algorithm 2 h times

equals (1−N/p2)h, where

N

p2
≥ c5

]Sw − 2

]T1

]T1√
p log p

≥ c5f(w)
]T1√
p log p

≥ c5c6
f(w)

(log p)2(log log p)
.

It follows that

(1−N/p2)h ≤ e−c5c6h
f(w)

(log p)2(log log p) .

Consequently, the desired result can be obtained here.
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4 Efficiency

In the case of factoring, the best rigorously analyzed result is Corollary 1.2 of

[10], which states that all prime factors of n that are less than w can be found in

time Lw(2/3, c) log2 n. Schoof [18] presents a deterministic algorithm to compute

the number of Fp-points of an elliptic curve that is defined over a finite field Fp
takes O(log9 p) elementary operations.

Theorem 5 shows that in order to have a reasonable chance of success, one

should choose the number h of the same order of magnitude asO((log p)2(log log p)/f(w).

In Algorithm 2, for any yP̂ , we can obtain B̂ ∈ SpQR. From the discussion in

Theorem 5, the probability of B̂ ∈ SpQR2 is approximately 1/ log p. Hence,

the cases of B̂ ∈ SpQR2 are neglected, which does not affect the analysis re-

sult. Therefore, the time spent on Algorithm 2 is O(hLw(2/3, c)M(p)), where

M(p) = O(log11 p). The time required by Algorithm 2 is
√
w. Hence, to min-

imize the estimated running time, the number w should be chosen such that

Lw(2/3, c)/f(w) +
√
w is minimal.

A theorem of Canfield, Erdös and Pomerance [4] implies the following result.

Let α be a positive real number. Then the probability that a random positive in-

teger s < x has all its prime factors less than Lx(1/2, 1)α is Lx(1/2, 1)−1/2α+o(1)

for x → ∞. The conjecture we need is that the same result is valid if s is a

random integer in the interval (x+ 1−
√
x, x+ 1 +

√
x). Putting x = p, we see

that the conjecture implies that

f(Lp(1/2, 1)α) = Lp(1/2, 1)−1/2α+o(1) for p→∞,

for any fixed positive α, with f(w) = ]Sw
]T1

.

The following identities are useful for our estimation.

Lp(α, cα)Lp(β, cβ) = Lp(max{α, β}, cmax{α,β}),

LLp(α,cα)(β, cβ) = Lp(αβ, cβc
β
α),

where lower order terms in the exponent are neglected.

With w = Lp(1/2, 1)α, the conjecture would imply that

Lw(2/3, c)/f(w) +
√
w = Lp(1/2, 1)1/2α+o(1) + Lp(1/2, 1)α/2, for p→∞,

which suggests that for the optimal choice of w we have

w = Lp(1/2, 1), Lw(2/3, c)/f(w) = Lp(1/2, 1)1+o(1), for p→∞.

These arguments lead to the following conjectural running time estimation

for solving the discrete logarithm problem on elliptic curve of form (1) over

prime field.
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Theorem 6 There is a function K : R>0 → R>0 with

K(x) = Lx(1/2, 1 + o(1)) for x→∞

such that the following assertion is true. Let p be a prime number that is not

2 or 3. Then we can find the discrete logarithm of Montgomery elliptic curve

over prime filed Fp within time O(K(p)M(p)).
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