
Bicliques for Preimages: Attacks on Skein-512 and the SHA-2 family

Dmitry Khovratovich1 and Christian Rechberger2 and Alexandra Savelieva1

1Microsoft Research Redmond
2ENS Paris and Chaire France Telecom

Abstract

We introduce a new concept in splice-and-cut attacks on hash functions, which bridges the
gap between preimage attacks and a powerful method of differential cryptanalysis. The new con-
cept is called biclique, for its system of equations resembling a complete bipartite graph. In view
of the current SHA-3 competition, we apply our method to the finalist Skein and demonstrate
the first attack on a 22-round version of Skein-512 in the most relevant hash function setting.
Then we present the best attacks on the SHA-2 family of hash functions, breaking 45 out of the
64 rounds of SHA-256, 50 rounds of the 80 rounds of SHA-512, and many more rounds in the
less relevant compression function setting.

Keywords: SHA-2, SHA-256, SHA-512, Skein, SHA-3, hash function, meet-in-the-middle at-
tack, splice-and-cut, preimage attack, initial structure, biclique.

1 Introduction

The last years saw a dramatic progress in preimage attacks on hash functions. However, it was not
always like this. While collision attacks progressed and essentially discarded MD5 [28, 25], preimage
search seemed to be highly difficult. To a large extent this can be attributed to the concept of
differential cryptanalyis [7], a powerful tool from the block cipher analysis, that naturally fits the
idea of collision search. For preimage problem this technique did not appear useful since no object
was identified where a difference would apply. An attempt to mount a second preimage attack in
differential framework resulted in a dramatically low success rate [29].

The year 2008 brought preimage attacks on MD4 [17], MD5 [2, 23], Haval [22] and reduced SHA-
0/1 [8]. While the methods of Leurent [17] and De Cannière-Rechberger [8] are rather dedicated, the
idea of Aoki-Sasaki [2] proved to be widely applicable. They proposed to splice the first and the last
rounds of the compression function based on the Davies-Meyer mode, thus making it computable
in any direction. This resulted in the preimage attacks on full MD5 [24], and later the best attacks
on the reduced SHA-0/1/2 hash functions [1, 3], and full Tiger [11].

Splice-and-cut framework and its progress. Both splice-and-cut and meet-in-the-middle at-
tacks exploit the property that a part of a primitive does not make use of particular key/message
bits. If the property holds, the computation of this part stands still if we flip those bits in the other
part of a primitive. Assume the property is mutual, i.e. such bits can be found for both parts (also
called chunks). Then a cryptanalyst prepares a set of independent computations for all possible
values of those bits (called neutral bits) and subsequently checks for the match in the middle. The
gain of the attack is proportional to the number of neutral bits.

Sasaki and Aoki observed [2, 23] that compression functions with permutation-based message
schedule are extremely vulnerable to this kind of attack as chunks can be dramatically long. They
also proposed various improvements. For example, since the number of computations to match
decreases together with the number of neutral bits, the match can be performed on a small part

1

of the state. In turn, the matching bits depend on fewer message bits, which in fact leads to even
larger number of neutral bits and the reduction in complexity.

The most interesting trick, however, is a so called initial structure [24, 3]. The initial structure
can be informally defined as an overlapping of chunks, where neutral bits, although formally be-
longing to both chunks, are involved in computation of the proper chunk only. Concrete examples
of the initial structure are much more sophisticated and hard to generalize. The concept seems to
have large potential and few boundaries, while the other improvements are likely exhausted already.
As a motivating example, consider the case of MD4, where recently an initial structure for as many
as 17 rounds of a compression function was built. If this would work for SHA-256 (in the current
best published attack this is limited to four rounds), we would just be a few rounds away from a
full preimage attack on the hash standard.

Our contributions. We replace the idea of the initial structure with a more formal and general
concept of biclique, which provides us with several layers of understanding and applications. We
derive a system of functional equations linking internal states several rounds apart. Then we show
that it is equivalent to a system of differentials, so the full structure of states can be built out of a
structure of trails. These structures are two sets of internal states with each state having a relation
with all states in another set. In terms of graph theory, these structures are referred to as bicliques.
A differential view, that builds up on this formalism, allows us to apply numerous tools from collision
search and enhanced differential attacks, from message modifications to local collisions. We propose
several algorithms constructing these bicliques, which are generic and flexible.

The applications of our concept are broad. Our first and simple example is the hash function
and the SHA-3 finalist Skein-512, which lacks any attacks in the hash setting. We develop an attack
on 22 rounds of Skein-512, which is comparable to the best attacks on the compression function
that survived the last tweak. Our attack on the compression function of Skein-512 utilizes many
more degrees of freedom as we control the full input, and thus results in a 37-round attack.

Our second group of applications is the SHA-2 family. Enhanced with the differential analysis,
we heavily use differential trails in SHA-2, message modification techniques from SHA-1 and SHA-
0, and trail backtracking techniques from RadioGatun, Grindahl, SHA-1, and many others. As
a result, we build attacks on 45-round SHA-256 and 50-round SHA-512, both the best attacks in
the hash mode. Regarding the compression functions, we penetrate up to seven more rounds, thus
reaching 52 rounds and violating the security of about 80% of SHA-256.

Reference Target Steps Complexity Memory (words)

Pseudo-preimage Preimage

[1, 11] SHA-256 43 2251.9 2254.9 26

Section 5.2 SHA-256 45 2253 2255.5 26

Section 6 SHA-256 52 2255 - 26

[1, 11] SHA-512 46 2509 2511.5 26

Section 5.3 SHA-512 50 2509 2511.5 24

Section 6 SHA-512 57 2511 - 26

Section 5.3 Skein-512 22 2508 2511 26

Section 6 Skein-512 37 2511.2 - 264

Table 1: Comparison of preimage attacks on the SHA-2 family and Skein-512.

2 Basics of splice-and-cut preimage attacks

In this section we describe the basic idea of splice-and-cut preimage attacks on a blockcipher-based
compression function. We consider the most popular Davies-Meyer mode: H = f(M,CV) =

2

EM (CV) ⊕ CV, where CV is the chaining variable, and E is the block cipher keyed with M . We
split the cipher E and message M into three parts: E = E3 ◦E2 ◦E1 and M = MF ||MB||MC such
that

• MF is not used in E1 and E3;

• MB is not used in E2.

Then we get the following chain of computations:

CV
MB ||MC

−−−−−−→
E1

S
MF ||MC

−−−−−−→
E2

V
MB ||MC

−−−−−−→
E3

H,

where S and V are the internal states. The basic attack works as follows.

1. Assign arbitrary values to S and MC .

2. Compute states V = {V MF←−−
E2

S} for different MF and store them in memory.

3. Compute states V ′ = {V MF←−−−−−−−
(E1◦E3)−1

S for different MB and store them in memory. First,

compute CV , then use CV and H to find the output of E3, and then compute in the backward
direction to V .

4. The set V ∩ V ′ constitutes preimages for the compression function. If necessary, repeat the
procedure for other S and MC .

The computations in Step 2 and Step 3 are called forward and backward chunks, and the elements
of MF and MB are called neutral bits. Neutral bits might be bits of round messages and even linear
spaces of bits. In the simple case when MF and MB have equal length d, the sets V and V ′ have
2d elements, so the probability of a match is 22d−n, where n is the state size. Assuming that each
chunk costs about 1/2 calls of the compression function, the complexity to find a preimage is about
2n−2d+d = 2n−d. The complexity grows negligibly, if we match not on the full state, but only on a
subset of bits of size about d (partial matching [2], see also [9]).

To mount an attack on a hash function, one generates 2d/2 preimages of the compression function,
and 2n−d/2 images of the original IV with different messages. Then the probability that there is a
match in CV is high, and the complexity is 2n−d/2+1.

H

Start Meet
S V

MB MBMF

M :

— MC

E1 E2 E3

CV

Figure 1: Basic splice-and-cut attack

3

Initial structure. Recently, cryptanalysts have replaced the starting state S with a sophisticated
construction called the initial structure. The broad idea is to put constraints on internal variables
and form S out of variables spread over several rounds. The matching procedure is the same, but
the cryptanalysts have to prove separately that the construction is well-defined, i.e. that a match
in the middle implies a correct computation in the start. The attacks enhanced with the initial
structure cover two or 4 more rounds in SHA-2 [1, 11], 4 more rounds in SHA-1 [3] and 17 more
rounds in MD4 [11]. Due to the lack of formalism introduced in those papers, we are unable to
provide a short but meaningful overview of the constructions used there. Instead, we build up our
own concept.

3 Bicliques and differential framework for splice-and-cut preimage
attacks

3.1 Bicliques

We propose to replace an informal and heuristic construction of the initial structure with a formal
concept. Our crucial observation is that at Steps 2-3 of the attack a computation of a chunk is
always associated with a particular value of neutral bits, either MB or MF . Let the backward
chunk start at a state Q, and denote by Qi the state being computed with MB = i. Let also P be
the starting state for the forward chunk, and denote by Pj the state being computed with MF = j.
If matched at the point V , the combination (Qi, Pj) must provide a preimage. Therefore, all the Qi

and Pj must follow the following conditions:

∀i, j : Qi

MB
i ||MF

j−−−−−−→
B

Pj , (1)

where B transforms Q to P , and MB
i = i, MF

j = j.
Hence we get 22d equations linking two groups of states 2d cardinality each. We call such a

construction a biclique (a complete bipartite graph in the graph theory) of dimension d. A single
biclique of dimension d tests 22d preimage candidates with only 2d computations of each chunk.
Therefore, a pseudo-preimage attack with a biclique of dimension d has complexity about 2n−2d

as long as bicliques can be constructed efficiently. Subsequently we show how the concept of a
biclique allows a differential view on the preimage attack and involves techniques from differential
cryptanalysis.

H

Biclique V

MB MBMF

E1 E2 E3

CV

Qi Pj

MF
MB

B

Figure 2: Splice-and-cut attack with a biclique

4

Differential view. The biclique equations (1) imply that the combinations (Qi, Pj) are essentially
enumerated by pairs (MB

i ,M
F
j). Also, if we start from a Pj with different MB, we arrive at different

Q. Therefore, we get a differential, which starts with zero difference in P and ends with a difference
in Q due to the difference ∇M in MB. The same holds for the difference ∆M in MF and P :

∇Q ∇M ||0←−−−−
B

0; 0
0||∆M−−−−→
B

∆P.

Altogether, we get a system of differential trails:

∇Q ∇M ||∆M−−−−−−→
B

∆P. (2)

Vice versa, a solution to (2) is a solution to (1). As a result, we can find values that yield
a biclique as a solution to the system of differentials, and make use of numerous tools from the
differential cryptanalysis. Please note that we have to work with several differentials simultaneously,
so that even the simplest case d = 1 leads to a system of four differentials.

Q0

Q1

P0 P1

MF

MB

MF ⊕∆M

MB ⊕∇M

∇Q

∇-differential

∇M

∆M

∆-differential

∆P

Biclique

Figure 3: Biclique of dimension 1 and its differentials.

3.2 Biclique construction algorithms

In this section we propose a set of algorithms for constructing bicliques. The choice of the algorithm
depends on diffusion properties of the compression function, its message schedule, and applicability
of various tools like auxiliary paths, trail backtracking, and message modification.

Algorithm 1. One way to build a biclique is to fix 2d− 1 differential trails for the ∆-differential :

0
0||∆M−−−−→
B

∆P. (3)

Then find a solution {Q0;P0, P1, . . . , P2d−1}. Next, construct Qi as

Qi
MB

i ||0←−−−−
B

P0. (4)

Assume that each computation does not affect active non-linear elements in the trail (3). Then Qi

conform to this trail, and we get

Qi

MB
i ||MF

j−−−−−−→
B

Pj .

5

To estimate the complexity, assume that the trails (3) altogether have q independent bit condi-
tions on internal variables. Assume also that the computation (4) affects none of these q conditions
with probability 2−t. Then the probability that 2d such computations affect no conditions each is
2−t2d

. Therefore, the biclique is formed with probability 2−t2d
, so we need 2t2d

solutions of Equation
(3) to build it (which is feasible for small d). This approach is used in the preimage attack on the
hash function Skein-512. Note that the condition of non-interference is equivalent to the fact that
trails (3) and

∇Q ∇M ||0−−−−→
B

0,

A similar approach also works in the other direction: consider 2d − 1 differential trails for the
∇-differential :

∇Q ∇M ||0−−−−→
B

0,

and find a solution {P0;Q0, Q1, . . . , Q2d−1}.

Algorithm 2. (Modification of Algorithm 1 for the case when we can control internal state and
message injections within the biclique).

Consider a ∇-differential:
∇Q ∇M ||0−−−−→

B
0,

and choose some {Q0, Q1, . . . , Q2d−1} in accordance with ∇Q. Then we apply the differential

0
0||∆M−−−−→
B

∆P.

to Q0 and produce {P0, P1, . . . , P2d−1}. The idea is to assign the values to MC adaptively so that the
differentials do not interfere, then the sum of ∇- and ∆-differentials provide us with Equation (2),
i.e. with the biclique. In case of a the nonlinear message schedule, an important issue is that the
details of ∇- and ∆-trails depend on the value of MC . The procedure that properly defines those
details by pre-fixing some message bits is called message compensation and is in widespread use in
the attacks on SHA-2. We use all these techniques in the attacks on SHA-256 and SHA-512.

Algorithm 3. This algorithm is applicable when message injections are large but separated by
r > 1 rounds, like in Skein. We build a biclique in 2r rounds as follows. First, fix the neutral bits
and consider 2d − 1 differential trails for r-round ∇- and ∆-differentials:

∇Q ∇M ||0−−−−→
E1

0, 0
0||∆M−−−−→

E1

∆P.

Then we aim to find a 2r-round biclique with a ∆-trail in the first r rounds and a ∇-trail in the
last r rounds, so that the trails do not affect each other. We start from the internal state in the
message injection and use the freedom in the state and in the message to fulfill conditions in both
directions with tools like message modification and auxiliary paths.

4 Simple case: second preimage attack on Skein-512 hash

Skein [10] is the SHA-3 finalist and one of the fastest candidate, which draws a lot of attention of
cryptanalysts. Differential [4] and rotational cryptanalysis [15] led the designers to tweak the design
twice. As a result, a property that allowed cryptanalyst to penetrate the highest number of rounds,
a rotational property, does not exist anymore in the final-round version of Skein, hence the best
known attack are near-collisions on up to 24 rounds (rounds 20-43) of the compression function of
Skein [4, 26].

6

The cryptanalysis of the Skein hash function, however, is very limited. Rotational attacks did
not extend to the hash function setting, and the differential attacks were not applied in this model.
In fact there is no cryptanalytic attack known on any round-reduced version of Skein at all. We
subsequently give the first attack in this arguably much more relevant setting.

Since this is the first application of our method, we prefer to give the simplest example in the
strongest model rather than attack the highest number of rounds. We consider the Skein-512 hash
function reduced to rounds 3-24 (22-round version).

4.1 Description of Skein-512

Skein-512 is based on the block cipher Threefish-512 — 512-bit block cipher with 512-bit key
parametrized by 64-bit tweak. Both the internal state I and the key K consist of eight 64-bit
words, and the tweak T is two 64-bit words. The compression function F (CV, T,M) of Skein is
defined as:

F (CV, T,M) = ECV,T (M)⊕M,

where EK,T (P) is the Threefish cipher, CV is the previous chaining value, T is the tweak, and M
is the message block. The tweak value is a function of several parameters including the index of the
last bit of the message.

Threefish-512 transforms the plaintext P in 72 rounds as follows:

P → Add subkey K0 → 4 rounds → Add K1 → 4 rounds → . . . → 4 rounds → Add K18 → C.

The subkey Ks = (Ks
0 ,K

s
1 , . . . ,K

s
7) is produced out of the key K = (K[0],K[1], . . . ,K[7]) as follows:

Ks
j = K[(s+ j) mod 9], 0 ≤ j ≤ 4; Ks

5 = K[(s+ 5) mod 9] + T [s mod 3];

Ks
6 = K[(s+ 6) mod 9] + T [(s+ 1) mod 3]; Ks

7 = K[(s+ 7) mod 9] + s,

where s is a round counter, T [0] and T [1] are tweak words, T [2] = T [0] + T [1], and K[8] =
C240 ⊕

⊕7
j=0K[j] with a constant C240.

One round transforms the internal state as follows. The eight words I0, I1, . . . , I7 are grouped
into pairs and each pair is processed by a simple 128-bit function MIX. Then all the words are
permuted by the operation PERM. The details of these operation are irrelevant for the high-level
description, for completeness they can be found in Appendix A. We use the following notation for
the internal states in round r:

Sr−A MIX−−−→ Sr−M PERM−−−−−→ Sr−P

4.2 Second preimage attack on Skein-512

In the hash function setting we are given the message M and the tweak value T , and have to find
a second preimage. We produce several pseudo-preimages (CV,M ′) to a call of the compression
function that uses 512 bits of M and then find a valid prefix that maps the original IV to one of
the chaining values that we generated. Our attack works as follows:

1. Choose the bits K[2]58,59,60 as MF and K[4]55,56,57 as MB. Additionally require K[2]58,59,60 =
K[1]58,59,60 and K[4]55,56,57 = K[3]55,56,57.

2. Build a biclique of dimension 3 in rounds 12-15 with key additions (key addition + 4 rounds
+ key addition).

3. Compute forward chunk in rounds 16-19, backward chunks in rounds 8-11, and bits I1
30,31,53

of the the state S24−P in both directions in the partial matching procedure.

7

Biclique

Rounds Dimension MF bits MB bits Complexity Freedom used

12-15 3 K2
58,59,60 K4

61,62,63 2200 200

Chunks Matching

Forward Backward Partial matching Matching bits Matching pairs Complexity

8-11 16-19 20→ 25 = 3← 7 I1
30,31,53 23 22.1

Table 2: Parameters of the preimage attack on the 22-round Skein-512

4. Check for the match in these bits, produce 23 key candidates, reduce to 22.9 due to the type
I error. Check them for the match on the full state.

5. Generate a new biclique out of the first one by change of key bits.

6. Repeat steps 2-5 2507.5 times and generate 2507.5−509+2.9 = 21.6 full pseudo-preimages.

7. Match one of the pseudo-preimages with the real IV0.

Step 2. We construct a biclique with Algorithm 1 (Section 3.2) so that Qi are internal states
S11−P (before the key addition in round 11) and Pj are internal states S16−A (before round 16).
The differential trails (3) are built on the propagation of the difference ∆M in MF in the linearized
Skein. We use a version of the 4-round differential trail from the paper [4], which has probability
2−68 and, thus, 68 bit conditions if taking the message addition into account. The number of active
bits is given in Table 6. For the trail based on the 3-bit difference ∆M we have 197 sufficient
conditions since some of them are common. A computation of Qi out of P0 do not affect the
sufficient conditions with probability 2−0.3 (checked on a PC). Therefore, for the eight states Pj the
probability is 2−0.3·8 ≈ 2−3. We construct a 4-round biclique with complexity at max 2197+3 = 2200.
Note that we have 1024− 200 = 824 degrees of freedom left.

Steps 3-4. We have checked experimentally that bits I5
0,1 and I7

43 of S24−P can be computed from
both chunks independently with probability 0.91, so with probability 2−0.1 we have the type I error
and the candidate is discarded.

Step 5. Now we argue that the biclique is essentially independent of the most of MC bits. Indeed,
let us fix the internal states in one of middle rounds, e.g., in round 13, and change MC . This will
affect the key addition before round 12 and the key addition after round 15, and rounds before 12
and after 15. However, these rounds are the part of the chunks, so the equations of the biclique
are violated only if the key addition changes its differential behavior. This happens only if carries
appear in bit 55 of K[5],K[4] or bit 58 of K[2],K[1]. The probability of this event is negligible for
most bit flips in MC . We note that a flip of a single bit in the key makes us to recalculate only a
half of rounds 8-11 and 16-19. Furthermore, for the partial matching we need to compute only half
of rounds 3-5 and 21-24. Therefore, we have to compute (4 + 4 + 4 + 4)/2 + 2 + 1 = 11 full rounds
on average. As a result, the amortized cost per bilcique is 2−1 calls of the compression function.

Complexity. Each biclique generates eight states for each chunk. In total, we produce 23 can-
didates that match in 3 bits after 8 · 2−1 = 22 calls of the Skein-512 compression function. Each
candidate is checked for the full match with cost of one round, so the complexity of steps 3-5 is
22.1. Taking the type I error into account, we produce a full match with probability 2−506.1 and
complexity 22.1. We need 3 = 21.6 pseudo-preimages to match one of 2510.4 prefixes. Therefore, the
total complexity is 2509.8 +2510.4 = 2511.1. We also express the main details of the attack in Table 2.

8

5 Preimage attacks on the SHA-2 family

The SHA-2 family is the object of very intensive cryptanalysis in the world of hash functions. In
contrast to its predecessors, collision attacks are no longer the major threat with the best attack on
24 rounds of the hash function [12, 21]. So far the best attacks on the SHA-2 family are preimage
attacks on the hash function in the splice-and-cut framework [1] and a boomerang distinguisher that
is only applicable for the compression function [16]. We demonstrate that our concept of biclique
adds two rounds to the attack on SHA-256, four rounds to the attack on SHA-512, and many more
when attacking the compression functions. The number of rounds we obtain for the compression
function setting is in both cases comparable to [16], the later however does not allow extension to
the hash function nor does it violate any “traditional” security requirement.

5.1 Specification of SHA-2 Family of Hash Functions

We briefly review parts of the specification [20] needed for the cryptanalysis. The SHA-2 hash
functions are based on a compression function that updates the state of eight 32-bit state variables
A, . . . , H according to the values of 16 32-bit words M0, . . . , M15 of the message. SHA-384 and
SHA-512 operate on 64-bit words. For SHA-224 and SHA-256, the compression function consists of
64 rounds, and for SHA-384 and SHA-512 — of 80 rounds. The full state in round r is denoted by
Sr.

The i-th step uses the i-th word W i of the expanded message. The message expansion works
as follows. An input message is split into 512-bit or 1024-bit message blocks (after padding). The
message expansion takes as input a vector M with 16 words and outputs a vector W with n words.
The words W i of the expanded vector are generated from the initial message M according to the
following equations (n is the number of steps of the compression function):

W i =

{
M i for 0 ≤ i < 15
σ1(W i−2) +W i−7 + σ0(W i−15) +W i−16 for 15 ≤ i < n

. (5)

where σ0(x) and σ1(x) are linear functions. Other details are irrelevant for the high-level view and
are given in the Appendix B.

5.2 Preimage attack on SHA-256

The message schedule of the SHA-2 family is nonlinear, so the number of attacked rounds depends
significantly on the position of the biclique. We apply the following reasoning:

• The message injections in rounds 14-15 are partially determined by the padding rules;

• Freedom in the message reduces the biclique amortized cost;

• Chunks do not bypass the feedforward operation due to high nonlinearity of the message
schedule;

• There exists a 6-round trail with few conditions easy to use as a ∇-differential.

• Chunks do not have maximal length, otherwise the biclique trail becomes too dense.

Taking these issues into account, we base our attack on a 6-round biclique in rounds 17-22. The
full layout is provided in Table 3. The biclique is constructed with Algorithm 2, Section 3.2:

1. Fix a group of 6-round differential trails (the one based on 3-bit difference is listed in Table 7)

∇Q ∇M ||0−−−−→
E1

0.

Derive the set of sufficient conditions on the internal states (Table 9).

9

Biclique

Rounds Dimension ∆M bits ∇M bits Complexity Freedom used

17-22 3 W 17
25,26,27 W 22

22,23,31 232 416

Message compensation

Equations Constants used in the biclique

9 2

Chunks Matching

Forward Backward Partial matching Matching bits Complexity per match

2-16 23-37 37→ 38← 1 A38
0,1,2,3 23

Table 3: Parameters of the preimage attack on the 45-round SHA-256

2. Fix the message compensation equations with constants c1, c2, . . . , c9 (Section C).

3. Fix an arbitrary Q0 and modify it so that most of conditions in the computation Q0 → P0

are fulfilled. Derive Qi out of Q0 by applying ∇Q.

4. Fix a group of 2-round trails (the one based on 3-bit difference is given in Table 8) (∆W 17 →
∆S19) as a ∆-differential (Equation (3)) in rounds 17-19.

5. Choose W 17,W 18, . . . ,W 22 and constants c8, c9 so that the conditions in the computations
Q0 → Pj , j = 0, . . . , 7 are fulfilled. Produce all Pj .

An algorithm for the biclique is detailed in Appendix, Section C. Finally, we produce Q0, . . . , Q7

and P0, . . . , P7 that conform to the system (1) and hence form a biclique.
The complexity of building a single biclique is estimated as 232. However, as many as 7 message

words are left undefined in the message compensation equations, which gives us enough freedom to
reuse a single biclique up to 2256 times. The complexity to recalculate the chunks is upper bounded
by 22 calls of the compression function. The total amortized complexity of running a single biclique
and produced 22 matches on 4 bits is 23 calls of the compression function (see details in Appendix).
Since we need 2252 matches, the complexity of the pseudo-preimage search is 2253. Therefore, a
full preimage can be found with complexity approximately 21+(253+256)/2 ≈ 2255.5 by restarting the
attack procedure 2

256−253
2 = 21.5 times. Memory requirements are approximately 21.5 × 24 words.

5.3 Preimage attack on SHA-512

Our attack on SHA-512 does not fix all the 129 padding bits of the last block. This approach still
allows to generated short 2nd-preimages by using the first preimage to invest the last block that
includes the padding and perform the preimage attack in the last chaining input as the target.

For a preimage attack without a first preimage, expandable messages as e.g. described in [14]
can be used. This adds no noticeable cost as the effort for this is only slightly above the birthday
bound. In addition, the compression function attack needs to fulfill the following two properties:

Firstly, the end of the message (before the length encoding, i.e., the LSB of W 13) has to be ’1’.
Secondly, the length needs to be an exact multiple of the block length, i.e., fix the last nine bits of
W 15 to ”1101111111” (895). In total eleven bits would need to be fixed for this. In the further text
we show how to fulfill these conditions.

5.3.1 Attack layout

The basic parameters of the pseudo-preimage attack are given in Table 4. The biclique is constructed
by an algorithm similar to the attack on SHA-256 (Algorithm 2, Section 3.2):

10

Biclique

Rounds Dimension MF bits MB bits Complexity Freedom used

21-26 3 W 21
60,61,62 W 26

53,54,55 232 96

Equations Message compensation Constants used in the biclique

9 2

Chunks Matching

Forward Backward Partial matching Matching bits Complexity per match

6-20 27-40 41→ 43← 5 A43
0,1,2 23

Table 4: Parameters of the preimage attack on the 50-round SHA-512

1. Fix a group of 6-round differential trails (Table 10) for the differential

∇Q ∇M ||0−−−−→
B

0.

Derive the set of sufficient conditions on the internal states.

2. Fix the message compensation equations with 9 constants (Appendix D).

3. Fix an arbitrary Q0 and modify it so that the most of conditions in the computation Q0 → P0

are fulfilled. Derive Qi out of Q0 by applying ∇Q.

4. Fix a group of 3-round trails (Table 11) (∆W 21 → ∆S23) as ∆-differentials (Equation (3)) in
rounds 21-23.

5. Choose W 21,W 22, . . . ,W 26 and constants c8, c9 so that the conditions in the computations
Q0 → Pj , j = 0, . . . , 7 are fulfilled. Produce all Pj .

Trail details for the biclique are detailed in Appendix D. Finally, we produce Q0, . . . , Q7 and
P0, . . . , P7 that conform to the system (1) and hence form a biclique.

The complexity of building a single biclique is estimated to be 232 units. However, the amortized
cost is again negligible, since we have much freedom in unused message words. The complexity of
getting 23 matches on 3 bits is 23 calls of the compression function (more details in Appendix).
Since we need 2509 matches, the complexity of the pseudo-preimage search is 2509. Therefore, a
full preimage can be found with complexity approximately 21+(509+512)/2 ≈ 2511.5 by restarting the
attack procedure 2

512−509
2 = 21.5 times. Memory requirements are approximately 21.5 × 24 words.

6 Attacks on the compression functions: SHA-2 and Skein

6.1 Preimage attacks on the Skein compression functions

In this section we provide an attack on the 37-round Skein-512 compression function. In the com-
pression function setting we control the tweak value, which gives us additional freedom both in
chunks and the construction of the biclique.

Local collision in Skein-512. If an attacker controls both the IV and the tweak he is able to
introduce difference in these inputs so that one of subkeys has zero difference. As a result, he gets
a differential which has no difference in internal state for 8 rounds. The lowest weight of input and
output differences is achieved in the following combination:

∆K[6] = ∆K[7] = ∆T [1] = δ,

which gives difference (0, 0, . . . , 0, δ) in the subkey K0 and (δ, 0, 0, . . . , 0) in K8, and zero difference
in the subkey K4. The local collisions for further rounds are constructed analogously. We use the

11

following differences in the compression function attack to make a local collision in rounds 8-15 and
24-31:

∆K[0] = ∆T [0] = ∆T [1] = 1� 63; ∆K[3] = ∆K[4] = ∆T [1] = 1� 63.

Attack. The attack parameters are listed in Table 5. We build a biclique in rounds 24-31, and
apply the attack to rounds 2-38, i.e., to the 37-round compression function.

Biclique

Rounds Dimension MF bits MB bits Complexity Freedom used

16-23 1 K[0] K[4]63 2256 162

Chunks Matching

Forward Backward Partial matching Matching bit Matching pairs Complexity

8-15 24-31 32→ 39 = 2← 7 I3
25 22 21.1

Table 5: Parameters of the preimage attack on the Skein-512 compression function

We use two differential trails: ∆-trail for rounds 16-19 (including key addition in round 19) and
∇-trail for rounds 20-23. The differential trails are based on the evolution of a single difference in
the linearized Skein. The ∆-trail has probability 2−52. The ∇-trail has probability 2−29.

The biclique is constructed as follows. First, we restrict to rounds 19-20, where the compression
function can be split into two independent 256-bit transformations. A simple approach with table
lookups gives a solution to restricted trails with amortized cost 1 (more efficient methods certainly
exist). Then we extend this solution to an 8-round biclique by the bits of K5. We use K5 in the
messagemodification-like process and adjust the sufficient conditions in rounds 16-23. We have 221
degrees of freedom for that (computed on a PC). As many as 96 bits of freedom do not affect the
biclique at all and are used to reduce the amortized cost to only a single round.

In the matching part we recompute 29 rounds per biclique. However, a single key bit flip affects
only half of rounds 12-15 and 24-27, and also we need to compute only a half of rounds 2-5 and
35-38. In total, we recompute 42 rounds, or 21.2 calls of the compression function per structure,
and get 2 candidates matching on one bit. The full preimage is found with complexity 2511.2.

6.2 Preimage attacks on the SHA-2 compression functions

In this section we provide short description of attacks on the SHA-2 compression functions. As
long as we do not attack the full hash function, the preimage attack on the compression function
is relevant if it is faster than 2n, though not all these attacks are convertible to the hash function
attacks. As a result, we can apply the splice-and-cut attack with the minimum gain to squeeze
out the maximum number of rounds. This implies that we consider bicliques of dimension 1. In
differential terms, we consider single bit differences ∆M and ∇M . As a result, we get sparse trails
with few conditions, and may extend them for more rounds.

• Build 11-round biclique out of a 11-round ∇-trail in rounds 17-27 (SHA-256) and 21-31 (SHA-
512). The trail is a variant of the trail in Table 7 that starts with one-bit difference.

• Construct message words in the biclique as follows. In SHA-256 fix all the message words
to constants, then apply the difference ∆M to W 17, and assume the linear evolution of ∆M
when calculating ∆W 17+i from W 2, . . . ,W 17. Assume also the linear evolution of ∇M when
calculating ∇W 27−i from W 28, . . . ,W 42. Analogously for SHA-512.

• Build the biclique using internal message words as freedom, then spend the remaining 5
message words to ensure the ∆ and ∇-trails in the message schedule. As a result, we get the
longest possible chunks (2-16 and 28-42 in SHA-256).

12

Therefore, we gain 5 more rounds in the biclique, and two more rounds in the forward chunk. This
results in a 52-round attack on the SHA-256 compression function, and a 57-round attack on the
SHA-512 compression function.

7 Discussion and Conclusions

We reconsidered meet-in-the-middle attacks as a means to obtain cryptanalytically significant results
on narrow-pipe hash functions like SHA-256 and SHA-512, and the SHA-3 finalist Skein. We have
demonstrated that the concept of the biclique is the source for improvements on preimage attacks,
which brings up to ten rounds more in the attack depending on the model. To summarize, we
benefit from the following features:

• Replacement of the initial structure idea with a formal concept of biclique and its convergence
to differential cryptanalysis;

• Use of differential trails in a biclique with a small number of sufficient conditions;

• Deterministic algorithms to build a biclique, which can be adapted for a particular primitive;

• Use of various tools from differential cryptanalysis like trail backtracking [5], message modifi-
cation and neutral bits [6, 13, 19, 27], and rebound techniques [18].

Overall, the differential view gives us much more freedom and flexibility compared to previous
attacks. Though all the functions in this paper are ARX-based, our technique can be as well applied
to other narrow-pipe designs.

For SHA-256, SHA-512, and Skein-512, we considered both the hash function and the compres-
sion function setting. In all settings we obtained cryptanalytic results on more rounds than any
other known method. Using these data points, it seems safe to conclude that Skein-512 is more
resistant against splice-and-cut cryptanalysis than SHA-512. An interesting problem to study would
be possibilities for meaningful bounds on the length of biclique structures.

Acknolwedgements

Part of this work was done while Christian Rechberger was with KU Leuven and visiting MSR
Redmond. This work was supported by the European Commission under contract ICT-2007-216646
(ECRYPT II).

References

[1] Kazumaro Aoki, Jian Guo, Krystian Matusiewicz, Yu Sasaki, and Lei Wang. Preimages for
step-reduced SHA-2. In ASIACRYPT’09, volume 5912 of LNCS, pages 578–597. Springer,
2009.

[2] Kazumaro Aoki and Yu Sasaki. Preimage attacks on one-block MD4, 63-step MD5 and more.
In Selected Areas in Cryptography’08, volume 5381 of LNCS, pages 103–119. Springer, 2008.

[3] Kazumaro Aoki and Yu Sasaki. Meet-in-the-middle preimage attacks against reduced SHA-0
and SHA-1. In CRYPTO’09, volume 5677 of LNCS, pages 70–89. Springer, 2009.

[4] Jean-Philippe Aumasson, Çagdas Çalik, Willi Meier, Onur Özen, Raphael C.-W. Phan, and
Kerem Varici. Improved cryptanalysis of Skein. In ASIACRYPT’09, volume 5912 of LNCS,
pages 542–559. Springer, 2009.

13

[5] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. RadioGatun, a belt-and-
mill hash function. NIST Cryptographic Hash Workshop, available at http: // radiogatun.

noekeon. org/ , 2006.

[6] Eli Biham and Rafi Chen. Near-Collisions of SHA-0. In Matthew K. Franklin, editor, CRYPTO,
volume 3152 of Lecture Notes in Computer Science, pages 290–305. Springer, 2004.

[7] Eli Biham and Adi Shamir. Differential cryptanalysis of the full 16-round DES. In CRYPTO’92,
volume 740 of LNCS, pages 487–496. Springer, 1992.

[8] Christophe De Cannière and Christian Rechberger. Preimages for reduced SHA-0 and SHA-1.
In CRYPTO’08, volume 5157 of LNCS, pages 179–202. Springer, 2008.

[9] David Chaum and Jan-Hendrik Evertse. Crytanalysis of DES with a Reduced Number of
Rounds: Sequences of Linear Factors in Block Ciphers. In Hugh C. Williams, editor, CRYPTO,
volume 218 of LNCS, pages 192–211. Springer, 1985.

[10] Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug Whiting, Mihir Bellare, Tadayoshi Kohno,
Jon Callas, and Jesse Walker. The Skein hash function family (version 1.3, 1 Oct, 2010).

[11] Jian Guo, San Ling, Christian Rechberger, and Huaxiong Wang. Advanced meet-in-the-middle
preimage attacks: First results on full Tiger, and improved results on MD4 and SHA-2. In
ASIACRYPT’10, volume 6477 of LNCS, pages 56–75. Springer, 2010.

[12] Sebastiaan Indesteege, Florian Mendel, Bart Preneel, and Christian Rechberger. Collisions
and Other Non-random Properties for Step-Reduced SHA-256. In Selected Areas in Cryptog-
raphy’08, volume 5381 of LNCS, pages 276–293. Springer, 2008.

[13] Antoine Joux and Thomas Peyrin. Hash functions and the (amplified) boomerang attack. In
CRYPTO’07, volume 4622 of LNCS, pages 244–263. Springer, 2007.

[14] John Kelsey and Bruce Schneier. Second preimages on n-bit hash functions for much less than
2n work. In EUROCRYPT’05, volume 3494 of LNCS, pages 474–490. Springer, 2005.

[15] Dmitry Khovratovich, Ivica Nikolic, and Christian Rechberger. Rotational Rebound Attacks
on Reduced Skein. In ASIACRYPT’10, volume 6477 of LNCS, pages 1–19. Springer, 2010.

[16] Mario Lamberger and Florian Mendel. Higher-order differential attack on reduced SHA-256.
available at http://eprint.iacr.org/2011/037.pdf, 2011.

[17] Gaëtan Leurent. MD4 is not one-way. In FSE’08, volume 5086 of LNCS, pages 412–428.
Springer, 2008.

[18] Florian Mendel, Christian Rechberger, Martin Schläffer, and Søren S. Thomsen. The rebound
attack: Cryptanalysis of reduced Whirlpool and Grøstl. In FSE’09, volume 5665 of Lecture
Notes in Computer Science, pages 260–276. Springer, 2009.

[19] Yusuke Naito, Yu Sasaki, Takeshi Shimoyama, Jun Yajima, Noboru Kunihiro, and Kazuo Ohta.
Improved collision search for SHA-0. In ASIACRYPT’06, volume 4284 of LNCS, pages 21–36.
Springer, 2006.

[20] NIST. FIPS-180-2: Secure Hash Standard, August 2002. Available online at http://www.itl.
nist.gov/fipspubs/.

[21] Somitra Kumar Sanadhya and Palash Sarkar. New collision attacks against up to 24-step
SHA-2. In INDOCRYPT’08, volume 5365 of LNCS, pages 91–103. Springer, 2008.

14

I0 I1 I2 I3 I4 I5 I6 I7 Conditions in the round
S12−A 3 3
S13−A 6 3 9
S14−A 6 3 3 12 24
S15−A 3 6 3 24 12 6 6 3 161

Table 6: Number of active bits in the most dense ∆-trail in 4 rounds of Skein-512.

[22] Yu Sasaki and Kazumaro Aoki. Preimage attacks on 3, 4, and 5-pass HAVAL. In ASI-
ACRYPT’08, volume 5350 of LNCS, pages 253–271. Springer, 2008.

[23] Yu Sasaki and Kazumaro Aoki. Preimage attacks on step-reduced MD5. In ACISP’08, volume
5107 of LNCS, pages 282–296. Springer, 2008.

[24] Yu Sasaki and Kazumaro Aoki. Finding preimages in full MD5 faster than exhaustive search.
In EUROCRYPT’09, volume 5479 of LNCS, pages 134–152. Springer, 2009.

[25] Marc Stevens, Arjen K. Lenstra, and Benne de Weger. Chosen-prefix collisions for MD5 and
colliding X.509 certificates for different identities. In EUROCRYPT’07, volume 4515 of LNCS,
pages 1–22. Springer, 2007.

[26] Bozhan Su, Wenling Wu, Shuang Wu, and Le Dong. Near-Collisions on the Reduced-Round
Compression Functions of Skein and BLAKE. Cryptology ePrint Archive, Report 2010/355,
2010. http://eprint.iacr.org/.

[27] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the full SHA-1. In
CRYPTO’05, volume 3621 of LNCS, pages 17–36. Springer, 2005.

[28] Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash functions. In EURO-
CRYPT’05, volume 3494 of LNCS, pages 19–35. Springer, 2005.

[29] Hongbo Yu, Gaoli Wang, Guoyan Zhang, and Xiaoyun Wang. The second-preimage attack on
MD4. In CANS’05, volume 3810 of LNCS, pages 1–12. Springer, 2005.

A More details on Skein specification

The operation MIX has two inputs x0, x1 and produces two outputs y0, y1 with the following trans-
formation:

y0 = x0 + x1

y1 = (x1 ≪R(d mod 8)+1,j
)⊕ y0

The exact values of the rotation constants Ri,j as well the permutations π (which are different for
each version of Threefish) can be found in [10].

B More details on SHA-2 specification

The round function of all the SHA-2 functions operates as follows:

T
(i)
1 = H i + Σ1(Ei) + Ch(Ei, F i, Gi) +Ki +W i,

T
(i)
2 = Σ0(Ai) + Maj(Ai, Bi, Ci),

Ai+1 = T
(i)
1 + T

(i)
2 , Bi+1 = Ai, Ci+1 = Bi, Di+1 = Ci,

Ei+1 = Di + T 1
(i), F

i+1 = Ei, Gi+1 = F i, H i+1 = Gi.

15

Here Ki is a round constant.The round function uses the bitwise boolean functions Maj and Ch,
and two GF(2)-linear functions Σ0(x) and Σ1(x). Functions Maj and Ch are defined identically for
all the SHA-2 functions:

Ch(x, y, z) = x ∧ y ⊕ x ∧ z (6)
Maj(x, y, z) = x ∧ y ⊕ x ∧ z ⊕ y ∧ z (7)

For SHA-224 and SHA-256, Σ0(x) and Σ1(x) are defined as follows:

Σ0(x) = (x ≫ 2)⊕ (x ≫ 13)⊕ (x ≫ 22), Σ1(x) = (x ≫ 6)⊕ (x ≫ 11)⊕ (x ≫ 25).

For SHA-384 and SHA-512, they are defined as follows:

Σ0(x) = (x ≫ 28)⊕ (x ≫ 34)⊕ (x ≫ 39), Σ1(x) = (x ≫ 14)⊕ (x ≫ 18)⊕ (x ≫ 41).

Operations ≫ and� denote bit-rotation and bit-shift of A by x positions to the right respectively.
The message schedule functions σ0(x) and σ1(x) are defined as follows for SHA-224 and SHA-256:

σ0(x) = (x ≫ 7)⊕ (x ≫ 18)⊕ (x� 3), σ1(x) = (x ≫ 17)⊕ (x ≫ 19)⊕ (x� 10) .

and for SHA-384 and SHA-512:

σ0(x) = (x ≫ 1)⊕ (x ≫ 8)⊕ (x� 7) , σ1(x) = (x ≫ 19)⊕ (x ≫ 61)⊕ (x� 6) .

C Details on the 46-round SHA-256 attack

Message compensation. Since any consecutive 16 message words in SHA-2 bijectively determine
the rest of the message block used at an iteration of compression function, we need to place the
initial structure within a 16-round block and define such restrictions on message dependencies that
maximize the length of chunks.

We use a heuristic algorithm to check how many steps forward and backward can be calculated
independently with a 6-step initial structure. We discovered that with W 17 and W 22 selected as the
words with neutral bits, it is possible to expand 16-round message block {W 12, . . . ,W 27} by 10 steps
backwards and 9 steps forwards, so that {W 2, . . . ,W 16} are calculated independently of W 17 , and
{W 23, ...,W 36} are calculated independently of W 22. Below we define the message compensation
conditions that make such chunk separation possible (neutral bit words are outlined in frames):

−σ1(W 25) +W 27 = c1; −W 19 − σ1(W 24) +W 26 = c2 −σ1(W 23) +W 25 = c3

− W 17 +W 24 = c4 − σ1(W 21) +W 23 = c5; −σ1(W 19) +W 21 = c6

−σ1(W 17) +W 19 = c7; W 12 + σ0(W 13) = c8; W 13 + W 22 = c9

(8)

Fig. 4 explains how the message compensation dependencies are constructed. Columns and rows
correspond to message words and equations respectively, where X at the intersection of row i ad
column j shows thatW j is a part of ith equation. Colour of a column reflects whether the appropriate
message word is set independently of both words with neutral bits (white), calculated using NW 1

(blue) or NW 2 (yellow). We start with {W 2, . . . ,W 11,W 22} colored blue and {W 17,W 28, . . . ,W 36}
colored yellow (Fig. 4, a) and aim to get rid of equations that involve both ’blue’ and ’white’ message
words. We split these equations and introduce constants {c1, . . . , c8, c9} (in other words, we create
additional dependencies between controlled messages and words with neutral bits as shown in Fig. 4,
b).

It is easy to see that words W 14, . . . ,W 16,W 18, and W 20 can be chosen independently of both
W 17 and W 22, so we can assign W 14 and W 15 with 64-bit length of the message to satisfy padding
rules (additionally, 1 bit of W 13 needs to be fixed). W 18 and W 20 are additional freedom for
constructing the biclique.

16

Chunk 2 (forwards calculation)Chunk 1 (backwards calculation) Initial Structure
words

eq
ua

ti
on

s

X X X X X
X X X X X

X X X X X

X X X X X
X X X X X

X X X X X

X X X X X

X X X X X

X X X X X

X X X X X

X X X X X

X X X X

X X X X X

X X X X X

X X X X X

X X X X X

X X X X X

X X X X X

X X X X X

C1

C2

C3

C4

C5

C6

C7

C8

C9

2 3 4 6 7 8 95 11 12 131410 16 17 18 1915 21 22 23 2420 25 26 27 28 29 30 31 32 33 34 35 36

(b)

Cj XjXk Removing dependencies on Xj and Xk by adding a constant Ci and a new equation

Entry depending on W22X

S
p
li
tt

in
g

e
q
u
a
ti

o
n
s

Entry depending on W17X Entry depending on W17

2

Figure 4: Message dependencies: (a) before and (b) after message compensation in SHA-256

Construction of the biclique. The basic differential trail for the biclique is a 6-round trail in
the backward direction (∆Q ← ∇M) that starts with the difference in bits 22, 23, and/or 31 in
W22. The trail is briefly depicted in Table 7 with references to the sufficient conditions (which work
out for all the 7 possible differences) in Table 9.

Round A B C D E F G H W Cond-s

17 - - 22,23,31 - - Λ′ - * - 1
18 - - - 22,23,31 - - Λ′ - - 3,4
19 - - - - 22,23,31 - - Λ′ - 7-11
20 - - - - - 22,23,31 - - - 12
21 - - - - - - 22,23,31 - - 13
22 - - - - - - - 22,23,31 -
23 - - - - - - - - 22,23,31

Table 7: Details for biclique in SHA-256. Differential ∇-trail (active bits). Λ′ =
{6, 11, 12, 16, 17, 20, 23, 24, 29, 30}

Round A B C D E F G H Cond-s

18 * - - - 25,26,27 - - - 2
19 * * - - Φ 25,26,27 - - 5,6

Table 8: Details for biclique in SHA-256. Differential ∆-trail (active bits).
Φ = Σ1{25, 26, 27} = {0, 1, 2, 14, 15, 16, 19, 20, 21}, ∗ stands for arbitrary difference.

We also use bits 25, 26, 27 as neutral in W17. To prevent this difference to interleave with
the backward trail difference in round 19, we restrict the behavior of the forward trail as specified
in Table 8. The aggregated conditions, which make each forward trail keep the backward ones
unaffected, are given in Table 9.

With three neutral bits we construct a biclique with 8 starting points for chunks in each direction.
First, we choose the initial state A17, . . . ,H17 so that the conditions 1 and 5 are fulfilled. Then we
proceed with a standard trail backtracking procedure modifying the starting state if needed. Here

17

we are free to use all the tools from the collision search like message modification or tunnels. Next,
in round 18 we further check whether the value of E stops carries in the forward trail. If not, we
change the value of D in the starting state accordingly. Then we sequentially modify the initial
state in order to fulfill the conditions 2-11.

The last two conditions are affected by the message words W19 and W20. We need to fulfill three
bit conditions for every W17, used in the attack. Therefore, we spend 3 ·8 ·2 = 48 degrees of freedom
in message words W17,W18,W19,W20,W21. Note that there is a difference in W19 determined by
the difference in W17 due to the message compensation. We have fixed the constants c6 and c7 from
Eq. 8 while defining W19 and W21. In total, we construct the biclique in about 232 time required to
find proper W19 and W20.

Amount of freedom used. In total, we have 512 degrees of freedom in the message and 256
degrees of freedom in the state. The biclique is determined by the state in round 17 and message
words W17–W21. The choice of W19 and W21 is equivalent to the choice of constants c6, c7 in Eq. 8.
Therefore, we spend 256 + 5 · 32 = 416 degrees of freedom for the biclique fulfilling as few as 47 + 42
(Table 9) conditions. We note that we have more than 300 degrees of freedom left in the construction
of a biclique. After the biclique is fixed, there are 768 − 416 = 352 degrees of freedom left. We
spend 32 + 32 + 2 = 66 for the padding, thus leaving with 286 degrees of freedom. Therefore, one
biclique is enough for the full attack.

Round Conditions Purpose F C DW

17 1: A22,23,31 = B22,23,31 Absorption (MAJ) IC 3 0

2 : (W⊕E18)25,26,27 = 0 Stop forw. carry SM 6 0

18 3 : EΛ′
= 1, Absorption (IFF) SM 9 0

4 : (D ⊕ E19)22,23,31 = 0 Stop carry SM 3 0

5 : F 25,26,27 = G25,26,27, Absorption (IFF) IC 9 0

6 : (S1⊕ E19)Φ = 0 Stop forw. carry SM 2 0

19 7: F 22,31 = G22,31 Absorption (IFF) SM 2 0

8: F 23 6= G23 Pass (IFF) SM 1 0

9: CH25 6= S125 Force carry (H) SM 1 0

10: (S1⊕H)Λ = 1 Stop carry (H) SM 9 0

11: (CH ⊕H)24 = 0 Force carry (H) SM 1 0

11’: (CH ⊕H)23 = 0 Force carry (H) SM 1 0

20 12 : E22,23,31 = 0 Absorption (IFF) W 19 21 21

21 13 : E22,23,31 = 1 Absorption (IFF) W 20 21 21

Table 9: Sufficient conditions for the ∇-trails in SHA-256.
Ai – i-th bit of A. F – how the conditions are fulfilled (IC – initial configuration, SM – state modification).

C – total number of independent conditions. DW – conditions fulfilled by message words.

Λ = Σ1{22, 23, 31} = {6, 11, 12, 16, 17, 20, 25, 29, 30}

D Details on the 50-round SHA-512 attack

Message compensation. The system of compensation equations is defined similarly to the
attack on SHA-256:

−σ1(W 29) +W 31 = c1; −W 23 − σ1(W 28) +W 30 = c2; −σ1(W 27) +W 29 = c3

− W 21 +W 28 = c4; − σ1(W 25) +W 27 = c5; −σ1(W 23) +W 25 = c6

−σ1(W 21) +W 23 = c7; W 16 + σ0(W 17) = c8; W 17 + W 26 = c9

18

To satisfy padding rules, we need to use 1 LSB of W 13 and 10 LSB of W 15 (see Section 5 for more
details about the padding). The choice of constants c8, c9 and fixed lower 53 bits of W 26 provide us
with sufficient freedom. Indeed, by choosing c9 we define lower 53 bits of W 17. Having c8 chosen,
we derive 45 lower bits of W 16 fixed due to σ0 in message schedule. Further, we get lower 37 bits
of W 15, 29 bits of W 14 and 21 bit of W 13 fixed. As we need only one LSB of W 13 and 10 LSB of
W 15 to be fixed, we use only lower 33 bits of W 26, lower 33 bits of c9, and lower 25 bits of c8.

Construction of the biclique for SHA-512. The basic differential trail for the biclique is a
6-round trail in the backward direction (∆Q ← ∇M) that starts with the difference in bits 53,
54, and/or 55 in W 26. The trail is depicted in Table 10 with the number of independent sufficient
conditions.We also use bits 60, 61, 62 as neutral in W 21. To prevent this difference to interleave with
the backward trail difference in round 19, we restrict the behavior of the forward trail as specified
in Table 11. Note that the trails based on the linearized version are now compatible with our choice
of neutral bits. The biclique is basically the same as in SHA-256, with a small difference that we
spend 48 + 48 = 96 degrees of freedom inside.

Round A B C D E F G H Indep. cond-s

21 - - 53,54,55 - - Λ - * 3
22 - - - 53,54,55 - - Λ - 12
23 - - - - 53,54,55 - - Λ 12
24 - - - - - 53,54,55 - - 24
25 - - - - - - 53,54,55 - 24
26 - - - - - - - 53,54,55

Table 10: Biclique in SHA-512. Differential ∇-trail (active bits). Λ = Σ1{53, 54, 55} =
{12, 13, 14, 35, 36, 37, 39, 40, 41}

Round A B C D E F G H Cond.

22 * - - - 60,61,62 - - - 3
23 * * - - Φ 60,61,62 - - 18

Table 11: Biclique in SHA-512. Differential ∆-trail.
Φ = Σ1{60, 61, 62} = {17, 20, 21, 42, 43, 44, 46, 47, 48}, ∗ stands for arbitrary difference.

Complexity estimate. We get a pseudo-preimage with complexity approximately 2506 × 23 =
2509 compression function operations. Therefore, a full preimage can be found with complexity
approximately 21+(509+512)/2 ≈ 2511.5 by restarting the attack procedure 2

512−509
2 = 21.5 times from

step 2. Memory requirements are approximately 4 message words (2 message words for storing the
fixed parts of neutral bits, 23 entries of 3 neutral bits difference and 3 bits for matching in each
list). For finding a preimage, we need to store 21.5 pseudo-preimages, i.e. the memory requirement
is 21.5 × 24 words.

19

X X X X X
X X X X X

X X X X X

X X X X X
X X X X X

X X X X X

X X X X X

X X X X X

X X X X X

X X X X X

X X X X X

X X X X

X X X X X

X X X X X

X X X X X

X X X X X

X X X X X

X X X X X

X X X X X

C1

C2

C3

C4

C5

C6

C7

C8

C9

6 7 8 9 11 12 13 1410 16 17 18 1915 21 22 23 2420 25 26 27 28 29 30 31 32 33 34 35 36

Cj XjXk
Removing dependencies on Xj and Xk by adding a constant Ci and a new equation

Entry depending on W26X

S
p
li
tt

in
g

e
q
u
a
ti

o
n
s

Entry depending on W21X Entry depending on W21

2

Figure 5: Message compensation in SHA-512

20

