Short Signatures From Weaker Assumptions

Dennis Hofheinz!, Tibor Jager?, and Eike Kiltz*?

"nstitut fiir Kryptographie und Sicherheit, Karlsruhe Institute of Technology, Germany,
Dennis.Hofheinz@kit.edu
2Horst-Gortz Institute for I'T Security, Ruhr-Universitat Bochum, Germany,
{tibor.jager,eike.kiltz}@rub.de

Abstract

We provide constructions of (m,1)-programmable hash functions (PHFs) for m > 2. Mim-
icking certain programmability properties of random oracles, PHFs can, e.g., be plugged into
the generic constructions by Hofheinz and Kiltz (J. Cryptol. 2011) to yield digital signatures
schemes from the strong RSA and strong ¢-Diffie-Hellman assumptions. As another applica-
tion of PHFs, we propose new and efficient constructions of digital signature schemes from
weaker assumptions, i.e., from the (standard, non-strong) RSA and the (standard, non-strong)
g-Diffie-Hellman assumptions.

The resulting signature schemes offer interesting tradeoffs between efficiency/signature length
and the size of the public-keys. For example, our ¢-Diffie-Hellman signatures can be as short as
200 bits; the signing algorithm of our Strong RSA signature scheme can be as efficient as the one
in RSA full domain hash; compared to previous constructions, our RSA signatures are shorter
(by a factor of roughly 2) and we obtain a considerable efficiency improvement (by an even
larger factor). All our constructions are in the standard model, i.e., without random oracles.
Keywords: digital signatures, RSA assumption, ¢-DH assumption, programmable hash func-
tions.

1 Introduction

Digital Signatures are one of the most fundamental cryptographic primitives. They are used as
a building block in numerous high-level cryptographic protocols. Practical signature schemes are
known whose security is based on relatively mild intractability assumptions such as the RSA [7] or
the (bilinear) Computational Diffie-Hellman (CDH) assumption [I14]. However, their security can
only be proved in the random oracle model [6] with all its limitations (e.g., [18, 27]).

STANDARD MODEL SIGNATURES. Signature schemes in the standard model (i.e., without using
random oracles) are often considerably less efficient or based on much stronger assumptions. While
tree-based signature schemes can be built from any one-way function [50], these constructions are far
from practical. On the other hand, “Hash-and-sign” signatures are considerably more efficient, but
the most efficient of these schemes rely on specific “strong” number theoretic hardness assumptions

*Funded by a Sofja Kovalevskaja Award of the Alexander von Humboldt Foundation and the German Federal
Ministry for Education and Research.

which we call Strong q—assumptionsEl In Strong g-assumptions, an adversary is provided with a
polynomial number of random “solved instances” and has to compute a new solved instance of
its choice. For example, the schemes in [24] 311 [30 37, [39] are based on the Strong (or, Flexible)
RSA assumption and the schemes in [12, [39] are based on the Strong ¢-Diffie-Hellman assumption.
Both assumptions are considerably stronger than their “non-strong” counterparts (i.e., the ¢-Diffie-
Hellman and the RSA assumptions, respectively), in which an adversary has to solve a given, fized
instance. (The exact difference between strong and non-strong assumptions will be discussed in

Appendix)

PROGRAMMABLE HASH FUNCTIONS. In order to mimic certain “programmability properties” of
random oracles, Hofheinz and Kiltz [39] introduced the combinatorial concept of programmable hash
functions (PHF'). (See Section [3] for a formal definition.) Among a number of other applications,
they used PHFs as a building block for efficient and short hash-and-sign signatures based on the
Strong RSA and the Strong ¢-Diffie-Hellman assumptions. Concretely, signatures in the Strong RSA
based HK signature scheme Siggsa[H] are of the form sig(M) = (H(M)'/¢ mod N, e), where N = pq
is a public RSA modulus, H(-) is a (m, 1)-PHF, and e is a short prime (chosen at random during
the signing process). A given HK signature (o,e) is verified by checking if 0¢ = H(M) mod N.
The efficiency of the HK signature scheme is dominated by the time needed to generate the prime
e, which (as shown in [39]) depends on the parameter m of the PHF: the bigger m, the smaller
e and consequently the more efficient is the signing process. Over bilinear groups there exists a
similar construction, Sigs_,.pu[H], whose security is based on the Strong ¢-DH assumption. The
main disadvantages of HK signatures is that their security relies on Strong assumptions, i.e., on
the Strong RSA (Strong ¢-DH) and not on the standard RSA (¢-DH) assumption.

RSA SIGNATURES. As a step towards practical signatures from the (standard) RSA assump-
tion, Hohenberger and Waters [41l 40] proposed the first hash-and-sign signature scheme (HW
signatures) whose security is based on the RSA assumption. HW signatures are computed as
sig(M) = g"/PM) mod N, where g € Z%, is a public element and P(M) =ej - ... - ey is the prod-
uct of [M| distinct primes. Here each prime e; is uniquely determined by the i-bit prefix M); of the
message M, and for each generation of e; a number of primality tests have to be executed which is
the dominant running time of signing (and verifying). The above signature scheme is only weakly
secure under the RSA assumption, and a chameleon hash has to be used to make it fully secure,
thereby doubling the signature size to two elements from Zy and adding = 2kbit to the public-key
size [40]. The main disadvantage of HW signatures is, however, the generation and testing of the
|M| primes ey, ... , €/p| necessary to compute the hash function P(M). Concretely, for k = 80 bits
security, HW signatures need to generate |M| = 160 random primes for the signing process.

1.1 Summary of our Contributions

As the main technical contribution we propose several new constructions of (m,1)-PHFs for any
m > 1. In particular, we solve the open problem posed in [39] of constructing deterministic (m, 1)-
PHFs for m > 2. Even though our main applications are digital signatures we remark that PHFs
are a very general framework for designing and analyzing cryptographic protocols in the Diffie-
Hellman and RSA setting. For example, in [39], it was shown that PHFs imply collision-resistant

!There are exceptions, e.g., by Waters [54] (CDH assumption in bilinear groups), Hohenberger and Waters [41],
and the lattice-based schemes [19} [15] (SIS assumption). However, these are not among the most efficient “Hash-and-
sign”-type schemes.

hash functions and lead to elegant and simple proofs of Waters’ IBE and signature schemes [54] and
its countless variants (e.g., [16][8]). More importantly, a large body of cryptographic protocols with
security in the standard model are using — implicitly or explicitly — the partitioning trick that is
formalized in PHFs. To mention only a few examples, this ranges from collision-resistant hashing
[21} [4], digital signature schemes [I3], [54] (also in various flavors [49, [52] [9]), chosen-ciphertext
secure encryption [16], 42, [36] B8], [15], identity-based encryption [10} 11l [43], 19, 1], attribute-based
encryption [51] to symmetric authentication [44]. We expect that our new PHF constructions can
also be applied to some of the mentioned applications.

We also show how to use our new (m,1)-PHFs for generic constructions of short yet efficient
hash-and-sign signatures whose security is based on weaker hardness assumptions: the ¢-DH and
the RSA assumption. Whereas our ¢-DH schemes Sig,_p[H] are (to the best of our knowledge) the
first hash-and-sign schemes from this assumption, our RSA schemes Siggga[H] and Sigrga[H] are
conceptually different from HW signatures and we obtain a considerable efficiency improvement.
A large number of new signature schemes with different tradeoffs can be derived by combining
the generic signature schemes with PRFs. An overview of the efficiency of some resulting schemes
and a comparison with existing schemes from [24, [31) 12} [39, 41] is provided in Table . Our new
schemes offer different tradeoffs between signature size, efficiency, and public-key size. The bigger
the parameter m in the (m,1)-PHF, the larger the public-key size, the shorter the signatures.
To obtain extremely short and/or efficient signatures, the size of the public key can get quite
large. Concretely, with a public-key of size 26mbit we obtain 200 bit signatures from the (Strong)
g-DH assumption. These are the shortest knwon standard-model digital signatures in bilinear
groups. Remarkably, Sigsrsa[Hcs) which instatiates the Strong RSA signatures from [39] with
our new (m,1)-PHF H for m > 6, results in a hash-and-sign signature scheme where the signing
procedure is dominated by one single modular exponentiation. This is the first RSA-based signature
scheme whose signing complexity is not dominated by generating random primesEl Hence signing
is essentially as efficient as RSA full-domain-hash [7] with the drawback of a huge public-key.

While these short signatures are mostly of theoretical interest and contribute to the problem
of determining concrete bounds on the size of standard-model signatures, we think that in cer-
tain applications even a large public-key is tolerable. In particular, our public key sizes are still
comparable to the ones of recently proposed lattice-based signatures [47, 32, [19] [15].

We note furthermore, that it is possible to apply efficiency improvements from [4I] to our
RSA-based schemes as well. This allows us to reduce the number of primality tests required for
signing and verification sigificantly. More precisely, it is possible to transform each signature scheme
requiring A primality tests into a scheme which requires only A/c primality tests, at the cost of
loosing a factor of 27¢ in the security reduction. For example, SigESA[HWeak]§ with m = 11 and
¢ = 40 is a RSA-based signature scheme which requires only a single primality test for signing and
verification, at the cost of loosing a factor of 2740 in the security reduction.

1.2 Details of our Contributions

NEwW PROGRAMMABLE HASH FUNCTIONS. Our main technical contribution to obtain shorter
signatures are several new constructions of (m, 1)-PHFs for m > 2 (cf. Table 2] in Section[3). Using

2Since the complexity of finding a random pu-bit prime with error 27 is O(ku?), we expect that for u =~ 60 (or,
equivalently, using Hcss with m > 6) a full exponentiation modulo a 1024-bit integer become roughly as expensive as
generating a random p-bit prime.

l Signature scheme ‘Assumption‘ Signature Size (bits) ‘ Efficiency Public key size (bits)

|

Waters [54] CDH 2x |G| = 320 2 x Exp I x |G| = 26k
Boneh-Boyen [12] Strong ¢-DH |G1| + |Zp| = 320 1 x Exp 2 x |G2| = 640
Sigs- ,-pn[Hwat] [39] Strong ¢-DH |G| + |s| = 230 1 x Exp I x |G| = 26k
Sigs- -pn [Hets) (m=8) | Strong ¢-DH |G1| + |s| = 200 1 x Exp 16m?l x |G1| = 26m
Sig,,-pn[Hwat, Hwat] (m=2) ¢-DH |G1| + |s] = 230 1 x Exp I X |G1| + |s| X |G2| = 48k
Sig -pn[Hets, Hwat (m=8) ¢-DH |G1] + |s| = 200 1 x Exp | 16m?l x |G1| + |s| X |Gz| = 26m
Cramer-Shoup [24] Strong RSA | 2 X |Zn|+|e]= 2208 | 1 x Pigo 3X |Zn|+ le] = 3k
Gennaro et. al.* [31] Strong RSA 2% |Zn| = 2048 | 1 x P1go |Zn| + |pkcyl = 3k
Sigersa[Hwat] [39] Strong RSA |Zn|+ el = 1104 | 1 x Pg Ix |Zn| = 128k
Sigsrsa [Hers] (m=6) | Strong RSA |Zn|+ |s| = 1068 | ~ 1 x Exp 16m?l x |Zy| = 94m
SigdrsaHweak] (m=6) | Strong RSA 2 X |Zn|= 2048 | =2 X Exp T X |Zn| + |pkcu| = 9k
Hohenberger-Waters™ [41] RSA 2 X |Zn| = 2048 | 160 X P1g24 |Zn| + |pkcy] = 3k
SigESA[HWeak] (m=2) RSA 2 X |ZN| = 2048 | 70 X P1g24 3 x |ZN| + |kaH| = 5k
SigESA[HWeak] (m=4) RSA 2 x |ZN| = 2048 | 50 X P1o24 5 X |ZN| 4+ |kaH| = Tk
Sigrsa [Hwat] (m=2) RSA |Zn| + |s|] = 1094 | 70 X P1g24 I X |Zn|= 128k
Sigrsa[Hrand] (m=41) RSA |Zn |+ |s| + |r| = 1214 | 50 X P1o24 2m® x |Zy| = 32k
SigRSA[Hcfs] (m=4) RSA |ZN| =F |8| = 1074 | 50 X P1g24 lﬁmzl X |ZN| = 40m
Sighsa[Hweak]* (m=11) RSA 2 X |Zn| = 2048 | 1 x Pioa4 12 X |Zn| + |phcy| = 14k

*The RSA-based chameleon hash function from [40] was used (adding 1 X |Zn| to signature size).
§Security reduction loses an additional factor of 24°.

Table 1: Signature sizes of different schemes. Rows with grey background indicate new results from this paper. The
chosen parameters provide unforgeability with k = 80 bits of security after revealing maximally q = 23° signatures.
RSA signatures are instantiated with a modulus of | N| = 1024 bits, Bilinear signatures in asymmetric pairings using
a BN curve [3] with logp = 160 bits. We assume that elements in G; can be represented by |G1| = 160 bits, while an
element G2 by |Gz2| = 320 bits. The description of the bilinear group/modulus N is not counted in the public key.
We assume [-bit messages with [= 2k = 160 in order to provide k bits of security (to sign longer messages, we can
apply a collision-resistant hash function first). The efficiency column counts the dominant operations for signing. For
Bilinear and RSA signatures this counts the number of modular exponentiations, for RSA signatures k& x P, counts
the number of random p-bit primes that need to be generated to evaluate function P(-). (For x> 60, 1 x P,, takes
more time than 1 x Exp.)

cover-free sets, we construct a deterministic (m,1)-PHF H with public parameters of O(km?)
group elements. This solves the problem from [39] of constructing deterministic (m,1)-PHFs for
m > 2. We remark that cover-free sets were already used in [26] B35, 23] to construct identity-
based encryption schemes. Furthermore, we propose a randomized (m,1)-PHF H, ;4 with public
parameters of O(m?) group elements and small randomness space. Finally, we construct a weakly
secure deterministic (m,1)-PHF Hweak with public parameters of m group elements. The latter
PHF already appeared implicitly in the context of identity/attribute-based encryption [20} [51]
(generalizing [10]). Weakly secure PHFs only yield weakly secure signature schemes that need to
be “upgraded” to fully secure schemes using a chameleon hash function.

RSA SIGNATURES. Our new RSA signatures Sigrsa[H] are of the form

sig(M) = (H(M)YP® mod N, s), (1)
where s is a short random bitstring, H(-) is a (m,1)-PHF, and P(s) := ey - ... - ¢ is the product
of |s| primes ey, ... ,€|s|, where the sth prime is uniquely determined by the ith prefix s|; of the

randomness s. (If the PHF H is probabilistic, sig additionally contains a small random bitstring .)
Our security proof is along the lines of [39], but using P enables a reduction to the RSA assumption
(Theorem in the standard model. The main conceptual novelty is that we apply P to the

4

randomness s rather than the message M as in HW signatures. Because the values s are relatively
small, our scheme is considerably more efficient than that of [41].

Concretely, the length of s is controlled by the PHF parameter m as |s| = log ¢+ k/m, where ¢
is an upper bound on the number of signatures the scheme supports. (See Appendix for a formal
argument.) For k = 80 bits security and ¢ = 230 (as recommended in [7]) we can make use of our
new constructions of (m, 1)-PHFs with m > 2. For example, with a (4,1)-PHF, the bitstring s can
be as small as 50 bits which leads to very small signatures. More importantly, since the function
P(s) only has to generate |s| distinct primes ey, ..., e (compared to |[M]| > [s| primes in HW
signatures), the signing and verification algorithms are considerably faster. The drawback of our
new signature scheme is that the system parameters of H grow with m.

BILINEAR SIGNATURES. Our new ¢-DH signatures Sig,_py[H] are of the form
sig(M) = (H(M)"/4¢),s), (2)

where again s is a short random bitstring, H is a (m, 1) programmable hash function, and d(-) is a
special (secret) function mapping bitstrings to Z,. Since D(s) := g%*) can be computed publicly,
verification is done by using the properties of the bilinear group. Security is proved under the ¢-DH
assumption in the standard model (Theorem . Similar to our RSA-based signatures the length
of s is controlled by the PHF parameter m. For example, for m = 8 we obtain standard-model
signatures of size |G| + |s| = 160 4+ 40 = 200 bits.

FuLL DOMAIN SIGNATURES. We remark that full-domain hash signature schemes over a homomor-
phic domain (e.g., RSA-FDH [7] and BLS signatures [14]) instantiated with (m,1)-PHFs provide
efficient m-time signature schemes without random oracles. This nicely complements the impos-
sibility results from [27] who show that without the homomorphic property this is not possible.
We remark that an instantiation of RSA-FDH as a m-time signature scheme was independently
observed in [25].

PrROOF TECHNIQUES AND RELATED WORK. Our RSA-based signature scheme represents a com-
bination of techniques from [39] and [41]. Namely, in the basic RSA-based signature scheme from
[39], a signature is of the form (H(M)'/* mod N, s) for a prime s. The use of a programmable hash
function H enables very efficient schemes, whose security however cannot be reduced to the stan-
dard (non-strong) RSA problem, since a forged signature (H(M)Y*",s*) corresponds to an RSA
inversion with adversarially chosen exponent s*. On the other hand, the (basic, weakly secure)
signature scheme from [41] is of the form ¢'/P(™) mod N. The special structure of P (which maps
a message M to the product of | M| primes) makes it possible to prove security under the standard
RSA assumption. However, since P is applied to messages (i.e., 160-bit strings), evaluation of P
requires a large number of primality tests. We combine the best of both worlds with signatures of
the form (H(M)'/P®) mod N, s) for short (e.g., 40-bit) random strings s. In contrast to the scheme
of [41], this directly yields a fully secure signature scheme, so we do not need a chameleon hash
function.

In the security proof of our RSA signatures we distinguish between two types of forgers: type
I forgers recycle a value from {sq,...,s,} for the forgery, where the s;’s are the random bitstrings
used for the simulated signatures; type II forgers use a new value s* & {s1,...,s,} for the forgery
and therefore are more difficult to reduce to the RSA assumption. For the reduction of type II
forgers to the RSA assumption we can use a clever “prefix-guessing” technique from [4I] to embed

the prime e from the RSA challenge in the function P(-) such that the product P(s*) contains eEl
Similar to the proof of HK signatures [39], the reduction for Type I forgers makes use of the (m,1)
programmability of H(-).

Strong ¢-DH signatures from [39] can actually be viewed as our ¢-DH signatures from
instantiated with the special function d(s) = x+s (where z is part of the secret-key). In our scheme,
the leverage to obtain security from ¢-DH is that the function D(s) := g9(*) acts as a (poly, 1)-PHF.
That is, d(-) can be setup such that (with non-negligible probability) d(s;) = x4+ a(s;) for a(s;) #0
but d(s*) = z, where s1,..., s, is the randomness used for the generated signatures and s* is the
randomness used for the forgery.

1.3 Open Problems

A number of interesting open problems remain. We ask how to construct (deterministic) (m,1)-
PHFs for m > 1 with smaller parameters than the ones from Table Since the constructions
of cover free sets are known to be optimal up to a log factor, a new method will be required.
Furthermore, obtaining truely practical signatures from the RSA or factoring assumption is still an
open problem. In particular, we ask for a construction of hash-and-sign (strong) RSA signatures
that do not require the generation of primes at signing.

2 Preliminaries

For k € N, we write 1* for the string of k ones, and [k] for {1,...,k}. Moreover, |z| denotes the
length of a bitstring x, while |S| denotes the size of a set S. Further, s &£ S denotes the sampling

a uniformly random element s of S. For an algorithm A, we write z < A(z,y,...) to indicate that
A is a (probabilistic) algorithm that outputs z on input (z,y,...).

2.1 Digital signatures

A digital signature scheme Sig = (Gen, Sign, Vfy) consists of three algorithms. Key generation

Gen generates a keypair (pk, sk) < Gen(1¥) for a secret signing key sk and a public verification
key pk. The signing algorithm Sign inputs a message and the secret signing key, and returns a
signature o & Sign(sk, m) of the message. The verification algorithm Vfy takes a verification
key and a message with corresponding signature as input, and returns b < Vfy(pk,m, o) where
b € {accept,reject}. We require the usual correctness properties.
Let us recall the existential unforgeability against chosen message attacks (EUF-CMA) security
experiment [33], played between a challenger and a forger F.
1. The challenger runs Gen to generate a keypair (pk, sk). The forger receives pk as input.
2. The forger may ask the challenger to sign a number of messages. To query the i-th signature,
F submits a message m; to the challenger. The challenger returns a signature o; under sk
for this message.
3. The forger outputs a message m* and signature o*.

3More precisely, when simulating a type II forger, the values si,...,s, are known in advance to the simulator.
Since s* & {s1,...,84} there is some prefix s|; of s™ that is different from all prefixes of s1,...,5,. We can guess the
smallest such prefix such that the simulator knows 5*1' from the forgery at the beginning. This knowledge can be used
to embed e from the RSA challenge in the function P(-) such that the product P(s*) contains e.

F wins the game, if accept « Vfy(pk,m*,o*), that is, o* is a valid signature for m*, and m* # m;
for all i. We say that F (¢, g, €)-breaks the EUF-CMA security of Sig, if F runs in time ¢, makes at
most ¢ signing queries, and has success probability €. We say that Sig is EUF-CMA secure, or Sig
is fully secure, if € is negligible for any probabilistic polynomial-time algorithm F.

We also say, that a scheme is weakly secure, if it meets the above security definition, but the
adversary can not choose the messages to be signed adaptively. Instead it has to commit to a list
mi, ..., my before seeing the public key. There exist efficient generic techniques to convert a weakly
secure signature scheme into a fully secure one, e.g., using chameleon hashes [45].

2.2 Prime Numbers, Factoring, and the RSA Assumption

For € N let m(x) denote the number of primes between 0 and x. The following lemma is a direct
consequence of Chebyshev’s bounds on 7(x) (see [34], for instance).

Lemma 2.1.

<m(z) <

log T logy x

We say that a prime p is a safe prime, if p = 2p’ + 1 and p’ is also prime. Let p and g be two
randomly chosen k/2-bit safe primes, and let N = pq. Let e € Z(,,) be a random integer, relatively
prime to ¢(N). We say that an algorithm A (¢, €)-breaks the RSA assumption, if A runs in time ¢
and

Pr[y'/c & AN, e,y)] > e

We assume that there exists no algorithm that (¢, €)-breaks the RSA assumption with polynomial
t and non-negligible e.

We denote with QRy the group of quadratic residues modulo N. The following lemma, which
is due to Shamir [53], is useful for the security proof of the generic RSA-based signature scheme
described in Section [l

Lemma 2.2. There is an efficient algorithm that, on input y,z € Zn and integers e, f € Z such
that ged(e, f) = 1 and 2¢ = y/ mod n, computes x € Zy satisfying ° =y mod N.

2.3 Generalized Birthday Bound

Although not explicitly stated, the following lemma is implicit in [37]. We will apply it several
times in the security proofs for our generic signature schemes.

Lemma 2.3. Let A be a set with |A| = a. Let Xy, ..., X, be q independent random variables, taking

uniformly random values from A. Then the pmbabzlzty that there exist m~+1 pairwise distinct indices
m+1

i1, ..y imy1 such that Xi = -+ = X, ., is upper bounded by %

2.4 Pairing groups and ¢-Diffie-Hellman.

The generic signature scheme we describe in Section [fis defined on families of groups with bilinear
pairing. A pairing group PG = PGy = (G,Gr,p,é,g) consists of groups G and Gp with prime
order p, where p is a 2k-bit prime, a generator g € G, and a non-degenerate bilinear pairing map
é: GxG — Gp. We say that an adversary A (¢, €)-breaks the ¢-Diffie-Hellman (¢-DH) assumption,
if A runs in time ¢t and

Pr[g"/ & Alg,g*,...,9"")] > €

for & Zy,. We assume that there exists no algorithm that (¢, €)-breaks the g-Diffie-Hellman
Inversion assumption with polynomial ¢ and non-negligible e.

3 Programmable Hash Functions

3.1 Definitions

Let G = (Gg) be a family of groups, indexed by security parameter k& € N. We omit the subscript
when the reference to the security parameter is clear, thus write G for Gy.

A group hash function H over G with input length [= (k) consists of two efficient algorithms
PHF.Gen and PHF.Eval. The probabilistic algorithm « & PHF.Gen(1*) generates a hash key & for
security parameter k. Algorithm PHF.Eval is a deterministic algorithm, taking as input a hash
function key & and X € {0,1}!, and returning PHF.Eval(k, X) € G.

Definition 3.1. A group hash function H = (PHF.Gen,PHF.Eval) is (m,n,~,d)-programmable,
if there is an efficient trapdoor key generation algorithm PHF.TrapGen and an efficient trapdoor
evaluation algorithm PHF.TrapEval with the following properties.

1. The probabilistic trapdoor generation algorithm (k, 7) & PHF.TrapGen(1%, g, h) takes as in-
put group elements g,h € G, and produces a hash function key x together with trapdoor
information .

2. For all generators g,h € G, the keys x & PHF.Gen(1%) and &/ & PHF.TrapGen(1%*, g, h) are
statistically ~y-close.

3. On input X € {0,1}! and trapdoor information 7, the deterministic trapdoor evaluation
algorithm (ax,by) < PHF.TrapEval(r, X) produces ax,bx € Z so that for all X € {0, 1}/,

PHF.Eval(k, X) = gX hbx

4. For all g,h € G, all k generated by k & PHF.TrapGen(1*, g, h), and all X1,...,X,, € {0,1}
and Z1,...,Z, € {0,1}! such that X; # Z; for all i, j, we have

Prlax, =---=ax,, =0and az,,...,az, # 0] >4,

where (ax,,bx,;) = PHF.TrapEval(r, X;) and (az,;,bz;) = PHF.TrapEval(7, Z;), and the prob-
ability is taken over the trapdoor 7 produced along with k.
If v is negligible and ¢ is noticeable, then we also say that H is (m,n)-programmable for short. If H
is (1, ¢)-programmable for every polynomial ¢ = ¢(k), then we say that H is (1, poly)-programmable.

In settings in which the group order is hidden, we will use a refinement of the PHF definition:

Definition 3.2. A group hash function H = (RPHF.Gen, RPHF.Eval) is evasively (m,n,~,J)-
programmable, if it is (m,n,,d)-programmable as in Definition but with the strengthened
requirement

4’. For all prime numbers e with 2! < e < |G|, all g,h € G, and all k generated by x &
PHF.TrapGen(1*, g, h), and all X1,...,X,, € {0,1}} and Z1,...,Z, € {0,1} such that X; #
Z; for all 4, j, we have

Prlax, =---=ax, =0 and gcd(agz,,e) = -+ =gecd(ag,,e) =1] >4,

where (ax,,bx;) = PHF.TrapEval(r, X;) and (az;,bz;) = PHF.TrapEval(7, Z;), and the prob-
ability is taken over the trapdoor 7 produced along with x.

Hofheinz and Kiltz [37] have also introduced the notion of randomized programmable hash
functions. A randomized group hash function H with input length [= [(k) and randomness space
R = (Ry) consists of two efficient algorithms RPHF.Gen and RPHF.Eval. Algorithm RPHF.Gen
is probabilistic, and generates a hash key & RPHF.Gen(1%) for security parameter k. The
deterministic algorithm RPHF.Eval takes randomness r € Ry, and X € {0, 1}1 as input, and returns
a group element RPHF.Eval(k, X) € G.

Definition 3.3. A randomized group hash function H = (RPHF.Gen, RPHF.Eval) is called (m,n,~, d)-
programmable, if there are efficient algorithms RPHF.TrapGen, RPHF.TrapEval, and RPHF.TrapRand
such that:

1. The probabilistic algorithm PHF.TrapGen(1¥,g,h) takes as input group elements g,h € G,
and produces a key x and trapdoor 7. For all generators g, h € G, the keys & & PHF.Gen(1%)
and r’ & PHF.TrapGen(1%, g, h) are statistically v-close.

2. The deterministic trapdoor evaluation algorithm takes as input X € {0,1}! and r € Ry, and
produces two functions (ax(-),bx(-)) < PHF.TrapEval(7, X,r) such that for all X € {0,1}!,

PHF.Eval(x, X, r) = g2x (" pbx (™),

3. On input of trapdoor 7, X € {0,1}, and index i € [m], the RPHF.TrapRand algorithm
produces r < RPHF.TrapRand(7, X,7) with » € Ry. For all g,h € G, all k generated by
(k,T) & PHF.TrapGen(1%,g,h), all Xi,..., Xy, and ry, = RPHF.TrapRand(7, X;,), we re-
quire that the ry, are independent and uniformly distributed random variables over Ry.

4. For all g,h € G and all x generated by (k,7) < PHF.TrapGen(1*,¢,h), all X1,...,Xm €
{0,1} and Z1,...,Z, € {0,1}! such that X; # Z;, and for all 7,...,7, € Ry and rx, <
RPHF.TrapRand(7, X;, i), we have

Prlay, (rx,) = = ax,,(rx,) = 0and az (71),...,az, (") # 0] >4,

where (ax,,bx;) = RPHF.TrapEval(7, X;,ry,) and (az;,bz;,) = PHF.TrapEval(r, Z;,7;), and
the probability is taken over the trapdoor 7 produced along with k. Here X; may depend on
Xj and rx; for j <4, and the Z1,...,Z, may depend on all X; and 7;.
Again we omit v and 9, if ~ is negligible and § is noticeable. Randomized evasively programmable
hash functions are defined as in Definition

In the remainder of this Section we propose a number of new PHFs offering different trade-offs.
Our results are summarized in Table 2

Name Type Parameters (m,n) Size of k Randomness space
Hwar [54 37 (§[3-2) PHF (1, poly) and (2,1) (I+1) x |G] —

Hees (§ i PHF (m, 1) (16m21 + 1) x |G| —

Hrana (53.4) RPHF (m, 1) (2m? + 1) x |G| R ={0,1}
Hweak (§[3.5) weak PHF (m, 1) (m+1) x |G| —

Table 2: Overview of our constructions of (randomized/weak) programmable hash functions. Rows
with grey background are new constructions from this paper.

3.2 Multi-generator programmable hash function

The programmable hash function described in Definition below was (implicitly) introduced
n [54]. An explicit analysis can be found in [37].

Definition 3.4. Let G = (Gg) be a group family, and [= [(k) be a polynomial. Let Hwa =
(PHF.Gen, PHF.Eval) be defined as follows.

e PHF.Gen(1¥) returns x = (ho, ..., h;), where h; E Gyforie [1].

e On input X = (x1,...,2;) € {0,1}} and s = (ho, ..., h;), PHF.Eval(k, X) returns

l
PHF Eval(k, X) = ho [[h¥".
=1

Theorem 3.5 (Theorem 3.6 of [37]). For any fized polynomial ¢ = q(k) and any group with known
order, Hwat is an evasively (1,q,0,0(1/(qV/1)))-programmable and (2,1,0,0(1/1))-programmable
hash function.

Although evasive programmability was not introduced in [37], it follows from their proof, since
the values of az; that occur there are bounded in the sense |az;| < 2!, We remark that Theorem
also carries over to groups of unknown order.

3.3 A new deterministic programmable hash function

Let S,T be sets. We say that S does not cover T, if T' € S. Let d,m,s be integers, and let
F = (F)icls be a family of s subsets of [d]. We say that F' is m-cover free, if for any set [
containing (up to) m indices I = {i1,...,in} C [s], it holds that F}; & |J;c; F; for any j which is
not contained in I. In other words, if [I| < m, then the union | J;.; F; is not covering F; for all
j € [s]\ I. We say that F is w-uniform, if |F;| = w for all i € [s].

Lemma 3.6 ([28,[46]). There is a deterministic polynomial-time algorithm that, on input of integers
m,s = 2!, returns d € N and set family F = (Fi)iels) such that F' is m-cover free over [d| and w-
uniform, where d < 16m?l and w = d/4m.

In the following we will associate X € {0,1}! to a subset Fj, i € [s], by interpreting X as an
integer in the range [0,2! — 1], and setting i = X + 1. We will write Fx to denote the subset
associated to X.

Definition 3.7. Let G = (Gg) be a group family, and [= (k) and m = m(k) be polynomials.
Define s = 2!, d = 16m?l, and w = d/4m. Let He = (PHF.Gen, PHF.Eval) be as follows.

e PHF.Gen(1%) returns & = (hy, ..., hg), where h; & Gy, for 1 <i < d.

e Let Fx C [d] be the subset associated to X € [0,2' — 1]. On input X and x = (h1,...,hg),

PHF.Eval(x, X) returns
PHF Eval(r, X) = []
1€Fx

Theorem 3.8. Let G = Gy be a group of known order p. Hegs is an evasively (m,1,7,9)-
programmable hash function with v = 0 and & = 1/(16m?1).

PRrOOF. Consider the following algorithms.

10

o PHF.TrapGen(1*, g, h) samples d uniformly random integers by, ..., by < Z, and an index

t < [d]. Then it sets hy = gh®, and h; = h¥ for all i € [1,d] with i # ¢. PHF.TrapGen returns
(k,7) with 7 = (¢,b1,...,bq) and K = (hy,..., hg).
e On input (7,X), PHF.TrapEval sets bx = >
t ¢ Fx, and returns (ax,bx).
PHF.TrapGen outputs a vector of independent and uniformly distributed group elements, thus we
have v = 0. Fix Xy,..., Xn,Z € [0, 2l — 1]. Since F'is a m-cover free set family, there must be
an index ¢ such that ¢’ ¢ |JI,| Fx,, but ¢ € Fz. Since t is picked uniformly random among 16m?]
possibilities, we have ¢ = ¢, and thus ay, = 0 and az = 1, with probability § = 1/(16m?l). Finally,
az = 1 implies ged(ayz, e) = 1 for all primes e, thus Hgs is evasively programmable. O

i€Fy b;, and ax = 1ift € Fx, and ax = 0 if

Theorem [B.§ can be generalized to groups of hidden order. The proof proceeds exactly like the
proof of Theorem except that we have to approximate the group order. E.g., for the group
of quadratic residues QR,,, we can sample random exponents b; & Z,2. This way, we can sample
nearly uniform (1/y/n-close) group elements h; = h’, which yields the following theorem.

Theorem 3.9. Let G = QR,, be the group of quadratic residues modulo n = pq, where p and q
are safe distinct primes. Hess is a (m, 1,7, d)-evasively programmable hash function over G with

v =d/yn and § = 1/(16m?1).

3.4 A randomized programmable hash function

In [39] a randomized (2,1)-PHF was described which we now generalize to a randomzied (m, 1)-
PRF, for any m > 1.

Definition 3.10. Let G = (Gg) be a group family, and m = m(k) be a polynomial. In the
following, let [X]y € Z denote a canonical interpretation of a field element X € Fy as an integer
between 0 and 2! — 1. We assume that X and [X]y are efficiently computable from one another.
Let Hang = (PHF.Gen, PHF.Eval) be defined as follows.

e RPHF.Gen(1¥) returns a uniformly sampled s = (hy, (hij)(i.j)e2m]xm)) € G2m*+1,

e RPHF.Eval(k, X;7) parses X, r € Fy, and computes and returns

RPHF.Eval,.(X;7) = ho H P 7
1,j=1

Theorem 3.11. For any group G of known order, Hyang is evasively (m,1,0,1/2)-programmable.

For the group G = QRy of quadratic residues modulo N = pq for safe distinct primes p and q, the
function Hyang is evasively (m, 1, (2m? 4+ 1)/v/'N, 1/2)-programmable.

PRrROOF. We describe suitable algorithms RPHF.TrapGen and RPHF.TrapEval. First assume a group
G with known order |G|.
e RPHF.TrapGen(1%, g, h) uniformly picks i* € [2m], as well as ¢; € Fy and B, i € Zg| for
(1,7) € [2m] x [m], sets

alt) = [] - [¢la) Zajtﬂ € Zlt] (3)

JE€m]

11

and so defines

@pfii for i = i*,
ho = gooho hij = {g

hBi for ¢ £ ¢*.

Output is kK = (ho, (hi,j)(i,j)€[2m]><[m]> and T = (i*, (Cj)je[m}, (Bi,j)(i,j)epm]x[m])' Since the ﬁ@j
are chosen independently and uniformly, this implies that x is distributed exactly like the
output of RPHF.Gen.

e RPHF.TrapEval(7, X, r) computes and outputs

m

o= a([F#X +rly) = oy - (X +rlpy b= S By (iX +rlp)
=0 (i.d)€l2m] x [m]

for a(t) € Z[t] as defined by the (; through (). By construction, RPHF.Eval(x, X,r) =
ho Hm h’g[zX—i-’l‘}gl)] _ gahb.

" h
° RPHI??TrapF’gand(T, Xj,j) outputs r; := (; —i*X € Fy, so RPHF.TrapEval(7, X, r;) yields

a = o([i*X; +rjla) = a([¢jle) = 0. As the ¢; are uniform and independent of &, so is ;.
It remains to prove that for all prime e with 2! < e < |G|, all x, X1,..., X}, Z, for r; &
RPHF.TrapRand(7, X}, j), and all 7 (with dependencies as in Definition , we have ax,(r;) =0
for all j, but ged(e,az(7)) = 1 with probability at least 1/2 over 7. So fix e, k, X;, and Z. First,

we have ax;(r;) = a([i*X; + 7j]o) = 0 always, by definition of RPHF.TrapRand. Second,
ged(e,az(r) #1 & az(r)=a([i*Z+7r]y) =0mode < i*Z+7r € {{}icm)

since e > 2!. Hence, we only have to upper bound the probability for i*Z + r € {(; }iepm)-

Now i*Z 41 € {(j}jepm) iff ©* € {({ —7)/Z} jejm)- Now i* € [2m] is uniform and independent of
Z and the ¢, and the set {({; —7)/Z}jcm) has cardinality at most m. Hence, i* € {((; —7)/Z} jeim]
with probability at most 1/2 as desired.

This proves the statement for G with known group order. Now assume G = QRy. We define
RPHF.TrapGen, RPHF.TrapEval, and RPHF.TrapRand as above, with the difference that we sam-
ple Bo,Bi; € {0,...,[IN/4]} because the group order |G| = |QRy| = ¢(N) is unknown. This
approximate sampling of a random exponent yields a statistical error of at most (2m? + 1)/vV N
in the distribution of k, as sampled by RPHF.TrapGen. The remaining part of the proof remains
unchanged. O

3.5 A Weak Programmable Hash Function

Essentially, a weak programmable hash function is a programmable hash function according to
Definition except that the trapdoor generation algorithm receives a list X1,..., X,, € {0,1}
as additional input. On the one hand this allows us to construct significantly more efficient de-
terministic programmable hash functions, while on the other hand our generic signatures schemes
described in Sections [and [f] are only weakly secure when instantiated with weak programmable
hash functions. Fully secure signature schemes can be obtained by applying a generic conversion
from weak to full security, for instance using chameleon hashes [45] which can be constructed based
on standard assumptions like discrete logarithms [45], RSA [2, [40], or factoring [45].

12

Definition 3.12. A group hash function is a weak (m,n,, §)-programmable hash function, if there
is a (probabilistic) algorithm PHF.TrapGen and a (deterministic) algorithm PHF.TrapEval such that:
1. (k,T) & PHF.TrapGen(1*, g, h, X1,...,X,,) takes as input group elements g,h € G and

X1,...,X;m € {0,1}, and produces a hash function key & together with trapdoor infor-
mation 7.

2.-4. Like in Definition B.1}

As before, we may omit vy and 9, if 7y is negligible and ¢ is noticeable. Weak evasively programmable

hash functions are defined as in Definition [3.2

Interestingly, there is a very simple way to construct a randomized programmable hash function
according to Definition from any weak programmable hash function. Let us now describe our
instantiation of a weak (evasively) programmable hash function. This PHF already appeared
implicitly in [20] 5I] and [I0] for m = 1.

Definition 3.13. Let G = (Gy) be a group family, and | = [(k) and m = m(k) be polynomials.
Let Hweak = (PHF.Gen, PHF.Eval) be defined as follows.
e PHF.Gen(1%) returns x = (ho, . .., hm), where h; <~ Gy, for i € {0,...,m}.
e On input X € {0,1}} and & = (hg, ..., hm), PHF.Eval(x, X) returns
PHF.Eval(r, X) = [n{*".
i=0

Here we interpret the [-bit strings X;, ¢ € [m], as integers in the canonical way.

Theorem 3.14. Let G = Gy, be a group of known order p. Hweak is a weak evasively (m,1,~,9)-
programmable hash function with v =0 and § = 1.

PRrOOF. Consider the following algorithms.
e PHF.TrapGen(1*,g,h, X1,..., X,,) samples m+1 random integers By, ... , Bm & Zy and X &
{0,1}". Then it computes the coefficients (ay, ...,) of the polynomial

m m+1
alt) =Y ait' = [[(- X:) € Z[t].
=0 =0
The algorithm sets 7 = (g, ..., Qm, Bo, - - -5 Bm), and & = (ho, . .., hyy), where h; = g®h% for
i €]0,m].
e PHF.TrapEval returns (ax,bx) on input (7,X), where ax = a(X) = Y ;X" and bx =
2ino BiX.

Just like the PHF.Gen algorithm, PHF.TrapGen returns a vector x of uniformly distributed group
elements, which implies v = 0. Note also that we have ax = a(X) =0 for all X € {X;,..., X, }.
It is left to observe that

ged(e,az) #1 & «a(Z)=0mode & Ze{Xy,...,Xn}

since e > 2! is prime and 0 < X;, Z < 2. O

13

Again we can generalize Theorem [3.14] to groups of hidden order. The proof proceeds exactly
like the proof of Theorem except that we have to approximate the group order. For the group
of quadratic residues QR,,, we can sample the random exponents b; from Z,2 for i € [0, m], which
yields the following theorem.

Theorem 3.15. Let G = QRy be the group of quadratic residues modulo N = pq, where p and
q are safe distinct primes. Hweak s a (m, 1,7, d)-programmable hash function over G with v =

(m+1)/VN and § = 0.

4 Signatures from the RSA Problem

4.1 Construction

Let I = (k) and A = A(k) be polynomials. Let H = (PHF.Gen, PHF.Eval) be group hash functions
over G = QRy with input length [. We define the signature scheme Siggga[H] = (Gen, Sign, Vfy) as
follows.

Gen(1%): The key generation algorithm picks two large safe k/2-bit primes p and ¢, and sets N = pyq.

Then it generates a group hash function key s & PHF.Gen(1%) for the group QRy. Finally
it chooses a random key K for the pseudorandom function PRF : {0,1}* — {0,1}" and picks

¢ & {0,1}", where r = [log N]. These values define a function F as
F(2) = PRFg(ul[z) @ ¢,

where p, called the resolving indexr of z, denotes the smallest positive integer such that
PRFk (u||z)@cis an odd prime. Here & denotes the bit-wise XOR operation, and we interpret
the r-bit string returned by F as an integer in the obvious way. (The definition of F is the
same as in [41]. It is possible to replace the PRF with an 2k2-wise independent hash function
[17].) The public key is pk = (n, s, K, ¢), the secret key is sk = (pk,p, q).

In the following we will write H(M) shorthand for PHF.Eval(x, M), and define P : {0,1}* — N as
P(s) = Hg\zl F(s);), where s|; is the i-th prefix of s, i.e., the bit string consisting of the first i bits
of s. We also define sy = (), where () is the empty string, for technical reasons.

Sign(sk, M): On input of secret key sk and message M € {0,1}!, the signing algorithm picks
s & {0,1}* uniformly random and computes

o =H(M)YPG) mod N,

where the inverse of P(s) is computed modulo the order ¢(n) = (p — 1)(q — 1) of the multi-
plicative group Z%. The signature is (o, s) € Zy x {0, 1},

Viy(pk, M, (o, s)): On input of pk, message M, and signature (o, s), return accept if
H(M) = 6P mod N.
Otherwise return reject.

Correctness. If o = H(M)Y/P(®) then we have oF(*) = H(M)PE)/P) = H(A1).

14

4.2 Security

Theorem 4.1. Let PRF be a (¢”,t")-secure pseudo-random function and H be a (m, 1,7, §)-evasively
programmable hash function. Suppose there exists a (t,q, €)-forger F breaking the existential forgery
under adaptive chosen message attacks of Sigrsa[H]. Then there exists an adversary that (t',€')-
breaks the RSA assumption with t' ~t and

402 1, r g g+ 122+ 2r +1 1 gt
eS(q+1))\(5<e +W>+36 + or +’Y+F + omX

We postpone a full proof to Appendix and only give a brief outline here. As customary
in proofs for similar signature schemes (e.g., [24], 30, 37]), we distinguish between Type I and Type
II forgers. A Type I forger forges a signature of the form (M* o* s*) with s* = s; for some
i € [g]. (That is, a Type I forger reuses some s; from a signature query.) A Type II forger returns
a signature with a fresh s*.

It will be easiest to first describe how to treat a Type II forger F. Recall that we need to put up
a simulation that is able to generate ¢ signatures (M;, oy, Si)iclq for adversarially chosen messages
M;. To do this, we choose all s; in advance. We then prepare the PHF H using PHF.TrapGen,
but relative to generators g and h for which we know P(s;)-th roots. (That is, we set g := §¥
and h = h¥ for E := [I, P(si).) This allows to generate signatures for F; also, by the security of
the PHF H, this change goes unnoticed by F. However, each time F outputs a new signature, it
essentially outputs a fresh root g'/P(") of g, from which we can derive a P(s*)-th root of §. To
construct an RSA adversary from this experiment, we have to embed an auxiliary given exponent
e into the definition of P, such that §%/P¢") allows to derive §*/¢. This can be done along the lines
of the proof of the Hohenberger-Waters scheme [41]. Concretely, for initially given values s; and
e, we can set up P such that (a) e does not divide any P(s;), but (b) for any other fixed s*, the
probability that e divides P(s*) is significant. Note that in our scheme, the s; are chosen by the
signer, and thus our simulation can select them in advance. In contrast to that, the HW scheme
uses the signed messages M; as arguments to P, and thus their argument achieves only a weaker
form of security in which the forger has to commit to all signature queries beforehand.

Now the proof for Type I forgers proceeds similarly, but with the additional complication that
we have to prepare one or more signatures of the form H(Mi)l/P(si) for the same s; = s* that F
eventually uses in his forgery. We resolve this complication by relying on the PHF properties of H.
Namely, we first choose all s; and guess i (i.e., the index of the s; with s; = s*). We then prepare
H with generators g, h such that we know all P(s;)th roots of A (for all j), and all P(s;)th roots of
g for all s; # s;. Our hope is that whenever F asks for the signature of some M; with s; = s;, we
have H(M;) € (h), so we can compute H(DM;)'/P(5i). At the same time, we hope that H(M*) & (h)
has a nontrivial g-factor, so we can build an RSA adversary as for Type II forgers. The PHF
property of H guarantees a significant probability that this works out, provided that there are no
more than m indices j with s; = s; (i.e., provided that there are no (m + 1)-collisions). However,
using a birthday bound, we can reasonably upper bound the probability of (m + 1)-collisions.

4.3 Deterministic signatures with Weak Security

We now give a variant of our scheme which is slightly more efficient but only offers weak security.
A weakly secure signature scheme can be updated to a fully secure one by using a (randomized)
Chameleon Hash Function. The weakly secure signature scheme Siggsa[H] = (Gen, Sign, Vfy) uses

15

the key generation algorithm with Siggrgs and signing and verification algorithms are defined as
follows.

Sign(sk, M): On input of secret key sk and message M € {0, 1}/, the signing algorithm computes
o = H(M)YPM) mod N,

where P(M) = Hf‘zl F(PRFx (M);), i.e., the product is over the first A prefixes of PRF (M).
The signature is o € Zy.

Vfy(pk, M,o): On input of pk, message M, and signature o, return accept if
H(M) = o) mod N.
Otherwise return reject.

The proof of security is analog to the one of Theorem and therefore omitted.

4.4 Efficiency

Given P(s) and ¢(N), computing o = H(M)Y/P(®) can also be carried out by one single exponenti-
ation. Since one single evaluation of P(-) has to perform (expected) Ar many primality tests (for
r-bit primes), the dominiant part of signing and verification is to compute P(s), for s € {0,1}*.
Theorem tells us that if H is a (m, 1)-PHF we can set A = logq + k/m, see Appendix [A] for
more details.

Hohenberger and Waters [41] proposed several ways to improve the efficiency of their RSA-based
signature scheme. These improvements apply to our RSA-based schemes as well.

USING A LARGER ALPHABET. Instead of applying the function F to each prefix of s, one could break
s into larger, say wu-bit, chunks. This would result in a decrease of security by a factor of about
1/(2"%—1), since the simulator in the Type II forger game has to guess which of the 1/(2" —1) values
the forger will use. However, for small values of u, this reduces the cost of signing and verifying
significantly (about 1/2 for u = 2), while imposing only a moderate decrease in security (about 1/3
for w = 2). In particular of interest is a variant of our scheme using P(s) := F(s). In this case the
security reduction of Theorem looses an additional factor of 2* = ¢ - 2¥/™ ~ ¢ (for m ~ k) but
the scheme only has to generate one single prime for signing and verifying.

INCLUDE THE RESOLVING INDEX IN THE SIGNATURE. In order to reduce the number of primality
tests to be performed during signature verification, it is possible to include the resolving indices in
the signatures. This increases the size of signatures by a factor of A - log(|logn|?), and we have
to modify the verification algorithm such that a signature is rejected if a resolving index exceeds
log(|logn]?), which imposes a negligible correctness error.

USING SMALLER PRIME EXPONENTS. Defining the scheme such that instead of log N-bit primes
only small prime exponents are used, say r-bit for some 2k < r < log N, yields a considerable
efficiency improvement, since the signing and verifying algorithms need only find small primes.
However, in this case we can reduce the security of our schemes only to some low-exponent RSA
assumption, that is, the RSA assumption with exponents smaller than 2".

Moreover, when instantiated with a weak programmable hash function plus chameleon hash,
then our schemes can also be used as online-offline signature schemes as introduced by Even,
Goldreich, and Micali [29]

16

5 Signatures from the g-Diffie-Hellman Problem

5.1 Construction

Let G,Gr be groups of prime order p with bilinear map é : G x G — Gp. Let | = (k) and
A = A(k) be polynomials. Let H = (PHF.Gen,PHF.Eval) and D = (PHF.Gen’, PHF.Eval’) be
group hash functions over G with input length [, such that D is programmable using algorithms
(PHF.TrapGen’, PHF . TrapEval’). We define Sig,.py[H, D] = (Gen, Sign, Vfy) as follows.

Gen(1%): The key generation algorithm generates hash function keys through s & PHF.Gen(1%)
and (k/,77) & PHF.TrapGen'(1*, g, 3¥) for § & Gandy & Zp. Note that £’ is computed
using the trapdoor key generation procedure. The public key is defined as pk = (g, x, k'), the
secret key is sk = (pk,y,7’).

In the following we will write H(M) shorthand for PHF.Eval(x, M) and D(s) for PHF.Eval(x/, s).
We write d(s) shorthand for the function computing (a,b) <~ PHF.TrapEval’(7’,s) and returning
a 4 yb. Note that D(s) = §9(¥), and that the functions H and D can be computed given the public
key, while d can be computed given the secret key.

Sign(sk, M): On input of secret key sk and message M € {0,1}!, the signing algorithm samples
s <& {0,1}* uniformly random unti d(s) # 0 mod p, and computes

o = H(M)Y4),
The signature is (o,s) € G x {0,1}*.
Vfy(pk, M, (o,s)): On input of public key pk, message M and signature (o, s), return accept if
é(D(s), o) = é(g, H(M)).
Otherwise return reject.

Correctness. If d(s) #Z 0 mod p, the correctness of Sig,_py[H, D] can be verified by checking
é(D(s), o) = & (99, H(M) 4O) = & (g, H(M))

We have D(s) # 1 € G, and therefore d(s) # 0 mod p, with overwhelming probability, if the discrete
logarithm assumption holds in G. To see this, observe that d(s) = 0 is equivalent to a+yb = 0, thus
the discrete logarithm of h = g¥ to base g is determined by running (a,b) < PHF.TrapEval’(7’, s)
and computing y = —ab™ L.

5.2 Security

Theorem 5.1. Let H be (m, 1,7, 0)-programmable and D be (1, poly,~', 8")-programmable. Suppose
there exists a (t, q, €)-forger F breaking the security of Sigq_DH[H, D] against existential forgery under

4Technically, this makes Sign expected polynomial-time. At the price of an exponentially small loss in security,
this can be improved to strict polynomial-time by, say, outputting sk as soon as d(s) = 0 mod p for k tries.

17

adaptive chosen message attacks. Then there exists an adversary that (t',€')-breaks the q-Diffie-

Hellman assumption with t' ~t and
6, qm+1
6§q<55,+fy>+ I

The proof is conceptually similar to the one for the RSA case (Theorem |C.1)), and we postpone
it to Appendix

5.3 Efficiency

To compute a signature, the signer must compute H(M) = PHF.Eval(x, M) first, and then H()/4(s),

One could also compute x via trapdoor generation as (k, 7) & PHF.TrapGen(1*, g, ¢®) during key
generation, and then compute a signature by first running (a,b) < PHF.TrapEval(r, M) and then
computing

o= g(a-‘r:t:b)/d(S) (= H(M)l/d(s))_

In this way, a signature can be computed by performing one single exponentiation in G. As we will
show in Appendix [A] the parameter A can be set to A = ¢ + k/m when the scheme is instantiated
with a (m,1)-PHF.

We remark that the scheme can also be instantiated in asymmetric pairing groups where the
pairing is given by é : G; x Gy — Gpr and Gy # Gg. In that case we let the element o from
the signature be in G; such that ¢ can be represented in 160 bits, as well as the group elements
decribing hash function H. The elements decribing hash function D in the public key are from
Go. It can be verified that the following proof also holds in asymmetric pairing groups. In this

/

case, we rely on the assumption that computing gi * € Gy is hard, given g1,9%,...,9¥" € Gy and

92,95 € Go.

References

[1] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the standard
model. In Henri Gilbert, editor, Advances in Cryptology — EUROCRYPT 2010, volume 6110
of Lecture Notes in Computer Science, pages 553-572, French Riviera, May 30 — June 3, 2010.
Springer, Berlin, Germany.

[2] Giuseppe Ateniese and Breno de Medeiros. Identity-based chameleon hash and applications. In
Ari Juels, editor, F'C 2004: 8th International Conference on Financial Cryptography, volume
3110 of Lecture Notes in Computer Science, pages 164-180, Key West, USA, February 9-12,
2004. Springer, Berlin, Germany.

[3] Paulo S. L. M. Barreto and Michael Naehrig. Pairing-friendly elliptic curves of prime order. In
Bart Preneel and Stafford Tavares, editors, SAC 2005: 12th Annual International Workshop
on Selected Areas in Cryptography, volume 3897 of Lecture Notes in Computer Science, pages
319-331, Kingston, Ontario, Canada, August 11-12, 2005. Springer, Berlin, Germany.

[4] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. Incremental cryptography: The case
of hashing and signing. In Yvo Desmedt, editor, Advances in Cryptology — CRYPTO’9/,

18

[11]

[15]

volume 839 of Lecture Notes in Computer Science, pages 216—233, Santa Barbara, CA, USA,
August 21-25, 1994. Springer, Berlin, Germany.

Mihir Bellare and Thomas Ristenpart. Simulation without the artificial abort: Simplified proof
and improved concrete security for Waters’ IBE scheme. In Antoine Joux, editor, Advances in
Cryptology — EUROCRYPT 2009, volume 5479 of Lecture Notes in Computer Science, pages
407-424, Cologne, Germany, April 26-30, 2009. Springer, Berlin, Germany.

Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In V. Ashby, editor, ACM CCS 93: 1st Conference on Computer and
Communications Security, pages 62-73, Fairfax, Virginia, USA, November 3-5, 1993. ACM
Press.

Mihir Bellare and Phillip Rogaway. The exact security of digital signatures: How to sign
with RSA and Rabin. In Ueli M. Maurer, editor, Advances in Cryptology — EUROCRYPT’96,
volume 1070 of Lecture Notes in Computer Science, pages 399-416, Saragossa, Spain, May 12—
16, 1996. Springer, Berlin, Germany.

Kamel Bentahar, Pooya Farshim, John Malone-Lee, and Nigel P. Smart. Generic constructions
of identity-based and certificateless KEMs. Journal of Cryptology, 21(2):178-199, April 2008.

Olivier Blazy, Georg Fuchsbauer, David Pointcheval, and Damien Vergnaud. Signatures on

Dan Boneh and Xavier Boyen. Efficient selective-ID secure identity based encryption without
random oracles. In Christian Cachin and Jan Camenisch, editors, Advances in Cryptology
- FEUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science, pages 223-238,
Interlaken, Switzerland, May 2—6, 2004. Springer, Berlin, Germany.

Dan Boneh and Xavier Boyen. Secure identity based encryption without random oracles. In
Matthew Franklin, editor, Advances in Cryptology — CRYPTO 2004, volume 3152 of Lecture
Notes in Computer Science, pages 443-459, Santa Barbara, CA, USA, August 15-19, 2004.
Springer, Berlin, Germany.

Dan Boneh and Xavier Boyen. Short signatures without random oracles. In Christian Cachin
and Jan Camenisch, editors, Advances in Cryptology — EUROCRYPT 2004, volume 3027 of
Lecture Notes in Computer Science, pages 56-73, Interlaken, Switzerland, May 2-6, 2004.
Springer, Berlin, Germany.

Dan Boneh and Xavier Boyen. Short signatures without random oracles and the SDH assump-
tion in bilinear groups. Journal of Cryptology, 21(2):149-177, April 2008.

Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing. In Colin
Boyd, editor, Advances in Cryptology — ASIACRYPT 2001, volume 2248 of Lecture Notes
in Computer Science, pages 514-532, Gold Coast, Australia, December 9-13, 2001. Springer,
Berlin, Germany.

Xavier Boyen. Lattice mixing and vanishing trapdoors: A framework for fully secure short
signatures and more. In Phong Q. Nguyen and David Pointcheval, editors, PKC 2010: 13th

19

[17]

International Conference on Theory and Practice of Public Key Cryptography, volume 6056 of
Lecture Notes in Computer Science, pages 499-517, Paris, France, May 2628, 2010. Springer,
Berlin, Germany.

Xavier Boyen, Qixiang Mei, and Brent Waters. Direct chosen ciphertext security from identity-
based techniques. In Vijayalakshmi Atluri, Catherine Meadows, and Ari Juels, editors, ACM
CCS 05: 12th Conference on Computer and Communications Security, pages 320-329, Alexan-
dria, Virginia, USA, November 7-11, 2005. ACM Press.

Christian Cachin, Silvio Micali, and Markus Stadler. Computationally private information
retrieval with polylogarithmic communication. In Jacques Stern, editor, Advances in Cryptol-
ogy — EUROCRYPT"99, volume 1592 of Lecture Notes in Computer Science, pages 402-414,
Prague, Czech Republic, May 2-6, 1999. Springer, Berlin, Germany.

Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited
(preliminary version). In 30th Annual ACM Symposium on Theory of Computing, pages 209—
218, Dallas, Texas, USA, May 23-26, 1998. ACM Press.

David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to delegate
a lattice basis. In Henri Gilbert, editor, Advances in Cryptology — EUROCRYPT 2010, volume
6110 of Lecture Notes in Computer Science, pages 523-552, French Riviera, May 30 — June 3,
2010. Springer, Berlin, Germany.

Sanjit Chatterjee and Palash Sarkar. Generalization of the selective-ID security model for
HIBE protocols. In Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors,
PKC 2006: 9th International Conference on Theory and Practice of Public Key Cryptography,
volume 3958 of Lecture Notes in Computer Science, pages 241-256, New York, NY, USA,
April 24-26, 2006. Springer, Berlin, Germany.

David Chaum, Jan-Hendrik Evertse, and Jeroen van de Graaf. An improved protocol for
demonstrating possession of discrete logarithms and some generalizations. In David Chaum
and Wyn L. Price, editors, Advances in Cryptology — EUROCRYPT’87, volume 304 of Lecture
Notes in Computer Science, pages 127-141, Amsterdam, The Netherlands, April 13-15, 1988.
Springer, Berlin, Germany.

Jung Hee Cheon. Security analysis of the strong Diffie-Hellman problem. In Serge Vaudenay,
editor, Advances in Cryptology — EUROCRYPT 2006, volume 4004 of Lecture Notes in Com-
puter Science, pages 1-11, St. Petersburg, Russia, May 28 — June 1, 2006. Springer, Berlin,
Germany.

Ronald Cramer, Goichiro Hanaoka, Dennis Hofheinz, Hideki Imai, Eike Kiltz, Rafael Pass,
Abhi Shelat, and Vinod Vaikuntanathan. Bounded CCA2-secure encryption. In Kaoru Kuro-
sawa, editor, Advances in Cryptology — ASIACRYPT 2007, volume 4833 of Lecture Notes in
Computer Science, pages 502-518, Kuching, Malaysia, December 2—-6, 2007. Springer, Berlin,
Germany.

Ronald Cramer and Victor Shoup. Signature schemes based on the strong RSA assumption.
In ACM CCS 99: 6th Conference on Computer and Communications Security, pages 46-51,
Kent Ridge Digital Labs, Singapore, November 1-4, 1999. ACM Press.

20

[25]

[26]

[27]

[36]

Yevgeniy Dodis, Iftach Haitner, and Aris Tentes. On the (in)security of rsa signatures. Cryp-
tology ePrint Archive, Report 2011/087, 2011. http://eprint.iacr.org/.

Yevgeniy Dodis, Jonathan Katz, Shouhuai Xu, and Moti Yung. Key-insulated public key
cryptosystems. In Lars R. Knudsen, editor, Advances in Cryptology — EUROCRYPT 2002,
volume 2332 of Lecture Notes in Computer Science, pages 65-82, Amsterdam, The Nether-
lands, April 28 — May 2, 2002. Springer, Berlin, Germany.

Yevgeniy Dodis, Roberto Oliveira, and Krzysztof Pietrzak. On the generic insecurity of the full
domain hash. In Victor Shoup, editor, Advances in Cryptology — CRYPTO 2005, volume 3621
of Lecture Notes in Computer Science, pages 449-466, Santa Barbara, CA, USA, August 14-18,
2005. Springer, Berlin, Germany.

P. Erdés, P. Frankel, and Z. Furedi. Families of finite sets in which no set is covered by the
union of r others. Israeli Journal of Mathematics, 51:79-89, 1985.

Shimon Even, Oded Goldreich, and Silvio Micali. On-line/off-line digital signatures. Journal
of Cryptology, 9(1):35-67, 1996.

Marc Fischlin. The Cramer-Shoup strong-RSA signature scheme revisited. In Yvo Desmedt,
editor, PKC' 2003: 6th International Workshop on Theory and Practice in Public Key Cryp-
tography, volume 2567 of Lecture Notes in Computer Science, pages 116—-129, Miami, USA,
January 6-8, 2003. Springer, Berlin, Germany.

Rosario Gennaro, Shai Halevi, and Tal Rabin. Secure hash-and-sign signatures without the
random oracle. In Jacques Stern, editor, Advances in Cryptology — EUROCRYPT’99, volume
1592 of Lecture Notes in Computer Science, pages 123-139, Prague, Czech Republic, May 2-6,
1999. Springer, Berlin, Germany.

Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and
new cryptographic constructions. In Richard E. Ladner and Cynthia Dwork, editors, 40th
Annual ACM Symposium on Theory of Computing, pages 197-206, Victoria, British Columbia,
Canada, May 17-20, 2008. ACM Press.

Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281-308, April
1988.

G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers. Oxford University
Press, fifth edition, 1979.

Swee-Huay Heng and Kaoru Kurosawa. k-resilient identity-based encryption in the standard
model. In Tatsuaki Okamoto, editor, Topics in Cryptology — CT-RSA 2004, volume 2964 of
Lecture Notes in Computer Science, pages 67-80, San Francisco, CA, USA, February 23-27,
2004. Springer, Berlin, Germany.

Dennis Hofheinz and Eike Kiltz. Secure hybrid encryption from weakened key encapsulation.
In Alfred Menezes, editor, Advances in Cryptology — CRYPTO 2007, volume 4622 of Lecture
Notes in Computer Science, pages 553-571, Santa Barbara, CA, USA, August 19-23, 2007.
Springer, Berlin, Germany.

21

http://eprint.iacr.org/

[37]

[38]

[41]

[42]

Dennis Hofheinz and Eike Kiltz. Programmable hash functions and their applications. In David
Wagner, editor, Advances in Cryptology — CRYPTO 2008, volume 5157 of Lecture Notes in
Computer Science, pages 21-38, Santa Barbara, CA, USA, August 17-21, 2008. Springer,
Berlin, Germany.

Dennis Hofheinz and Eike Kiltz. Practical chosen ciphertext secure encryption from factoring.
In Antoine Joux, editor, Advances in Cryptology — EUROCRYPT 2009, volume 5479 of Lecture
Notes in Computer Science, pages 313-332, Cologne, Germany, April 26-30, 2009. Springer,
Berlin, Germany.

Dennis Hofheinz and Eike Kiltz. Programmable hash functions and their applications. Journal

Susan Hohenberger and Brent Waters. Realizing hash-and-sign signatures under standard
assumptions. In Antoine Joux, editor, Advances in Cryptology — EUROCRYPT 2009, volume
5479 of Lecture Notes in Computer Science, pages 333-350, Cologne, Germany, April 26-30,
2009. Springer, Berlin, Germany.

Susan Hohenberger and Brent Waters. Short and stateless signatures from the RSA assump-
tion. In Shai Halevi, editor, Advances in Cryptology — CRYPTO 2009, volume 5677 of Lecture
Notes in Computer Science, pages 654-670, Santa Barbara, CA, USA, August 16-20, 2009.
Springer, Berlin, Germany.

Eike Kiltz. Chosen-ciphertext security from tag-based encryption. In Shai Halevi and Tal
Rabin, editors, TCC 2006: 3rd Theory of Cryptography Conference, volume 3876 of Lecture
Notes in Computer Science, pages 581600, New York, NY, USA, March 4-7, 2006. Springer,
Berlin, Germany.

Eike Kiltz and David Galindo. Direct chosen-ciphertext secure identity-based key encapsulation
without random oracles. Theor. Comput. Sci., 410(47-49):5093-5111, 2009.

Eike Kiltz, Krzysztof Pietrzak, David Cash, Abhishek Jain, and Daniele Venturi. Efficient
authentication from hard learning problems. In FUROCRYPT, pages 777777, 2011.

Hugo Krawczyk and Tal Rabin. Chameleon signatures. In ISOC Network and Distributed
System Security Symposium — NDSS 2000, San Diego, California, USA, February 2—4, 2000.
The Internet Society.

Ravi Kumar, Sridhar Rajagopalan, and Amit Sahai. Coding constructions for blacklisting
problems without computational assumptions. In Michael J. Wiener, editor, Advances in
Cryptology — CRYPTQO’99, volume 1666 of Lecture Notes in Computer Science, pages 609—
623, Santa Barbara, CA, USA, August 15-19, 1999. Springer, Berlin, Germany.

Vadim Lyubashevsky and Daniele Micciancio. Asymptotically efficient lattice-based digital
signatures. In Ran Canetti, editor, TC'C 2008: 5th Theory of Cryptography Conference, volume
4948 of Lecture Notes in Computer Science, pages 37-54, San Francisco, CA, USA, March 19—
21, 2008. Springer, Berlin, Germany.

Shigeo Mitsunari, Ryuichi Saka, and Masao Kasahara. A new traitor tracing. IEICE Trans-
actions, E85-A(2):481-484, February 2002.

22

[49] Tatsuaki Okamoto. Efficient blind and partially blind signatures without random oracles. In
Shai Halevi and Tal Rabin, editors, T'CC 2006: 3rd Theory of Cryptography Conference, vol-
ume 3876 of Lecture Notes in Computer Science, pages 80-99, New York, NY, USA, March 4-7,
2006. Springer, Berlin, Germany.

[50] John Rompel. One-way functions are necessary and sufficient for secure signatures. In 22nd
Annual ACM Symposium on Theory of Computing, pages 387-394, Baltimore, Maryland, USA,
May 14-16, 1990. ACM Press.

[51] Amit Sahai and Brent R. Waters. Fuzzy identity-based encryption. In Ronald Cramer, editor,
Advances in Cryptology — EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer
Science, pages 457473, Aarhus, Denmark, May 22-26, 2005. Springer, Berlin, Germany.

[52] Sven Schége and Jorg Schwenk. A CDH-based ring signature scheme with short signatures
and public keys. In Radu Sion, editor, F'C 2010: 14th International Conference on Financial
Cryptography and Data Security, volume 6052 of Lecture Notes in Computer Science, pages
129-142, Tenerife, Canary Islands, Spain, January 25-28, 2010. Springer, Berlin, Germany.

[53] Adi Shamir. On the generation of cryptographically strong pseudorandom sequences. ACM
Trans. Comput. Syst., 1(1):38-44, 1983.

[54] Brent R. Waters. Efficient identity-based encryption without random oracles. In Ronald
Cramer, editor, Advances in Cryptology — EUROCRYPT 2005, volume 3494 of Lecture Notes
in Computer Science, pages 114-127, Aarhus, Denmark, May 22-26, 2005. Springer, Berlin,
Germany.

A A bound on the size of the randomness

The efficiency of our two signature schemes from Section [f] and [] depends on the randomness
s € {0,1}*. Following [37] we now show that it suffices to choose A = log q + k/m, where q is the
number of allowed signature queries and m is the parameter from the (m, 1)-PHF.

Following the concrete security approach of Bellare and Ristenpart [5], we define the success
ratio of an adversary A running in time ¢ and having success probability € as SR(A) = ¢/t. We
require that a cryptosystem should be implemented with security parameter (“bits of security”) k
such that SR(A) < 27%*! for any adversary A.

q-DH BASED SIGNATURES. For an (f4, €4)-adversary A against the EUF-CMA security of Sig,_py,
we relate the success ratio of A to the success ratio of an (¢3, €g)-adversary B against the ¢-DH
problem. Assuming t4 = tpg for simplicity (in Theorem we have t4 =t ~ t' = tg) and using
that v = 0 for all our programmable hash functions over known-order groups, we apply the bound
from Theorem [E.J] to obtain

1 B qm+1 q
< —. J—— = — . -
SR(A) < (q 5o+ o SR(B) +

1

Now, clearly we have SR(A) < 2751 if both 54 - SR(B) < 27" and q;; < 27%. The relevant
bound to determine A is the second equation which yields to A > logq + k/m, as claimedﬂ

5Strictly speaking, one would also have to take the first bound into account which leads to an incease of the group

23

RSA-BASED SIGNATURES. We follow a similar approach to derive the parameter sizes for our
RSA-based constructions. For an (¢4, €4)-adversary A against the EUF-CMA security of Siggsa,
we relate the success ration of A to the success ratio of an (¢g, €g)-adversary B against the RSA
problem. Let us first simplify the bound of Theorem a little. We assume that

r(q+ 1A% +2r +1 1
or or—l

27k > (g + 1)\ <36” + +9+

For instance, consider k = 80, then usual choices are r = |logn| = 1024, [= 160, ¢ < 2%, and we
have v < 16m?l/y/n for our constructions in Section [3} If we also assume that the pseudorandom
function is secure, then the above assumption seems reasonable. Applying Theorem we thus
have

1 [4r? r 1 ¢!
< . =
SR(A) < ts (5 ((Q+ DAes + I- 27«_1—1) - ok+1 + omX)

492 r 1 gt
= — HA-SR
5 (Q+) (B)+l~27"_l_1-t3>+2k+1-t3+2m/\-t3
4r? r 1 q"
< 5 ((q +1)A- SR(B) + l-2r’l’1) + 9k+1 + omA -

Assuming that the best way of solving an RSA instance is factoring the modulus N, we require
2
that N is chosen such that 271 > 4% ((g+1)X - SR(B) + m%) for all B. Then again we have

SR(A) < 27k if 2‘1% < 27F thus it suffices to set A > logq + k/m.

B Strong g-problems

Let S(c) be the solution to a problem instance, such that S(c) is hard to compute from c. In
a g-problem an adversary is given ¢ (polynomially many) “solved problem instances” (¢;, S(¢;))
(for random ¢;) and some challenge instance ¢ ¢ {ci,...,¢,;} and has to compute S(c). In Strong
g-problems an adversary only has to come up with a fresh solved instance (¢, S(c)) for an arbitrary
c & {c1,...,¢cq} of its choice. Strong g-problems are naturally well-suited for building (weakly
secure) signature schemes by defining the signature on M to be S(M), whereas it seems more
difficult from (standard) g-problems. To understand the difference between strong and non-strong
problems, let us verify that the (Strong) ¢-DH and the (Strong) RSA problems can be naturally
interpreted as (Strong) g-problems.

For the ¢-DH case, let g and h = ¢* be two generators of a prime order group G. A problem
instance for ¢ € Zg is given by S(c) := g'/@+9) It is well-known [48] that the g-problem is
equivalent to the ¢-DH problem which is given g, g%, ..., ¢**, compute gl/ T, The same related also
holds between the Strong g-problem and the Strong ¢-DH problem (in which the adversary has to
compute (c, g/ @) for any ¢ € Zg).

In the RSA case let N = pg be an RSA modulus and let y € Zy. A problem instance for a
prime e is given by S(e) = y'/¢ mod N. It is implicit in many prior works (e.g., [24]) that the
corresponding g-problem is equivialent to the RSA problem which is to compute y*/¢ mod N for a

G that is mostly ignored in the literature. Assuming Cheon’s attack [22] is the optimal success ratio for attacks
against the ¢g-DH problem (i.e., SR(B) < 4/q/p for all adversaries) we obtain logp > 3logq — 2log 68’ + 2k.

24

given eEl The same relation also hold between the Strong g-problem and the Strong RSA problem
which is to compute (e, y*/¢ mod N) for any e > 2.

C Omitted Proofs
C.1 Proof of Theorem 4.1]

In the following let M; denote the i-th query to the signing oracle, and let (o, s;) denote the reply.
Let (M*, 0%, s*) be the forgery output by F. We distinguish between two types of forgers. A Type
I forger returns (M*, 0%, s*) with s* = s; for some i € [q]. A Type II forger returns (M*,o*, s*)
with s* #£ s; for all 7 € [q].

C.1.1 Type I forgers.

Lemma C.1. Let F be a type I forger that (t, q, €)-breaks the existential unforgeability of Sigrsa[H]
Then there exists an adversary A that (t',€')-breaks the RSA assumption with t' ~t and

/s 1 /6 gmtt 1 3¢ r(@?\% +2q)\) + 1 r
6—47742 6 €~ omA _7_27“71_ € - or _27"7[71'

We proceed in games. Let X; denote the probability that F is successful in Game i.

Game 0. We define Game [0] as the existential unforgeability experiment with forger F. By
definition, we have
Pr[Xg =e.

Game 1. Now the simulator aborts if there exist (at least) m + 1 indices i1, ..., 441, such that
sj = s forall j,7" € {i1,...,ims1}. By Lemmawe have

m+1

Pr[Xg > Pr[Xg — quA .

Game 2. In this game the simulator chooses the randomness si,...,s, in advance, guesses the
index ¢ such that s* = s; is used by F in the forged signature, and aborts if F outputs a forgery
(M',0',s") with s’ # s*. Since s* € {s1,...,s4} we have

Pr[Xg > ;Pr[Xm].

Game 3. In this game we run the trapdoor key generation algorithm PHF.TrapGen to generate
the group hash function H. Let £ = |J]_;{si} and E* = E\{s*}. The simulator picks g & 7x and
h & QRy and sets

g= g2 Hf,eE* P(t) and h = BHteE P(t)'

Then it runs (k, 7) & PH F.TrapGen(1¥, g, h) to generate hash key & together with trapdoor 7. Since
H is (m, 1,7, d)-programmable, we have

Pr(Xg > Pr{Xg - 7.
I1

5This is since given yo and ¢, y = y5 “* can be computed that allows to establish ¢ random solved instaces

(ei,S(e;) = y'/¢") and use S(e) = y'/¢ to compute yé/e

25

Game 4. In this game the simulator picks a prime e uniformly from Zor. Moreover, it
computes (a;,b;) < PHF.TrapEval(r, M;) for each queried message M;, i € [q], and (a*,b*) «
PHF.TrapEval(7, M*) for the message M* on which F forges a signature. The simulator aborts, if
a; # 0 for some i € [g] with s; = s*, or if ged(a*, e) # 1, we denote this event with abortpyr. Recall
that there are at most m values s; such that s; = s* by Game [I| Furthermore, e > 2! except with
probability 1/2"~!. Thus, using that H is (m, 1,7, §)-evasively programmable, we have

1
Pr[Xg = Pr[XgA —abortpug] > 0 - (Pr[Xg — F)
Game 5. Now the simulator computes a signature on some chosen-message M; by running
(a;, b;) < PHF.TrapEval(t, M;) first to determine (a;, b;), and then computing o; as

o; = §2ai Hier; POpbiTlier, PO) — H(M) /P, (4)

where E; = E\{s;} and Ef = E*\{s;}. The latter equality uses that a; = 0 for all M; with s; = s*
by Game[4] This change is only conceptual, and thus

Pr[Xg = Pr[Xg.

Game 6. The simulator in Game [] aborts if two different prefixes are mapped to the same
prime. That is, we abort if there exist s,s" € {s1,...,5,} and 4,j € [A] such that F(s;) = F(s"};)
and s|; # s’ lj- This event is denoted with abortc.

Recall that F(z) = PRFg(u||2) @ ¢, where p is incremented until PRF g (¢||2) @ ¢ is prime. Let
us assume PRFy is replaced with a truly random function. Then evaluating F is equivalent to
sampling a uniformly random r-bit prime. There are at least 2" /r such primes by Lemma and
at most g\ primes are sampled. Applying Lemma we conclude that the collision probability
for a truly random function is at most r¢?A\% - 27".

Now consider the case where the truly random function is instantiated with PRF g, and suppose
that a collision occurs with probability Pr[aborte]. Then this would allow an attack distinguishing

PRFx from a random function with probability at least eco) > Prlabortcey] — rg’X?

5+—. Since we have

€coll < €’ by assumption, this implies Pr[abortco] < €” + rq;r)\ ®, and thus

rg®\?
27”

Pr[Xg > Pr[Xg] — Prlaborteon] > Pr[Xg — €’ —

Game 7. Now we abort if there exists (7, j) € [g] x [A] such that F(s;);) divides ¢(n); we denote
this event with abortg;,. Recall that ¢(n) = 4p'¢’ and that F returns only odd primes. Again
replacing PRF i with a truly random function, the probability that one out of at most ¢gA randomly
chosen odd r-bit primes equals one of the two odd primes dividing ¢(n) is at most (gA2r)/2".

Similar to Game [6] we can mount a distinguishing attack against PRF - with success probability
at least eq;y > Pr[abortgi,] — (¢A2r)/2". By assumption we have eq, < €”, and thus

qA2r

Pr[Xg] > Pr[Xg| — Pr[abortgi,] > Pr[Xg — €’ — o

26

Game 8. The simulator in this game proceeds just like the simulator in Game [7} except that we
add an abort condition. The simulator aborts if for some s;;, (i,7) € [g] x [A], the resolving index
p is greater than r2. We denote this event with abort,,.

Let us again assume PRFg is replaced with a truly random function, and let us consider the
probability of not finding a prime by evaluating the random function r? times and computing the
exclusive or with ¢. This is equivalent to sampling r? uniform 7-bit strings. Lemma tells us that
the probability of finding a prime by sampling r random bits is at least 1/r, thus the probability
of not finding a prime in r? trials is at most (1 —1/r)".

We can therefore construct an adversary distinguishing PRFx from a random permutation with
probability at least €, > abort,, — (1 — 1/r) > abort, —1/2", where the latter inequality uses that
(1—1/r)" < 1/2 for all r € N. [] Since we must have ¢, < ¢”, this implies

Game 9. In this game the simulator picks p* & [72] uniformly random, and aborts if 1* is not the
resolving index of s*. We denote this event abortgyess;,<. Due to the changes introduced in Gamewe
know that the resolving index of s* lies in the interval [1,72]. Thus we have Pr[abortgyess;] = 1—1/72,

and therefore)

Pr[Xg| > Pr[XgA —abortgessu] = ol Pr[Xg.
Note that the resolving index p* is now uniformly distributed, and has the property that e =
PRF(u||s*) @ c is prime.

Game 10. Recall that c¢ is uniformly distributed, and that we abort if p* is not the resolving
index of s* (Game[9)). The latter implies that PRF(y*||s*) @ c is prime, thus e has the distribution
of a uniformly random prime.

In this game the simulator determines ¢ differently. Instead of sampling ¢ at random, the
simulator sets ¢ = PRF(u*||s*) @ e, where e is the random prime the simulator chooses starting
from Game [4] Observe that this defines F(s*) = e. The distribution of u*, ¢, and e is not altered,

thus we have
Pr[Xmm] = Pr[Xg].

The RSA Adversary. The adversary receives a RSA-challenge (N’ ¢/, y) as input, and aborts
if e is not a prime, e > 27, or e < 2!. Otherwise the adversary sets N = N’, § = y, e = ¢/, and
proceeds like the simulator in Game Recall that e = €’ defines F(s*) = e.

Since we have set = |[logy NV | — 1, the probability that e > 2" is at most 1/4. Moreover, among
the at least 2" /r primes from which e is chosen uniformly, there are at most 2!*!/l primes smaller
than 2! (Lemma. Thus, the success probability of the adversary is at least

1
Pr[XggAe < 2] — Prle < 2] > 7 FriXml - ZQ%

Answering Signing Queries. Due to the changes introduced in Games[2]to[5} the adversary does
not need to know the factorization of IV, since it uses the PHF.TrapEval algorithm and Equation
to answer signing queries.

"This holds since (1 — 1/r9)™ < (1 — 1/r1)™ for 79,71 € N with 79 < 71, and lim, (1 — 1/r)" = 1/, where
€ = 2.71828... is Euler’s number.

27

Extracting the Solution to the RSA Challenge. Eventually, the forger returns a forgery
(M*, 0%, s*), from which the adversary extracts the solution to the RSA challenge as follows. First

*

it computes 2’ = g PO Observe here that

) o* B H(M*)/PE") B (ga*hb*)l/P(s*)

T Lep PO 0 Iheps PO o [epe PO

20" [+ P
gip(i*) B Tiepe P(D) 2a* [Te e P(1)

z

= — = g P(s*)
hb* HtEE* P(t)
A ’ IS F(s®) .
From this it computes y' = 2" **=! "I/ which equals
A—1 *
, /H‘A—l F(s*) . 2a* Htef* P(t) | b F(sli) R 2a™ [Ty p* P(t) 2a* [Ty g* P(¥)
Yy =z i=1 i/ — g P(s*) =g e =y e

We have ged(2a* [[, g« P(t),e) = 1 because e is odd, e { [[,c - P(t) by Game@, and ged(e,a*) =
1 by Game [l Thus, with 2¢ = y mod N can be extracted from 3’ using Lemma
C.1.2 Type II forgers.

Lemma C.2. Let F be a type II forger that (t, q,€)-breaks the existential unforgeability of Sigrsa[H].
Then there exists an adversary A that (t',€')-breaks the RSA assumption with t' ~t and

,>i €—ry _36,,_7‘(q—|—1)2)\2—|—2r—|—1 T
42 \ (g + DA 27 [2r—i=1-

Let X; denote the probability that F is successful in Game ;.

Game 0. Game|[0]is the existential unforgeability experiment with forger F, thus we have
Pr[Xg =e.

Game 1. In this game the simulator chooses the randomness s, ..., s, in advance, and runs
the trapdoor key generation algorithm PHF.TrapGen to generate the group hash function H. Again
let £ = ! {si}. The simulator picks g & 75, h & QRy, and a uniformly random prime
e & [0,2" — 1]. Then it sets

g = QQ HteE P(t) and h = iLe HtEE P(t)_
Then it runs (k, 7) & PHF.TrapGen(1*, g, h). By the (m, 1,7, §)-programmability of H, we have

Pr(Xg > Pr{Xg - 7.

Game 2. Again we modify the simulator such that chosen-message queries are answered without
inverting exponents. Again let E; = E\{s;}, and let

g = Q2Ht€Ei P(?) and h; = fztheEi P(t).

28

The simulator computes a signature on M; by running (a;,b;) < PHF.TrapEval(t, M;) first to
determine (a;, b;), and then computing o; as

0; = g{*hi" = HOM)MPe, (5)
Game [2] is perfectly indistinguishable from Game[I] Thus,

Pr[Xp] = Pr[Xqg.

Game 3. In this game the simulator guesses the shortest prefix ¥ of s* that differs from all
prefixes of s1,...,s,. Note that this prefix must exist, because the Type Il-forger will return a
forgery (M*,o*,s*) with s* & {s1,..., 54}

To this end, the simulator proceeds as follows. If ¢ = 0, it samples a bit 1 & {0,1} at random,
and aborts if the forger returns s* with sr‘l # 1. If ¢ > 0, the simulator picks i € [q] and j € [)],
and sets 1) = s;;_1||b, where b is the complement of the j-th bit of s;. (Recall that we defined the
0-th prefix as the empty string), thus s;9 =). The simulator aborts if either

e 1 is a prefix of some s; € {s1,...,5,}, that is, there exists (7', ") such that ¢ = s; s, or if
e the forger returns (M*,o*, s*) such that v is not a prefix of s*.

We denote this event with abortyefix. If ¢ = 0, then the simulator aborts with probability 1/2.
Otherwise there are g\ possible choices for (i,j) € [g] x [A]. Thus we have Pr[abortpefix] < 1 —
1/((g + 1)N), and therefore

1

PI'[,XH] Z PI'[AX]Z/\ ﬁabOrtpreﬁx] Z W

- Pr[Xg|.
Game 4. We add an abort condition. The simulator aborts, if F(¢) | [[,c P(t), or (equivalently)
F(v) = F(si|;) for some (4,7) € [g] x [A]. We denote this event with abortyco-

Note that ¢ # s;); for all (4,7) € [q] x [A]. Thus, if we replace PRFx with a truly random
function, then according to Lemma the probability of a collision among (at most) (¢ + 1)A
uniformly random primes from [0, 2" — 1] is bounded by 7(q 4+ 1)2A? - 277,

We can therefore construct an adversary distinguishing PRFx from a random function with

probability at least eyconl > Prlabortycon] — (g + 1)2)\2 . 27", Since €ypcoll < €' by assumption, we
have Pr[aborteon] < €’ + (g +1)2A? - 277 and thus

r(g+1)2\2

Pr[Xg| > Pr[Xg] — Prlabortycon] > Pr[Xg —¢” — o

Game 5. We introduce a number of changes to the simulator, which equal the modifications
introduced in Games [7] to [L0]in the proof of Lemma

e We abort if there exists i, j € [g] x [A] such that F(s;|;) divides ¢(n). (Gamem)

e We abort if the resolving index i is greater than r* for some s;;, (i,7) € [q] x [A]. (Game

e We pick p* & [7?] uniformly random, and abort if ;1* is not the resolving index of 1. (Game@)

29

e Instead of sampling ¢ at random, we set ¢ = PRF(u*||¢)) @ e, where e is the uniformly random
prime that the simulators pick starting from Game Observe that this defines F(¢)) = e.

(Game

With the same arguments as in the proof of Lemma we have

Pr[Xg > 1/r? (Pr[X@] —2¢" — 2’; > :

Game 6. In this game the simulator picks a prime e uniformly from the interval [2!,2" — 1],
computes (a*,b*) < PHF.TrapEval(7, M*) for the message M* on which F forges a signature,
and if ged(a*,e) # 1, we denote this event with abortpyr. Using that H is (m, 1,7, d)-evasively
programmable, we have

Pr[Xg] = Pr[XgA —abortpug| > 6 - Pr[Xg].

The RSA Adversary. On input a RSA-challenge (N’ €', y), the adversary aborts if e is not a
prime in the interval [2!,27], and otherwise sets N = N/, § = 4, e = ¢/. The latter now defines
F(y) = e. Otherwise it proceeds like the simulator in Game [6]

As in the proof of Lemma [C.I} the success probability of the RSA adversary is at least

r

1

Answering Signing Queries. Again the adversary can answer signing queries without computing
inverses modulo ¢(n) by using the PHF.TrapEval algorithm and Equation ().

Extracting the Solution to the RSA Challenge. When the forger returns (M*,o*, s*), the
adversary computes w = 0**, where z = H{ie[/\”sr?éw} F(s?‘i). Note that z = P(s*) /e, since F(¢)) = e.
Thus we have

1/e 2a* [[yc g P(t)

w— <H(M*)1/P(s*))z — H(M*)Ye = (gQa* Mice PO jyeb* Thern P(t)) — g Thes PO,

From this the adversary computes 3/ as

2a™ [ye g P(t)

y/ = W - ItL_b* HtEE P(t) e g e

Again, if we have ged(2a* [[,c5 P(t),e) = 1, then the solution to the given RSA challenge can
be extracted from gy’ using Lemma We have ged(2a* [[,cp- P(t),e) = 1, since e is odd, e {
[L;cx P(t) by GameEl, and ged(e,a*) =1 by Game@

C.2 Proof of Theorem [5.1]

Again let M; denote the i-th query to the signing oracle, and let (o;,s;) denote the reply. Let
(M*,0*, s*) be the forgery output by F.

We again distinguish between a Type I forger, returning (M*,o*,s*) with s* = s; for some
i € [q], and a Type II forger returning (M™*,o*, s*) with s* # s; for all i € [q].

30

C.2.1 Type I forgers

The following Lemma proves security against Type I forgers.

Lemma C.3. Let F be a forger of type I that (t,q,e€)-breaks the existential unforgeability of
Sig,-pn[H; D]. Then there exists an adversary A that (', ¢')-breaks the q-DH assumption with t' ~ t

and —
1 m
o (3 5))

PROOF. We prove Lemma|[C.3]by a sequence of games. In the following let X; denote the probability
that F is successful in Game i.

Game 0. We define Game [(] as the existential unforgeability experiment with forger F. By
definition, we have
Pr[Xg =

Game 1. Now the simulator aborts if there exist (at least) m + 1 indices i1, ..., %11, such
that s; = sj for all j,j" € {i1,...,im+1}. We denote this event with abortmcoi. The s; are picked
uniformly from {0,1}*, thus by Lemma the probability of an m + 1-wise collision is at most
Pr[abortncon] < ¢™*1/2™*, which implies

m—+1
PI‘[‘XEI] > PI"[)(U] — PI‘[abOI’thOH} > Pr[)qm] — q2w

Game 2. In this game the simulator chooses s1,..., s, & {0,1}* at the beginning of the game,
and uses s; as randomness for the signature of M;. This change is purely conceptual and oblivious
to F, thus does not affect the success probability of F.

Moreover, the simulator guesses the value s* that will be used by F in the forged signature,
and aborts if F outputs a forgery (M’,0’,s") with s’ # s*. We denote this event with abortgess.
Since we assume that s* € [J_,{s;}, we have Pr[abortgess] <1 —1/g, and thus

1
Pr[Xp] = Pr[XpA —abortgess] > aPr[Xm].

Game 3. We define Game [3] like the previous game, except that we run the trapdoor key
generation algorithm PHF.TrapGen to generate the hash function H. In the following let £ =
UZL{si} and E* = E\{s*}. The simulator sets

g= gHteE* d(t) and h = gnteEd(t).

Recall that ¢ denotes the generator chosen by the Gen procedure. Then the simulator runs (x, 7) &
PHF.TrapGen(1*, g, h) to generate hash key s together with trapdoor 7. Since H is (m, 1,7, d)-
programmable, we have

Pr[Xg > Pr[Xg — .

Game 4. In this game, the simulator computes (a;, b;) < PHF.TrapEval(7, M;) for each queried
message M;, and (a*, b*) < PHF.TrapEval(r, M*) for the message M* on which F forges a signature.
The simulator aborts, if a; # 0 for some i € {i | s; = s*}, or if a* = 0. We denote this event with

31

abortpyr. Recall that |{i | s; = s*}| < m due to the modification introduced in Game [I} Thus,
using that H is (m, 1,+, d)-programmable, we have Pr[abortpyr] < 1 — 4. This implies

PI‘[,X@] = PI‘[,XE/\ —|abortpH|:] >0 PI‘LXEﬂ.
Game 5. Now we change the way chosen-message queries are answered by the simulator. Note
that, by the setup of g and h introduced in Game [3] we have

H(MZ) — gaihbi — gai HtEE* d(t)gbi HteEd(t).
Let Ef and E; denote the sets Ef = E*\{s;} and E; = E\{s;}, and let

gi = gHtEE;}‘ d(t) and h; = gHtGEid(t).

The simulator computes a signature on M; by running (a;,b;) < PHF.TrapEval(r, M;) first to
determine (a;, b;), and then computing o; as
oi = g = H(M)). (6)

The last equation of @ uses that a; = 0 for all ¢ with s; = s* (cf. Game E[) Game [p| is perfectly
indistinguishable from Game [4 from the adversary’s perspective. Thus we have

Pr[Xg] = Pr[Xg].

Game 6. Now the simulator computes (e;, f;) < PHF.TrapEval’(7’, s;) for each s; at the beginning
of the game. When F outputs a forged signature (M*,s*, o*), the simulator computes (e*, f*) <
PHF.TrapEval’(7/, s*). We abort the game, if ¢; = 0 mod p for some i € [g] or if e* # 0, and denote
this event with abortpyg. By the (1, poly, ', d’)-programmability of D we have

PI‘LX@] = PI‘[AXHA ﬂabortpHF] > 5 - PI‘[,XH}.

The ¢-DH Adversary. We can now replace the simulator with adversary A. The adversary
receives a ¢-DH challenge (§,4Y,...,3Y") as input, and proceeds like the simulator from Game EI,
but without knowing y explicitly.

Set-up of the Public Key. The adversary runs (k/,7') & PHF.TrapGen’(1*, g, 3%) just like the
original key generation algorithm. To see that the adversary can compute the input values g and
h to PHF.TrapGen as required, recall that

Al liepd®) — gHteE* (€t+yft).

g=9
Considering the term [[,.p-(es + yfi) as a polynomial in y, the adversary first computes the
coefficients a; of the expansion of the polynomial a(y) = [T,cp-(er + yfe) = Dof_, a;y’. Then it
sets

q

g = H <gyl>az <: ngZI aiyi = gHtEE* (et+yft)) .

i=1
This is possible, since (i) the adversary can compute the coefficients of a(y) from the (e, fi), (ii)
the adversary has received (§,Y,...,¢Y") as input, and (iii) the polynomial a(y) has degree at
most g — 1.

32

Clearly h can be computed similarly, since (i) and (ii) apply as well, and the polynomial
[L;cs(et +yfi) has degree at most q.

Thus, the adversary can generate x & PH F.TrapGen(1¥, g, h), just like the simulator in Game@
The public key is set to pk = (g,k,~’) as before. Note that the adversary knows 7/, but not y
(otherwise the ¢-DH challenge is solved immediately).

Answering Signing Queries. The adversary A can answer signature queries, even without
explicit knowledge of y, by proceeding as follows. Note that the adversary can compute (a;,b;) <
PHF.TrapEval(r, M;), since it knows the trapdoor 7. Thus, in order to compute a signature using
Equation @, it suffices to determine

0= gHtGE;‘ d(t) _ gHtEE; (et+yft) and h; = f]HtEEi d(t) _ gHteEi(eH‘yff).

This is possible by using §¥, ..., §¥" and applying the same technique that the adversary has used
to compute g and h. The adversary simulates the challenger of Game [f] perfectly, thus we have

Pr[Xg = Pr[Xg.

Extracting the Solution to the ¢-DH Challenge. It remains to show how the adversary can
extract the solution to the ¢-DH challenge from a forged signature (M*, o™, s*). First, using that
a* # 0 by Game [4] the adversary computes z as

e (U*/gb* HteE*(et"Fyft)) f*/a

where the elements of the ¢-DH challenge are used to compute the term g Hier«(¢:49f0) Note that
o /gb [Licp.d(t))f*/a ((H(M*)l/d) /gb* [Licr- d(t)>f*/a*

=
(g n2") 46 fgh Teer. ())f*/“ = (g7 /4G e 2 /gb*nteg*d(n)f*/a*
(a*/d(s)f/“ _ (Qa*/(e*+yf*)>f*/“*

*

—
=

(l*/ f* f /a* a* HteE*(et+yft) f*/(l* Al_[th*(et7Lyft>
(g Y) =g uf =g y .

Here, (x) uses that e* = 0 (by Game[f]). Then A determines the coefficients Bz of the polynomial
B(y) = ITiep-(et + yft) = 2oL, Biy'. Recall that e; # 0 for all ¢ with s; # s* (Game @ which
implies By = [], e; # 0. Therefore the adversary can compute G as

i 1/Bo
1 >iBi i1\ 1
z /P gTy §P0/y i By ™! /Po (%/y Bo sy
— & _= T~ 4.1 = T~ L i1 = g) = g .
2:1 (lefl)ﬁz gzl Biyt~t gZZ Biyt—t
This completes the proof for Type I forgers. O

33

C.2.2 Type II forgers

Lemma C.4. Let F be a forger of type II that (t,q,€)-breaks the existential unforgeability of
Sig,-pn[H,D]. Then there exists an adversary A that (t',€')-breaks the q-DH assumption and an
adversary that (t",€")-breaks the discrete logarithm assumption with t' ~t" ~t and

€ + 5" > (e —)

PRrROOF. Again we let X; denote the probability that F is successful in Game 1.

Game 0. We define Game [0 as the existential unforgeability experiment with forger F. By
definition we have

Pr[Xg =e.

Game 1. In this game the simulator chooses the randomness s1,.. ., 54 & {0, 1}’\ used to answer
the chosen message queries of the forger at the beginning of the game. This does not affect the
success probability of F, thus

Pr[Xg = Pr[Xg

Game 2. Now we run the trapdoor key generation algorithm PHF.TrapGen to generate the hash
function H. Again let £ = (J!_,{s;}. The simulator picks 6 & Z, and sets

g = gllierd® and h = ¢°.

Then it runs (k,) & PHF.TrapGen(1%, g, h) to generate hash key & together with trapdoor 7. By
the (m, 1,7, §)-programmability of H we have

PrXg > Pr{Xg - 7.

Game 3. We change the way chosen-message queries are answered by the simulator. By the
setup of g and h introduced in Game [2, we have

H(Ml) = gaihbi — gai [Lice d(t)gbienteEd(t).

Let E; denote the set E; = E\{s;}, and let

;i [rem, d(®)

gi =4 and h; := gig.

Just like in Game [5| of the proof of Lemma the simulator can compute a signature on M; by
running (a;, b;) < PHF.TrapEval(r, M;) first to determine (a;, b;), and then computing o; as

0 = gyt = (R = H(M) A,
Note that Game [3] is perfectly indistinguishable from Game [2] from the adversary’s perspective.
Thus we have
Pr[Xg] = Pr[Xg.

Game 4. Now the simulator aborts, if a* + 6b* = 0 mod p. We denote this event with abort)s.
Note that explicit knowledge of 6 is not used anywhere in the game. Thus we can construct an

34

adversary against the discrete logarithm problem that takes (g, §?) as input, and uses these values
to simulate Game {f perfectly. If a* + 6b* = 0 mod p, then the adversary can compute 6 = log, §’
from (a*,b*). Therefore we get

Pr[Xg > Pr[Xgl — ¢’

for a suitable (", €”)-attacker against the discrete logarithm problem with ¢” ~ t.

Game 5. Now the simulator computes (e;, f;) < PHF.TrapEval’(7’, s;) for each s; at the beginning
of the game. When F outputs a forged signature (M*, s*,0*), the simulator computes (e*, f*) <
PHF.TrapEval'(7/, s*). We abort the game, if e; = 0 for some i € [q] or if e* # 0, and denote this
event with abortpyr. By the (1, poly, v/, §')-programmability of D we have

Pr[X|5]] = Pl"[)(@/\ —|abortpH|:] > 5 - Pr[Xg]].

The ¢-DH Adversary. We can now replace the simulator with adversary A. The adversary
receives a ¢-DH challenge (§,9Y,...,9Y") as input, and proceeds like the simulator from Game
[but without knowing y explicitly. The adversary can compute the public key and answer all
signature queries using (g, §?,...,§"") using the same techniques as the adversary in the proof of
Lemma Thus we only need to show how the adversary can extract the solution to the ¢-DH
challenge from a forged signature (M*,o*, s*) with s* & J7_,{s;}.

Extracting the Solution to the ¢-DH Challenge. Given ¢*, the adversary computes z =
(o%)f*/(@"+08) " Note that a* + 0b* # 0 mod p by Game IZ—_IL that is (a* + 6b*) is invertible mod p.
Observe that

For /(a*+0b%) For /(a*+0b%) For /(a*+6b%)

2 = (o%)fer /(@ H00) (ga*hb*> TR _ (ga*+9b*) e () <ga*+9b*) i

Fox /(a®+0b™)

) A (gHSiGE(ei-&-yfi));

M, cp(eitli)

= g Y
where again (k) uses that e* = 0 by Game [5| Since [[, es, #Z 0 mod p (also Game, the adversary

can extract gl/ Y from 2z just like in the proof of Lemma
O

35

	1 Introduction
	1.1 Summary of our Contributions
	1.2 Details of our Contributions
	1.3 Open Problems

	2 Preliminaries
	2.1 Digital signatures
	2.2 Prime Numbers, Factoring, and the RSA Assumption
	2.3 Generalized Birthday Bound
	2.4 Pairing groups and q-Diffie-Hellman.

	3 Programmable Hash Functions
	3.1 Definitions
	3.2 Multi-generator programmable hash function
	3.3 A new deterministic programmable hash function
	3.4 A randomized programmable hash function
	3.5 A Weak Programmable Hash Function

	4 Signatures from the RSA Problem
	4.1 Construction
	4.2 Security
	4.3 Deterministic signatures with Weak Security
	4.4 Efficiency

	5 Signatures from the q-Diffie-Hellman Problem
	5.1 Construction
	5.2 Security
	5.3 Efficiency

	A A bound on the size of the randomness
	B Strong q-problems
	C Omitted Proofs
	C.1 Proof of Theorem 4.1
	C.1.1 Type I forgers.
	C.1.2 Type II forgers.

	C.2 Proof of Theorem 5.1
	C.2.1 Type I forgers
	C.2.2 Type II forgers

