
ar
X

iv
:1

10
7.

16
97

v1
 [

st
at

.C
O

]
8

Ju
l 2

01
1 Distinct Counting with a Self-Learning Bitmap

Aiyou Chen, Jin Cao, Larry Shepp and Tuan Nguyen∗

Bell Laboratories and Rutgers University

July 11, 2011

Abstract

Counting the number of distinct elements (cardinality) in adataset is a

fundamental problem in database management. In recent years, due to many

of its modern applications, there has been significant interest to address the

distinct counting problem in adata streamsetting, where each incoming data

can be seen only once and cannot be stored for long periods of time. Many

probabilistic approaches based on either sampling or sketching have been pro-

posed in the computer science literature, that only requirelimited computing

∗Aiyou Chen (E-mail: aiyouchen@google.com) is a statistician at Google Inc., Mountain View,

CA 94043; Jin Cao (E-mail: cao@research.bell-labs.com) isa Distinguished Member of Technical

Staff at Bell Labs, Alcatel-Lucent, Murray Hill, NJ 07974; Larry Shepp is a Professor, Department

of Statistics, Rutgers University, Piscataway, NJ 08854; and Tuan Nguyen is a Ph.D. candidate, De-

partment of Statistics, Rutgers University, Piscataway, NJ 08854. The work was done when Aiyou

Chen was a Member of Technical Staff at Bell Labs, Alcatel-Lucent. The authors would like to thank

the Editor, AE and two anonymous referees for useful reviewsand constructive suggestions which

have improved the paper significantly. Lawrence Menten at Bell Labs, Alcatel-Lucent proposed an

idea of hardware implementation for S-bitmap.

1

http://arxiv.org/abs/1107.1697v1

and memory resources. However, the performances of these methods are not

scale-invariant, in the sense that their relative root mean square estimation

errors (RRMSE) depend on the unknown cardinalities. This isnot desirable

in many applications where cardinalities can be very dynamic or inhomoge-

neous and many cardinalities need to be estimated. In this paper, we develop a

novel approach, calledself-learning bitmap (S-bitmap)that isscale-invariant

for cardinalities in a specified range. S-bitmap uses a binary vector whose

entries are updated from 0 to 1 by an adaptive sampling process for inferring

the unknown cardinality, where the sampling rates are reduced sequentially as

more and more entries change from 0 to 1. We prove rigorously that the S-

bitmap estimate is not only unbiased but scale-invariant. We demonstrate that

to achieve a small RRMSE value ofǫ or less, our approach requires signifi-

cantly less memory and consumes similar or less operations than state-of-the-

art methods for many common practice cardinality scales. Both simulation

and experimental studies are reported.

Keywords: Distinct counting, sampling, streaming data, bitmap, Markov

chain, martingale.

1 Introduction

Counting the number of distinct elements (cardinality) in adataset is a fundamental

problem in database management. In recent years, due to highrate data collection

in many modern applications, there has been significant interest to address the dis-

tinct counting problem in adata streamsetting where each incoming data can be

seen only once and cannot be stored for long periods of time. Algorithms to deal

with streaming data are often calledonline algorithms. For example, in modern

2

high speed networks, data traffic in the form of packets can arrive at the network

link in the speed of gigabits per second, creating a massive data stream. A sequence

of packets between the same pair of source and destination hosts and their applica-

tion protocols form a flow, and the number of distinct networkflows is an important

monitoring metric for network health (for example, the early stage of worm attack

often results a significant increase in the number of networkflows as infected ma-

chines randomly scan others, see Buet al. (2006)). As another example, it is often

useful to monitor connectivity patterns among network hosts and count the number

of distinct peers that each host is communicating with over time (Karasaridiset al.,

2007), in order to analyze the presence of peer-to-peer networks that are used for

file sharing (e.g. songs, movies).

The challenge of distinct counting in the stream setting is due to the constraint

of limited memory and computation resources. In this scenario, the exact solution is

infeasible, and a lightweight algorithm, that derives anapproximatecount with low

memory and computational cost but with high accuracy, is desired. In particular,

such a solution will be much preferred for counting tasks performed over Android-

based smart phones (with only limited memory and computing resources), which

is in rapid growth nowadays (Mentenet al., 2011). Another difficulty is that in

many applications, the unknown cardinalities to be estimated may fall into a wide

range, from 1 toN , whereN ≫ 1 is a known upper bound. Hence an algorithm

that can perform uniformly well within the range is preferred. For instance, there

can be millions of hosts (e.g. home users) active in a networkand the number of

flows each host has may change dramatically from host to host and from time to

time. Similarly, a core network may be composed of many linkswith varying link

speeds, and a traffic snapshot of the network can reveal variations between links

by several orders of magnitude. (A real data example is givenin Section 7.) It is

3

problematic if the algorithm for counting number of flows works well (e.g. relative

root mean square estimation errors are below some threshold) on some links while

not on others due to different scales.

There have been many solutions developed in the computer science literature to

address the distinct counting problem in the stream setting, most notablyFlajolet and Martin

(1985), Whanget al.(1990), Gibbons (2001), Durand and Flajolet (2003), Estanet al.

(2006), Flajoletet al. (2007) among others. Various asymptotical analyses have

been carried out recently, see Kaneet al. (2010) and references therein. The key

idea is to obtain a statistical estimate by designing a compact and easy-to-compute

summary statistic (also called sketch in computer science)from the streaming data.

Some of these methods (e.g. LogLog counting by Durand and Flajolet (2003) and

Hyper-LogLog counting by Flajoletet al. (2007)) have nice statistical properties

such as asymptotic unbiasedness. However, the performanceof these existing so-

lutions often depends on the unknown cardinalities and cannot perform uniformly

well in the targeted range of cardinalities[1, N]. For example, with limited memory,

linear counting proposed by Whanget al.(1990) works best with small cardinalities

while the LogLog counting method works best with large cardinalities.

Let the performance of a distinct counting method be measured by its relative

root mean square error (RRMSE), where RRMSE is defined by

Re(n̂) =
√

E(n−1n̂− 1)2

wheren is the distinct count parameter andn̂ is its estimate. In this article we

develop a novel statistics based distinct counting algorithm, calledS-bitmap, that is

scale-invariant, in the sense that RRMSE is invariant to the unknown cardinalities

in a wide range without additional memory and computationalcosts, i.e. there exists

4

a constantǫ > 0 such that

Re(n̂) ≡ ǫ, for n = 1, · · · , N. (1)

S-bitmp uses the bitmap, i.e., a binary vector, to summarizethe data for approximate

counting, where the binary entries are changed from 0 to 1 by an adaptive sampling

process. In the spirit of Morris (1978), the sampling rates decrease sequentially

as more entries change to 1 with the optimal rate learned fromthe current state

of the bitmap. The cardinality estimate is then obtained by using a non-stationary

Markov chain model derived from S-bitmap. We use martingaleproperties to prove

that our S-bitmap estimate is unbiased, and more importantly, its RRMSE is indeed

scale-invariant. Both simulation and experimental studies are reported. To achieve

the same accuracy as state-of-the-art methods, S-bitmap requires significantly less

memory for many common practice cardinality scales with similar or less compu-

tational cost.

The distinct counting problem we consider here is weakly related to the tra-

ditional ’estimating the number of species’ problem, see Bunge and Fitzpatrick

(1993), Haas and Stokes (1998), Mao (2006) and references therein. However, tra-

ditional solutions that rely on sample sets of the population are impractical in the

streaming context due to restrictive memory and computational constraints. While

traditional statistical studies (see Bickel and Doksum, 2001) mostly focus on statis-

tical inference given a measurement model, a critical new component of the solution

in the online setting, as we study in this paper, is that one has to design much more

compact summary statistics from the data (equivalent to a model), which can be

computed online.

The remaining of the paper goes as follows. Section 2 furtherellaborates the

background and reviews several competing online algorithms from the literature.

5

Section 3 and 4 describe S-bitmap and estimation. Section 5 provides the dimen-

sioning rule for S-bitmap and analysis. Section 6 reports simulation studies includ-

ing both performance evaluation and comparison with state-of-the-art algorithms.

Experimental studies are reported in Section 7. Throughoutthe paper,P andE de-

note probability and expectation, respectively,ln(x) andlog(x) denote the natural

logarithm and base-2 logarithm ofx, and Table 1 lists most notations used in the

paper.

The S-bitmap algorithm has been successfully implemented in some Alcatel-

Lucent network monitoring products. A 4-page poster about the basic idea of S-

bitmap (see Chen and Cao, 2009) was presented at the International Conference on

Data Engineering in 2009.

2 Background

In this section, we provide some background and review in details a few classes

of benchmark online distinct counting algorithms from the existing literature that

only require limited memory and computation. Readers familiar with the area can

simply skip this section.

2.1 Overview

Let X = {x1, x2, · · · , xT} be a sequence of items with possible replicates, where

xi can be numbers, texts, images or other digital symbols. The problem of distinct

counting is to estimate the number of distinct items from thesequence, denoted as

n = |{xi : 1 ≤ i ≤ T}|. For example, ifxi is thei-th word in a book, thenn is

the number of unique words in the book. It is obvious that an exact solution can be

obtained by listing all distinct items (e.g. words in the example). However, as we

6

Variable Meaning

m memory requirement in bits

n cardinality to be estimated

n̂ S-bitmap estimate ofn

P, E, var probability, expectation, variance

Re(n̂)
√

E(n̂n−1 − 1)2 (relative root mean square error)

[0, N] the range of cardinalities to be estimated

C−1/2, ǫ (expected, theoretic) relative root mean square error of S-bitmap

V a bitmap vector

pb sequential sampling rate (1 ≤ b ≤ m)

St bucket location inV

Lt number of 1s inV after thet-th distinct item is hashed intoV

It indicator whether thet-th distinct item fills in an empty bucket inV

Lt the set of locations of buckets filled with 1s inV

Tb number of distinct items afterb buckets are filled with 1s inV

tb expectation ofTb

Table 1: Some notations used in the paper.

can easily see, this solution quickly becomes less attractive whenn becomes large

as it requires a memory linear inn for storing the list, and an order oflogn item

comparisons for checking the membership of an item in the list.

The objective of online algorithms is to process the incoming data stream in real

time where each data can be seen only once, and derive an approximate count with

accuracy guarantees but with a limited storage and computation budget. A typi-

cal online algorithm consists of the following two steps. First, instead of storing the

original data, one designs a compact sketch such that the essential information about

7

the unknown quantity (cardinality in this case) is kept. Thesecond step is an infer-

ence step where the unknown quantity is treated as the parameter of interest, and the

sketch is modeled as random variables (functions) associated with the parameter. In

the following, we first review a class ofbitmapalgorithms including linear count-

ing by Whanget al.(1990) and multi-resolution bitmap (mr-bitmap) by Estanet al.

(2006), which are closely related to our new approach. Then we describe another

class of Flajolet-Martin type algorithms. We also cover other methods briefly such

as sampling that do not follow exactly the above online sketching framework. An

excellent review of these and other existing methods can be found in Beyeret al.

(2009), Metwallyet al. (2008), Gibbons (2009), and in particular, Metwallyet al.

(2008) provides extensive simulation comparisons. Our newapproach will be com-

pared with three state-of-the-art algorithms from the firsttwo classes of methods:

mr-bitmap, LogLog counting and Hyper-LogLog counting.

2.2 Bitmap

The bitmap scheme for distinct counting was first proposed inAstrahanet al.(1987)

and then analyzed in details in Whanget al. (1990). To estimate the cardinality of

the sequence, the basic idea ofbitmap, is to first map then distinct items uniformly

randomly tom buckets such that replicate items are mapped to the same bucket, and

then estimate the cardinality based on the number of non-empty buckets. Here the

uniform random mapping is achieved using a universal hash function (see Knuth,

1998), which is essentially a pseudo uniform random number generator that takes

a variable-size input, called ’key’ (i.e. seed), and returning an integer distributed

uniformly in the range of[1, m].1 To be convenient, leth : X → {1, · · · , m} be

1As an example, by taking the input datumx as an integer, the Carter-Wegman hash function is

as follows:h(x) = ((ax + b) modp) modm, wherep is a large prime, anda, b are two arbitrarily

8

a universal hash function, where it takes akeyx ∈ X and map to a hash value

h(x). For theoretical analysis, we assume that the hash functiondistributes the

items randomly, e.g. for anyx, y ∈ X with x 6= y, h(x) andh(y) can be treated as

two independent uniform random numbers. A bitmap of lengthm is simply a binary

vector, sayV = (V [1], . . . , V [k], . . . , V [m]) where each elementV [k] ∈ {0, 1}.

The basic bitmap algorithm for online distinct counting is as follows. First,

initialize V [k] = 0 for k = 1, · · · , m. Then for each incoming datax ∈ X ,

compute its hash valuek = h(x) and update the corresponding entry in the bitmap

V [k] by settingV [k] = 1. For convenience, this is summarized in Algorithm 1.

Notice that the bitmap algorithm requires a storage ofm bits attributed to the bitmap

and requires no additional storage for the data. It is easy toshow that each entry

in the bitampV [k] is Bernoulli(1 − (1−m−1)
n
), and hence the distribution of

|V | =
∑m

k=1 V [k] only depends onn. Various estimates ofn have been developed

based on|V |, for example, linear counting as mentioned above uses the estimator

m ln(m(m − |V |)−1). The name ’linear counting’ comes from the fact that its

memory requirement is almost linear inn in order to obtain good estimation.

Typically,N is much larger than the required memorym (in bits), thus mapping

from {0, · · · , m} to {1, · · · , N} cannot be one-to-one, i.e. perfect estimation, but

one-to-multiple. A bitmap of sizem can only be used to estimate cardinalities

less thanm logm with certain accuracy. In order to make it scalable to a larger

cardinality scale, a few improved methods based on bitmap have been developed

(see Estanet al., 2006). One method, calledvirtual bitmap, is to apply the bitmap

scheme on a subset of items that is obtained by sampling original items with a

given rater. Then an estimate ofn can be obtained by estimating the cardinality

chosen integers modulop with a 6= 0. Herex is the key and the output is an integer in{1, · · · ,m}

if we replace 0 withm.

9

Algorithm 1 Basic bitmap
Input: a stream of itemsx

V (a bitmap vector of zeros with sizem)

Output: |V | (number of entries with 1s inV)

Configuration:m

1: for x ∈ X do

2: compute its hash valuek = h(x)

3: if V [k] = 0 then

4: updateV [k] = 1

5: Return|V | =
∑m

k=1 V [k].

of the sampled subset. But it is impossible for virtual bitmap with a singler to

estimate a wide range of cardinalities accurately. Estanet al. (2006) proposed a

multiresolution bitmap (mr-bitmap) to improve virtual bitmap. The basic idea of

mr-bitmap is to make use of multiple virtual bitmaps, each with a different sampling

rate, and embeds them into one bitmap in a memory-efficient way. To be precise, it

first partitions the original bitmap intoK blocks (equivalent toK virtual bitmaps),

and then associates buckets in thek-th block with a sampling raterk for screening

distinct items. It may be worth pointing out that mr-bitmap determinesK and the

sampling rates with a quasi-optimal strategy and it is stillan open question how

to optimize them, which we leave for future study. Though there is no rigorous

analysis in Estanet al. (2006), mr-bitmap is not scale-invariant as suggested by

simulations in Section 6.

10

2.3 Flajolet-Martin type algorithms

The approach of Flajolet and Martin (1985) (FM) has pioneered a different class of

algorithms. The basic idea of FM is to first map each itemx to a geometric random

numberg, and then record the maximum value of the geometric random numbers

max(g), which can be updated sequentially. In the implementation of FM, upon

the arrival of an itemx, the correspondingg is the location of the left-most 1 in

the binary vectorh(x) (each entry of the binary vector followsBernoulli(1/2)),

whereh is a universal hash function mentioned earlier. ThereforeP(g = k) = 2−k.

Naturally by hashing, replicate items are mapped to the samegeometric random

number. The maximum order statisticmax(g) is the summary statistic for FM, also

called the FM sketch in the literature. Note that the distribution ofmax(g) is com-

pletely determined by the number of distinct items. By randomly partitioning items

into m groups, the FM approach obtainsm maximum random numbers, one for

each group, which are independent and identically distributed, and then estimates

the distinct count by a moment method. Since FM makes use of the binary value of

h(x), which requires at mostlog(N) bits of memory whereN is the upper bound

of distinct counts (taking as power of 2), it is also calledlog-counting. Various

extensions of the FM approach have been explored in the literature based on the

k-th maximum order statistic, wherek = 1 corresponds to FM (see Giroire, 2005;

Beyeret al., 2009).

Flajolet and his collaborators have recently proposed two innovative methods,

called LogLog counting and Hyper-LogLog as mentioned above, published in 2003

and 2007, subsequently. Both methods use the technique of recording the binary

value of g directly, which requires at mostlog(logN) bits (takingN such that

log(logN) is integer), and therefore are also called loglog-counting. This provides

a more compact summary statistic than FM. Hyper-LogLog is built on a more effi-

11

cient estimator than LogLog, see Flajoletet al.(2007) for the exact formulas of the

estimators.

Simulations suggest that although Hyper-LogLog may have a bounded RRMSE

for cardinalities in a given range, its RRMSE fluctuates as cardinalities change and

thus it isnot scale-invariant.

2.4 Distinct sampling

The paper of Flajolet (1990) proposed a novel sampling algorithm, calledWegman’s

adaptive sampling, which collects a random sample of the distinct elements (binary

values) of size no more than a pre-specified number. Upon arrival of a new dis-

tinct element, if the sample size of the existing collectionis more than a threshold,

the algorithm will remove some of the collected sample and the new element will

be inserted with a sampling rate2−k, wherek starts from 0 and grows adaptively

according to available memory. Thedistinct samplingof Gibbons (2001) uses the

same idea to collect a random sample of distinct elements. These sampling algo-

rithms are essentially different from the above two classesof algorithms based on

one-scan sketches, and are computationally less attractive as they require scanning

all existing collection periodically. They belong to the log-counting family with

memory cost in the order ofǫ−2 log(N) whereǫ is an asymptotic RRMSE, but their

asymptotic memory efficiency is somewhat worse than the original FM method,

see Flajoletet al. (2007) for an asymptotic comparison. Flajolet (1990) has shown

that with a finite population, the RRMSE of Wegman’s adaptivesampling exhibits

periodic fluctuations, depending on unknown cardinalities, and thus it is not scale

invariant as defined by (1). Our new approach makes use of the general idea of

adaptive sampling, but is quite different from these sampling algorithms, as ours

does not require collecting a sample set of distinct values,and furthermore is scale

12

invariant as shown later.

3 Self-learning Bitmap

As we have explained in Section 2.2, the basic bitmap (see Algorithm 1), as well as

virtual bitmap, provides a memory-efficient data summary but they cannot be used

to estimate cardinalities accurately in a wide range. In this section, we describe a

new approach for online distinct counting by building aself-learningbitmap (S-

bitmap for abbreviation), which not only is memory-efficient, but provides a scale-

invariant estimator with high accuracy.

The basic idea of S-bitmap is to build an adaptive sampling process into a bitmap

as our summary statistic, where the sampling rates decreasesequentially as more

and more new distinct items arrive. The motivation for decreasing sampling rates

is easy to perceive - if one draws Bernoulli sample with ratep from a population

with unknown sizen and obtains a Binomial count, sayX ∼ Binomial(n, p),

then the maximum likelihood estimatep−1X for n has relative mean square error

E(n−1p−1X − 1)2 = (1 − p)/(np). So, to achieve a constant relative error, one

needs to use a smaller sampling ratep on a larger population with sizen. The sam-

pling idea is similar to “adaptive sampling” of Morris (1978) which was proposed

for counting a large number of items withno item-duplicationusing a small mem-

ory space. However, since the main issue of distinct counting is item-duplication,

Morris’ approach does not apply here.

Now we describe S-bitmap and show how it deals with the item-duplication

issue effectively. The basic algorithm for extracting the S-bitmap summary statistic

is as follows. Let1 ≥ p1 ≥ p2 ≥ · · · ≥ pm > 0 be specified sampling rates.

A bitmap vectorV ∈ {0, 1}m with lengthm is initialized with 0 and a counter

13

L is initialized by 0 for the number of buckets filled with 1s. Upon the arrival of

a new itemx (treated as a string or binary vector), it is mapped, by a universal

hash function usingx as the key, to sayk ∈ {1, · · · , m}. If V [k] = 1, then skip

to the next item; Otherwise, with probabilitypL, V [k] is changed from 0 to 1, in

which caseL is increased by 1. (See Figure 1 for an illustration.) Note that the

sampling is also realized with a universal hash function using x as keys. Here,

L ∈ {0, 1, · · · , m} indicates how many 1-bits by the end of the stream update.

Obviously, the biggerL is, the larger the cardinality is expected to be. We show in

Section 4 how to useL to characterize the distinct count.

If m = 2c for some integerc, then S-bitmap can be implemented efficiently as

follows. Let d be an integer. For each itemx, it is mapped by a universal hash

function usingx as the key to a binary vector with lengthc+ d. Let j andu be two

integers that correspond to the binary representations with the firstc bits and lastd

bits, respectively. Thenj is the bucket location in the bitmap that the item is hashed

into, andu is used for sampling. It is easy to see thatj andu are independent. If the

bucket is empty, i.e.V [j] = 0, then check whetheru2−d < pL+1 and if true, update

V [j] = 1. If the bucket is not empty, then just skip to next item. This is summarized

in Algorithm 2, where the choice of(p1, · · · , pm) is described in Section 5. Here

we follow the setting of the LogLog counting paper by Durand and Flajolet (2003)

and takeX = {0, 1}c+d. There is a chance of collision for hash functions. Typically

d = 30, which is small relative tom, is sufficient forN in the order of millions.

Since the sequential sampling ratespL only depend onL which allows us to

learn the number of distinct items already passed, the algorithm is called Self-

learning bitmap (S-bitmap).2 We note that the decreasing property of the sampling

2Statistically, the self learning process can also be calledadaptive sampling. We notice that

Estanet al.(2006) have used ’adaptive bitmap’ to stand for a virtual bitmap where the sampling rate

14

Figure 1: Update of the bitmap vector: in case 1, just skip to the next item, and in

case 2, with probabilitypL whereL is the number of 1s inV so far, the bucket value

is changed from 0 to 1.

rates, beyond the above heuristic optimality, is also sufficient and necessary for fil-

tering out all duplicated items. To see the sufficiency, justnote if an item is not

sampled in its first appearance, then thed-bits number associated with it (sayu, in

line 5 of Algorithm 2) is larger than its current sampling rate, saypL. Thus its later

replicates, still mapped tou, will not be sampled either due to the monotone prop-

erty. Mathematically, if the item is mapped tou with u2−d > pL, thenu2−d > pL+1

sincepL+1 ≤ pL. On the other hand, ifpL+1 > pL, then in line 7 of Algorithm

is chosen adaptively based on another rough estimate, and that Flajolet (1990) has used ’adaptive

sampling’ for subset sampling. To avoid potential confusion with these, we use the name ’self

learning bitmap’ instead of ’adaptive sampling bitmap’.

15

Algorithm 2 S-bitmap (SKETCHING UPDATE)
Input: a stream of itemsx (hashed binary vector with sizec+ d)

V (a bitmap vector of zeros with sizem = 2c)

Output:B (number of buckets with 1s inV)

Configuration:m

1: Initialize L = 0

2: for x = b1 · · · bc+d ∈ X do

3: setj := [b1 · · · bc]2 (integer value of firstc bits in base 2)

4: if V [j] = 0 then

5: u = [bc+1 · · · bc+d]2

6: # sampling #

7: if u2−d < pL+1 then

8: V [j] = 1

9: L = L+ 1

10: ReturnB = L.

2, P(pL < u2−d < pL+1) > 0, that is, there is a positive probability that the item

mapped tou, in its first appearance, is not sampled atL, but its later replicate is

sampled atL+1, which establishes the necessity. The argument of sufficiency here

will be used to derive S-bitmap’s Markov property in Section4.1 which leads to the

S-bitmap estimate of the distinct count usingL.

It is interesting to see that unlike mr-bitmap, the samplingrates for S-bitmap

are not associated with the bucket locations, but only depend on the arrival of new

distinct items, through increases ofL. In addition, we use the memory more effi-

ciently since we can adaptively change the sampling rates tofill in more buckets,

while mr-bitmap may leave some virtual bitmaps unused or some completely filled,

which leads to some waste of memory.

16

We further note that in the S-bitmap update process, only onehash is needed for

each incoming item. For bucket update, only if the mapped bucket is empty, the last

d-bits of the hashed value is used to determine whether the bucket should be filled

with 1 or not. Note that the sampling rate changes only when anempty bucket is

filled with 1. For example, ifK buckets become filled by the end of the stream,

the sample rates only need to be updatedK times. Therefore, the computational

cost of S-bitmap is very low, and is similar to or lower than that of benchmark

algorithms such as mr-bitmap, LogLog and Hyper-LogLog (in fact, Hyper-LogLog

uses the same summary statistic as LogLog and thus their computational costs are

the same).

4 Estimation

In this section, we first derive a Markov chain model for the aboveL sequence and

then obtain the S-bitmap estimator.

4.1 A non-stationary Markov chain model

From the S-bitmap update process, it is clear that then distinct items are randomly

mapped into them buckets, but not all corresponding buckets have values 1. From

the above sufficiency argument, due to decreasing sampling rates, the bitmap filters

out replicate items automatically and its update only depends on the first arrival

of each distinct item, i.e. new item. Without loss of generality, let then distinct

items be hashed into locationsS1, S2, · · · , Sn with 1 ≤ Si ≤ m, indexed by the

sequence of their first arrivals. Obviously, theSi are i.i.d.. LetIt be the indicator of

whether or not thet-th distinct item fills an empty bucket with 1. In other words,

It = 1 if and only if the t-th distinct item is hashed into an empty bucket (i.e.

17

with value 0) and further fills it with 1. Given the firstt − 1 distinct items, let

L(t− 1) = {Sj : Ij = 1, 1 ≤ j ≤ t − 1} be the buckets that are filled with 1, and

Lt−1 = |L(t − 1)| be the number of buckets filled with 1. ThenLt = Lt−1 + It.

Upon the arrival of thet-th distinct item that is hashed to bucket locationSt, if St

does not belong toL(t−1), i.e, the bucket is empty, then by the design of S-bitmap,

It is independent ofSt. To be precise, as defined in line 3 and 5 of Algorithm 2,

j andu associated withx are independent, one determining the locationSt and

the other determining samplingIt. Obviously, according to line 7 of Algorithm 2,

the conditional probability that thet-th distinct item fills theSt-th bucket with 1 is

pLt−1+1, otherwise is 0, that is,

P(It = 1|St /∈ L(t− 1), Lt−1) = pLt−1+1

and

P(It = 1|St ∈ L(t− 1), Lt−1) = 0.

The final output from the update algorithm is denoted byB, i.e.

B ≡ Ln =
n

∑

t=1

It,

wheren is the parameter to be estimated.

SinceSt andL(t− 1) are independent, we have

P(It = 1|Lt−1)

= P(It = 1|St /∈ L(t− 1), Lt−1)P(St /∈ L(t− 1)|Lt−1)

= pLt−1+1 · (1−
Lt−1

m
).

This leads to the Markov chain property ofLt as summarized in the theorem below.

18

Theorem 1 Let qk = (1 −m−1(k − 1))pk for k = 1, · · · , m. If the monotonicity

condition holds, i.e.p1 ≥ p2 ≥ · · · , then{Lt : t = 1, · · · , n} follows a non-

stationary Markov chain model:

Lt = Lt−1 + 1, with probabilityqLt−1+1

= Lt−1, with probability1− qLt−1+1.

4.2 Estimation

Let Tk be the index for the distinct item that fills an empty bucket with 1 such that

there arek buckets filled with 1 by that time. That is,{Tk = t} is equivalent to

{Lt−1 = k − 1 andIt = 1}. Now given the outputB from the update algorithm,

obviouslyTB ≤ n < TB+1. A natural estimate ofn is

n̂ = tB, (2)

wheretb = ETb, b = 1, 2, · · · .

Let T0 ≡ 0 andt0 = 0 for convenience. The following properties hold forTb

andtb.

Lemma 1 Under the monotonicity condition of{pk}, Tk − Tk−1, for 1 ≤ k ≤ m

are distributed independently with geometric distributions, and for1 ≤ t ≤ m,

P(Tk − Tk−1 = t) = (1− qk)
t−1qk.

The expectation and variance ofTb, 1 ≤ b ≤ m can be expressed as

tb =
b

∑

k=1

q−1
k .

and

var(Tb) =

b
∑

k=1

(1− qk)q
−2
k .

19

The proof of Lemma 1 follows from the standard Markov chain theory and is

provided in the appendix for completeness. Below we analyzehow to choose the

sequential sampling rates{p1, · · · , pm} such thatRe(n̂) is stabilized for arbitrary

n ∈ {1, · · · , N}.

5 Dimensioning rule and analysis

In this section, we first describe the dimensioning rule for choosing the sampling

rates{pk}. Notice thatTb is an unbiased estimate oftb = ETb if Tb is observ-

able buttb is unknown, wheret1 < t2 < · · · < tm. Again formally denote

Re(Tb) =
√

E(Tbt
−1
b − 1)2 as the relative error. In order to make the RRMSE

of S-bitmap invariant to the unknown cardinalityn, our idea is to choose the sam-

pling rates{pk} such thatRe(Tb) is invariant for1 ≤ b ≤ m, sincen must fall

in between some two consecutiveTbs. We then prove that althoughTb are unob-

servable, choosing parameters that stabilizesRe(Tb) is sufficient for stabilizing the

RRMSE of S-bitmap for alln ∈ {1, · · · , N}.

5.1 Dimensioning rule

To stabilizeRe(Tb), we need some constantC such that forb = 1, · · · , m,

Re(Tb) ≡ C−1/2. (3)

This leads to the dimensioning rule for S-bitmap as summarized by the following

theorem, whereC is determined later as a function ofN andm.

Theorem 2 Let{Tk − Tk−1 : 1 ≤ k ≤ m} follow independent Geometric distribu-

tions as in Lemma 1. Letr = 1− 2(C + 1)−1. If

pk =
m

m+ 1− k
(1 + C−1)rk,

20

then we have fork = 1, · · · , m,

√

var(Tk)

ETk

≡ C−1/2. (4)

That is, the relative errorsRe(Tb) do not depend onb.

Proof Note that (4) is equivalent to

var(Tb+1)

t2b+1

=
var(Tb)

t2b
.

By Lemma 1, this is equivalent to

var(Tb) + (1− qb+1)q
−2
b+1

(tb + q−1
b+1)

2
=

var(Tb)

t2b
.

Sincevar(Tb) = C−1t2b , then

q−1
b+1 =

C

C − 1
+

2tb
C − 1

. (5)

Sincetb+1 = tb + q−1
b+1, we have

tb+1 =
C + 1

C − 1
tb +

C

C − 1
.

By deduction,

tb+1 =

(

C + 1

C − 1

)b
(

t1 + 2−1C
)

−
C

2
.

Sincevar(T1) = (1 − q1)q
−1
1 = C−1t21 andt1 = q−1

1 , we havet1 = C(C − 1)−1.

Hence with some calculus, we have, forr = 1− 2(C + 1)−1,

tb =
C

2
(r−b − 1)

qb = (1 + C−1)rb.

21

Sinceqb = (1 − b−1
m

)pb, the sequential sampling ratepb, for b = 1, · · · , m, can be

expressed as

pb =
m

m+ 1− b
(1 + C−1)rb.

The conclusion follows as the steps can be reversed.

It is easy to check that the monotonicity property holds strictly for {pk : 1 ≤

k ≤ m − 2−1C}, thus satisfying the condition of Lemma 1. Fork > m − 2−1C,

the monotonicity does not hold. So it is natural to expect that the upper boundN

is achieved whenm− 2−1C buckets (supposeC is even) in the bitmap turn into 1,

i.e. tm−2−1C = N , or,

N =
C

2

(

r−(m−2−1C) − 1
)

. (6)

Sincer = 1− 2(C + 1)−1, we obtain

m =
C

2
+

ln(1 + 2NC−1)

ln(1 + 2(C − 1)−1)
. (7)

Now, given the maximum possible cardinalityN and bitmap sizem, C can be

solved uniquely from this equation.

For example, ifN = 106 andm = 30, 000 bits, then from (7) we can solve

C ≈ 0.01−2. That is, if the sampling rates{pk} in Theorem 2 are designed using

such (m,N), thenRe(n̂) can be expected to be approximately 1% for alln ∈

{1, · · · , 106}. In other words, to achieve errors no more than 1% for all possible

cardinalities from 1 toN , we need only about 30 kilobits memory for S-bitmap.

Sinceln(1 + x) ≈ x(1 − 1
2
x) for x close to 0, (7) also implies that to achieve a

small RRMSEǫ, which is equal to(C − 1)−1/2 according to Theorem 3 below, the

memory requirement can be approximated as follows:

m ≈
1

2
ǫ−2(1 + ln(1 + 2Nǫ2)).

22

Therefore, asymptotically, the memory efficiency of S-bitmap is much better than

log-counting algorithms which requires a memory in the order of ǫ−2 logN . Fur-

thermore, assumingNǫ−2 ≫ 1, if ǫ <
√

(logN)η/(2eN) whereη ≈ 3.1206,

S-bitmap is better than Hyper-LogLog counting which requires memory approxi-

mately1.042ǫ−2 log(logN) (see Flajoletet al., 2007) in order to achieve an asymp-

totic RRMSEǫ, otherwise is worse than Hyper-LogLog.

Remark. In implementation, we setpb ≡ pm−2−1C for m − 2−1C ≤ b ≤ m so

that the sampling rates satisfy the monotone property whichis necessary by Lemma

1. Since the focus is on cardinalities in the range from 1 toN as pre-specified, which

corresponds toB ≤ m − 2−1C as discussed in the above, we simply truncate the

outputLn bym− 2−1C if it is larger than this value which becomes possible when

n is close toN , that is,

B = min(Ln, m− 2−1C). (8)

5.2 Analysis

Here we prove that the S-bitmap estimate is unbiased and its relative estimation

error is indeed “scale-invariant“ as we had expected if we ignore the truncation

effect in (8) for simplicity.

Theorem 3 Let B = Ln, whereLn is the number of 1-bits in the S-bitmap, as

defined in Theorem 1 for1 ≤ n ≤ N . Under the dimensioning rule of Theorem 2,

for the S-bitmap estimator̂n = tB as defined in(2), we have

En̂ = n

RRMSE(n̂) = (C − 1)−1/2.

23

Proof Let for a > 1

Yn =

Ln
∏

j=0

(1 + (a− 1)q−1
j).

By Theorem 1,Ln+1 = i+Bernoulli(qi+1) if Ln = i. Thus

E(Yn+1|Y0, Y1, · · · , Yn)

= E(YnI(Ln+1 = i) + Yn(1 + (a− 1)q−1
Ln+1

)I(Ln+1 = i+ 1)|Ln)

= Yn{1− qi+1 + qi+1(1 + (a− 1)q−1
i+1)}

= Yna

if Ln = i. Therefore{a−nYn : n = 0, 1, · · · } is a martingale.

Note thatqi = (1 + C−1)ri, i ≥ 0, wherer = 1 − 2(C + 1)−1. SinceL0 = 0,

EY0 = 1 + (a− 1)q−1
0 and sincea−n

EYn = EY0, we have

EYn = an(1 + (a− 1)q−1
0)

that is,

an(1 + (a− 1)q−1
0) = E

Ln
∏

j=0

(1 + (a− 1)q−1
j).

Recall thattb =
∑b

j=1 q
−1
j and

∑b
j=1 q

−2
j (1 − qj) = C−1(

∑b
j=1 q

−1
j)2. Taking first

derivative ata = 1+, we have (sinceB = Ln)

n + q−1
0 = E

Ln
∑

j=0

q−1
j = EtB + q−1

0

and taking second derivative ata = 1+, we have

n(n− 1) + 2nq−1
0 = E(

Ln
∑

j=0

q−1
j)2 − E

Ln
∑

j=0

q−2
j

= E(tB + q−1
0)2 − E(q−2

0 + tB + C−1t2B).

24

Therefore,EtB = n andEt2B = n2C/(C − 1). Thus

var(tB) =
n2

C − 1
.

Remark. This elegant martingale argument already appeared in Rosenkrantz

(1987) but under a different and simpler setting, and we rediscovered it.

In implementation, we use the truncated version ofB, i.e. (8), which is equiv-

alent to truncating the theoretical estimate byN if it is greater thanN . Since by

assumption the true cardinalities are no more thanN , this truncation removes one-

sided bias and thus reduces the theoretical RRMSE as shown inthe above theorem.

Our simulation below shows that this truncation effect is practically ignorable.

6 Simulation studies and comparison

In this section, we first present empirical studies that justify the theoretical analysis

of S-bitmap. Then we compare S-bitmap with state-of-the-art algorithms in the

literature in terms of memory efficiency and the scale invariance property.

6.1 Simulation validation of S-bitmap’s theoretical performance

In the above, our theoretical analysis shows that without truncation byN , the S-

bitmap has a scale-invariant relative errorǫ = (C − 1)−1/2 for n in a wide range

[1, N], whereC satisfies Equation (7) given bitmap sizem. We study the S-bitmap

estimates based on (8) with two sets of simulations, both with N = 220 (about one

million), and then compare empirical errors with the theoretical results. In the first

set, we fixm = 4, 000, which givesC = 915.6 andǫ = 3.3%, and in the second

set, we fixm = 1, 800, which givesC = 373.7 and ǫ = 5.2%. We design the

sequential sampling rates according to Section 5.1. For1 ≤ n ≤ N , we simulaten

25

Cardinality (log base 2)

R
e

la
tiv

e
 e

rr
o

r

4 32 256 2048 16384 131072 1048576

0
.0

2
0

.0
3

0
.0

4
0

.0
5

0
.0

6
0

.0
7

0
.0

8

Simulated error (m=4000)
Theoretical error (3.3%)
Simulated error (m=1800)
Theoretical error (5.2%)

Figure 2: Empirical and theoretical estimation errors of S-bitmap withm = 4, 000

bits andm = 1, 800 bits of memory for estimating cardinalities1 ≤ n ≤ 220.

distinct items and obtain S-bitmap estimate. For eachn (power of 2), we replicate

the simulation 1000 times and obtain the empirical RRMSE. These empirical errors

are compared with the theoretical errors in Figure 2. The results show that for

both sets, the empirical errors and theoretical errors match extremely well and the

truncation effect is hardly visible.

6.2 Comparison with state-of-the-art algorithms

In this subsection, we demonstrate that S-bitmap is more efficient in terms of mem-

ory and accuracy, and more reliable than state-of-the-art algorithms such as mr-

bitmap, LogLog and Hyper-LogLog for many practical settings.

Memory efficiency Hereafter, the memory cost of a distinct counting algorithm

stands for the size of the summary statistics (in bits) and does not count for hash

functions (whose seeds require some small memory space), and we note that the

algorithms to be compared here all require at least one universal hash function.

26

N ǫ = 1% ǫ = 3% ǫ = 9%

HLLog S-bitmap HLLog S-bitmap HLLog S-bitmap

103 432.6 59.1 48.1 11.3 5.3 2.4

104 432.6 104.9 48.1 21.9 5.3 3.8

105 540.8 202.2 60.1 34.5 6.7 5.2

106 540.8 315.2 60.1 47.2 6.7 6.6

107 540.8 430.1 60.1 60 6.7 8.1

Table 2: Memory cost (with unit 100 bits) of Hyper-LogLog andS-bitmap with

givenN, ǫ.

ε(in percent)

N

0.5 2 8 32 128

10
3

10
4

10
5

10
6

10
7

Figure 3: Contour plot of the ratios of the memory cost of Hyper-LogLog to that

of S-bitmap with the same(N, ǫ): the contour line with small circles and label ’1’

represents the contour with ratio values equal to 1.

From (7), the memory cost for S-bitmap is approximately linear in log(2N/C).

By the theory developed in Durand and Flajolet (2003) and Flajolet et al. (2007),

the space requirements for LogLog counting and Hyper-LogLog are approximately

27

1.302×αǫ−2 and1.042×αǫ−2 in order to achieve RRMSEǫ = (C−1)−1/2, where

α = 5, if 216 ≤ N < 232,

= 4, if 28 ≤ N < 216.

Hereα = k + 1 if 22
k

≤ N < 22
k+1

for any positive integerk. So LogLog requires

about 56% more memory than Hyper-LogLog to achieve the same asymptotic error.

There is no analytic study of the memory cost for mr-bitmap inthe literature, thus

below we report a thorough memory cost comparison only between S-bitmap and

Hyper-LogLog.

GivenN andǫ, the theoretical memory costs for S-bitmap and Hyper-LogLog

can be calculated as above. Figure 3 shows the contour plot ofthe ratios of the

memory requirement of Hyper-LogLog to that of S-bitmap, where the ratios are

shown as the labels of corresponding contour lines. Hereǫ × 100% is shown in

the horizontal axis andN is shown in the vertical axis, both in the scale of log

base 2. The contour line with small circles and label ’1’ shows the boundary where

Hyper-LogLog and S-bitmap require the same memory costm. The lower left side

of this contour line is the region where Hyper-LogLog requires more memory than

S-bitmap, and the upper right side shows the opposite. Table2 lists the detailed

memory cost for both S-bitmap and Hyper-LogLog in a few caseswhereǫ takes

values 1%, 3% and 9%, andN takes values from 1000 to108. For example, for

N = 106 andǫ ≤ 3%, which is a suitable setup for a core network flow monitoring,

Hyper-LogLog requires at least 27% more memory than S-bitmap. As another

example, forN = 104 and ǫ ≤ 3%, which is a reasonable setup for household

network monitoring, Hyper-LogLog requires at least 120% more memory than S-

bitmap. In summary, S-bitmap is uniformly more memory-efficient than Hyper-

LogLog whenN is medium or small andǫ is small, though the advantage of S-

28

bitmap against Hyper-LogLog dissipates withN ≥ 107 and largeǫ.

Scale-invariance propertyIn many applications, the cardinalities of interest are in

the scale of a million or less. Therefore we report simulation studies withN = 220.

In the first experiment,m = 40, 000 bits of memory is used for all four algorithms.

The design of mr-bitmap is optimized according to Estanet al. (2006). Let the true

cardinalityn vary from 10 to106 and the algorithms are run to obtain correspond-

ing estimateŝn and estimation errorsn−1n̂ − 1. Empirical RRMSE is computed

based on 1000 replicates of this procedure. In the second andthird experiments,

the setting is similar except thatm = 3, 200 andm = 800 are used, respectively.

The performance comparison is reported in Figure 4. The results show that in the

first experiment, mr-bitmap has small errors than LogLog andHyperLogLog, but S-

bitmap has smaller errors than all competitors for cardinalities greater than 40,000;

In the second experiment, Hyper-LogLog performs better than mr-bitmap, but S-

bitmap performs better than all competitors for cardinalities greater than 1,000;

And in the third experiment, with higher errors, S-bitmap still performs slightly

better than Hyper-LogLog for cardinalities greater than 1,000, and both are better

than mr-bitmap and LogLog. Obviously, the scale invarianceproperty is validated

for S-bitmap consistently, while it is not the case for the competitors. We note that

mr-bitmap performs badly at the boundary, which are not plotted in the figures as

they are out of range.

Other performance measuresBesides RRMSE, which is theL2 metric, we have

also evaluated the performance based on other metrics such asE|n−1n̂−1|, namely

theL1 metric, and the quantile of|n−1n̂ − 1|. As examples, Table 3 and Table

4 report the comparison of three error metrics (L1, L2 and 99% quantile) for the

29

Cardinality (log base 2)

R
e

la
tiv

e
 e

rr
o

r
(%

)

0.5

1.0

1.5

16 64 256 1024 4096 16384 65536 262144 1048576

m=40000

3

4

5

m=7200

6

8

10

12

m=800

HLLog LLog S−bitmap mr−bitmap

Figure 4: Comparison among mr-bitmap, LogLog, Hyper-LogLog and S-bitmap for

estimating cardinalities from 10 to106 with m = 40, 000,m = 3, 200 andm = 800

respectively.

cases with (N = 104, m = 2700) and (N = 106, m = 6720), which represent

two settings of different scales. In both settings, mr-bitmap works very well for

small cardinalities and worse as cardinalities get large, with strong boundary effect.

Hyper-LogLog has a similar behavior, but is much more reliable. Interestingly,

empirical results suggest that the scale-invariance property holds for S-bitmap not

only with RRMSE, but approximately with the metrics ofL1 and the 99% quantile.

For large cardinalities relative toN , the errors of Hyper-LogLog are all higher than

that of S-bitmap in both settings.

30

L1 L2 (RRMSE) 99% quantile

n S mr H S mr H S mr H

10 1.3 0.6 0.8 2.6 1.6 3 10 10 10

100 2.1 1.4 2.5 2.6 1.7 3.2 6 4 8

1000 2.1 1.6 3.5 2.6 2 4.4 6.7 5 11.4

5000 2.1 2.3 3.4 2.6 3.4 4.2 6.6 7.5 11.3

7500 2.1 100.7 3.5 2.6 100.9 4.3 6.9 119 11.2

10000 2.1 101.9 3.5 2.6 102.4 4.4 6.6 131.1 11.5

Table 3: Comparison ofL1, L2 metrics and 99%-quantiles (times 100) among mr-

bitmap (mr), Hyper-LogLog (H) and S-bitmap (S) forN = 104 andm = 2700.

L1 L2 (RRMSE) 99% quantile

n S mr H S mr H S mr H

10 1.1 0.5 0.4 2.4 1.3 1.9 10 10 10

100 1.8 1.4 1.6 2.3 1.7 2 6 4 5

1000 1.9 1.5 1.8 2.4 1.9 2.2 6.2 5 5.5

10000 2 2.5 2.1 2.5 3.1 2.7 6.8 7.9 7

1e+05 1.9 2.6 2.3 2.4 3.3 2.9 6.5 7.9 7.6

5e+05 1.9 2.6 2.3 2.4 3.3 2.8 6.2 8.6 7.3

750000 2 22.9 2.2 2.5 48.2 2.8 6.1 116.9 7

1e+06 1.9 100.5 2.2 2.4 100.8 2.8 6.2 120.3 7.4

Table 4: Comparison ofL1, L2 metrics and 99%-quantiles (times 100) among mr-

bitmap (mr), Hyper-LogLog (H) and S-bitmap (S) forN = 106 andm = 6720.

31

Time (PST)

N
u

m
b

e
r

o
f

fl
o

w
s
 (

lo
g

 b
a

s
e

 2
)

01/25/03 14:00 01/25/03 16:00 01/25/03 18:00 01/25/03 20:00 01/25/03 22:00

1
6

3
8

4
3

2
7

6
8

6
5

5
3

6
1

3
1

0
7

2
Truth
S−bitmap estimates

Time (PST)

N
u

m
b

e
r

o
f
flo

w
s

(l
o

g
 b

a
se

 2
)

01/25/03 14:00 01/25/03 16:00 01/25/03 18:00 01/25/03 20:00 01/25/03 22:00

3
2

7
6

8
6

5
5

3
6

1
3

1
0

7
2

Truth
S−bitmap estimates

(a) Link 1 (b) Link 0

Figure 5: Time series of true flow counts (in triangle) and S-bitmap estimates (in

dotted line) per minute on both links during slammer outbreak: link 1 (a) and link

0 (b).

7 Experimental evaluation

We now evaluate the S-bitmap algorithm on a few real network data and also com-

pare it with the three competitors as above.

7.1 Worm traffic monitoring

We first evaluate the algorithms on worm traffic data, using two 9-hours traffic

traces (www.rbeverly.net/research/slammer). The traceswere collected by MIT

Laboratory for Computer Science from a peering exchange point (two independent

links, namely link 0 and link 1) on Jan 25th 2003, during the period of “Slammer“

worm outbreak. We report the results of estimating flow counts for each link. We

takeN = 106, which is sufficient for most university traffic in normal scenarios.

32

0.04 0.05 0.06 0.07 0.08 0.09 0.10

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

0
.3

0

Absolute relative error

P
ro

p
o

rt
io

n
S−bitmap
mr−bitmap
LLog
HLLog

0.04 0.05 0.06 0.07 0.08 0.09 0.10

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

0
.3

0

Absolute relative error

P
ro

p
o

rt
io

n

S−bitmap
mr−bitmap
LLog
HLLog

(a) Link 1 (b) Link 0

Figure 6: Proportions of estimates (y-axis) that have RRMSEmore than a threshold

(x-axis) based on S-bitmap, mr-bitmap, LogLog and Hyper-LogLog, respectively

on the two links during slammer outbreak: link 1 (a) and link 0(b), where the

three vertical lines show 2, 3 and 4 times expected standard deviation for S-bitmap

separately.

Since in practice routers may not allocate much resource forflow counting, we use

m = 8000 bits. According to (7), we obtainC = 2026.55 for designing the sam-

pling rates for S-bitmap, which corresponds to an expected standard deviation of

ǫ = 2.2% for S-bitmap. The same memory is used for other algorithms. The two

panels of Figure 5 show the time series of flow counts every minute interval in tri-

angles on link 1 and link 0 respectively, and the corresponding S-bitmap estimates

in dashed lines. Occasionally the flows become very bursty (an order of difference),

probably due to a few heavy worm scanners, while most times the time series are

pretty stable. The estimation errors of the S-bitmap estimates are almost invisible

despite the non-stationary and bursty points.

33

The performance comparison between S-bitmap and alternative methods is re-

ported in Figure 6 (left for Link 1 and right for Link 0), wherey-axis is the pro-

portion of estimates that have absolute relative estimation errors more than a given

threshold in the x-axis. The three thin vertical lines show the 2, 3 and 4 times ex-

pected standard deviation for S-bitmap, respectively. Forexample, the proportion

of S-bitmap estimates whose absolute relative errors are more than 3 times the ex-

pected standard deviation is almost 0 on both links, while for the competitors, the

proportions are at least 1.5% given the same threshold. The results show that S-

bitmap is most resistant to large errors among all four algorithms for both Link 1

and Link 0.

Number of flows (log base 2)

F
re

q
u

e
n

cy

64 256 1024 4096 16384 65536 262144 1048576

0
1

0
2

0
3

0
4

0
5

0

Figure 7: Histogram of five-minute flow counts on backbone links (log base 2).

7.2 Flow traffic on backbone network links

Now we apply the algorithms for counting network link flows ina core network.

The real data was obtained from a Tier-1 US service provider for 600 backbone

34

0.04 0.05 0.06 0.07 0.08 0.09 0.10

0
5

1
0

1
5

2
0

Absolute relative error

N
u

m
b

e
r

o
f

lin
ks

S−bitmap
mr−bitmap
LLog
HLLog

Figure 8: Proportions of estimates (y-axis) that have RRMSEmore than a threshold

(x-axis) based on S-bitmap, mr-bitmap, LogLog and Hyper-LogLog, respectively,

where the three vertical times show 2, 3 and 4 times expected standard deviation

for S-bitmap, separately.

links in the core network, which includes time series of traffic volume in flow counts

on MPLS (Multi Protocol Label Switching) paths in every five minutes. The traffic

scales vary dramatically from link to link as well as from time to time. Since the

original traces are not available, we use simulated data foreach link to compute

S-bitmap and then obtain estimates. We setN = 1.5× 106 and usem = 7, 200 bits

of memory to configure all algorithms as above, which corresponds to an expected

standard deviation of 2.4% for S-bitmap. The simulation uses a snapshot of a five

minute interval flow counts, whose histogram in log base 2 is presented in Figure

7. The vertical lines show that the .1%, 25%, 50%, 75%, and 99%quantiles are

18, 196, 2817, 19401 and 361485 respectively, where about 10% of the links with

no flows or flow counts less than 10 are not considered. The performance compar-

ison between S-bitmap and alternative methods is reported in Figure 8 similar to

35

Figure 6. The results show that both S-bitmap and Hyper-LogLog give very accu-

rate estimates with relative estimation errors bounded by 8%, while mr-bitmap has

worse performance and LogLog is the worst (off the range). Overall, S-bitmap is

most resistant to large errors among all four algorithms. For example, the absolute

relative errors based on S-bitmap are within 3 times the standard deviation for all

links, while there is one link whose absolute relative erroris beyond this threshold

for Hyper-LogLog, and two such links for mr-bitmap.

8 Conclusion

Distinct counting is a fundamental problem in the database literature and has found

important applications in many areas, especially in moderncomputer networks. In

this paper, we have proposed a novel statistical solution (S-bitmap), which is scale-

invariant in the sense that its relative root mean square error is independent of the

unknown cardinalities in a wide range. To achieve the same accuracy, with similar

computational cost, S-bitmap consumes significantly less memory than state-of-the-

art methods such as multiresolution bitmap, LogLog counting and Hyper-LogLog

for common practice scales.

36

Appendix

8.1 Proof of Lemma 1

By the definition of{Tk : 1 ≤ k ≤ m}, we have

P(Tk − Tk−1 = t)

=

∞
∑

s=k−1

P(Tk−1 = s, Tk = t+ s)

=

∞
∑

s=k−1

P(Is = 1, It+s = 1, Ls = k − 1, Lt+s = k).

SinceLs ≤ Ls+1 ≤ · · · ≤ Ls+t, by the Markov chain property of{Lt : t =

1, · · · , }, we have fork ≥ 1 ands ≥ k − 1,

P(Is = 1, It+s = 1, Ls = k − 1, Lt+s = k)

= P(Ls = k − 1, Is = 1)P(Lt+s = k|Lt+s−1 = k − 1)

×
s+t−1
∏

j=s+1

P(Lj = k − 1|Lj−1 = k − 1)

= P(Tk−1 = s)qk

s+t−1
∏

j=s+1

(1− qk)

= P(Tk−1 = s)qk(1− qk)
t−1.

Notice that
∑

∞

s=k−1 P(Tk−1 = s) = P(Tk−1 ≥ k−1) is probability that the(k−1)-

th filled bucket happens when or after the(k − 1)-th distinct item arrives, which is

100% since each distinct item can fill in at most one empty. Therefore

P(Tk − Tk−1 = t) = qk(1− qk)
t−1.

That is,Tk − Tk−1 follows a geometric distribution. The independence of{Tk −

Tk−1 : 1 ≤ k ≤ m} can be proved similarly using the Markov property of{Lt : t =

37

1, 2, · · · }, which we refer to Chapter 3 of Durrett (1996). This completes the proof

of Lemma 1.

References

Astrahan, M., Schkolnick, M., and Whang, K. (1987). Approximating the number

of unique values of an attribute without sorting.Information Systems, 12, 11–15.

Beyer, K., Gemulla, R., Haas, P., Reinwald, B., and Sismanis, Y. (2009). Distinct-

value synopses for multiset operations.Communications of the ACM, 52(10),

87–95.

Bickel, P. J. and Doksum, K. A. (2001).Mathematical Statistics, Basic Ideas and

Selected Topics. Prentice Hall.

Bu, T., Chen, A., Wiel, S. A. V., and Woo, T. Y. C. (2006). Design and evaluation

of a fast and robust worm detection algorithm. InProceeding of the 25th IEEE

International Conference on Computer Communications (INFOCOM).

Bunge, J. and Fitzpatrick, M. (1993). Estimating the numberof species: a review.

Journal of the American Statistical Association, 88, 364–373.

Chen, A. and Cao, J. (2009). Distinct counting with a self-learning bitmap (poster).

In Proceedings of the international conference on Data Engineering.

Durand, M. and Flajolet, P. (2003). Loglog counting of largecardinalities. In

European Symposium on Algorithms, pages 605–617.

Durrett, R. (1996).Probability: Theory and Examples, Second Edition. Duxbury

Press.

38

Estan, C., Varghese, G., and Fisk, M. (2006). Bitmap algorithms for counting active

flows on high speed links.IEEE/ACM Trans. on Networking, 14(5), 925–937.

Flajolet, P. (1990). On adaptive sampling.Computing, 34, 391–400.

Flajolet, P. and Martin, G. N. (1985). Probabilistic counting algorithms for data

base applications.Journal of Computer and System Sciences, 31(2), 182–209.

Flajolet, P., Fusy, E., Gandouet, O., and Meunier, F. (2007). Hyperloglog: the anal-

ysis of a near-optimal cardinality estimation algorithm.Analysis of Algorithms.

Gibbons, P. (2001). Distinct sampling for highly-accurateanswers to distinct values

queries and event reports.The VLDB Journal, pages 541–550.

Gibbons, P. B. (2009). Distinct-values estimation over data streams. InIn Data

Stream Management: Processing High-Speed Data, Editors: M. Garofalakis, J.

Gehrke, and R. Rastogi. Springer.

Giroire, F. (2005). Order statistics and estimating cardinalities of massive datasets.

In Proceedings of the 6th DMTCS Discrete Mathematics and Theoretical Com-

puter Science, pages 157–166.

Haas, P. and Stokes, L. (1998). Estimating the number of classes in a finite popula-

tion. Journal of the American Statistical Association, 93, 1475–1487.

Kane, D. M., Nelson, J., and Woodruff, D. P. (2010). An optimal algorithm for the

distinct elements problem. InProceedings of the 29th ACM SIGMOD-SIGACT-

SIGART symposium on Principles of database systems of data, pages 41 – 52.

Karasaridis, A., Rexroad, B., and Hoeflin, D. (2007). Wide-scale botnet detection

and characterization. InProceedings of the first conference on First Workshop on

Hot Topics in Understanding Botnets. USENIX Association.

39

Knuth, D. (1998). The Art of Computer Programming, Volume 3, 2nd edition.

Addison-Wesley Professional.

Mao, C. (2006). Inference on the number of species through geometric lower

bounds.Journal of American Statistical Association, 101, 1663–1670.

Menten, L. E., Chen, A., and Stiliadis, D. (2011). Nobot - embedded malware

detection for endpoint devices.Bell Labs Technical Journals (accepted).

Metwally, A., Agrawal, D., and Abbadi, A. E. (2008). Why go logarithmic if we

can go linear? towards effective distinct counting of search traffic. InProc. ACM

EDBT.

Morris, R. (1978). Counting large numbers of events in smallregisters.Commun.

ACM, 21(10), 840–842.

Rosenkrantz, W. (1987). Approximate counting: a martingale approach.Stochastic,

27, 111–120.

Whang, K., Vander-Zanden, B., and Taylor, H. (1990). A linear-time probabilistic

counting algorithm for database applications.ACM Transactions on Database

Systems, 15(2), 208–229.

40

	1 Introduction
	2 Background
	2.1 Overview
	2.2 Bitmap
	2.3 Flajolet-Martin type algorithms
	2.4 Distinct sampling

	3 Self-learning Bitmap
	4 Estimation
	4.1 A non-stationary Markov chain model
	4.2 Estimation

	5 Dimensioning rule and analysis
	5.1 Dimensioning rule
	5.2 Analysis

	6 Simulation studies and comparison
	6.1 Simulation validation of S-bitmap's theoretical performance
	6.2 Comparison with state-of-the-art algorithms

	7 Experimental evaluation
	7.1 Worm traffic monitoring
	7.2 Flow traffic on backbone network links

	8 Conclusion
	8.1 Proof of Lemma 1

