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Abstract

This paper begins with a practical contribution, namely a way to leverage the RKA security of
blockciphers to provide RKA security for a suite of high-level primitives. This motivates a more
general theoretical question, namely, when is it possible to transfer RKA security from a primitive
P1 to a primitive P2? We provide both positive and negative answers. What emerges is a broad
and high level picture of the way achievability of RKA security varies across primitives, showing, in
particular, that some primitives resist “more” RKAs than others. A technical challenge was to achieve
RKA security even for the practical classes of related-key deriving (RKD) functions underlying fault
injection attacks that fail to satisfy the “claw-freeness” assumption made in previous works. We
surmount this barrier for the first time based on the construction of PRGs that are not only RKA
secure but satisfy a new notion of identity collision resistance.
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1 Introduction

By fault injection [14, 7] or other means, it is possible for an attacker to induce modifications in a
hardware-stored key. When it subsequently observes the outcome of the cryptographic primitive under
this modified key, we have a related-key attack (RKA) [18].

The key might be a signing key of a certificate authority or SSL server; a master key for an IBE
system; or someone’s decryption key. Once viewed merely as a way to study the security of blockci-
phers [6, 25], RKAs emerge as real threats in practice and of interest for primitives beyond blockciphers.

It becomes of interest, accordingly, to achieve (provable) RKA security for popular high-level prim-
itives. How can we do this?

Practical contributions. One approach to building RKA secure high-level primitives is to do so
directly, based, say, on standard number-theoretic assumptions. This, however, is likely to yield a bunch
of ad hoc results about security against classes of attacks tied to the scheme algebra that are unlikely
to reflect attacks in practice.

We take a different approach. RKA security is broadly accepted in practice as a requirement for
blockciphers. AES was designed with the explicit goal of resisting RKAs. We currently have blockciphers
whose resistance to RKAs is backed by fifteen years of cryptanalytic and design effort. We propose to
leverage this.

We will provide general and systematic ways to immunize any given instance of a high-level primitive
against RKAs with the aid of an RKA-secure blockcipher, modeling the latter, for the purpose of proofs,
as a RKA-secure PRF [4]. We will do this not only for “minicrypt” primitives that are “close” to PRFs
like symmetric encryption, but even for public-key encryption, signatures and identity-based encryption.
The methods are cheap and non-intrusive from the software perspective and able to completely transfer
all the RKA security of the blockcipher, so that the high-level primitive resists attacks of the sort that
arise in practice.

Theoretical contributions. The ability to transfer RKA security from PRFs to other primitives
lead us to ask a broader theoretical question, namely, when is it possible to transfer RKA security from a
primitive P1 to a primitive P2? We provide positive results across quite diverse primitives, showing, for
example, that RKA secure IBE implies RKA secure IND-CCA PKE. We also provide negative results
showing, for example that RKA secure signatures do not imply RKA secure PRFs.

All our results are expressed in a compact, set-based framework. For any primitive P and class Φ
of related-key deriving functions —functions the adversary is allowed to apply to the target key to get
a related key— we define what it means for an instance of P to be Φ-RKA secure. A transfer of RKA
security from P1 to P2 means a construction of a Φ-RKA secure instance of P2 given a normal-secure
instance of P2 and a Φ-RKA secure instance of P1 and is expressed compactly as a set containment
RKA[P1] ⊆ RKA[P2]. Complementing this are non-containments of the form RKA[P2] 6⊆ RKA[P1],
which show the existence of Φ such that there exists a Φ-RKA instance of P2 yet no instance of P1 can
be Φ-RKA secure, indicating, in particular, that RKA security cannot be transferred from P2 to P1.

As Figure 1 shows, we pick and then focus on a collection of central and representative cryptographic
primitives. We then establish these containment and non-containment relations in a comprehensive and
systematic way. What emerges is a broad and high level picture of the way achievability of RKA security
varies across primitives, showing, in particular, that some primitives resist “more” RKAs than others.

We view these relations between RKA[P] sets as an analog of complexity theory, where we study
relations between complexity classes in order to better understand the computational complexity of
particular problems. Let us now look at all this more closely.

Background. Related-key attacks were conceived in the context of blockciphers [6, 25]. The first
definitions were accordingly for PRFs [4]. For F : K × D → R they consider the game that picks a
random challenge bit b and random target key K ∈ K, then picks, for each L ∈ K, a random function
G(L, ·): D → R, and allows the adversary multiple queries to an oracle that, given a pair (φ, x), where
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φ: K → K and x ∈ D, returns F (φ(K), x) if b = 1 and G(φ(K), x) if b = 0. They say that F is Φ-RKA
secure, where Φ is a class of functions mapping K to K, if the adversary has low advantage in predicting
b when it is allowed, in its queries, to only use functions φ from Φ.

We let RKA[PRF] be the set of all Φ for which there exists a Φ-RKA secure PRF. Which Φ are
in this set? All the evidence so far is that this question has no simple answer. Bellare and Kohno [4]
gave natural examples of Φ not in RKA[PRF], showing the set is not universal. Membership of certain
specific Φ in RKA[PRF] has been shown by explicit constructions of Φ-RKA PRFs, first under novel
assumptions [27] and then under standard assumptions [3]. Beyond this we must rely on cryptanalysis.
Modern blockciphers including AES are designed with the stated goal of RKA security. Accordingly
we are willing to assume their Φ-RKA security —meaning that Φ ∈ RKA[PRF]— for whatever Φ
cryptanalysts have been unable to find an attack.

Beyond PRFs. Consideration of RKAs is now expanding to primitives beyond PRFs [19, 2, 21]. This
is viewed partly as a natural extension of the questions on PRFs. It is also motivated by the view of
RKAs as a class of sidechannel attacks [18]. An RKA results when the attacker alters a hardware-stored
key via tampering or fault injection [14, 7] and observes the result of the evaluation of the primitive
on the modified key. The concern that such attacks could be mounted on a signing key of a certificate
authority or SSL server, a master key for an IBE system, or decryption keys of users makes achieving
RKA security interesting for a wide range of high-level primitives.

Definitions. We focus on a small but representative set of application-relevant primitives for which
interesting variations in achievability of RKA security emerge. These are Sig (Signatures), PKE-CCA
(CCA-secure public key encryption), SE-CCA (CCA-secure symmetric encryption), SE-CPA (CPA-secure
symmetric encryption), IBE (identity-based encryption) and wPRF (weak PRFs [29]). We define what
it means for an instance of P to the Φ-RKA secure for each P ∈ {wPRF, IBE,Sig,SE-CCA,SE-CPA,
PKE-CCA}. We follow the definitional paradigm of [4] but there are some delicate primitive-dependent
choices that significantly affect the strength of the definitions and the challenge of achieving them
(cf. Section 2). We let RKA[P] be the set of all Φ for which there exists a Φ-RKA secure instance of
P. These sets are all non-trivial.

Relations. We establish two kinds of relations between sets RKA[P1], RKA[P2]:

• Containment: A proof that RKA[P1] ⊆ RKA[P2] that we establish by taking a Φ-RKA secure in-
stance of P1 and constructing a Φ-RKA secure instance of P2, usually under the (minimal) additional
assumption that one is given a normal-secure instance of P2. Containments yield constructions of
Φ-RKA secure instances of P2.

• Non-containment: A proof that RKA[P2] 6⊆ RKA[P1]. Here we exhibit a particular Φ for which we
(1) construct a Φ-RKA secure instance of P1 under some reasonable assumption, and (2) show, via
attack, that any instance of P2 is Φ-RKA insecure.

We show that RKA-secure PRFs are powerful enablers of RKA-security: given a Φ-RKA PRF and a
normal-secure instance of P we construct a Φ-RKA secure instance of P for all P ∈ {wPRF, IBE,Sig,
SE-CCA,SE-CPA,PKE-CCA}. This is represented by the string of containments in the first row of the
table in Figure 1. On the practical side, instantiating the PRF with a blockcipher yields a cheap way to
immunize the other primitives against RKAs. On the theoretical side, instantiating the PRF with the
construct of [3] yields Φ-RKA secure instances of the other primitives based on standard assumptions.

The separations shown in the first column of the table of Figure 1, however, also show that RKA-
PRFs are overkill: all the other primitives admit Φ-RKA secure instances for a Φ for which no Φ-RKA
PRF exists. This leads one to ask whether there are alternative routes to RKA-secure constructions of
beyond-PRF primitives.

We show that IBE is a particularly powerful starting point. We observe that Naor’s transform
preserves RKA-security, allowing us to turn a Φ-RKA secure IBE scheme into a Φ-RKA secure Sig

scheme. Similarly, we show that the transform of Boneh, Canetti, Halevi and Katz (BCHK) [13] turns
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IBE 6⊆ 6⊆ ⊆ ⊆ 6⊆ 6⊆ ⊆
Sig 6⊆ 6⊆ ⊆ 6⊆ 6⊆ 6⊆
SE-CCA 6⊆ ⊆ ⊆
SE-CPA 6⊆ 6⊆ 6⊆ ⊆ 6⊆
PKE-CCA 6⊆ 6⊆ 6⊆ 6⊆ ⊆

Figure 1: Relations between RKA[P] classes. A containment RKA[P1] ⊆ RKA[P2] is represented
in the picture by an arrow P1 → P2 and in the table by a “⊆” in the row P1, column P2 entry. A
non-containment RKA[P1] 6⊆ RKA[P2] is represented in the table by a “6⊆” in the row P1, column
P2 entry. The picture does not show non-containments. The picture sometimes shows a redundant
containment (for example the arrow PRF → Sig when there is already a path PRF → IBE → Sig)
because it corresponds to an interesting direct construction. A blank entry in the table means we do
not know.

a Φ-RKA secure IBE scheme into a Φ-RKA secure PKE-CCA scheme. What lends these transforms well
to RKA-security is that they do not change the secret key. We also show that given a Φ-RKA secure
wPRF we can build a Φ-RKA secure SE-CPA scheme. (A wPRF is like a PRF except that is only
required to be secure on random inputs [29].) These results motivate finding new Φ-RKA secure IBE
schemes and wPRFs.

As the table of Figure 1 indicates, we show a number of other non-containments. Sig emerges as a
very “RKA-resilient” primitive in the sense that it can be secure against strictly more RKAs than most
other primitives. Some of the non-containments, such as RKA[PKE-CCA] 6⊆ RKA[SE-CPA] might
seem odd; doesn’t PKE always imply SE? What we are saying is that the trivial transformation of a
PKE scheme to an SE one does not preserve RKA-security and, moreover, there are Φ for which no

transform exists that can do this.

Claws ok. All previous constructions of Φ-RKA secure primitives [4, 27, 3, 19, 2, 21, 22] assume Φ is
claw-free (distinct functions in φ disagree on all inputs) because it is hard to do the proofs otherwise,
but the Φ underlying practical fault injection attacks are not claw-free, making it desirable to get
constructions avoiding this assumption. For the first time, we are able to do this. In Section 2 we explain
the technical difficulties and sketch our solution, which is based on the construction of a Φ-RKA PRG
that has a novel property we call identity collision resistance (ICR), a variant of the collision-resistance
property from [23].

Related work. The first theoretical treatment of RKAs was by Bellare and Kohno [4]. Being inspired
by blockciphers, it was for PRFs and PRPs. They showed examples of classes not in RKA[PRF], gave
conditions on Φ for ideal ciphers to be Φ-RKA secure, and provided standard model constructs for some
limited classes. Subsequently, constructions of Φ-RKA secure PRFs and PRPs for more interesting Φ
were found, first under novel assumptions [27] and then under standard assumptions [3], and the results
on ideal ciphers were extended in [1].

We are seeing growing interest in RKA security for other-than-PRF primitives. Goldenberg and
Liskov [19] study related-secret security of lower-level primitives, namely one-way functions, hardcore
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bits and pseudorandom generators. Applebaum, Harnik and Ishai [2] defined RKA security for (ran-
domized) symmetric encryption, gave several constructions achieving that definition for interesting Φ
and then presented numerous applications. Connections with point obfuscation are made by Bitansky
and Canetti [8].

Interest in RKA security for higher-level primitives is evidenced by Goyal, O’Neill and Rao [21, 22],
who define correlated-input (CI) hash functions, show how to construct them from the q-DHI assumption
based on Boneh-Boyen signatures [11, 12] and the Dodis-Yampolskiy PRF [16], and apply this to get
Φ-RKA secure signatures from q-DHI for a class Φ consisting of polynomials over a field of prime order.
(They indicate their approach would also work for other primitives.) Their construction is similar to
ours. However, their definitions and results, unlike ours, are restricted to claw-free Φ. (As we discuss
further in Section 2, many classes of practical interest are not claw-free and achieving security in this
case involves additional technical challenges that we surmount.) Also, we start from Φ-RKA-PRFs and
thus get in-practice security for any class Φ for which blockciphers provide them, while they start from a
number-theoretic assumption and get security for a specific class Φ, related to the scheme algebra, that
may not capture practical attacks. We note that their work and ours are concurrent and independent.
(Ours was submitted to, and rejected from, Eurocrypt 2011, while theirs was submitted to, and accepted
at, TCC 2011.)

Gennaro, Lysyanskaya, Malkin, Micali and Rabin [18] suggest that RKAs may arise by tampering.
They show that one can achieve security when related keys are derived via arbitrary key modification,
but assuming that an external trusted authority signs the original secret key and installs the signature
on the device together with its own public key, the latter being “off limits” to the attacker. (Meaning,
the related-key deriving functions.) In our case, no such authority is assumed. The off-limit quantities
are confined to pre-installed public parameters. No information that is a function of the parameters
and the key is installed on the chip.

Ishai, Prabhakaran, Sahai and Wagner [24] are concerned with tampering of wires in the computation
of a circuit while we are concerned with tampering with hardware-stored keys. Dziembowski, Pietrzak
and Wichs [17] develop an information theoretic method for preventing tampering and show that a
wide class of limited, but non-trivial, Φ can be achieved (unconditionally) for any so-called “interactive
stateful system.”

2 Technical approach

Before providing formal definitions, constructions and proofs of our many positive and negative results,
we would like to illustrate one technical issue, namely the challenges created by Φ that are not claw-
free and how we resolve them. Our discussion is for concreteness restricted to the design of Φ-RKA
signatures based on Φ-RKA PRFs.

The claw-freeness assumption. All known constructions of Φ-RKA-secure primitives [4, 27, 3, 19,
2, 21, 22] are restricted to Φ that are claw-free. This means that any two distinct functions in Φ disagree
on all inputs. This assumption is made for technical reasons; it seems hard to do simulations and proofs
without it. Yet the assumption is undesirable, for many natural and practical classes of functions are
not claw-free. For example, fault injection might be able to set a certain bit of the key to zero, and if
Φ contains the corresponding function and the identity function it is not claw-free. Accordingly it is
desirable to avoid this assumption. For the first time we are able to do so, via a new technical approach.

Definitions and issues. The degree to which claw-freeness is embedded in current approaches is
made manifest by the fact that the very definition of Φ-RKA secure signatures of [21, 22] assumes it
and is unachievable without it. Let us take a closer look to see how.

The game picks secret signing key sk and associated public verification key vk . It gives the adversary
a signing oracle Sign that, given φ,m, where φ is required to be in Φ, returns the signature of message
m under key φ(sk). The adversary eventually outputs m,σ. Besides validity of m,σ under vk , winning
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requires that m be “new,” meaning not “previously signed.” The delicate question is, how do we define
this? The choice of [21, 22] is to disallow signing query id,m, where id is the identity function. But the
adversary can easily define a function φ that is the identity on all but a negligible fraction of its inputs.
A query φ,m is then valid since φ 6= id, but almost always returns the signature σ of m under sk , so the
adversary can output m,σ and win. By assuming Φ is claw-free and contains id, [21, 22] ensure that
such a φ is not in Φ and the attack is ruled out.

Our altered definition of m being “new” is that there was no signing query φ,m with φ(sk) = sk .
This seems, indeed, the natural requirement, ruling out nothing more than that m was signed under sk .

We now have a much more general definition that is meaningful even for the non claw-free Φ that arise
in practice, but it has a subtle feature that makes achieving it a challenge. Namely, checking whether

the adversary won apparently requires knowing sk for we have to test whether or not φ(sk ) = sk . In
the reduction proving security, however, we will be designing an adversary B attempting to distinguish
“real” or “random” instances of some problem given an adversary A breaking the signature scheme,
and B will see if A won, declaring “real” if so and “random” otherwise. But B will be simulating A
and will not know sk , so the difficulty is how it can test that A won.

Overview of solution. We start from a Φ-RKA PRF F : K × D → R that has what we call a key
fingerprint for the identity function. This is a relaxation of the notion of a key fingerprint of [3]. It
consists of a vector w over D such that for all K and all φ ∈ Φ with φ(K) 6= K there is some i such
that F (K,w[i]) 6= F (φ(K),w[i]). This allows us to statistically disambiguate the original key K from
other keys. Such fingerprints exist for the Φ-RKA PRFs of [3] and for blockciphers and are thus a mild
assumption.

We now turn F into a PRG (Pseudorandom Generator) G that has two properties. First, it is
Φ-RKA secure, meaning the adversary has low advantage in determining the challenge bit b in the game
that picks a random target key K and random function R and gives the adversary an oracle Gen that
on input φ returns G(φ(K)) if b = 1 and R(φ(K)) if b = 0. This is of course easily obtained from a
Φ-RKA PRF. The new property is to be what we call Φ-ICR (Identity Collision Resistant). This means
that it is hard for the adversary to find φ ∈ Φ such that φ(K ) 6= K yet G(φ(K )) = G(K ) when K is a
hidden key. At first it might seem this follows from Φ-RKA security but Proposition 5.1 shows it does
not. However Proposition 5.2 shows how to build a PRG that is both Φ-RKA and Φ-ICR secure from
a Φ-RKA PRF with an identity key fingerprint without assuming Φ is claw-free.

We build our Φ-RKA signature scheme from this PRG G and a base (normal secure) signature
scheme, as follows. The secret key of our new signature scheme is a key K for the PRG. The output
G(K) of the PRG on inputK is used as coins to run the key-generation algorithm K of the base signature
scheme to get a public key pk which becomes the public key of our scheme, the corresponding secret
key being discarded. (Recall the secret key of the new scheme is the PRG key K.) To sign a message
m under K, run G on K to get coins for K, run the latter with these coins to get pk , sk and finally sign
m under sk with the base signature scheme. Verification is just as in the base signature scheme.

For the proof we must construct an adversary B breaking the Φ-RKA security of G given an adversary
A breaking the Φ-RKA security of our signature scheme. B thinks of the key K underlying its game as
the secret key for our signature scheme and then runs A. When A makes Sign query φ,m, adversary
B will call its Gen oracle on φ and use the result as coins for K to get a secret key under which it then
signs m for A. Eventually A outputs a forgery attempt m,σ. We expect that the assumed security of
the base signature scheme will make it unlikely that A’s forgery is a winning one when Gen is underlain
by a random function. So B would like to test if A’s forgery was a winning one, outputting 1 if so and 0
otherwise, to win its game. The difficulty is that it cannot test this because, not knowing K, it cannot
test whether or not A made a Sign query φ,m with φ(K) = K. The Φ-ICR property of G comes to
the rescue, telling us that whether or not φ(K) = K may be determined by whether or not the outputs
of G on these two inputs, which B does have, are the same.

This sketch still pushes under the rug several subtle details which are dealt with in the full proof of
Theorem 6.2, to be found in Appendix D.
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3 Preliminaries

Notation. For sets X,Y,Z let Fun(X,Y ) be the set of all functions mapping X to Y , and let
FF(X,Y,Z) = Fun(X × Y,Z). The empty string is denoted ε. If v is a vector then |v| denotes
the number of its coordinates and v[i] denotes its i-th coordinate, meaning v = (v[1], . . . ,v[|v|]). A
(binary) string x is identified with a vector over {0, 1} so that |x| is its length and x[i] is its i-th bit.
If a1, . . . , an are strings then a1 ‖ · · · ‖ an denotes their concatenation. If S is a set then |S| denotes its

size and s
$

← S the operation of picking a random element of S and calling it s.

Algorithms. Unless otherwise indicated, an algorithm is PT (Polynomial Time) and may be ran-
domized. An adversary is an algorithm. If A is an algorithm and x is a vector then A(x) denotes
the vector (A(x[1]), . . . , A(x[|x|])). By y ← A(x1, x2, . . . ; r) we denote the operation of running A on

inputs x1, x2, . . . and coins r ∈ {0, 1}∗. We denote by y
$

← A(x1, x2, . . .) the operation of picking r at
random and letting y ← A(x1, x2, . . . ; r). We denote by [A(x1, x2, . . .)] the set of all possible outputs of
A on inputs x1, x2, . . .. We denote by k ∈ N the security parameter and by 1k its unary encoding. It is
assumed that the length of the output of any algorithm A depends only on the lengths of its inputs. In
particular we can associate to single-input algorithm A its output length ℓ satisfying |A(x)| = ℓ(|x|) for
all x. If A,B are algorithms then A ‖B denotes the algorithm that on any input x returns A(x) ‖B(x).

Games. Some of our definitions and proofs are expressed via code-based games [5]. Recall that such
a game consists of an Initialize procedure, procedures to respond to adversary oracle queries and a
Finalize procedure. A game G is executed with an adversary A as follows. First, Initialize executes
on input 1k and its output is the input to A. Then A executes, its oracle queries being answered by
the corresponding procedures of G. When A terminates, its output becomes the input to the Finalize

procedure. The output of the latter, denoted GA, is called the output of the game. We let “GA ⇒ d”
denote the event that this game output takes value d. If Finalize is absent it is understood to be the
identity function, so the game output is the adversary output. Boolean flags are assumed initialized to
false.

4 Classes of RKDFs and RKA-PRFs

Classes of RKDFs. In [4], a class Φ of related-key deriving functions (RKDFs) is a finite set of
functions, all with the same domain and range. Our more general, asymptotic treatment requires
extending this, in particular to allow the functions to depend on public parameters of the scheme.
For us a class Φ = (P,Q) of RKDFs, also called a RKA specification, is a pair of altorithms, the
second deterministic. On input 1k, parameter generation algorithm P produces parameters π. On
input π, a key K and a description φ of an RKD function, the evaluation algorithm Q returns either
a modified key or ⊥. We require that for all φ, π, either Q(π,K, φ) = ⊥ for all K or for no K. We
let Φπ,φ(·) = Q(π, ·, φ). We require that Φ always includes the identity function. (Formally, there is a
special symbol id such that Φπ,id(K) = K for all K,π. This is to ensure that Φ-RKA security always
implies normal security.) We let ID be the class consisting of only the identity function, so that ID-RKA
security will be normal security.

A scheme (regardless of the primitive) is a tuple (P , · · · ) of algorithms, the first of which is a
parameter generation algorithm that on input 1k returns a string. If ℓ is the output length of P, we
say that Φ = (P,Q) is compatible with the scheme if the string formed by the first ℓ(k) bits of the
output of P(1k) is distributed identically to the output of P(1k) for all k ∈ N. This is done so that,
in constructing one Φ-RKA primitive from another, we can extend the parameters of the constructed
scheme beyond those of the original one without changing the class of RKDFs.

We say that Φ = (P,Q) is claw-free if φ 6= φ′ implies Q(π,K, φ) 6= Q(π,K, φ′) for all π,K. This
property has been assumed almost ubiquitously in previous work [4, 27, 19, 3] because of the technical
difficulties created by its absence, but its assumption is in fact quite restrictive since many natural
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proc Initialize // PRF

π
$

← P(1k) ; K
$

← K(π)

b
$

← {0, 1}
Return π

proc Fn(φ, x) // PRF

K ′ ← Q(π,K, φ)
If K ′ = ⊥ then return ⊥
If b = 1 then
T [K ′, x]← F(π,K ′, x)

If b = 0 and T [K ′, x] = ⊥ then

T [K ′, x]
$

← Rng(π)
Return T [K ′, x]

proc Finalize(b′) // PRF

Return (b = b′)

proc Initialize // PRFReal,PRFRand

π
$

← P(1k)

K
$

← K(π)
Return π

proc Fn(φ, x) // PRFReal

K ′ ← Q(π,K, φ)
If K ′ = ⊥ then return ⊥
Return F(π,K ′, x)

proc Fn(φ, x) // PRFRand

K ′ ← Q(π,K, φ)
If K ′ = ⊥ then return ⊥
If T [K ′, x] = ⊥ then

T [K ′, x]
$

← Rng(π)
Return T [K ′, x]

proc Initialize // IDFP

π
$

← P(1k)

K
$

← K(π)

w
$

← IKfp(π)
Return π,w

proc Fn(φ) // IDFP

K ′ ← Φπ,φ(K)
If (K ′ = ⊥) then return ⊥
If (K ′ 6= K) then
If (F(K ′,w) = F(K,w)) then
Win← true

Return F(K ′,w)

proc Finalize() // IDFP

Return Win

Figure 2: Games defining Φ-RKA PRF security and Φ-IDFP security of function family FF = (P,K,
F) having range Rng(·).

classes do not have it. We are able to remove this assumption and provide constructs secure even for
non-claw-free classes via new technical approaches.

The class Φconst = (P,Qconst) of constant functions associated to class Φ = (P,Q) is defined by
Φconst
π,a (K) = a for all K,a ∈ {0, 1}∗ and all π. The union Φ1 ∪Φ2 = (P,Q) of classes Φ1 = (P,Q1) and

Φ2 = (P,Q2) is defined by having Q(π,K, φ) parse φ as i ‖φ∗ for i ∈ {1, 2} and return Qi(π,K, φ∗).

Discussion. In a non-asymptotic treatment, there is no formal line between “secure” and “insecure.”
This makes it unclear how to rigorously define the sets RKA[P]. Lead, accordingly, to pursue an
asymptotic treatment, we introduce parameter dependence so that we can capture constructs in the
literature [27, 3] where RKDFs are defined over a group that is now parameter-dependent rather than
fixed. (We note that even in the non-asymptotic case, a treatment like ours is needed to capture
constructs in [27] relying on a RSA group defined by random primes. This issue is glossed over in [27].)
A dividend of our treatment is a separation between an RKDF and its encoding, the latter being what
an adversary actually queries, another issue glossed over in previous work.

Function families. A function family FF = (P,K,F) consists of a parameter generator, a key
generator, and an evaluator, the last deterministic. For each k ∈ N and π ∈ [P(1k)], the scheme
also defines PT decidable and sampleable sets Dom(π) and Rng(π) such that F(π,K, ·) maps elements
of Dom(π) to Rng(π). We assume there are polynomials d, l, called the input and output lengths,
respectively, such that Dom(π) ⊆ {0, 1}d(k) and Rng(π) ⊆ {0, 1}l(k). Unless otherwise indicated we
assume Rng(π) = {0, 1}l(k) and l(k) = ω(log(k)) and |Dom(π)| ≥ 2k for all π ∈ [P(1k)] and all k ∈ N.

RKA-PRFs. Let FF = (P,K,F) be a function family as above. Game PRF of Figure 2 is associated

to FF and a RKA specification Φ that is compatible with FF . Let Adv
prf-rka
FF ,A,Φ(k) equal 2Pr[PRF

A ⇒

true] − 1 when the game has input 1k. We say FF is Φ-RKA secure if this advantage function is
negligible. For our proofs it is useful to also consider games PRFReal,PRFRand of Figure 2. Standard
arguments imply that Adv

prf-rka
FF ,A,Φ(k) equals Pr

[

PRFRealA ⇒ 1
]

− Pr
[

PRFRandA ⇒ 1
]

.

Identity key fingerprints. An identity key fingerprint function with vector length v(·) for FF =
(P,K,F) is an algorithm IKfp that for every π ∈ [P(1k)] and every k ∈ N returns, on input π, a
v(k)-vector over Dom(π) all of whose coordinates are distinct. Game IDFP of Figure 2 is associated

to FF and a RKA specification Φ = (P,Q) that is compatible with FF . Let Adv
idfp
FF ,A,Φ(k) equal

Pr[IDFPA ⇒ true] when the game has input 1k. We say FF is Φ-IDFP secure if this advantage
function is negligible.
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The key fingerprint notion of [3] can be seen as allowing statistical disambiguation of any pair of
keys. They showed that the Naor-Reingold PRF NR had such a fingerprint, but in general, it does not
seem common. Interestingly, their own Φ-RKA PRFs, which build on NR, are not known to have such
a fingerprint. Our relaxation can be seen as asking for computational disambiguation of the original
key from other keys, and ends up being much easier to achieve. In particular, such fingerprints exist
for the constructs of [3]. This is a consequence of something more general, namely that any Φ-RKA
secure PRF with large enough range is Φ-IDFP secure if Φ is claw-free, using any point in the domain
functioning as the fingerprint. This is formalized by Proposition 4.1 below, with a proof in Appendix A.
Φ-IDFP security for the constructs of [3] follows as the Φ they use is claw-free.

Proposition 4.1 Suppose Φ is claw-free and FF is a Φ-RKA secure PRF with associated domain

Dom(·) and super-polynomial size range Rng(·). Let IKfp be any algorithm that on input π returns a

1-vector over Dom(π). Then FF is Φ-IDFP secure.

In practice Φ-IDFP security seems like a mild assumption even when Φ is not claw-free. A vector of a
few, distinct domain points ought to be a suitable fingerprint for any practical blockcipher. This does
not follow from a standard assumption on it such as PRF, but is consistent with properties assumed by
cryptanalysts and can be proved in the ideal cipher model.

Φ-IDFP security of given Φ-RKA PRFs, even for non-claw-free Φ, will be important in the con-
structions underlying our containment results, and we make it a default assumption on a Φ-RKA PRF.
The above shows that this is a mild and reasonable assumption.

RKA sets. We say that an RKA specification Φ = (P,Q) is achievable for the primitive PRF if there
exists a Φ-RKA and Φ-IDFP secure PRF that is compatible with Φ. We let RKA[PRF] be the set of
all Φ that are achievable for PRF.

What can attacks modify? We view the system as a whole as having the following components:
algorithms (code), parameters, public keys (if any) and secret keys. Of these, our convention is that
only secret keys are subject to RKAs. This is not the only possible model, nor is it necessarily the most
realistic if considering tampering attacks in practice, but it is a clear and interesting one with some
justification. Parameters are systemwide, meaning fixed beforehand and independent of users, and may,
in an implementation, be part of the algorithm code. Public keys are accompanied by certificates under
a CA public key that is in the parameters, so if parameters are safe, so are public keys. This leaves
secret keys as the main target. One consequence of this is that in a public key setting the attack is
only on the holder of the secret key, meaning the signer for signatures and the receiver for encryption,
while in the symmetric setting, both sender and receiver are under attack, making this setting more
complicated.

We could consider attacks on public keys but these are effectively attacks on parameters. Further-
more the only way for them to succeed is to modify the CA public key in the parameters in a rather
special way, replacing it by some other key under which the attack produces signatures for the modified
public key. “Natural” attacks caused by fault-injection are unlikely to do this, further support for our
convention of confining attacks to secret keys.

5 ICR PRGs: A tool in our constructions

We will be using Φ-RKA PRFs to build Φ-RKA instances of many other primitives. An important
technical difficulty will be to avoid assuming Φ is claw-free, which would restrict the result. A tool we
will introduce and use for this purpose is a Φ-RKA PRG satisfying a weak form of collision resistance
under RKA that we call Φ-ICR. In this section we define this primitive and show how to achieve it
based on a Φ-RKA and Φ-IDFP secure PRF.

RKA PRGs. A PRG PRG = (P,K,G, r) is specified by a parameter generation algorithm, a key
generation algorithm, an evaluation algorithm and an output length r(·). Game PRG of Figure 3 is
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proc Initialize // PRG

π
$

← P(1k)

K
$

← K(π) ; b
$

← {0, 1}
Return π

proc Gen(φ) // PRG

K ′ ← Φπ,φ(K )
If K ′ = ⊥ then return ⊥
If T [K ′] = ⊥ then
If b = 1 then T [K ′]← G(π,K ′)

Else T [K ′]
$

← {0, 1}r(k)

Return T [K ′]

proc Finalize(b′) // PRG

Return (b = b′)

proc Initialize // ICR

π
$

← P(1k) ; i← 0

K
$

← K(π) ; T0 ← G(π,K )
Return π

proc Gen(φ) // ICR

K ′ ← Φπ,φ(K )
If K ′ = ⊥ then return ⊥
S ← G(π,K ′)
If ((S = T0) ∧ (K 6= K ′)) then Win← true

Return S

proc Finalize() // ICR

Return Win

Figure 3: Games defining Φ-RKA security and identity-collision-resistance for PRG PRG = (P,K,G, r).

associated to PRG and a RKA specification Φ that is compatible with PRG . Let Adv
prg
PRG ,A,Φ(k) equal

2Pr[PRGA ⇒ true] − 1 when the game has input 1k. We say PRG is Φ-RKA secure if this advantage
function is negligible.

We clarify that unlike a normal PRG [9], we don’t require a Φ-RKA to be length extending, meaning
that outputs need not be longer than inputs. The utility of the primitive is getting RKA security, for
which length extension is irrelevant. If one does want a length extending Φ-RKA PRG (we won’t) one
can get it by applying a normal-secure PRG to the output of a given Φ-RKA PRG.

ICR. We define and use a weak form of collision-resistance for PRGs which requires that the adversary
be unable to find φ so that Φπ,φ(K ) 6= K yet G(Φπ,φ(K )) = G(K ). Game ICR of Figure 3 is associated to
PRG and a RKA specification Φ that is compatible with PRG . Let Advicr

PRG ,C,Φ(k) equal 2Pr[ICR
C ⇒

true] − 1 when the game has input 1k. We say PRG is Φ-ICR (Identity Collision Resistance) secure if
this advantage function is negligible.

Does RKA security imply ICR security? At first glance it would seem that if a PRG PRG =
(P,K,G, r) is Φ-RKA secure then it is also Φ-ICR secure. Indeed, suppose an adversary has φ such
that Φπ,φ(K ) 6= K yet G(Φπ,φ(K )) = G(K ). Let it query R0 ← Gen(id) and R1 ← Gen(φ) and return
1 if R0 = R1 and 0 otherwise. In the real (b = 1) case R0, R1 are equal but in the random (b = 0)
case they would appear very unlikely to be equal, so that that this strategy would appear to have high
advantage in breaking the Φ-RKA security of PRG . The catch is in our starting assumption, which
made it appear that Φπ,φ(K ) 6= K yet G(Φπ,φ(K )) = G(K ) was an absolute fact, true both for b = 0 and
b = 1. If Φπ,φ(K ) and K are different in the real game but equal in the random game, the adversary
sees an output collision in both cases and its advantage disappears. Can this actually happen? It can,
and indeed the claim (that Φ-RKA security implies Φ-ICR security) is actually false:

Proposition 5.1 Suppose there exists a normal-secure PRG PRG = (P ,K,G, r) with r(·) = ω(log(·)).
Then there exists a PRG PRG = (P ,K,G, r) and a class Φ such that PRG is Φ-RKA secure but PRG

is not Φ-ICR secure.

A proof is in Appendix B. Briefly, the constructed PRG PRG adds a redundant bit to the seed of PRG so
that seeds differing only in their first bits yield the same outputs, meaning create non-trivial collisions.
But Φ is crafted so that that its members deviate from the identity function only in the real game, so
that output collisions appear just as often in both cases but in the real game they are non-trivial while
in the random game they are trivial. The difficulty is showing how to do this while retaining Φ-RKA
security.

Construction. We saw above that not all Φ-RKA PRGs are Φ-ICR secure. Our containments will
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proc Initialize // Sig

π
$

← P(1k) ; M ← ∅

(vk , sk)
$

← K(π)
Return (π, vk)

proc Sign(φ,m) // Sig

sk ′ ← Φπ,φ(sk)
If sk ′ = ⊥ then return ⊥
If (sk ′ = sk) then M ←M ∪ {m}

Return σ
$

← S(π, sk ′,m)

proc Finalize(m,σ) // Sig

Return ((V(π, vk ,m, σ) = 1) ∧ (m 6∈M))

proc Initialize // IBE

π
$

← P(1k) ; (mpk ,msk)
$

←M(π)

b
$

← {0, 1} ; id∗ ← ⊥
Return (π,mpk )

proc KD(φ, id) // IBE

msk ′ ← Φπ,φ(msk )
If msk ′ = ⊥ then return ⊥
If ((msk ′ = msk) ∧ (id = id∗))
then return ⊥

Return dk ← K(π,mpk ,msk ′, id)

proc LR(id ,m0,m1) // IBE

If (|m0| 6= |m1|) then return ⊥
id∗ ← id

Return C
$

← E(π,mpk , id ,mb)

proc Finalize(b′) // IBE

Return (b = b′)

Figure 4: Games defining Φ-RKA security for primitives Sig, IBE.

rely crucially on ones that are. We obtain them from Φ-RKA PRFs that have key fingerprints for the
identity function. The proof is relatively straightforward and is omitted.

Proposition 5.2 Let FF = (P,K,F) be a Φ-RKA PRF with output length l. Let IKfp be a Φ-IDFP

secure identity key fingerprint function for FF with vector length v. Let r = lv and let K, on input

π ‖w, return K(π). Define PRG PRG = (P ‖ IKfp,K,G, r) via

G(π ‖w,K) = F(π,K,w[1]) ‖ · · · ‖F(π,K,w[|w|]) .

Then PRG is Φ-RKA secure and Φ-ICR secure.

6 Relations

We first present a containment and a non-containment related to Sig. Then, we illustrate a non-
containment related to wPRFs that uses a different technique. Then we turn to IBE-related results.
We then briefly indicate how other relations may be obtained via the same ideas.

Signatures. A signature scheme DS = (P,K,S,V) is specified as usual by its parameter generation,
key generation, signing and verifying algorithms. Game Sig of Figure 4 is associated to DS and a RKA
specification Φ that is compatible with DS . Let Adv

sig-rka
DS ,A,Φ(k) be the probability that SigA returns

true when the game has input 1k. We say DS is Φ-RKA secure if this advantage function is negligible.
Normal security of a signature scheme is recovered by considering Φ that contains only the identity
function. One feature of the definition worth highlighting is the way we decide which messages are not
legitimate forgeries. They are the ones signed with the real key sk , which means that oracle Sign needs
to check when a related key equals the real one and record the corresponding message, which is a source
of challenges in reduction-based proofs.

From Φ-RKA PRGs to Φ-RKA signatures. We will prove containments of the form RKA[PRF] ⊆
RKA[P] by proving RKA[PRG] ⊆ RKA[P] and exploiting the fact that RKA[PRF] ⊆ RKA[PRG].

We start with a Φ-RKA PRG PRG = (P,K,G, r) and a normal-secure signature scheme DS =
(P ,K,S,V) such that r(·) is the number of coins used by K. We now build another signature scheme
DS = (P ‖P,K′,S,V) as follows:
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1. Parameters: Parameters for DS are the concatenation π ‖π of independently generated parameters
for PRG and DS .

2. Keys: Pick a random seed K
$

← K(π) and let (vk , sk ) ← K(π;G(K )) be the result of generating
verifying and signing keys with coins G(K ). The new signing key is K and the verifying key remains
vk . (Key sk is discarded.)

3. Signing: To sign message m with signing key K , recompute (vk , sk)← K(π;G(K )) and then sign m
under S using sk .

4. Verifying: Just as in the base scheme, verify that σ is a signature of m under vk using V.

Signature scheme DS remains compatible with Φ since the parameters of PRG prefix those of DS .
We want DS to inherit the Φ-RKA security of PRG . In fact we will show more, namely that DS

is (Φ ∪ Φc)-RKA secure where Φc is the class of constant RKDFs associated to Φ. The intuition is
deceptively simple. A signing query φ,m of an adversary A attacking DS results in a signature of
m under what is effectively a fresh signing key, since it is generated using coins G(φ(K )) that are
computationally independent of G(K ) due to the assumed Φ-RKA security of the PRG. These can
accordingly be simulated without access to K . On the other hand, signing queries in which φ is a
constant function may be directly simulated. The first difficulty is that the adversary attacking the
Φ-RKA security of PRG that we must build needs to know when A succeeds, and for this it needs to
know when a derived seed equals the real one, and it is unclear how to do this without knowing the
real seed. The second difficulty is that a queried constant might equal the key. We take an incremental
approach to showing how these difficulties are resolved, beginning by assuming Φ is claw-free, which
makes the first difficulty vanish:

Theorem 6.1 Let signature scheme DS = (P ‖P,K′,S,V) be constructed as above from Φ-RKA PRG

PRG = (P,K,G, r) and normal-secure signature scheme DS = (P ,K,S,V) and assume Φ is claw-free.

Then DS is (Φ ∪ Φc)-RKA secure.

A proof of Theorem 6.1 is in Appendix C, and the intuition was discussed in Section 2. This result,
however, is weaker than we would like, for, as we have already said, many interesting classes are not
claw-free. Also, this result fails to prove RKA[PRF] ⊆ RKA[Sig] since the first set may contain Φ that
are not claw-free. To address this we show that the claw-freeness assumption on Φ can be replaced by
the assumption that PRG is Φ-ICR secure:

Theorem 6.2 Let signature scheme DS = (P ‖P ,K′,S,V) be constructed as above from Φ-RKA secure

and Φ-ICR secure PRG PRG = (P,K,G, r) and normal-secure signature scheme DS = (P ,K,S,V).
Then DS is (Φ ∪ Φc)-RKA secure.

A proof of Theorem 6.2 is in Appendix D. This result is much stronger because Proposition 5.2 says we
can get the PRGs we want from Φ-RKA PRFs. In particular, Theorem 6.2 establishes the containment
RKA[PRF] ⊆ RKA[Sig]. (Theorem 6.1 only establishes it for the subset of classes that are claw-free.)

Our construction has the advantage that the verification process, and the form of the signatures
and public key, are unchanged. This means it has minimal impact on software, making it easier to
deploy than a totally new scheme. Signing in the scheme now involves evaluation of a Φ-RKA-PRG
but this can be made cheap via an AES-based instantiation. However, signing also involves running the
key-generation algorithm K of the base scheme which might be expensive.

This construction also meets a stronger notion of Φ-RKA security where the adversary cannot even
forge signature relative to the public keys associated with the derived secret keys. We elaborate on this
in Appendix E.

Some base signature schemes lend themselves naturally and directly to immunization against RKAs
via Φ-RKA PRFs. This is true for the binary-tree, one-time signature based scheme discussed in [20],
where the secret key is already that of a PRF used in the scheme. If this PRF is Φ-RKA secure we
can show the signature scheme (unmodified) is too, and moreover also meets the strong version of the
definition alluded to above. See Appendix E.
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Separating Φ-RKA PRFs from Φ-RKA signatures. Having just shown that RKA∗[PRF] ⊆
RKA∗[Sig] it is natural to ask whether the converse is true as well, meaning whether the sets are
equal. The answer is no, meaning RKA∗[Sig] 6⊆ RKA∗[PRF] and thus RKA[Sig] 6⊆ RKA[PRF]. The
interpretation is that there exist Φ such that there exist Φ-RKA secure signatures, but there are no

Φ-RKA PRFs. An example is when Φ = Φc is the set of constant functions. Theorem 6.1 implies that
there exists a Φc-RKA secure signature scheme by setting Φ = ∅ in the theorem, so that PRG need
only be a normal-secure PRG. But attacks from [4] show that no PRF can be Φc-RKA secure. Thus,
this separation is quite easily obtained. We will later see others which are technically more interesting.
This separation motivates finding other avenues to Φ-RKA signatures. Below we will show that IBE is
one such.

wPRF. We turn to wPRFs so that we can illustrate an interesting separation, namely with PRFs. Let
wPRF = (P,K,F) be a family of functions as defined in Section 3 and DomwPRF (π),RngwPRF (π) the
finite domain and range sets associated to parameters π. Game wPRF of Figure 5 is associated to
wPRF and a RKA specification Φ = (π,Q) that is compatible with wPRF . Let Adv

wprf-rka
wPRF ,A,Φ(k) equal

2Pr[wPRFA ⇒ true]−1 when the game has input 1k. We say wPRF is Φ-RKA secure if this advantage
function is negligible.

Separating Φ-RKA PRFs from Φ-RKA wPRFs. Obviously RKA[PRF] ⊆ RKA[wPRF]. We show
that the converse is not true, namely RKA[wPRF] 6⊆ RKA[PRF]. In this case constant RKDFs do
not provide the separation since both primitives are insecure under these functions. Instead we create
RKDFs which only help the attacker if the function may be invoked on the same input for different
RKDFs, which is not possible in the wPRF game. Proceeding to the details, let wPRF = (P,K,F) be
a normal-secure wPRF and for simplicity assume that keys are random (k − 1)-bit strings. (Formally,
K(π) induces the uniform distribution on {0, 1}k−1 for all π ∈ [P(1k)] and all k ∈ N.) If K ∈ {0, 1}∗

we let K− denote the string that is K with the first bit flipped. We construct a class Φ = (P,Q) of
RKDFs as follows. On input π ∈ [P(1k)], key K ∈ {0, 1}∗ and description φi, algorithm Q returns K
if K[i] = 1 and K− otherwise, for 1 ≤ i ≤ |K|. Also given π,K and description flip it returns K−.

Let PRF = (P ,K,F) be any PRF that is compatible with Φ. We show that it can be broken
under a Φ-RKA. Let ℓ(k) denote the length of keys when the security parameter is k. Our adversary,
given parameters π, picks x at random from DomPRF (π). It queries yid ← Fn(id, x). Then for each
1 ≤ i ≤ ℓ(k) it queries yi ← Fn(φi, x) and sets K ′[i] = 1 if yi = yid and 0 otherwise. (It is crucial that
all queries use the same x.) The result should be that K ′ = K, meaning A has recovered the key. Once
it has the key, it can easily win by making a few queries under id at random inputs and returning 1 if
the results are consistent with K ′ and 0 otherwise.

There is one subtlety above, however. Namely if F(π,K, x) = F(π,K−, x), meaning the functions
under keys K and K− agree at x, then the attack will recover the string K ′ = 1ℓ(k) and not recover the
key. This is in general problematic because a PRF may very well have the property that the functions
defined by two different keys are the same. It is to resolve this problem that we put flip in Φ. Φ-RKA
security now ensures that the functions defined by keys K,K− look like random, independent ones.
Thus, our adversary can simply return 1 if K ′ = 1ℓ(k), meaning declare that the challenge bit was 1.

What remains is to show that there exists a wPRF that is Φ-RKA secure. We construct wPRF =
(P,K,F) based on the normal-secure wPRF = (P,K,F) whose existence we assumed at the start.
Parameter generation is unchanged. Keys are random k-bit strings. Function F(π,K, x) lets L be the
last (k− 1)-bits of K and returns F(π,L, x). The result is that functions F(π,K, ·) and F(π,K−, ·) are
identical. In the wPRF case this, rather than contradicting Φ-RKA security as in the PRF case, helps
us prove it. We claim we can reduce the Φ-RKA security of wPRF to the normal security of wPRF .
The reason is that on input K, all the RKDFs we put in Φ return either K or K− and thus no matter
what RKDFs the adversary queries the result can be simulated by access to F(π,K, ·). As long as no
input is repeated, the simulation will be correct, and since the domain has size at least 2k and inputs
are random rather than adversary-selected, the probability of a repeated input in q queries is at most
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proc Initialize // PKE

π
$

← P(1k)

b
$

← {0, 1} ; C∗ ← ⊥

(ek , dk )
$

← K(π)
Return (π, ek)

proc Dec(φ,C) // PKE

dk ′ ← Q(π, dk , φ)
If dk ′ = ⊥ then return ⊥
If ((dk ′ = dk ) ∧ (C = C∗))
then return ⊥

Return M ← D(π, dk ′, C)

proc LR(m0,m1) // PKE

If (|m0| 6= |m1|) then return ⊥

Return C∗
$

← E(π, ek ,mb)

proc Finalize(b′) // PKE

Return (b = b′)

proc Initialize // wPRF

π
$

← P(1k)

K
$

← K(π)

b
$

← {0, 1}
Return π

proc Fn(φ) // wPRF

K ′ ← Q(π,K, φ)
If K ′ = ⊥ then return ⊥

x
$

← DomwPRF (π)
If b = 1 then y ← F(π,K ′, x)

Else y
$

← RngwPRF (π)
Return (x, y)

proc Finalize(b′) // wPRF

Return (b = b′)

proc Initialize // SECPA, SECCA

π
$

← P(1k) ; b
$

← {0, 1} ; S ← ∅

K
$

← K(π)
Return π

proc Dec(φ,C) // SECCA

K ′ ← Q(π,K, φ)
If K ′ = ⊥ then return ⊥
If ((K ′, C) ∈ S) then return ⊥
Return M ← D(π,K ′, C)

proc LR(φ,m0,m1) // SECPA, SECCA

If (|m0| 6= |m1|) then return ⊥
K ′ ← Q(π,K, φ)
If K ′ = ⊥ then return ⊥

C∗
$

← E(π,K ′,mb) ; S ← S ∪ {(K ′, C∗)}
Return C∗

proc Finalize(b′) // SECPA, SECCA

Return (b = b′)

Figure 5: Games defining Φ-RKA security for primitives PKE-CCA, wPRF, SE-CPA, SE-CCA.

q2/2k which is negligible. We omit the details.

IBE. Our specification of an IBE scheme IBE = (P,M,K, E ,D) adds a parameter generation algorithm
P that given 1k returns parameters π on which the masterkey generation algorithmM runs to produce
the master public key mpk and master secret key msk . The rest is as usual except that algorithms get π
as an additional input. Game IBE of Figure 4 is associated to IBE and a RKA specification Φ = (π,Q)
that is compatible with IBE . An adversary is allowed only one query to LR. Let Advibe-rka

IBE ,A,Φ(k) equal

2Pr[IBEA ⇒ true] − 1 when the game has input 1k. We say IBE is Φ-RKA secure if this advantage
function is negligible. Here the feature of the definition worth remarking on is that the key-derivation
oracle KD refuses to act only when the identity it is given matches the challenge one and the derived
key equals the real one, leading to a strong security requirement.

From Φ-RKA IBE to Φ-RKA signatures. We show that RKA[IBE] ⊆ RKA[Sig] by proving that
the standard Naor transform preserves RKA security. Given a Φ-RKA IBE IBE = (P,M,K, E ,D)
we obtain signature scheme DS = (P,K,S,V) as follows: the signature parameters are the IBE pa-
rameters; the verifying and signing keys are the IBE master public and secret keys; messages being
signed are identities; and signatures are decryption keys for these identities. In the most general case
verification is performed by encrypting a random message (this is an IBE message) under the identity
(the message whose signature is being verified) and seeing whether the ciphertext decrypts correctly
under the decryption key (signature being verified). However with all the specific IBE schemes we
know (eg. [15, 10, 31]), there is a direct, deterministic verification algorithm based on the algebra. The
signature scheme DS remains compatible with Φ since its parameters are exactly those of IBE . The
following says DS inherits the Φ-RKA security of IBE .

Theorem 6.3 Let signature scheme DS = (P,K,S,V) be constructed as above from Φ-RKA IBE

scheme IBE = (P,M,K, E ,D). Then DS is Φ-RKA secure.

When the adversary against the signature scheme makes Sign queries we can simulate them via KD

queries. The delicate point is that the correctness of this simulation relies on the fact that the challenge
identity has not yet been defined, which means that the two procedures fail in exactly the same cases.
Once the signing adversary outputs its forgery with message id and signature dk , we pick two random
k-bit messages m0,m1 and query LR(id ,m0,m1) to get a challenge ciphertext C∗. We then decrypt C∗
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using D with decryption key dk and return 1 if we get back m1 and 0 otherwise. Details are deferred
to the full paper.

This motivates finding Φ-RKA secure IBE schemes, which we leave as an interesting open problem.
Another interesting open question is whether or not the converse of the above is true, namely, is
RKA[Sig] ⊆ RKA[IBE]?

PKE. A public-key encryption scheme PKE = (P,K, E ,D) is specified as usual by parameter generation,
key generation, encryption and decryption algorithms. Game PKE of Figure 5 is associated to PKE
and a RKA specification Φ = (π,Q) that is compatible with PKE . An adversary is allowed only one

query to LR. Let Adv
pke-cc-rka
PKE ,A,Φ (k) equal 2Pr[PKEA ⇒ true]− 1 when the game has input 1k. We say

PKE is Φ-RKA secure if this advantage function is negligible. The attack is on the secret key, which is
the decryption key, so that we are considering a chosen-ciphertext related-key attack (CC-RKA). The
decryption oracle Dec refuses to act only when the ciphertext it is given matches the challenge one and
the derived key equals the real one.

From Φ-RKA IBE to Φ-RKA PKE-CCA. We show the containment RKA[IBE] ⊆ RKA[PKE-CCA]
by showing that the construction of Boneh, Canneti, Halevi, and Katz [13] preserves RKA security. We
start with a Φ-RKA IBE scheme IBE = (P,M,K, E ,D) and a regular-secure strongly-unforgeable
signature scheme DS = (P ,K,S,V), and construct a PKE scheme PKE as follows:

1. Parameters: Parameters for PKE are the concatenation π ‖π of parameters for IBE and DS .

2. Keys: Pick (mpk ,msk)←M(π), and use mpk as the public key and msk as the secret key.

3. Encryption: To encrypt a message m under mpk , generate a signing-verification key pair (vk , sk)←

K(π). Then encrypt m for the identity id = vk by computing c
$

← E(π, vk ,m) and sign c under S
using sk to get a signature σ. The ciphertext is (c, vk , σ).

4. Decryption: To decrypt a ciphertext (c, vk , σ), first verify that σ is a valid signature on c under vk ,
and output ⊥ if verification fails. Then compute the user secret key for the identity id = vk , and
decrypt c using that key.

By construction, we have that Φ is compatible with PKE whenever it is compatible with IBE .

Theorem 6.4 Let PKE scheme PKE = (P ′,K′, E ′,D′) be constructed as above from Φ-RKA IBE

scheme IBE = (P,M,K, E ,D) and normal-secure strongly-unforgeable signature scheme DS = (P ,K,S,V).
Then PKE is Φ-RKA secure.

A proof is given in Appendix F. It is an adaptation of the original proof for the non-RKA version of
this theorem. The primary difference is in showing that the RKA games for IBE and PKE-CCA will
cooperate, because they each have rules for disallowing certain queries (with IBE one cannot extract a
key for id∗, and in PKE-CCA one cannot decrypt C∗, but both rules only hold under the original secret
key). Handily, the Boneh et al. construction has a structure that allows these rules to fit together.

SE. Symmetric encryption is interesting because both sender and receiver have the secret key and the
RKA can now be mounted on the encryption, not merely on the decryption. A symmetric encryption
scheme SE = (P,K, E ,D) is specified as usual by parameter generation, key generation, encryption and
decryption algorithms. Games SECPA,SECCA of Figure 5 are associated to SE and a RKA specification
Φ = (π,Q) that is compatible with SE . An adversary is now allowed multiple queries to LR. Let

Adv
se-cp-rka
SE ,A,Φ (k) equal 2Pr[SECPAA ⇒ true] − 1 when the game has input 1k. We say SE is Φ-RKA-

CPA secure if this advantage function is negligible. Let Advse-cc-rka
SE ,A,Φ (k) equal 2Pr[SECCAA ⇒ true]− 1

when the game has input 1k. We say SE is Φ-RKA-CCA secure if this advantage function is negligible.

Remaining relations. Containments of the form RKA∗[PRF] ⊆ RKA∗[P] can be established for all
the other primitives P using the same idea as illustrated above for P = Sig. All our non-containments
emanate from two basic techniques. One is based on constants, as we illustrated with RKA[Sig] 6⊆
RKA[PRF]. Another example use of this technique is to show RKA[PKE-CCA] 6⊆ RKA[SE-CCA].
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This is true because constant functions are fine for the first but, due to the RKA on the encryption
oracle, not for the second. However sometimes we want to show RKA[P1] 6⊆ RKA[P2] when constant
functions are either fine for both or not fine for either. We do this based on variants of the technique
used above to establish RKA[wPRF] 6⊆ RKA[PRF] where the idea can be viewed as using RKDFs
that flip-flop between two keys depending on a bit of the original key in such a way that there is a
Φ-RKA on P2 yet the two keys are functionally equivalent under a Φ-RKA on P1. This can be used
for example to show that RKA[SE-CPA] 6⊆ RKA[SE-CCA]. In this case the attack exploits the fact
that the decryption oracle rejects if a query (φ,C) results in (K ′, C) being in S, meaning that C was
a challenge ciphertext created under K ′, and this can be made to happen depending on a certain bit
of K so that the rejection leaks information about K that eventually allows the attacker to recover K.
We omit details on these and the remaining relations shown in Figure 1.
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A Proof of Proposition 4.1

Given A attacking the Φ-IDFP security of FF we construct B such that for all k we have

Adv
idfp
FF ,A,Φ(k) ≤ Adv

prf-rka
FF ,B,Φ(k) +

q(k)

|Rng(π)|
.

On input π, adversary B lets w
$

← IKfp(π) and y[1] ← Fn(id,w[1]). It initializes set T to empty
and then runs A on inputs π,w. When A makes oracle query φ, adversary B replies via the following
procedure:
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proc Initialize // G0

π
$

← P(1k)

K
$

← K(π)
S0 ← G(π,K )
Return π

proc Gen(R) // G0

Return S0

proc Finalize(b′) // G0

Return b′

proc Initialize // G1 , G2

π
$

← P(1k)

K
$

← K(π)

S0, S1
$

← {0, 1}r(k)

Return π

proc Gen(R) // G1,G2

S ← S0

If G(K ) = R then bad← true ; S ← S1

Return S

proc Finalize(b′) // G1,G2

Return b′

Figure 6: Games for proof of Proposition 5.1. Game G1 includes the boxed code and game G2 does not.

proc FnSim(φ)

If (φ = id) then return y

z[1]← Fn(φ,w[1]) ; T ← T ∪ {z}
Return z

When A halts, adversary B returns 1 if y ∈ T and 0 otherwise. For the analysis, assume (wlog) that A
never repeats an oracle query. Then

Pr[PRFRealB ⇒ 1] = Adv
idfp
FF ,A,Φ(k)

Pr[PRFRandB ⇒ 1] ≤
q(k)

|Rng(π)|

where q(·) is the number of oracle queries made by A. The last equation is justified by the claw-freeness
of Φ which ensures that Φπ,φ(K) = K only if φ = id. Thus in the random case all queries of A yield
keys different from K.

B Proof of Proposition 5.1

Let ℓ(k) be the length of the seed returned by K(π) when the security parameter underlying π is k.
On input π let the key-generation algorithm K of PRG = (P ,K,G, r) pick a random bit c and return
c ‖K(π). Algorithm G(π,K) lets K be the last ℓ(k) bits of K and returns G(π,K ). Since G ignores the
first bit of its input seed, any pair of seeds that differ only in their first bits result in the same output,
meaning are non-trivial collisions.

Now we define Φ so that PRG is not Φ-ICR secure yet is Φ-RKA secure. For any R ∈ {0, 1}r(k) we let
Φπ,R be the function that on input K ∈ {0, 1}ℓ(k)+1 returns K if G(π,K ) 6= R and otherwise returns
the string formed by flipping the first bit of K .

The adversary A that makes queries X ← Gen(id) and S ← Gen(φX) and returns 1 iff S = T has
icr-advantage 1, meaning PRG is not Φ-ICR secure. Now we show that PRG is Φ-RKA secure under
the assumption that PRG was normal (i.e. ID-RKA) secure.

The functions Φπ,R, on input c ‖K , where c ∈ {0, 1}, have only two possible outputs, namely c ‖K itself,
or this string with its first bit c flipped. But by design G(π, ·) has the same output on these two inputs,
so in the real case, the response to a query φR is always G(π,K ), regardless of R. This would seem to
make it easy for an adversary B against the normal-security of PRG to simulate A. The difficulty is
the random case. Here the answer to the same query is one of two possible random strings that we call
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S0, S1, but B does not know which. We resolve this by considering two cases in the random case. If A
does not query G(π,K ) then the simulation is again easy since the response to all queries is the same.
If A succeeds in querying G(π,K ), a different strategy is used. Let us now provide the actual proof.

Given A attacking the Φ-RKA security of PRG we construct B1, B2 such that for all k we have

Adv
prg
PRG ,A,Φ(k) ≤ Adv

prg
PRG ,B1,ID

(k) +Adv
prg
PRG ,B2,ID

(k) +
q(k)

2r(k)
.

where q(·) is the number of Gen queries made by A. The proof considers games G0,G1,G2 of Figure 6.
We begin by claiming that

Adv
prg
PRG ,A,Φ(k) = Pr[GA

0 ⇒ 1]− Pr[GA
1 ⇒ 1] .

This is justified by the discussion above. Now games G1,G2 are identical-until-bad so by the Funda-
mental Lemma of Game Playing [5] we have

Pr[GA
0 ⇒ 1]− Pr[GA

1 ⇒ 1] = Pr[GA
0 ⇒ 1]− Pr[GA

2 ⇒ 1] + Pr[GA
2 ⇒ 1]− Pr[GA

1 ⇒ 1]

≤ Pr[GA
0 ⇒ 1]− Pr[GA

2 ⇒ 1] + Pr[Bad(GA
2 )] .

We construct B1, B2 such that for all k we have

Pr[GA
0 ⇒ 1]− Pr[GA

2 ⇒ 1] ≤ Adv
prg
PRG ,B1,ID

(k)

Pr[Bad(GA
2 )]−

q(k)

2r(k)
≤ Adv

prg
PRG ,B2,ID

(k) .

On input π, adversary B1 lets S0
$

← Gen(id) and runs A on input π. When A makes a query R,
adversary B1 responds with S0, regardless of the value of R. When A halts, B1 halts with the same
output as A.

On input π, adversary B2 lets X
$

← Gen(id) and S0
$

← {0, 1}r(k). It initializes a set T ← ∅ and runs
A on input π. When A makes a query R, adversary B1 responds with S0 regardless of the value of R,
and puts R in T . When A halts, B2 returns 1 if X ∈ T and 0 otherwise.

C Proof of Theorem 6.1

Let ID be the RKA specification consisting of just the identity function, so that an ID-RKA secure
signature scheme is just a normal-secure signature scheme, the condition we assume is met by DS .
Given an adversary A mounting a (Φ ∪ Φc)-RKA on DS we construct adversaries P0, P1, S0, S1 such
that for every k ∈ N

Adv
sig-rka
DS ,A,Φ∪Φc

(k) ≤ Adv
prg
PRG ,P0,Φ

(k) +Adv
sig-rka
DS ,S0,ID

(k) +Adv
prg
PRG ,P1,Φ

(k) +Adv
sig-rka
DS ,S1,ID

(k) . (1)

This proves the theorem.

In the real game, where the secret signing key is a seed K for PRG , the response to a query Sign(φ,m)
is computed by letting K ′ ← Q(π,K , φ) and T [K ′]← G(π,K ′) and then using the latter as coins for the

key generation algorithm K to get the secret key sk
′
under which the returned signature is generated. A

natural approach to proving security is to consider a game R which replaces T [K ′] with a random r(k)
bit string associated to K ′. We expect to be able to prove that the assumed Φ-RKA security of PRG
implies that A’s success probability in R is about the same as in the real game and then prove that A
will not succeed in R based on the assumed security of DS . However, we run into a subtle difficulty in
the first step. In order to be able to test whether A succeeded, the adversary P attacking the Φ-RKA
security of PRG needs to know the set M , and to do this it must be able to test when a derived seed K ′
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resulting from a signing query φ,m equals the real seed K so that it can put the corresponding message
m in M . However, it does not know either seed so it is unclear how it can perform this test. To get
around this problem we resort to assuming claw-freeness of Φ. This ensures that K ′ = K only when
φ = id since no function different from id is allowed to map K to the same thing that id maps it to,
namely K . Now the test is independent of K ′,K .

Let φa denote the (description of the) constant function that returns a. Simulation of signatures
under constant functions will be done directly. For this purpose, both the games and the constructed
adversaries will test whether or not φ in a signing query is φa for some a and branch accordingly. A
delicate point is that for this to be correct it must be unambiguous, meaning no constant function is in
Φ. The latter turns out to be a consequence of the claw-freeness and the fact that the identity function
is in Φ. However, constant functions create another difficulty, namely that the adversary might query
φa with a = K being the secret signing key. The difficulty is not for a simulation to return the signature,
but to know to put the message m from the query into M , just as above. This turns out to be more of
a bother than we would have liked. One’s first thought would be that a query of K hands us the seed
and should lead at once to breaking the Φ-RKA security of PRG . Letting R = Gen(id), an adversary
P , on seeing query φa, could test whether or not G(π, a) = R, declaring itself to be in the real game
if so and the random game otherwise. But for this to be correct we need to show that the probability
of the test succeeding when R is random is small. We might hope to argue this unconditionally. But
the only way one would appear to be able to do so is to show that for most R there does not exist a
seed a such that G(π, a) = R. But this is only true if the generator is expanding, meaning the number
of possible seeds is much less than 2r(k). But we are using PRGs to get RKA security and there is no
reason that they should be, or should be required to be, expanding, so this argument does not work.
What we do instead is prove the claim (that the success probability of the test is small when R is
random) computationally, based on the assumed security of the base signature scheme. This is why we
end up with two adversaries of each kind. We note that given any Φ-RKA PRG one can easily make
one that is expanding by applying a normal PRG to the output of the given one, but it seemed to us
a poor choice to change and add burden to the scheme for the sake of the proof when we could in fact
prove it without this.

Proceeding now to the actual proof, consider games G0,G1,G2,G3 of Figure 7. We claim that

Adv
sig-rka
DS ,A,Φ∪Φc

(k) = Pr[GA
0 ⇒ true] (2)

= Pr[GA
1 ⇒ true] + Pr[GA

0 ⇒ true]− Pr[GA
1 ⇒ true]

≤ Pr[GA
1 ⇒ true] + Pr[Bad(GA

1 )] (3)

≤ Pr[GA
1 ⇒ true] + Pr[Bad(GA

2 )] . (4)

In game G0 we focus on what is difficult to simulate, namely testing when signing queries result in
use of the real key and thus of addition of the message m to the set M . When this results from
queries of constant functions we set a flag but, since the boxed code is included, take the appropriate
action anyway. When the query involves a function φ ∈ Φ, rather than test whether φ(K) = K, we
test whether φ is the identity, which is equivalent because Φ is claw-free. This justifies Equation (2).
Games G0,G1 are identical-until-bad so Equation (3) follows from the Fundamental Lemma of Game
Playing [5]. When bad is set in G1 it is also set in game G2 (although not necessarily vice-versa). Thus
Pr[Bad(GA

1 )] ≤ Pr[Bad(GA
2 )] which justifies Equation (4). In game G2 the test no longer depends on

K and hence can be simulated. This justifies the above. Now we will design P0, P1, S0, S1 so that for
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proc Initialize // G0,G1,G2

π
$

← P(1k) ; π
$

← P(1k) ; M ← ∅

K
$

← K(π) ; T [K ]← G(π,K )

(vk , sk)← K(π;T [K ])

Return (π ‖π, vk)

proc Sign(φ,m) // G0 , G1

If (φ = φa) for some a then

(vk
′

, sk
′

)← K(π;G(π, a))

σ
$

← S(π, sk
′

,m)
If (a = K ) then

bad← true ; M ←M ∪ {m}
Else
K ′ ← Q(π,K , φ)
If K ′ = ⊥ then return ⊥
If T [K ′] = ⊥ then
T [K ′]← G(π,K ′)

(vk
′

, sk
′

)← K(π;T [K ′])

σ
$

← S(π, sk
′

,m)
If (φ = id) thenM ←M ∪ {m}

Return σ

proc Finalize(m,σ) // G0,G1,G2,G3

Return ((V(π, vk ,m, σ) = 1) ∧ (m 6∈M))

proc Sign(φ,m) // G2

If (φ = φa) for some a then

(vk
′

, sk
′

)← K(π;G(π, a))

σ
$

← S(π, sk
′

,m)

If (vk
′

= vk) then
bad← true

Else
K ′ ← Q(π,K , φ)
If K ′ = ⊥ then return ⊥
If T [K ′] = ⊥ then
T [K ′]← G(π,K ′)

(vk
′

, sk
′

)← K(π;T [K ′])

σ
$

← S(π, sk
′

,m)
If (φ = id) then
M ←M ∪ {m}

Return σ

proc Initialize // G3

π
$

← P(1k) ; π
$

← P(1k) ; M ← ∅

K
$

← K(π) ; T [K ]
$

← {0, 1}r(k)

(vk , sk)← K(π;T [K ])

Return (π ‖π, vk)

proc Sign(φ,m) // G3

If (φ = φa) for some a then

(vk
′

, sk
′

)← K(π;G(π, a))

σ
$

← S(π, sk
′

,m)

If (vk
′

= vk) then
bad← true

Else
K ′ ← Q(π,K , φ)
If K ′ = ⊥ then return ⊥
If T [K ′] = ⊥ then

T [K ′]
$

← {0, 1}r(k)

(vk
′

, sk
′

)← K(π;T [K ′])

σ
$

← S(π, sk
′

,m)
If (φ = id) then
M ←M ∪ {m}

Return σ

Figure 7: Games for proof of Theorem 6.1. Game G0 includes the boxed code and game G1 does not.

every k ∈ N

Pr[GA
1 ⇒ true]− Pr[GA

3 ⇒ true] ≤ Adv
prg
PRG ,P0,Φ

(k) (5)

Pr[GA
3 ⇒ true] ≤ Adv

sig-rka
DS ,S0,ID

(k) (6)

Pr[Bad(GA
2 )]− Pr[Bad(GA

3 )] ≤ Adv
prg
PRG ,P1,Φ

(k) (7)

Pr[Bad(GA
3 )] ≤ Adv

sig-rka
DS ,S1,ID

(k) . (8)

Now, Equations (5) and (6) bound the first term of Equation (4) while Equations (7) and (8) bound
the second term. Let us now describe the claimed adversaries.

For b ∈ {0, 1}, adversary Pb gets input π. It begins with the initializations

π
$

← P(1k) ; M ← ∅ ; R
$

← Gen(id) ; (vk , sk)← K(π;R)

It now runs A on inputs π ‖ π, vk , responding to its oracle queries via the following procedure:

proc SignSim(φ,m)

If (φ = φa) for some a then

(vk
′
, sk

′
)← K(π;G(π, a))

σ
$

← S(π, sk
′
,m)

If (vk ′ = vk) then bad← true

Else

R′ $

← Gen(φ)
If R′ = ⊥ then return ⊥
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(vk
′
, sk

′
)← K(π;R′)

σ
$

← S(π, sk
′
,m)

If (φ = id) then M ←M ∪ {m}
Return σ

When A makes query Finalize(m,σ), adversary P0 returns 1 if (V(π, vk ,m, σ) = 1) ∧ (m 6∈M) and 0
otherwise, while adversary P1 returns 1 if it set bad and 0 otherwise.

For b ∈ {0, 1}, adversary Sb gets input π, vk . It begins with the initializations

π
$

← P(1k) ; K
$

← K(π)

It now runs A on inputs π ‖π, vk , responding to its oracle queries via the following procedure:

proc SignSim(φ,m)

If (φ = φa) for some a then

(vk
′
, sk

′
)← K(π;G(π, a))

σ
$

← S(π, sk
′
,m)

If (vk
′
= vk) then bad← true ; sk

∗
← sk

′

If (φ = id) then M ←M ∪ {m} ; σ
$

← Sign(id,m)
Else

K ′ ← Q(π,K , φ)
If K ′ = ⊥ then return ⊥

If T [K ′] = ⊥ then T [K ′]
$

← {0, 1}r(k)

(vk
′
, sk

′
)← K(π;T [K ′])

σ
$

← S(π, sk
′
,m)

Return σ

When A makes query Finalize(m,σ), adversary S0 does too. Adversary S1, however, sees whether it

set bad. If so it picks some message m 6∈ M , lets σ
$

← S(π, sk
∗
,m) and makes query Finalize(m,σ).

Otherwise, it halts without output.

D Proof of Theorem 6.2

Again let ID be the RKA specification consisting of just the identity function, so that an ID-RKA secure
signature scheme is just a normal-secure signature scheme, the condition we assume is met by DS .
Given an adversary A mounting a (Φ ∪Φc)-RKA on DS we construct adversaries P0, P1, S0, S1, C such
that for every k ∈ N

Adv
sig-rka
DS ,A,Φ∪Φc

(k)

≤ Adv
prg
PRG ,P0,Φ

(k) +Adv
sig-rka
DS ,S0,ID

(k) +Adv
prg
PRG ,P1,Φ

(k) +Adv
sig-rka
DS ,S1,ID

(k) +Advicr
PRG ,C,Φ(k) . (9)

This proves the theorem.

As we discussed in Appendix C, an important difficulty is that an adversary P against the PRG cannot
test whether K ′ = K . There we solved this by assuming claw-freeness of Φ, which allowed us to instead
test whether φ = id. Now that Φ may not be claw-free, we attempt to exploit the collision-resistance of
PRG . We test instead whether T [K ′] = T [K ], hoping this happens only when K ′ = K . To ensure that
the game is faithful to the original one, we put in a correction, setting bad and removing m from M if
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proc Initialize // G0,G1,G2,G3

π
$

← P(1k) ; π
$

← P(1k) ; M ← ∅

K
$

← K(π) ; T [K ]← G(π,K )

(vk , sk)← K(π;T [K ])

Return (π ‖π, vk)

proc Sign(φ,m) // G0 , G1

If (φ = φa) for some a then

(vk
′

, sk
′

)← K(π;G(π, a))

σ
$

← S(π, sk
′

,m)

If (a = K ) then bad← true ; M ←M ∪ {m}
Else
K ′ ← Q(π,K , φ)
If K ′ = ⊥ then return ⊥
If T [K ′] = ⊥ then T [K ′]← G(π,K ′)

(vk
′

, sk
′

)← K(π;T [K ′]) ; σ
$

← S(π, sk
′

,m)
If ((T [K ′] = T [K ]) ∧ (m 6∈M)) then
M ←M ∪ {m}
If (K ′ 6= K ) then bad← true ; M ←M \ {m}

Return σ

proc Finalize(m,σ) // G0,G1,G2,G3

Return ((V(π, vk ,m, σ) = 1) ∧ (m 6∈M))

proc Sign(φ,m) // G2

If (φ = φa) for some a then

(vk
′

, sk
′

)← K(π;G(π, a))

σ
$

← S(π, sk
′

,m)

If (vk
′

= vk) then bad← true

Else
K ′ ← Q(π,K , φ)
If K ′ = ⊥ then return ⊥
If T [K ′] = ⊥ then T [K ′]← G(π,K ′)

(vk
′

, sk
′

)← K(π;T [K ′]) ; σ
$

← S(π, sk
′

,m)
If ((T [K ′] = T [K ]) ∧ (m 6∈M)) then
M ←M ∪ {m}

Return σ

proc Sign(φ,m) // G3

If (φ = φa) for some a then

(vk
′

, sk
′

)← K(π;G(π, a))

σ
$

← S(π, sk
′

,m)
Else
K ′ ← Q(π,K , φ)
If K ′ = ⊥ then return ⊥
If T [K ′] = ⊥ then T [K ′]← G(π,K ′)

(vk
′

, sk
′

)← K(π;T [K ′]) ; σ
$

← S(π, sk
′

,m)
If ((T [K ′] = T [K ]) ∧ (m 6∈M)) then
M ←M ∪ {m}
If (K ′ 6= K ) then bad← true

Return σ

Figure 8: Games for proof of Theorem 6.2. Game G0 includes the boxed code and game G1 does not.

K ′ 6= K . We have

Adv
sig-rka
DS ,A,Φ∪Φc

(k) = Pr[GA
0 ⇒ true]

= Pr[GA
1 ⇒ true] + Pr[GA

0 ⇒ true]− Pr[GA
1 ⇒ true]

≤ Pr[GA
1 ⇒ true] + Pr[Bad(GA

1 )] .

The boxed code being dropped in G1, a simulator can ignore the corresponding tests that set bad, since
they do not affect the outcome of the game. Thus, as in Appendix C, we can construct P0, S0 so that

Pr[GA
1 ⇒ true] ≤ Adv

prg
PRG ,P0,Φ

(k) +Adv
sig-rka
DS ,S0,ID

(k) .

It remains to bound Pr[Bad(GA
1 )]. The probability that the first occurence of bad is set in G1 is at

most the probability that it is set in G2. The probability that second occurence of bad is set in G1

equals the probability that it is set in G3. Thus

Pr[Bad(GA
1 )] ≤ Pr[Bad(GA

2 )] + Pr[Bad(GA
3 )] .

As in Appendix C, we can construct P1, S1 so that

Pr[Bad(GA
2 )] ≤ Adv

prg
PRG ,P1,Φ

(k) +Adv
sig-rka
DS ,S1,ID

(k) .

Finally we construct C so that

Pr[Bad(GA
3 )] ≤ Advicr

PRG ,C,Φ(k) .
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Adversary C gets input π. It begins with the initializations

π
$

← P(1k) ; R
$

← Gen(id) ; (vk , sk)← K(π;R)

It now runs A on inputs π ‖ π, vk , responding to its oracle queries via the following procedure:

proc SignSim(φ,m)

If (φ = φa) for some a then

(vk
′
, sk

′
)← K(π;G(π, a)) ; σ

$

← S(π, sk
′
,m)

Else

R′ $

← Gen(φ)
If R′ = ⊥ then return ⊥

(vk
′
, sk

′
)← K(π;R′) ; σ

$

← S(π, sk
′
,m)

Return σ

When A makes query Finalize(m,σ), adversary P halts without output.

E Strong Φ-RKA Security

We suggest a stronger notion of Φ-RKA security for signature schemes and other primitives. Let us
start with the former. In strong Φ-RKA security for signatures, forgery is not only hard relative to the
original public key, but even for ones associated with the derived keys produced in the attack. We are
not aware of this having any application-relevance but wish to highlight it because our constructions
possess it and it may be of some utility in the future.

In the usual syntax of digital signatures, the public and secret keys are produced, together, by the
(randomized) key generation algorithm. In most “real” schemes, however, the secret key is produced first
and the public key is a deterministic function of the (parameters and) secret key. We call any signature
scheme with this property separable and we call the algorithm that deterministically produces the public
key from the parameters and secret key the public-key generator. Note that even if a scheme is not
separable to start with, it can be made so by using the coins of the key-generation algorithm as the
secret key in an obvious way.

Definitions. A signature scheme DS = (P,K,S,V) is separable if there is a deterministic algorithm
T , called the public-key generator, such that for all π ∈ [P(1k)] and all k ∈ N the output of the process

(vk , sk)
$

← K(π) ; vk ← T (π, sk ) ; Return (vk , sk)

is distributed identically to the output of K(π). Let DS = (P,K,S,V) be a separable signature scheme
with public-key generator T . Game SSig of Figure 9 is associated to (DS ,T ) and a RKA specification

Φ = (π,Q) that is compatible with DS . Let Adv
ssig-rka
DS ,T ,A,Φ(k) be the probability that SSigA returns true

when the game has input 1k. We say (DS ,T ) is strongly Φ-RKA secure if this advantage function is
negligible. A novel aspect of this definition is that the Sign oracle returns not just the signature but
the public key associated to the secret key under which the signature was created. This is necessary
because the adversary may not be able to compute this public key on its own. To win, it need only
forge a signature under one of the public keys derived via its Sign queries.

Result. We first observe that the signature scheme DS = (P ‖P ,K′,S,V) constructed from Φ-RKA
PRG PRG = (P,K,G, r) and normal-secure signature scheme DS = (P ,K,S,V) as described in Sec-
tion 6 is separable. This is true regardless of whether or not DS is separable. Now we claim that DS
is strongly Φ-RKA secure.

Theorem E.1 Let separable signature scheme DS = (P ‖P ,K′,S,V) be constructed as in Section 6

from Φ-RKA PRG PRG = (P,K,G, r) and normal-secure signature scheme DS = (P ,K,S,V) Let T
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proc Initialize // SSig

π
$

← P(1k) ; M ← ∅ ; (vk , sk)
$

← K(π) ; i← 0
Return (π, vk)

proc Sign(φ,m) // SSig

sk ′ ← Q(π, sk , φ)
If sk ′ = ⊥ then return ⊥
i← i+ 1 ; vk i ← T (π, sk

′)
M ←M ∪ {(vk i,m)}

σ
$

← S(π, sk ′,m)
Return (vk i, σ)

proc Finalize(j,m, σ) // SSig

If (j > i) then return false

Return ((V(π, vk j ,m, σ) = 1) ∧ ((vk j ,m) 6∈M))

Figure 9: Game defining strong Φ-RKA security for (DS ,T ) where Φ = (π,Q).

denote its public-key generation algorithm and assume Φ is claw-free. Then (DS ,T ) is strongly Φ-RKA

secure.

Notice that we do not claim (DS ,T ) is strongly (Φ ∪ Φc)-RKA secure. Indeed, strongly Φc-RKA
signature schemes do not exist. The strong security of any signature scheme breaks, since an adversary
can itself compute signatures under a constant secret key and can then forge under them. The proof
is similar to that of Theorem 6.1 and is omitted. An analogue of Theorem 6.2 may also be stated and
proved.

Other primitives. The analogous security definitions for strong Φ-RKA CCA asymmetric encryption
also exists. For Φ-RKA CCA asymmetric encryption, the adversary selects not only two messages m0

and m1, but also a φ ∈ Φ, and then receives the encryption of one of the two messages under the related
key derived using φ; the adversary is said to succeed if it can guess with non-negligible advantage which
message was encrypted.

The generic construction that transforms a secure CCA asymmetric encryption scheme using a Φ-
RKA-PRG to generate the secret key before each use gives this strong security definition. We omit the
proof here, but it is very similar to the proof of strong security for the signature scheme. Intuitively,
each distinct φ ∈ Φ cause the Φ-RKA-PRG to output values indistinguishable from random. When this
pseudorandomness is used to generate the secret key, it appears as if it was a new randomly generated
instance of the primitive. Since the adversary can only interact with polynomially many of these, we
can guess which one they will choose, and embed the standard Φ-RKA security challenge here.

A dedicated scheme. In addition to our general transformation from any signature scheme to a
strongly Φ-RKA secure signature scheme, we present a specific and direct construction of a strongly
Φ-RKA secure signature scheme based on a Φ-RKA PRF. We use the Merkle Tree [28] transformation
from a secure one-time signature scheme to a secure many time signature scheme. By replacing the
PRF in this construction with a Φ-RKA-PRF, we note that the scheme becomes a (φ∪Φc)-RKA secure
signature scheme. It is interesting that creating a Φ-RKA secure scheme here only requires replacing
the PRF with a Φ-RKA-PRF. This means the scheme, unmodified, will be RKA secure if the underlying
PRF is RKA secure. No modification to the scheme is needed.

To sign n-bit messages with security parameter k, we require a one-time signature scheme that
can sign messages twice the length of its public key, and that supports a public-key generator π. We
additionally require PRF = (P,K,F) with Rng(π) equal to the private key space of the one-time
signature scheme for each value of k. Such a one-time signature scheme exists under the minimal
assumption that one-way functions exist [30]. This scheme uses a hash and sign paradigm based on a
universal one-way hash function (UOWHF), and the Lamport one-time signature scheme [26], which
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proc Initialize // G0, G1, G2

π
$

← P(1k) ; π
$

← P(1k)

(mpk ,msk)
$

←M(π)

b
$

← {0, 1} ; C∗ ← ⊥
Return ((π, π),mpk)

proc LR(m0,m1) // G0, G1, G2

If (|m0| 6= |m1|) then return ⊥

(vk
∗

, sk
∗

)
$

← K(π)

c∗
$

← E(π,mpk , vk
∗

,mb)

σ∗ ← S(π, sk
∗

, c∗)

C∗ ← (c∗, vk
∗

, σ∗)
Return C∗

proc Finalize(b′) // G0, G1, G2

Return (b = b′)

proc Dec(φ, (c, vk , σ)) // G0

msk ′ ← Φ(msk , φ, π)
If msk ′ = ⊥ then return ⊥
If ((msk ′ = msk) ∧ ((c, vk , σ) = C∗))
then return ⊥

If V(π, vk , c, σ) = 0
then return ⊥

dk ← K(π,msk ′, vk)
Return M ← D(π, dk , c)

proc Dec(φ, (c, vk , σ)) // G1

msk ′ ← Φ(msk , φ, π)
If msk ′ = ⊥ then return ⊥
If ((msk ′ = msk) ∧ ((c, vk , σ) = C∗))
then return ⊥

If V(π, vk , c, σ) = 0
then return ⊥

If (vk = vk
∗

) ∧ ((c, σ) 6= (c∗, σ∗))
then bad← true ; return ⊥

dk ← K(π,msk ′, vk)
Return M ← D(π, dk , c)

proc Dec(φ, (c, vk , σ)) // G2

msk ′ ← Φ(msk , φ, π)
If msk ′ = ⊥ then return ⊥

If (msk ′ = msk) ∧ (vk = vk
∗

)
then return ⊥

If V(π, vk , c, σ) = 0
then return ⊥

dk ← K(π,msk ′, vk)
Return M ← D(π, dk , c)

Figure 10: Games for the proof of Theorem 6.4.

signs a bit by revealing one of two random OWF preimages.

A Merkle tree [28] is used to create a many-time signature scheme from a depth k binary tree of
one-time signature instances. To sign a message, a path through the tree is randomly selected. Each
internal signature scheme instance of the tree is used to sign a hash of the public keys of its children;
the children’s public keys are also included in the signature. The final signature instance, in a leaf of
the tree, is used to sign the desired message.

Goldreich noted [20] that instead of storing the secret keys for each one-time signature scheme
instance, the secret keys can generated as needed by a PRF. Given secret key K for the overall signature
scheme, each instance’s secret key is the PRF evaluated at the binary path to the instance in the tree.
For example, the root node’s secret key is F(π,K, ǫ), and its two children’s secret keys are F(π,K, 0)
and F(π,K, 1). This allows the secret key for the entire construction to be comprised only of the key
for the PRF. See [20] for a formal description of this scheme.

Replacing the PRF with a Φ-RKA-PRF, this scheme is a C ∪ Φ-RKA secure and strongly Φ-RKA
secure signature scheme. The intuition for these proofs of security follows the proof for Theorem E.1.

F Proof of Theorem 6.4

The proof uses the sequence of games in Figure 10. Game G0 implements PKEA with PKE , so we have

Adv
pke-cca
PKE ,A,Φ(k) = 2Pr[GA

0 ]− 1.

Game G1 has an additional check in the Dec oracle: now if vk = vk
∗
and (c, σ) 6= (c∗, σ∗), the game

sets bad and responds to the query with ⊥. Since G1 and G0 are identical until bad, we have

Pr[GA
1 ]− Pr[GA

0 ] ≤ Pr[E1],

where E1 is the event that G1 sets bad. We now construct an adversary B that breaks the strong

unforgeability of DS with probability Pr[E1]. B takes as input (π, vk
∗
), and starts by selecting π

$

←
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P(1k) and (mpk ,msk )
$

← K(π). It runs A((π, π),mpk ), and simulates the response to the LR query
exactly as specified in G1, using vk

∗
when called for and its own signing oracle to generate σ∗ on c∗. It

also simulates Dec query responses exactly as specified in G1, noting the first query that triggers bad, if
any. If there is such a query Dec(φ, c, vk , σ), then B outputs (c, σ) as its forgery. This is a valid forgery
for B because this query must have passed the validity check V(π, vk , c, σ) (otherwise the oracle would
have returned before going to set bad), and we have that at (c, σ) 6= (c∗, σ∗) by the check immediately
before bad is set.

Game G2 rearranged some of the validity checks in Dec oracle processing, but these changes don’t
affect oracle responses. This change is valid because the same ciphertexts end up being rejected in
either game. We have

Pr[GA
2 ] = Pr[GA

1 ]

We are now in a position to show that an adversary winning G2 with good probability can be used to
break the Φ-RKA security of IBE . We construct A′ such that

Advibe-rka
IBE ,A,Φ(k) = 2Pr[GA

2 ]− 1.

A′ takes input (π,mpk ), selects π
$

← P(1k) and runs A((π, π),mpk ). A′ simulates the response to

LR(m0,m1) by generating (vk
∗
, sk

∗
)

$

← K(π) and querying its own oracle for c∗ ← LR(vk
∗
,m0,m1),

and then it signs c∗ using sk
∗
are returns the ciphertext C∗ = (c∗, vk

∗
, σ∗). A′ simulates responses to

Dec(φ, (c, vk , σ) by computing

msk ′ ← KD(φ, vk
∗
) ; If (msk ′ = ⊥ or V(π, vk , c, σ) = 0) then return ⊥

M ← D(π,msk ′, c) ; Return T[hj ].

A′ runs A until it halts, and it outputs whatever A outputs.
To complete the claim we need to argue that A′ properly simulates G2. The only subtlety is in how

decryption queries are handled. But we observe that the KD oracle is performing exactly the same first
two checks that G2 performs during Dec, and the rest of Dec is properly simulated, and so A′ performs
as claimed.

The proof is completed by collecting the relationships between games G0, G1 and G2.
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