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ABSTRACT
This paper presents PRISM, a scheme for keyword search in
cloud computing that is privacy-preserving against a curious
cloud provider. The main challenge in the particular con-
text of cloud computing is to come up with a scheme that
achieves privacy while preserving the efficiency of cloud com-
puting. Main approaches like simple encryption, private in-
formation retrieval (PIR) or encrypted keyword search fall
short of meeting these requirements. PRISM assures pri-
vacy against a curious cloud provider by leveraging an in-
novative combination of a sound PIR technique with the
MapReduce paradigm akin to cloud computing. The key-
word search problem in a large database is transformed into
a set of parallel instances of PIR on small datasets. Each
instance of PIR on a small dataset is efficiently solved by a
node in the cloud during the “Map” phase of MapReduce.
Outcomes of map computations are then aggregated during
the “Reduce” phase and yield the final output of the key-
word search operation. Besides formalization and thorough
analysis, PRISM has been implemented on Hadoop MapRe-
duce, and its efficiency has been evaluated using DNS logs.
PRISM’s overhead over baseline search operations was 11%
on the average. To the best of our knowledge, PRISM is the
first privacy-preserving search scheme for cloud computing
that introduces sustainable overhead.

1. INTRODUCTION
Outsourcing services to clouds has become a major trend

in today’s IT landscape. Instead of setting up and main-
taining their own data centers, cloud users take advantage
of public clouds, operated by large companies like Google
or Amazon. Such public clouds are especially appealing,
as they help their customers lower the cost of ownership
while taking advantage of increased scalability, performance,
and flexibility. Having started as the most economically vi-
able alternative for small and medium-size entreprises, cloud
computing solutions are also being adopted by governmental
organizations [11].

Main services offered by clouds are data storage and data
processing through user-defined or publicly available pro-
grams. Both storage and processing services provided by the
cloud are characterized by high performance and quality of
service in that most cloud computing services offer reliable
storage and management for very large amounts of data as
well as highly scalable and parallel data processing facilities.
Cloud computing services often rely on specific systems such
as Hadoop MapReduce [2], an open source implementation
of Google’s MapReduce system [19]. Hadoop MapReduce

is widely used and public MapReduce clouds are offered to
users by companies such as Amazon [1, 28].

The advantages of cloud computing unfortunately come
with a high cost in terms of new security and privacy expo-
sures. Apart from classical security challenges of shared ser-
vices raised by third party intruders or malicious users, such
as access control, clustering, service abuse, key-management,
and denial-of-service, outsourcing of data storage and pro-
cessing raises new challenges in the face of potentially ma-
licious cloud providers. Privacy of outsourced data appears
to be a major requirement in this context. Some regula-
tions are already provisioned as to the privacy protection
of outsourced governmental documents [12, 13, 20], e.g., in
order to assure privacy against “curious” clouds, clouds with
data centers located in “rogue” countries or with insufficient
security guarantees, and to avoid data leakage in case of op-
erational failures in the cloud. Along these lines, there is also
raising corporate concern about the privacy of sensitive busi-
ness data stored in the cloud [16]. Although cloud providers
thrive to meet the increased privacy demand by certifying
their services, cf., Google Apps for Government [34], ma-
licious insiders have still been identified as one of the top
threats in cloud computing [17], and users want additional
privacy guarantees provided by independent parties.

While encryption of outsourced data by the users seems
to be a viable protection mechanism against most privacy
problems, classical data encryption mechanisms do not suit
the requirements of cloud computing: Unlike passive stor-
age devices, the cloud does not only serve as high capacity
memory, but also is involved in data processing such as sta-
tistical data analysis, log analysis, indexing, data mining,
and searching for expressions [28]. Although these compu-
tations are simple, they have to be carried out in the cloud
due to the large amounts of data. However, data processing
performed by the cloud would not be feasible with encrypted
data. Straightforward download of encrypted data, its de-
cryption and processing in the user environment would also
be totally counterproductive by eliminating all performance
advantages of cloud computing as highlighted by Chen and
Sion [10]. Data has to be processed within the cloud to
capitalize on the high performance offered by the cloud.

More advanced data confidentiality and privacy approaches
such as Private Information Retrieval (PIR) [37] or key-
word search (KS) on encrypted data [5, 35] also fall short of
meeting the privacy requirements of cloud computing. Like
simple encryption, PIR only offers basic data storage and
lookup operations and does not allow the cloud provider to
perform any operation on the stored data. KS that aims at
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carrying out some operation on encrypted data is designed
based on a centralized execution model that is not compat-
ible with highly parallel cloud computing architectures.

Among data processing primitives, keyword search, i.e.
verifying, whether a certain keyword is part of a dataset,
is not only one of the most fundamental operations, but
surprisingly also one of the most demanded applications in
cloud computing [28]. In this paper, we present PRISM,
a new scheme for privacy-preserving and efficient keyword
search in cloud storage. PRISM pursues two specific ob-
jectives: 1.) privacy against potentially malicious cloud
providers and 2.) high efficiency through the integration
of security mechanisms with cloud operations.

PRISM assures privacy against the curious cloud provider
by relying on well-known PIR techniques whereby the pri-
vacy of both the stored data and the lookup requests are
assured against the storage provider. Efficiency is assured
through the MapReduce paradigm that allows for parallel
execution of a keyword search on very large amounts of data.

The main idea of PRISM is thus the integration of the
PIR scheme into MapReduce in order to achieve high per-
formance while capitalizing on the privacy protection of PIR.
PRISM thus transforms the problem of verifying the exis-
tence of a keyword in the entire database into a set of nu-
merous parallel instances of PIR on small datasets. Each
instance of PIR on a small dataset is efficiently solved by a
node in the cloud during the “Map” phase of MapReduce.
Outcomes of map computations are then aggregated dur-
ing the “Reduce” phase. Thanks to the linearity of the PIR
technique that is chosen, the simple aggregation of the map
results during the “Reduce” phase yields the final output of
the keyword search operation.

PRISM has been implemented on a cloud computing pro-
totype using a standard MapReduce system. Efficiency of
PRISM has been evaluated on that implementation through
search operations in Domain Name System (DNS) logs pro-
vided by an Internet Service Provider. The overhead of
PRISM over baseline search operations (without the privacy
support) was found to be 11% on the average.

The main contributions of PRISM are as follows:

• Suited to cloud computing: PRISM is the first
privacy-preserving search scheme that is suited for cloud
computing, that is, it provides storage and lookup pri-
vacy with very high performance by leveraging the ef-
ficiency of the MapReduce paradigm with the privacy
guarantees of a PIR scheme.

• Privacy in the face of potentially malicious cloud
provider: PRISM allows the user to carry out some
critical operation in the cloud without having to trust
the cloud provider.

• Compatible with standard MapReduce: PRISM
only requires a standard MapReduce interface with-
out modifications in the underlying system. PRISM
can thus be integrated on any cloud that provides a
standard MapReduce interface such as, e.g., Amazon.

• Flexible search: In contrast to classical encrypted
keyword search techniques, PRISM is not limited to
searching for a fixed set of predetermined keywords to
be known in advance, but offers flexible searching for
any expression.

2. PROBLEM STATEMENT AND
ADVERSARY MODEL

Throughout this paper, we will use a toy application ex-
ample to motivate our work. Motivated by recent events [33],
we envision a data retention scenario. As of today, telecom-
munication service providers such as Internet service providers
or telephone providers, must log and retain (for some time)
specific details about clients accessing services. This data re-
tention is required due to regulatory matters in many coun-
tries to enable, for example, law enforcement or to com-
bat terrorism. As the sheer amount of data to retain will
raise, we expect service providers to outsource their logfiles
to clouds. Still, e.g., law enforcement authorities will contact
providers and want them to search for expressions (words,
strings, . . . ) in outsourced files.

Assume service provider U (the cloud “user”) providing
DNS services to clients. U logs each client’s access, i.e.,
U logs the tuple (timestamp, client ID, hostname queried).
Due to the large amount of log data and cost reasons, U
outsources its logfiles into a cloud. Regularly, say each day
i, U creates a new logfile Li. At the end of a longer period,
U wants (or it is forced to) to find out, whether a client was
interested in a suspicious host w. So, U checks, at which
day, in which logfiles Li, expression w occurs. U queries the
cloud for w, and the cloud responses with an answer R that
tells U which of the Li contains w. Note that U does not
know in advance which expression w it has to search for.

However, the cloud is assumed to be untrusted, more pre-
cisely semi-honest (“honest-but-curious”). Regulatory mat-
ters imply that the cloud must not learn any information
about the content it hosts and search queries performed. We
will now formalize privacy requirements for our application.

2.1 Privacy Requirements
Our application demands for two main types of privacy.

1.) Storage privacy. The cloud must not be able to infer any
details about stored data. 2.) Query privacy. The cloud
must not learn any details about U ’s queries and results
delivered back to the cloud.

2.1.1 Storage privacy
The cloud (now called “adversary A”) must not be able

to learn the content or to compute statistics on the content.
Example: if stored logfiles contain the same words, then this
must be undetected. This automatically calls for encryption
of content before uploading. One (sufficient) approach to
achieve this property is to use an asymmetric probabilis-
tic encryption cipher to encrypt and upload data. For ex-
ample, using traditional Elgamal provides semantic security
and ciphertext indistinguishability [26]. However, we tar-
get a slightly weaker indistinguishability property compared
to Goldwasser and Micali [26]: the main problem we want
to address with storage privacy is that adversary A must
not understand whether any two ciphertexts are originating
from the same plaintext. Inspired by the traditional notions
of indistinguishability, we can cover storage privacy by our
(informal) definition of “IND-CO” for uploaded ciphertexts.

Definition 1 (Ciphertext-Only Indistinguishable).
An encryption cipher E is ciphertext-only indistinguishable
(IND-CO) iff an adversary A with access to only a set of ci-
phertexts E(w1), . . . , E(wn) cannot decide whether ∃i, j such
that wi = wj.
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The difference to traditional indistinguishability is that A is
unable to submit his own plaintexts to an encryption oracle,
but only has access to ciphertexts. IND-CO automatically
implies confidentiality, i.e., A does not learn any cleartext
wi: if A would learn cleartexts (wi, wj) then he would triv-
ially be able to distinguish them.

In conclusion, storage privacy requires encryption of con-
tent before uploading to the cloud using an IND-CO encryp-
tion mechanism.

2.1.2 Query privacy
Interaction between U and the cloud consists of two steps.

First, U sends Q(w), a search query for expression w to the
cloud. The cloud processes this query using a protocol P
to produce output R := P(Q(x)). This output is sent back
to U . Using this output R and another algorithm D, U can
compute the list of files D(R) = {L1, L2, . . . } containing w.

In our scenario, an adversary A must not learn which ex-
pression w user U is looking for. Also, A must not learn any-
thing about subsequent queries, i.e., search patterns should
be protected: for example, A is oblivious of whether the
same word is queried for twice. Moreover, A must not learn
which file Li contains w. That is, Amust not learn for which
file the search was “successful” or whether two subsequent
queries have produced the same list of files. We capture the
above requirements in our definition of query privacy.

Definition 2 (Query Privacy). A protocol P to find
expressions on encrypted data provides query privacy, iff ad-
versary A with access to ciphertexts E(wi), a set of queries
Q(wj), knowledge of protocol P and outputs Rj (but not D)
cannot decide

1. whether ∃Q(wu), Q(wv) such that wu = wv.

2. for any pair of outputs (R1, R2), whether ∃L1 ∈ D(R1),
L2 ∈ D(R2) such that L1 = L2.

The first condition ensures that by looking at the queries,
A cannot link any two of them. This requirement automat-
ically implies query confidentiality, i.e., A does not learn
anything about the expression wi a query Q(wi) is about:
if A would know how to compute wi from Q(wi), then he
would be able to link two queries Q(w1), Q(w2).

The second condition ensures that A cannot link any two
outputs, i.e., decide whether w was found in the same file on
subsequent queries or not. This implies output confidential-
ity. A does not learn anything about the output {L1, L2, . . .}
of the processing of P(Q(wi)): if A would be able to com-
pute the Li, then he would be able to link two outputs.

In conclusion, the definition of query privacy implies a
randomized encryption of queries and a protocol P that can
operate under A’s control on such queries producing “ran-
domized” output.

Finally, note that coping with a completely dishonest cloud
that could deviate from properly executing P—that is, mali-
ciously forging output or just sending back garbage to U—is
out of the scope of this paper. While this is a clearly im-
portant real-world issue, PRISM only focuses on a curious
semi-honest adversary.

2.2 MapReduce
In the following, we provide an overview of MapReduce,

only focusing on aspects necessary to understand PRISM.
For details, the reader may refer to [2].

Upload. Roughly speaking, a MapReduce cloud com-
prises a set of “slave” node computers and a “master” com-
puter. While user U uploads files into the MapReduce cloud,
each file is automatically split into blocks, so called Input-
Splits. InputSplits have a fixed size which is a pre-configured
system parameter. For each InputSplit, a workload sharing
algorithm running on the master selects a slave node and
places the InputSplit on it. Also, for fault tolerance, each
InputSplit is replicated a number of times and placed on
additional slaves.

In addition to data, the MapReduce framework also al-
lows U to upload “operations”, i.e., compiled Java classes.
These classes essentially represent the implementation of
three functions.

1. Scan(InputSplit) → [(k, v)]), a functions that takes
an InputSplit as an input, parses it, i.e., scans it and
generates a set of key-value pairs [(k, v)] out of it.

2. Map(k, v) → [(k′, v′)], a function that takes as an in-
put a single key-value pair (k, v) and outputs a set of
“intermediate” key-value pairs [(k′, v′)].

3. Reduce([k′, v′]) → File, a function that takes as an
input a set of intermediate key-value pairs [(k′, v′)] and
writes arbitrary output into a file.

Uploaded Java classes are replicated and sent to all slave
nodes storing an InputSplit.

Map Phase. After data and implementations have been
uploaded, U can specify a single uploaded file (now split into
InputSplits) and trigger MapReduce operations on that file.
As the name suggests, the first phase of operation is the
“Map” phase. Each slave node becomes a “mapper” node.
First, each mapper executes U ’s Scan function on the In-
putSplit it stores. This generates a set of key-value pairs on
each mapper. Furthermore, the mapper node executes U ’s
Map function on this generated key-value pairs to produce
a set of intermediate key-value pairs.

Reduce Phase. Eventually, MapReduce starts the “Re-
duce”phase. Slave nodes in the MapReduce cloud are sched-
uled to become “reducers”. For each of the generated in-
termediate pairs (k′, v′), MapReduce selects a reducer and
sends (k′, v′) to this reducer. More precisely, MapReduce
selects the same reducer for all intermediate key-value pairs
(k′, v′) having the same key. So, each mapper receives a
set of intermediate key-value pairs (k′1, v

′
1), (k′2, v

′
2), . . . with

equal keys k′1 = k′2 = . . .. Each reducer executes U ’s reduce
function on its set of intermediate key-value pairs and writes
the output to a file. This file is sent to U .

After completion of such a MapReduce job on a single up-
loaded file, U could invoke MapReduce on another uploaded
file. However, for increased efficiency, instead of sequen-
tially processing files, U can also specify a set of uploaded
files. MapReduce will process the set of files completely in
parallel. Still, Scan/Map/Reduce operations on InputSplits
belonging to different files are separated to keep the same
semantics as files were processed sequentially.

3. PRISM PROTOCOL
Before going into PRISM’s technical details, we will first

highlight its main design rationales. PRISM comprises two
parts: a upload of data into the cloud phase and then the
actual MapReduce search.
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1.) Upload. During upload, user U , encrypts expres-
sions using symmetric encryption. Ciphertexts are stored
in a file, and this file is sent to the MapReduce cloud. In
PRISM, we use standard encryption, e.g., a blockcipher like
AES, to perform ciphering of data. However, to ensure IND-
CO, plaintext is modified before encryption. Therewith, U
can still search for some expression w, but the cloud cannot
compute statistics about ciphertexts.

2.) Search. Eventually, U wants to search his encrypted
files for some expression w. Therefore, U sends implemen-
tations of “algorithms” for the map and reduce phases to
the MapReduce cloud, and the cloud executes these on up-
loaded data. For example, U sends Java “.class” files for the
mappers and Java “.class” files for the reducers. MapRe-
duce distributes these implementations to each mapper and
reducer, respectively. PRISM’s main idea is that each map-
per, scanning through its InputSplit, creates a binary ma-
trix. Ciphertexts in the InputSplit are assigned to individual
elements in that matrix. If a ciphertext is present in an In-
putSplit, its corresponding element in the matrix is set to
either “0” or “1”. Using private information retrieval tech-
niques, PRISM can extract the value of a single element in
the matrix with the mapper being totally oblivious to which
element is extracted. Consequently, U can specify which el-
ement to extract in a privacy-preserving way. All mappers
send their obliviously extracted elements as key-value pairs
to reducers. Reducers simply sum up received values and
return sums to U . Therewith, neither mappers nor receivers
can learn any information about which ciphertext U was
interested in.

The final step of the search part is called result analysis:
U receives an encrypted sum for each of the originally up-
loaded files from reducers. U can decrypt them and decide
which of the files contain w.

However, due to the probability of “collisions” in matrices,
i.e., two different ciphertexts can be assigned to the same ele-
ment, and due to ambiguities of received sums, U ’s decision
whether w is inside some file might be wrong. Therefore,
PRISM repeats the above process in a total of q so called
“rounds”. In each of the rounds, a new matrix is generated,
elements are set to “1” or “0” depending on the round num-
ber, and results are returned as described. This reduces the
probability of U making incorrect decisions.

3.1 Preliminaries
We begin with an overview about variables used through-

out this paper:
w – expression user U is looking for.
SFile – total size of file to be searched.
SInputSplit – size of one “InputSplit”. Each file is split

into several“InputSplits”, InputSplits are distributed to Map
nodes in the cloud, one node works on one InputSplit. The
size of an InputSplit in MapReduce is usually between 64
MByte and 128 MByte.
c – number of InputSplits of one file, c = SFile

SInputSplit
. If the

cloud provides at least c slave nodes (more precisely, at least
c CPUs), then all InputSplits can be processed in parallel.
Otherwise, mappers have to work on multiple InputSplits
consecutively.
n – number of ciphertexts in one InputSplit,

n :=
SInputSplit

CipherBlockSize
. The total number of ciphertexts stored

in the cloud is (c · n).

3.1.1 Trapdoor Group Private Information Retrieval
PRISM uses a simple and efficient PIR mechanism as

previously suggested by Trostle and Parrish [41]. As this
PIR mechanism is just a (exchangeable) building block for
PRISM, we will only give a conclusive summary of its mode
of operation and rationale.

Overview: MatrixM is a t× t matrix of elements in ZN
stored at a server. For example, N = 2 for a binary matrix.
User U is specifically interested in the elements of the kth

row in M, but the server must not determine U ’s interest.
The idea is now that U sends two “types” of values to

the server. For each row that U is not interested in, he
sends a value of the “first” type. For the one row that U is
interested in, he sends a single value of the “second” type.
To prevent the server from distinguishing between the two
types of values, U blinds each value with a blinding factor
b. This blinding factor can later be removed by U . The
server now performs simple additions with received values
and elements stored inM. The result is sent back to U who
removes the blinding factor and determines the values of the
row of his interest.

Preparation: Assume U is interested in row k. U chooses
a group Zp, where p is a prime of m bits, gcd(m, p) = 1. U
also chooses a random b ∈ Zp and t random values ai ∈
Zp. Therewith, U computes t values ei <

p
t·(N−1)

such that

ek := 1 + ak ·N and ∀i 6= k : ei := ai ·N .
Finally, U computes αi := b·ei mod p and sends the αi to

the server. Other values (p,m, b, ei, ai) remain secret. The
server treats αi as large integers and performs the following
integer operations, i.e., without any modulo.

Server computation: Let ~u be the vector ~u := (α1, . . . , αt).
The server computes the matrix product

~v := (β1, . . . , βt) = ~u·M = (

t∑
i:=1

αi · Mi,1, . . . ,

t∑
i:=1

αi · Mi,t).

The server sends ~v back to U .
Result analysis: Upon receipt, U “un-blinds” values: U

computes the t inverse values zi := βi · b−1 mod p. Now, U
can conclude that zi mod N equals the ith element of the
kth row inM. There with U has retrieved the t elements of
the kth row of M in a privacy-preserving fashion.

Security rationale: The security and privacy of this pro-
tocol is based on the so called “trapdoor group assumption”.
With only knowledge of αi, it is computationally hard for
the server to infer any information about low order bits, i.e.,
the modulo of z or ei, cf., Trostle and Parrish [41].

3.2 Upload
In our toy scenario, the webserver continuously logs access

to the cloud. Each day the webserver starts using a new
logfile. For simplicity, we assume that entries logged by
webservers are simple expressions.

Overview. One privacy requirement as stated earlier in
Section 2 is that the cloud must not be able derive any details
about stored cleartext. We will cover this by using a stateful
cipher and show its IND-CO property later in Section 4.1.

Definition 3 (Stateful Cipher). Given a standard
symmetric encryption cipher E with secret key k, e.g., AES,
we extend E to a stateful cipher, by adding “counters” γwi

that count the history of different inputs wi. Each time E
encrypts wi, counter γwi is increased by one.
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So, a stateful cipher is a cipher that knows how often it
has encrypted as specific plaintext. We will know present a
trivial stateful cipher construction and use this in PRISM
to encrypt before uploading.

Upload details: User U and webserver W share a secret
key K. For each day d, webserver W computes his key-of-
the-day Kd := HMACK(d).
W executes Algorithm 1. For each day, W maintains a

hash table containing the list of counters γwi in W ’s local
storage. At the beginning of each day, W initializes all coun-
ters to 0, i.e., γwi = 0.

Now, for each logentry wi that should be stored in the
cloud, W computes γwi and increases γwi . Then, W com-
putes ciphertext Ci. Webserver W sends ciphertext Ci to
the cloud that stores it in this day’s file.

Initialize all γ to 0;1

foreach logentry wi do2

γwi := get (wi); //from hash table3

γwi := γwi + 1;4

insert (wi, γwi); //into hash table5

Ci := EKd(wi||γwi);6

upload Ci ;7

end8

Algorithm 1: “Stateful Cipher” encryption and upload to
MapReduce. Key-of-the-day is Kd.

We discuss the reason for using a “stateful cipher” over
using, e.g., a CBC mode of encryption in Section 4.1.

3.3 Search: Map Phase
User U wants to search a set of files for expression w within

a period (a set of days) of time. For ease of understanding,
we will restrict our description below to PRISM working on
a single file specified by the user, i.e., the file of day d. In
practice, the user can specify a set of files, and all files will be
separately (but in parallel) processed with PRISM exactly
like a single file.
U sends map and reduce implementations of PRISM to

MapReduce, and the map phase starts. In the following, we
describe the PRISM algorithms for, first, the mappers and
in Section 3.4 the reducers. We would like to stress that the
PRISM algorithms, e.g., Java“.class”files, are not encrypted
and not specially protected against a curious cloud. Even
though mappers and reducers know what operations they
perform, they cannot deduce any private information about
stored data or details about the search.

Overview. Before scanning through its InputSplit, a
mapper node creates a matrix where all elements are ini-
tialized to “0”. PRISM’s main idea is that while the mapper
scans the ciphertexts in its InputSplit, each ciphertext is
then assigned to one position, a certain element, in a matrix
using a hash function. For each ciphertext, the mapper can
put a “1” in the matrix at the assigned position. Roughly
speaking, U can now query the mapper for the value of a
specific element in the matrix using private information re-
trieval. This guarantees privacy.

Problem is that due to the limited size of the matrix and
the properties of the hash function, there might be collisions
in the assignment process. That is, by chance there can
be two different ciphertexts being assigned with the same
position in the matrix. By chance, the information retrieved
by U can therefore be unrelated to w. To mitigate this effect,

PRISM repeats generation and filling of matrices a total of q
rounds. Also, setting an element in a matrix to “1” depends
on the round number. After q rounds, the probability that
the information U retrieved from this mapper is unrelated
to w therefore decreases, and U can finally decide whether
w is inside this particular InputSplit.

Preparation:

Definition 4 (PIR Matrix). A binary matrix M of
size t × t is called a PIR matrix. This is the matrix used
by the mapper to implicitly perform the keyword search in a
privacy-preserving way.

Definition 5 (Candidate Position). For each cipher-
text Ci in an InputSplit, the candidate position (Xi,Yi) of
Ci in M is computed by (Xi||Yi) := bCic2·log2 (t)

. That is,
the first t bits of Ci determine Xi, and the second t bits of
Ci determine Yi.

Definition 6 (PIR Input). If U is interested in a spe-
cific element (X ,Y) in M. He computes PIR input {α1,
α2, . . . , αt}, where αX := b · (1 + aX · N) mod p, and
∀i 6= X , αi := b · (ai ·N) mod p. Random values b and ai as
well as parameters N and p are chosen as for the Trapdoor
Group PIR scheme presented in Section 3.1.1.

Definition 7 (Column Sum). The column sum σi of
the ith column of PIR matrix M is defined as

σi :=
∑

M1≤j≤t,i=1

αj ,

whereM1≤j≤t,i = 1 denotes the entries in the ith column of
M that are set to 1.

Note that additions in this definition are integer additions.
The above computation of column sums is simply a di-

gest of the PIR technique by Trostle and Parrish [41]. In
short, if a mapper computes such a column sum on a given
PIR matrix M and given PIR inputs αi, it is impossible
for the mapper to derive (X ,Y). U , however, can compute
whetherMX ,Y = 1, becauseMX ,Y = 1 iff (σY ·b−1 mod p)
mod 2 = 1 holds.

It is important to point out that not only a mapper can
compute a candidate position for some ciphertext in its In-
putSplit, but also U can compute candidate positions. More
precisely, as U is looking for w, he can compute E(w||1)
and candidate position (Xi||Yi) := bE(w||1)c

2·log2 (t)
. If w

has been uploaded into a particular InputSplit at least once,
then this InputSplit contains at least E(w||1) (maybe also
E(w||2), E(w||1), . . . ). Therefore, it is sufficient for U to
search for E(w||1). We will now give detailed descriptions
of U ’s Map and Reduce algorithms.

3.3.1 PRISM Map Description
To start, U chooses two system parameters t, q ∈ N for

PRISM. Parameter t is a security parameter, and q denotes
the number of rounds.

For day d that U wants to search for w, he determines the
key-of-the-day Kd := HMACK(d) and the target candidate
position (Xd||Yd) := bEKd(w||1)c

2· log2 (2)
. To prepare PIR,

U computes for day d the t PIR Inputs {αd,1, αd,2, . . . , αd,t}
as described above. U sends all α as part of the following
map algorithm implementation to the cloud.
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X\Y 1 2 · · · t
1 1 0 · · · 1
2 0 1© · · · 0
... · · · · · · · · · · · ·
t 1 0 · · · 0

Figure 1: Sample matrix Mj. Candidate position
(2,2) is for one ciphertext, e.g., (2, 2) = bCic2·log2 (t)

.

Value “1” stored in (2,2) is output of bh(Ci, j)c1 .

for l := 1 to q do1

InitializeMl;2

end3

ScanThroughInputSplit;4

foreach pair (i, Ci) do //Fill matrices5

(Xi||Yi) := bCic2·log2 (t)
;6

for j := 1 to q do7

bitj := bh(Ci, j)c1 ;8

if bitj = 1 then9

Mj,Xi,Yi := 1;10

end11

end12

end13

for l := 1 to q do //q rounds14

for j := 1 to t do //Compute column sums15

σj,l =
∑
Ml,1≤k≤t,j=1 αd,k16

end17

end18

for j := 1 to t do //Intermediate (k,v) pairs19

(k, v) :=({File, j},{σj,1, . . . , σj,q});20

Output (k, v);21

end22

Algorithm 2: Computation of PIR matrices M.

All mappers process PRISM in parallel, each of them on
its own InputSplit of the file corresponding to day d. More
precisely, a mapper executes Algorithm 2. Initially, the map-
per generates q PIR matrices Ml, where each element is ini-
tially set to 0. We will now writeMl,X ,Y to denote element
(X ,Y) in matrix Ml.

The mapper node scans its complete InputSplit consisting
of ciphertexts {C1, . . . , Cn}. For each ciphertext Ci, the
mapper creates a key-value pair (i, Ci).

Then, the mapper fills matrices Ml. For pair (i, Ci),

• the mapper computes candidate position (Xi||Yi) :=
bCic2·log2 (t)

.

• the mapper puts in PIR matrixMj , in elementMj,Xi,Yi ,
a “1”, if bh(Ci, j)c1 = 1. See Figure 1 for an example.
Otherwise, elementMj,Xi,Yi remains untouched. This
means that entries inMj can flip from 0 to 1, but never
from 1 back to 0.

After all q PIR matrices are filled, the mapper computes
for each matrix the t column sums σ1≤i≤t,1≤j≤q on U ’s input
{αd,1, . . . , αd,t}. Finally, the mapper outputs intermediate
key-values pairs (k, v). The key comprises the name of the
file of the InputSplit this mapper was working on, e.g., the
file name is the day d, and the number of the column sum
of Ml. The value consists of a list of the q column sums.

These intermediate key-value pairs will now be input for
the reducers during the Reduce phase.

3.4 Search: Reduce Phase
Overview: A single reducer receives from all the c map-

pers working on the same file all their q column sums for the
same column. The reducer simply adds these received sums
and writes the result into a file which is sent back to U .

Details: For all key-value pairs ({File, i},{σi,1, . . . , σi,q})
using the same {File, i} as key, the MapReduce framework
designates the same reducer. This reducer receives from all
c different mappers working on the same file all intermedi-
ate key-value pairs with the same key. That is, a reducer
receives c pairs which we rewrite as

({File, i}, {σi,1,1, . . . , σi,q,1})
({File, i}, {σi,1,2, . . . , σi,q,2})

· · ·
({File, i}, {σi,1,c, . . . , σi,q,c}).

Here, for a given σi,j,k, value i, 1 ≤ i ≤ t denotes the
column, value j, 1 ≤ j ≤ q denotes the round, and value k,
1 ≤ k ≤ c the InputSplit.

Using integer addition, the reducer computes q “final PIR
sums” sFile,i,j :=

∑c
k=1 σi,j,k, 1 ≤ j ≤ q, and stores val-

ues {sFile,i,1, . . . , sFile,i,q} into an output file. In conclusion,
sFile,i,j represents the sum of column sums of all the map-
pers of one particular column i in PIR matrix j.

This output file is downloaded by U .

3.5 Result Analysis
For each outsourced file (day d), user U retrieves an out-

put file generated by reducers. Now, U analyzes retrieved
files’ content to finally conclude which of the outsourced
files contain w. Again for ease of understanding, we restrict
our description to the analysis of the result generated from
PRISM on a single outsourced file called File. U repeats
this process with all other results from the other files ac-
cordingly.

3.5.1 Result Analysis Protocol

Definition 8 (Collision). Assume U is looking for w,
so C := EKd(w, 1). Similar to hash functions, a collision in
PIR matrixM denotes the case of an event where the candi-
date position (X ′,Y ′) of another ciphertext C′ 6= C matches
the candidate position (X||Y) = bE(w, 1)c

2·log2 (t)
of w in

M. That is, bCc
2·log2 (t)

= bC′c
2·log2 (t)

.

Definition 9 (One-Collision). A one-collision is the
event where in an InputSplit a ciphertext C′ 6= EKd(w, 1)
puts a 1 into the same candidate position inM as EKd(w, 1).

Overview: The rationale for the result analysis protocol
of PRISM is to observe the candidate position of C over q
rounds to mitigate the effect of one-collisions. Of particular
interest will be rounds where bh(C, i)c1 = 1.

First, U un-blinds all values received from reducers. Based
on the result, U distinguished two cases.

Case 1.) If a reducer, reducing for a specific file File,
has returned the value 0 for C’s candidate position, then
U knows for sure that all mappers have output 0 for this
candidate position. Consequently, the candidate position in
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forall files File do1

for i := 1 to q do2

if bh(C, i)c1 = 1 then3

U reads sFile,Y,i;4

si := (sFile,Y,i · b−1 mod p) mod N5

=
∑c
j:=1 bitj ;6

if si = 0 then7

Output w 6∈ File; //Contradiction8

break;9

end10

end11

end12

Output w ∈ File;13

end14

Algorithm 3: U decides whether w ∈ File

matrix M of each mapper is 0. Therefore, C has not been
in any of the InputSplits of File, and U reasons w 6∈ File.
If C would have been in one InputSplit, then at least the
mapper working on this InputSplit would have returned a 1
in this round.

Definition 10 (Contradiction). Let w be the expres-
sion U is looking for, and C its ciphertext. If in some round
i, bh(C, i)c1 = 1 holds and the reducer for file File sends U
a value of 0 then this is called a contradiction.

In case of such a contradiction, U knows for sure that w
is not in file File.

Case 2.) If, however, this reducer returns a value > 0,
then w was in at least one InputSplit or a one-collision has
occurred in at least one InputSplit. User U can neither de-
cide w 6∈ File nor w ∈ File with absolute certainty.
U ’s strategy is to keep the probability for one-collisions

low and run multiple rounds q, such that eventually a con-
tradiction occurs (⇒ U decides w 6∈ File), or, if no contra-
diction occurs, U decides w ∈ File with only a small error
probability Perr.

Details: U executes Algorithm 3. For each file, U is
only interested in row Y of matrices M, as only they can
refer to candidate position (X ,Y). Therefore, U keeps only
values {sFile,Y,1, . . . , sFile,Y,q} and discards the rest. In each
round where bh(C, i)c1 = 1, un-blinds sFile,X ,i to get value
si :=

∑c
i=1 biti. If si = 0, then we have a contradiction, and

U can infer w 6∈ File. If none of the si values has been 0
after all the q rounds, then U will decide w ∈ File. U will
be wrong with Perr.

Note that, although PIR matrices are binary matrices, U
sets N > c to cope with the larger possible values that sums
might take due to collisions.

In conclusion, U ’s strategy can be summarized by

• output w 6∈ File, iff ∃i, si = 0.

• output w ∈ File, iff ∀i, si 6= 0

We will compute U ’s error probability Perr for the latter
case and dependencies of Perr and choices of t and q in Sec-
tion 4.2.

3.6 Extensions
Saving computation: To save some computation in

PRISM, we can modify the hash-based mechanism that de-
termines whether to put a “1” or a “0” in a certain element in

M. Recall that the first 2 · log2(t) bit of a ciphertext C are
used to determine its position (element) inM. However, in-
stead of computing an expensive hash function bh(Ci, j)c1
to get a single bit in round j, we can simply replace the
hash and take C’s bit on position (2 · log2(t) + j). Assuming
that cipher E has good security properties (each bit of C
is “1” with probability 1

2
), this results in the same property

as using the hash: eventually two different ciphertexts that
collide in M will differ and lead to a contradiction. We use
of this computation reduction in our evaluation in Section 5.

Long expressions: As in related work, e.g., Song et al.
[40], we assume for simplicity that expressions are not longer
than our symmetric cipher blocksize. This might not be
realistic in some scenarios. To cope with longer expressions
and varying numbers of ciphertext blocks, PRISM could be
extended to use (stateful) CBC encryption and to add a hash
of each ciphertext to the file. PRISM would then search
within hashes and not ciphertexts.

Fuzzy search: PRISM only allows searching for precise
expressions. Using techniques similar to Li et al. [31], i.e.,
by adding encryptions of variations of expressions, PRISM
could also support fuzzy searching.

Counting: Finally, PRISM’s use of counters γ can be
used for another data mining application: counting. As with
a binary search algorithm, U can launch a set of queries to
eventually determine the exact number of occurrences of an
expression. The number of queries scales logarithmically
with the total number of occurrences possible.

4. PRISM ANALYSIS

4.1 Privacy
While we target no formal proofs, we evaluate PRISM’s

privacy analytically and give short proof sketches.
First, we show that PRISM’s upload of ciphertexts into

the cloud does not reveal any information about plaintexts
as in storage privacy. We do this by explaining why our
stateful cipher encryption is IND-CO. Second, we show that
a set of PRISM queries does neither reveal any information
about which expression U is looking for, nor whether this
expression is present (in encrypted form) in the cloud. We
do this by explaining why PRISM is query private

4.1.1 Storage Privacy

Lemma 1. Stateful cipher Ek(wi||γwi) is IND-CO, where
γwi is the counter for the current number of occurrence of
plaintext wi, and “||” is an unambiguous pairing of inputs.

Proof (Sketch). For different expressions wi 6= wj , as
k is unknown, output of E is undistinguishable from ran-
dom data for adversary A. The stateful cipher construction
modifies input plaintexts for the cipher, such that even for
twice the same plaintexts wi input to the cipher becomes
different, because γi will increase. Therewith E creates dif-
ferent output even for the same wi, undistinguishable from
random data.

Discussion: The remaining question is how to implement
such an unambiguous pairing “||”. If the size of the concate-
nated input |wi| + |γwi | is less than the cipher’s blocksize
(using standard padding), then concatenation provides an
unambiguous pairing.
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We use a stateful cipher construction to achieve IND-CO,
because we require individual ciphertexts to be “findable in
a deterministic fashion. While other encryption modes, e.g.,
CBC, might also provide IND-CO, they do not allow search-
ing for an individual ciphertext deterministically. So for
example in CBC, the position of the plaintext in the file
changes the ciphertext. As U cannot know the position of
an expression in advance, this renders classical encryption
modes useless.

4.1.2 Query Privacy
We simply inherit the strong privacy guarantees and con-

structions of the PIR mechanism of Section 3.1.1 to prove
the two properties of query privacy.

First, note that in PRISM query Q(w) is split into a num-
ber of “sub”-queries, namely one query Qd(w) per file on
date d. These queries are processed in parallel by MapRe-
duce, and U receives output for them separately. Instead
of one response R that can be “un-blinded” into a list of
files D(R) = {L1, L2, . . . } containing w, PRISM provides
U with a set of values {sFile,i,j}, one set per file, that are
analyzed by U separately. Therefore, we again restrict our
explanations to the case of just one outsourced file.

Lemma 2 explains PRISM’s query unlinkability.

Lemma 2. Given a total of z PRISM-queries Qd(wi) =
{α{d,j},i} for expressions wi, results RFile,i = {s{File,j,k},i},
1 ≤ i ≤ z, 1 ≤ j ≤ t, 1 ≤ k ≤ q, together with PRISM’s map
and reduce implementation, an adversary A cannot decide
whether ∃u, v such that wu = wv.

Proof (Sketch). For each queryQd(wi), values {α{d,j},i}
are the product of (fresh) random variable bi and (fresh)
random values ej of the PIR preparation phase. Deciding,
whether ∃u, v such that wu = wv is equivalent to deciding
whether in any of the z sets of α values, there is one value
α{d,u},v from the first set and another value α{d,u′},v′ from
the second set, such that either eu = eu′ or eu′ 6= eu′ .

As it is computationally impossible forA to deduce any in-
formation about the mod 2 value of any ej value. Moreover,
ej values are randomly blinded for each individual query,
and, therefore, results {s{File,j,k},i} are randomly blinded,
too. A cannot decide whether eu = eu′ .

Finally, Lemma 3 shows PRISM’s response unlinkability.

Lemma 3. Given a total of z PRISM-queries Qd(wi) =
{α{d,j},i} for expressions wi, results RFile,i = {s{File,j,k},i},
and PRISM’s map and reduce implementation, an adversary
A cannot decide for any pair of outputs (RFile,i, RFile,i′) =
({s{File,j,k},i}, {s{File,j,k},i′}) whether ∃j1, j2, k1, k2 such that
s{File,j1,k1},i = s{File,j2,k2},i′ mod 2.

Proof (Sketch). This proof is along the same lines as
Lemma 2. As α values are randomized, respectively, any
pair of (s{File,j1,k1},i, s{File,j1,k1},i′) values will look random
to A, too. Values (s{File,j1,k1},i, s{File,j1,k1},i′) will be differ-
ent, even if (s{File,j1,k1},i, s{File,j1,k1},i′) originate both from
queries for the same expression w.

4.2 Statistical Analysis
The remaining question is how U can chose parameters t

and q to get a certain error probability Perr. This probability
describes the chance that, despite w 6∈ File, U wrongly
outputs w ∈ File after q rounds without a contradiction,
cf., Algorithm 3.

We consider for simplicity only rounds where bh(C, i)c1 =
1, cf., Algorithm 3. If h is a cryptographic hash function,
then bh(C, i)c1 = 1 in q′ ≈ q

2
of the q total rounds.

First, we recall some basic probabilities. In one Input-
Split, the probability for a collision is

Pcollision :=
1

t2
.

In one InputSplit, the probability for a one-collision is

Pone−collision :=
Pcollision

2
.

If w is not inside a particular InputSplit, the probabil-
ity that, after inserting the n ciphertexts of that InputSplit
into M, the candidate position is not set to 1 by collision
computes to

PInputSplit,no−one−collision := (1− Pone−collision)n.

Now, if w 6∈ File, i.e., in none of the InputSplits, the
probability that the candidate position is not set to 1 by
collision in any InputSplits of File is

Pcontradiction := (PInputSplit,no−one−collision)c.

This is the probability that a contradiction occurs in a single
round. If w 6∈ File, the probability that a contradiction
occurs in at least one of the q rounds is

Pcontradiction,q−rounds := 1− (1− Pcontradiction)q.

After q rounds without a contradiction, U automatically
decides that w is in File. In case that w 6∈ File, and no
contradiction occurs in q rounds, U is therefore wrong with
probability

Perr := 1− Pcontradiction,q−rounds = (1− (1− 1

2 · t2 )cn)q.

Given a certain file size, the size of InputSplits, and the
blocksize of the symmetric cipher, U computes c and n.
Therewith, U can target a false-positive probability by ap-
propriately selecting t and q. We evaluate this using a real-
world scenario in Section 5.

5. EVALUATION
To show its real-world feasibility, we have implemented

and evaluated PRISM. The source code is available for pub-
lic download [21]. We received 16 days of log data from May
2010 from a small local Internet provider. This provider logs
and retains all customers’ DNS resolve requests for possible
forensic analysis and intrusion detection. Log data is split
into files on a daily basis. Each file contains one day of logged
3-tuples (timestamp, customer IP, hostname). The scenario
for our evaluation is to use PRISM to upload this data (en-
crypted) to MapReduce and perform searches for specific
hostnames in a privacy-preserving manner. This is useful
for, e.g., “passive DNS analysis” to determine at which day
certain command-and-control centers of botnets have been
accessed by customer machines, cf., Bilge et al. [4]. The
goal of our experiments was to analyze the computational
overhead induced by PRISM’s privacy mechanism, i.e., the
additional time consumed by PRISM over non-privacy-pre-
serving MapReduce.

5.1 Setup
For the period of 16 days, the log data contains≈ 3·108 log
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entries, i.e., ≈ 2 · 107 per file/day. The total space required
by all files uploaded into MapReduce using PRISM is 27
GByte, on average 1.7 GByte per file.

Our experiments have been performed on a small “cloud”
comprising 1 master computer and 9 slaves. Computers fea-
tured a Pentium Dual Core with 2.5 GHz clock frequency
and 4 GByte of RAM and running a standard desktop in-
stallation of Fedora 11. With this hardware configuration,
a total of 18 CPUs were available for maps and reduces.
We installed Hadoop version 0.20.2 on our cloud. Being
aware that tailoring MapReduce’s configuration parameters
can have a huge impact on performance, we use the stan-
dard, out-of-the-box configuration of Hadoop 0.20.2 with-
out any configuration tweaks. Performance tuning is out
of scope of this paper. Similarly, as the InputSplit size is
recommended to be between 64 MByte and 128 MByte, we
chose SInputSplit = 96 MByte (our InputSplits have to be
dividable by 3 · 32 Byte).

In addition to the evaluation with 96 MByte InputSplits,
we also performed a second measurement with slightly larger
InputSplits of 120 MByte. We expected a slightly improved
performance of PRISM, due to the fact that for the larger
files the total number of InputSplits c reduced to less than
our 18 available CPUs. Therewith, no additionally costly
(re-)scheduling takes places and mappers do not have to
process 2 InputSplits sequentially.

Finally, to put timing results into perspective, we also im-
plemented and measured a trivial, non-privacy-preserving
MapReduce job called Baseline. Baseline consists of an
empty map phase, were each mapper simply scans over its
InputSplit, but does not generate any key-value pairs out of
the input. Only at the end of the map phase, a single inter-
mediate key-value pair per mapper is sent to reducers. Upon
receipt, reducers discard this key-value pair and write empty
files to disk. This trivial baseline only serves in deducing the
overhead implied by PRISM, not taking MapReduce specific
delays due to rescheduling, speculative execution of backup
tasks etc. [19, 38] into account.

For the trapdoor group private information retrieval algo-
rithm, we set m = 400 as suggested by Trostle and Parrish
[41] for good security and privacy. Our Java implementa-
tion is a naive, straightforward implementation using Java’s
BigInteger without any performance optimizations. As sym-
metric encryption cipher, we used AES with 256 Bit block-
size from the GNU Crypto Library V2.0.1 [23]. For our IND-
CO extension we reserved |γ| = 2 Byte and truncated DNS
hostnames longer than 30 Byte down to the last 30 Byte.

Table 1: Parameters t, q to achieve Perr < 0.01.

File size (GByte)

0.45 1.21 1.32 1.36 1.38 1.45 1.52 1.67

t 210 211

q 100 60 80

File size (GByte)

1.78 1.93 2 2.08 2.09 2.14 2.21 2.25

t 212

q 20

Simulating U , we computed n and c using blocksize, In-

putSplit size SInputSplit,, and individual file size SFile. As-
suming that U targets an error probability of Perr < 0.01,
Table 1 sums up parameters (t, q) computed for each file
individually. Compared to q, we observed that parameter
t has a much higher impact on Pcontradiction, but a com-
paratively lower impact on computations. Therefore, we
increased preferably t than q. Higher values for (t, q) will
achieve even smaller values for Perr, but Table 1 shows the
computationally “cheapest” combination of (t, q).

5.2 Results
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Figure 2: Wall clock timings for PRISM and Base-
line protocol runs with SInputSplit = 96 MByte and
SInputSplit = 120 MByte.

Figure 2 presents PRISM’s timing results. We have sorted
the 16 files based on their size in an increasing order, i.e,
the size of the smallest log file we received from the Internet
provider was 0.45 GByte, the largest one was 2.25 GByte.
PRISM’s execution time was clocked on each file 6 times,
respectively, and Fig. 2 shows the average. For each file,
Fig. 2 shows two stacked boxes, respectively: the first one
for 96 MByte and the second one for 120 MByte InputSplit
size. Each of the stacked boxes comprises, first, the baseline
timing, and, second, the additional time required to run
PRISM. To give trust into the evaluation, Fig. 2 also shows
95% confidence intervals drawn right next to each box.

Timings shown in Fig. 2 are “wall clock” timings. This
captures the complete time elapsed from submitting the
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PRISM map and reduce classes and starting the job until
the end of the reduce phase.

In conclusion the additional overhead over the trivial Base-
line MapReduce jobs was on average 11% with a 95% con-
fidence interval of ±3. The largest overhead seen was 24%
over Baseline. These results do not only show the feasibility
of PRISM in practice, but also demonstrate the low overhead
implied by PRISM over any non-privacy preserving MapRe-
duce job. We claim that a performance optimized implemen-
tation, not based on Java BigInteger, improves performance
significantly and furthermore reduces PRISM’s overhead.

The simple increase from 96 MByte InputSplit size to
120 MByte InputSplit size has reduced wall clock times for
MapReduce jobs on by 9% on average (95% confidence in-
terval of ±4). Files of size smaller than 2 GByte are split
into ≤ 18 InputSplits, and both jobs, PRISM and Baseline,
are processed completely in parallel. This demonstrates that
a careful configuration of Hadoop MapReduce’s many sys-
tem parameters, handcrafted and specific to the scenario
and jobs to be executed, will lead to substantial perfor-
mance improvements. This also indicates that in a cloud
with more CPUs than in our small setup, the increased
number of CPUs will enable to configure way smaller In-
putSplits being processed in parallel. Substantially smaller
InputSplits will be beneficial for the overall performance of
PRISM or any MapReduce job. However, increasing the
number of InputSplits also implies a performance penalty
due to (re-)scheduling and coordination activities of the cen-
tral job tracker, cf., Pavlo et al. [38], so a trade-off has to be
found. MapReduce configuration optimization are, however,
out of scope of this paper.

Computational overhead for U is extremely low in PRISM:
per file, the preparation of, e.g., 212 = 4096 α values on a
desktop computer with a 2.5 GHz CPU is barely measur-
able (≈ 200 ms). During result analysis, U automatically
discards all received values that he is not interested in, i.e.,
all besides sFile,Y,1≤i≤q. For these q values, a total of q
BigInteger multiplications with modulo. For our examples
with q ≤ 100, this was not measurable at < 1 ms. Commu-
nication overhead from U to MapReduce is, besides .class
files, only the t α values. With, e.g., t = 212 and m = 400
Bit, this computes to 200 KByte. Response from the cloud
is, for each round, t values of size m. The most expensive
configuration in terms of communication in our experiments
was t = 210, q = 100; this results in ≈ 5 MByte commu-
nication overhead. Note that communication complexity in
the PIR scheme by Trostle and Parrish [41] is linear in the
square root of the total table size, i.e., O(t). This can be
further reduced by using recursive PIR queries to O(tε), for
any ε > 0 [30]. Those optimizations, as well as, e.g., amor-
tization techniques discussed by Ostrovsky and Skeith [37]
are out of scope. In conclusion, PRISM is very lightweight
for a client using standard PC hardware.

Discussion: While gross timings for queries are high,
we point out that most of the time is required by the core
MapReduce framework, and PRISM adds only a small com-
putational overhead. Note that on a larger cluster in a
more professional environment (hundreds or even thousands
of CPUs [28]), all files will be processed in parallel. As
you can see in Fig. 2, total time for the 2 GByte file is
≈ 350 s (≈ 6 min). However, already ≈ 340 s are required
by MapReduce just to “scan” through the various Input-
Splits, see Baseline. This has been reported previously, and

our results are along the lines of Pavlo et al. [38]. Here, a
“grep”-like MapReduce job on 1 TByte of data was clocked
at ≈ 1, 500 s on 50 CPUs which would be ≈ 20 times faster
than our Baseline. However, Pavlo et al. [38] use a slightly
tuned configuration and moreover a more efficient scanning
through InputSplits (100 Byte text values instead of 32 Byte
binary values in our case) which is known to lead to signifi-
cant performance increases [29].

6. RELATED WORK
Cloud Security: Current security research for cloud

computing tackles rather traditional issues such as data con-
fidentiality [43], unauthorized access [42] or Denial of Service
attacks [27, 32]. Most solutions focus on the protection of
the cloud from malicious users. Roy et al. [39] propose a
security solution dedicated to MapReduce. Unlike PRISM,
the cloud user is the adversary and the cloud is protected
against a curious users. In contrast, PRISM considers the
cloud as a privacy threat.

Private Information Retrieval: Private Information
Retrieval (and similarly oblivious transfer and oblivious RAM)
has received a lot of attention [8, 14, 15, 22, 25, 30, 36, 37,
37]. In PIR, a user retrieves a specific date from a database.
The only “privacy” goal in these schemes is access privacy
whereby the server should not discover which date a user is
interested in. Note that PIR does not ensure privacy of data
in the database. PRISM, however, focuses on searching for
an expression and uses PIR as a tool.

Searchable Encryption: With searching on encrypted
data techniques [5], user privacy is guaranteed thanks to
the encryption of the queries and the stored data. How-
ever, PRISM offers higher privacy guarantees since in exist-
ing searchable encryption solutions [3, 5–7, 9, 18, 24, 35, 40],
the result (“found” or “not found”) originating from a query
is known to the adversary. So, the server can obtain some
knowledge on users’ queries. In PRISM, the adversary does
not learn anything about queries or results. Moreover, exist-
ing searchable encryption mechanisms cannot be extended
to leverage from a parallelized cloud setup: while in theory
the search on encrypted data itself could be run in parallel
on subsets of data, the combination of results (as in a reduce
phase) is impossible in today’s solutions.

7. CONCLUSION
PRISM is the first privacy-preserving search scheme suited

for cloud computing. That is, PRISM provides storage and
lookup privacy with very high performance by leveraging
the efficiency of the MapReduce paradigm with the pri-
vacy guarantees of a PIR scheme. Moreover, the scheme
is compatible with any MapReduce-based cloud infrastruc-
ture since it only requires a standard MapReduce interface
(such as Amazon’s) without any modification in the under-
lying system. Thanks to this compatibility, PRISM has been
efficiently implemented on an experiemental cloud comput-
ing environment using Hadoop MapReduce. Performance
of PRISM has been evaluated on that environment through
search operations in DNS logs provided by a telco opera-
tor. The overhead of PRISM over baseline search operations
(without the privacy support) was found to be 11% on the
average, acertaining the efficiency of PRISM.
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