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SUMMARY

A Monte Carlo EM algorithm is considered for the maximum likelihood estimation of multi-
variate probit models. To sample from truncated multivariate normals we introduce a sequential
Monte Carlo approach, while to improve the efficiency in driving the sample particles to the
truncation region Studentt distributions are invoked before taking their limit to a normal. After
the initial sampling, a sequential Monte Carlo step can be performed to shift to new parameter
values, recycling the samples and so reducing the computational cost. We discuss the identifi-
ability issue and show that the invariance of the likelihoodprovides the means to ensure that
constrained and unconstrained maximization are equivalent. Finally, for the multivariate probit
model we derive a simple iterative procedure for either maximization which takes effectively no
computational time. Applying our method to the widely used Six Cities dataset we find parame-
ters which improve the maximum likelihood compared to otherapproaches.

Some key words: Maximum likelihood, Multivariate probit, Monte Carlo EM,adaptive sequential Monte Carlo

1. INTRODUCTION

Multivariate probit models, originally introduced by Ashford & Sowden (1970) for the bi-
variate case, are particularly useful tools to capture someof the correlation structure of binary,
and more generally multinomial, response variables (McCulloch, 1994; McCulloch & Rossi,
1994; Bock & Gibbons, 1996; Chib & Greenberg, 1998; Natarajan et al., 2000; Imai & van Dyk,
2005). Inference for such models is typically computationally involved and often still impracti-
cable in high dimensions. To mitigate these difficulties, Varin & Czado (2010) recently proposed
a pseudo-likelihood approach as a surrogate for a full likelihood analysis. Similar pairwise likeli-
hood approaches were also previously proposed by Kuk & Nott (2000) and Renard et al. (2004).

Due to the data augmentation nature of the problem, the estimation maximization (EM) algo-
rithm (Dempster et al., 1977) is typically employed for maximizing the likelihood as its iterative
procedure is usually more attractive than classical numerical optimization schemes. Each itera-
tion consists of an estimation (E) step and a maximization (M) step and both should ideally be
easy to implement. For cases in which the E step is analytically intractable, Wei & Tanner (1990)
introduced a Monte Carlo version of the EM algorithm. Sampling from the truncated normal
distributions involved is often based on Markov chain MonteCarlo (MCMC) methods and the
Gibbs sampler in particular (see e.g. Geweke, 1991). As a different option we employ a sequen-
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2 G. MOFFA AND J. KUIPERS

tial Monte Carlo (SMC) sampler (Del Moral et al., 2006) instead. Though originally introduced
in dynamical scenarios (Gordon et al., 1993; Kitagawa, 1996; Liu & Chen, 1998; Doucet et al.,
2001) as a more general alternative to the well known Kalman filter (Kalman, 1960), SMC al-
gorithms can also be used in static inference (see e.g. Chopin, 2002) where artificial dynamics
are introduced. When the target is a truncated multivariatenormal, as in our case, an obvious
sequence of distributions is obtained by gradually shifting the truncation region to the desired
position. Since normal distributions decay very quickly inthe tails, we propose to use flatter Stu-
dentt distributions to drive the SMC particles more efficiently towards the end region, and only
then take the appropriate limit to recover the required truncated multivariate normal.

The main difficulty in the M step rests with the computationalcomplexity of standard nu-
merical optimization over large parameter spaces, for which Meng & Rubin (1993) suggested
a conditional maximization approach. A simple extension oftheir method allows us to define
an iterative procedure to further maximize the likelihood at each M step. Though the likelihood
converges, there is no guarantee that the parameters converge to a point (Wu, 1983). Restric-
tions to the parameter space have then been introduced to treat the identifiability issue where the
data does not determine the parameters uniquely (McCulloch& Rossi, 1994; Bock & Gibbons,
1996), raising the problem of constrained maximization, normally significantly more difficult
than unconstrained. However, the constraints are necessarily artificial and we show that the two
maximizations can be made identical, and how they can be easily computed. Finally we validate
our methods by comparison with previous approaches (Chib & Greenberg, 1998; Craig, 2008).

2. MULTIVARIATE PROBIT MODEL

2·1. Notation
Following the formulation in Chib & Greenberg (1998), denote by yj a binary vector cor-

responding to thejth observation of a response variableY j with p components. Letxji be
a sizeki column vector containing the covariates associated to itsith component and define
Xj , diag((xj1)

T, . . . , (xjp)T) as ap× k block diagonal matrix, withk =
∑p

i=1 ki. A multi-
variate probit model with parametersβ ∈ R

k andΣ, ap× p covariance matrix, can be specified

pr{Y j = yj | Xj , β,Σ} =

∫

Aj

1

· · ·
∫

Aj
p

φp(z
j ;Xjβ,Σ) dzj, Aji =

{
(0,∞) if yji = 1,

(−∞, 0] if yji = 0,
(1)

whereφp is the density function of a multivariate normal random variable with meanµ = Xjβ
and covariance matrixΣ. The vector of regression coefficient isβ = (βT1 , . . . , β

T
p )

T, with each
subvectorβi ∈ R

ki corresponding to theith component of the response variable. Naturally the
situation where theβi are all identical is a special case.

The probit model can also be understood in terms of a latent variable construction, where the
observations are actually obtained from a sample of multivariate Gaussian vectors{z1, . . . , zN}
from random variablesZ ∼ N (Xjβ,Σ) asyji = Iz<0(z

j
i ), with I the indicator function.

The covariance matrixΣ is a crucial parameter for the multivariate probit model andindi-
rectly accounts for any dependence among the components of the response variable. The identity
matrix corresponds to the assumption of independence and the model reduces to a collection
of one dimensional cases, for whichβ can be easily estimated and used as starting point for
more elaborate inference strategies. An alternative starting covariance matrix can be obtained
(Emrich & Piedmonte, 1991) by pairwise approximations, which are likely however to lead to
non positive definite matrices. ‘Bending’ techniques as suggested by Hayes & Hill (1981) are
then necessary to ensure the positivity of the eigenvalues.
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2·2. Monte Carlo EM
An EM algorithm (Dempster et al., 1977) allows us to build a sequence{ψm} of estimated

parameters such that the likelihood is non decreasing. In terms of the complete(Y,Z) and condi-
tional(Z | Y, ψm) missing data distributions for a given estimateψm at iterationm and observed
dataY , the log-likelihood is

l(ψ | Y ) = log(pr{Y | ψ}) = Q(ψ,ψm)−H(ψ,ψm),

Q(ψ,ψm) = EZ|Y,ψm [log(pr{Y,Z | ψ})] , H(ψ,ψm) = EZ|Y,ψm [log(pr{Z | Y, ψ}))] .
Having the difference of two logs means that the argument of each is only defined up to the
same multiplicative factor. Jensen’s inequality implies thatH(ψ,ψm) ≤ H(ψm, ψm), so that
the likelihood is certainly increased at each step ifQ(ψm+1, ψm) ≥ Q(ψm, ψm), leading to a
generalized EM. Ideally we wish to setψm+1 to the value ofψ which maximizesQ(ψ,ψm), as
required by the actual EM.

For the multivariate probit model, in terms of the latent variablesZj ∼ N (Xjβ,Σ) and letting
ψ = (β,Σ) be the parameter vector, the complete data log-likelihood function is

log(pr{Y,Z | ψ}) =
N∑

j=1

log
[
IAj(zj)φ(zj ;Xjβ,Σ)

]
.

Using the cyclicity of the trace and ignoring some normalizing constants, the corresponding
Q(ψ,ψm) function (Chib & Greenberg, 1998) can be written as

Q(ψ,ψm) = −N
2

[
log |Σ|+ tr

{
Σ−1 1

N

N∑

j=1

EZj |Y j ,ψm

{
(Zj −Xjβ)(Zj −Xjβ)T

}}]
. (2)

The second term of (2) is analytically intractable since it involves expectations with respect
to high dimensional truncated multivariate Gaussian densities. In a Monte Carlo EM approach
(Wei & Tanner, 1990) the expectations can be approximated as

EZj |Y j ,ψm

{
(Zj −Xjβ)(Zj −Xjβ)T

}
≃

M∑

k=1

W j(k)(Zj(k) −Xjβ)(Zj(k) −Xjβ)T, (3)

over a weighted sample{W j(k), Zj(k)}Mk=1, possibly approximated, fromπ(zj | yj, ψm) =
TMN(Aj ,Xjβ,Σ), a multivariate normal distribution truncated to the domainAj .

3. SMCAND THE E STEP

3·1. Sequential Monte Carlo for truncated multivariate normals
Sequential Monte Carlo samplers (Del Moral et al., 2006) area class of iterative algorithms

to produce weighted sample approximations from a sequence{πn} of distributions of interest
where the normalizing constantCn need not be known,πn = γn/Cn. For a given probability
distributionπ, one obtains a collection of weighted samples{W (k), Z(k)} such thatEπ (h(Z)) ≃∑M

k=1W
(k)h(Z(k)), whereM is the number of particles andh a function of interest. In a static

scenario the main purpose is to obtain such an approximationfrom the last element of the targeted
sequence.

In order to control for the degeneracy of the sample, resampling (see Douc et al., 2005, for a
review of resampling schemes) is typically performed when the effective sample size (ESS), as
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defined by Liu & Chen (1998): ESS−1 =
∑M

k=1(W
(k)
n )2, falls below a given threshold ESS∗ =

rM (with 0 < r < 1). The move from the targetπn−1 to the targetπn is achieved by means of a

transition kernelKn, so thatZ(k)
n ∼ Kn(Z

(k)
n−1, ·), and updating the normalized weights

W (k)
n ∝W

(k)
n−1w̃

(k)
n , w̃n(Z

(k)
n−1, Z

(k)
n ) =

γn(Z
(k)
n )Ln−1(Z

(k)
n , Z

(k)
n−1)

γn−1(Z
(k)
n−1)Kn(Z

(k)
n−1, Z

(k)
n )

, k = 1, . . . ,M.

The quantityLn−1 in the expression for the incremental weightsw̃(k)
n is a backward kernel in-

troduced by Del Moral et al. (2006) to address computationalissues. A typical choice forKn is
given by MCMC kernels withπn as an invariant distribution and in particular we adopt a random
walk Metropolis Hastings kernel. The samples at a given iterationn are obtained by moving each
particlek to a new locationZ(k)

n = Y k
∼ N (Z

(k)
n−1,Σn) with probabilityαk = 1 ∧ ρk and leav-

ing it unchanged otherwise, withρk = πn(Y
k)/πn(Z

(k)
n−1). The covariance matrixΣn = κΣ̂π

in the random walk proposal is a scaled version of an approximation Σ̂π (typically obtained
from the previously simulated sample) of the target covariance matrix. As extensively investi-
gated in the MCMC literature (for example the original paperof Gilks et al., 1998; Haario et al.,
2001; Atchadé & Rosenthal, 2005, or the more recent review of Andrieu & Thoms, 2008) the
scaling factorκ can be adaptively tuned by monitoring the average empiricalacceptance prob-
ability α̂n at iterationn. For the Metropolis Hastings transition kernel, this can beevaluated
asα̂n =

∑M
k=1W

(k)
n (1 ∧ πn(Y (k)

n )/πn(Z
(k)
n−1)). Adaptation of the transition kernel specifically

within SMC has recently been considered by Jasra et al. (2011).

3·2. Multivariate normals via Students
Since the probability of the random walk Metropolis to move towards the tails of a Gaussian

distribution decreases exponentially, a SMC method involving normals may be highly inefficient
in moving samples towards regions of low probability. To achieve higher rates of acceptance in
the tails we suggest starting with a flatter distribution: the multivariate (of dimensionp) Studentt
distributionT (ν, µ,Σ) with degree of freedomν, mean vectorµ and covariance matrixΣ, which
can be defined (Nadarajah & Kotz, 2005) as

f(z) =
Γ(ν+p2 )

Γ(ν2 )(πν)
p/2|Σ|1/2

[
1 +

1

ν
(z − µ)TΣ−1(z − µ)

]− ν+p

2

. (4)

Replacing theν in the denominator inside the square brackets by(ν − 2), and correspondingly
changing the normalization factor, would provide the Student distribution with a covariance of
Σ. As it stands, the distribution in (4) actually has a covariance ofνΣ/(ν − 2) which further
increases the acceptance in the tails. Once in the region of low probability we allow the degree
of freedom to grow to infinity(ν → ∞) so the distribution approaches ap-variate Gaussian with
the same mean and covariance matrixΣ.

To sample in the region of interestA, we define a sequence of target distributions{πn}T0
such that the first target is an unconstrained multivariate Student and the last one is the same
distribution truncated toA. Quite naturally the intermediate distributions are defined in terms
of intermediate target domains{An}T0 , included in each otherAk+1 ⊂ Ak, with AT ≡ A and
A0 ≡ R

p. The local targetπn at iterationn of the SMC algorithm is then

πn(z) =
γn(z)

Cn
, γn(z) =

[
1 +

1

ν
(z − µ)TΣ−1(z − µ)

]− ν+p

2

IAn
(z),
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whereCn is a normalizing constant which can be estimated (Del Moral et al., 2006) from

Ĉn = C0

n∏

i=1

Ĉi
Ci−1

,
Ĉi
Ci−1

=
M∑

k=1

W
(k)
i−1w̃i(Z

(k)
i−1, Z

(k)
i ),

andC0 follows from (4). This ultimately allows us to obtain the probabilities of the regions in
(1) and hence the likelihood for the probit model.

After reaching the required region, we define another sequence of target distributions starting
from the truncated Student and increasing the degree of freedom ν until it is large enough that
we can replace the Student with the desired truncated multivariate normal. One could also vary
both the truncation region and the degree of freedom concurrently in the sequence of target
distributions, but since the main reason for introducing the flatter Student distribution is to aid
moving to regions of low probability we chose this two-step approach.

3·3. Adaptive approach to artificial dynamics
Other than for tuning the transition kernelKn, adaptive strategies can also be used to define

the artificial dynamics leading to the distribution of interestπT . We do not address the problem of
finding the optimal path linking an initial measureπ0 to the targetπT on the space of distributions
in the sense of Gelman & Meng (1998), who actually deal with this issue in relation to Monte
Carlo sampling methods for the evaluation of ratios of normalizing constants. Here we assume
instead that the functional form of the intermediate distribution is given and can be described in
terms of a parameterθ. An adaptive strategy to move fromπ0 to πT is one that does not require
the sampling points{θn} defining the intermediate targets{πn} to be fixed a priori, but allows
us to determine them dynamically on the basis of the local difficulty of the problem.

Adaptation can be achieved by controlling some statistics related to the performance of the
algorithm and evolving with the parameterθ, and the ESS introduced in subsection 3·1 is an
ideal quantity to monitor. Theoretically we wish to solve

ESSn(θn)− ESS∗A = 0, (5)

where ESS∗A is a value chosen to compromise between efficiency and accuracy. Inspired by the
Robbins-Monro recursion (see for example Kushner & Yin, 2003, page 3) for stochastic approx-
imation, and aiming at the dynamical design of a sequence which keeps the ESS on average
close to the threshold ESS∗A, we define the updating scheme

θn =

[
θn−1 +

(
ζn

ẼSSn − ESS∗A
M

∨∆θmin

)]
∧ θT , (6)

whereẼSSn is the value observed for ESS at iterationn and the division by the number of
particlesM is only introduced for scaling purposes. Taking the maximumbetween the correction
term and∆θmin ensures that the resulting sequence approaches the final target monotonically,
while taking the minimum withθT ensures that the sequence ends at the desired targetπθT .
Theoretically the ESS should ideally be equal to the total number of particlesM of the SMC
sampler, but to promote motion as a compromise between accuracy and efficiency, the threshold
ESS∗A can be fixed as a fractionr ∈ (0, 1) ofM , namely ESS∗A = rM . The number of iterations
needed to reach the targetπT is reduced for smallerr. Similar adaptive ideas have also recently
been applied to inference for stochastic volatility modelsby Jasra et al. (2011).
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Fig. 1. The number of steps required for the SMC algorithm to reach a region of
probabilityr for dimensions 2 (diamonds), 4 (crosses), 8 (dots) and 16 (pluses).

3·4. Scaling behaviour
The advantage of the SMC method, over alternatives which maybe more efficient in sampling

from truncated multivariate normals in low dimensions, is the scaling behaviour with the dimen-
sion p. Solving the adaptive equation (5) exactly means that we lose a fixed proportion of the
probability mass at each iteration. The number of steps required to reach a target region of low
probabilityr, then behaves likelog(r), independently ofp. This may not be true when using (6)
as a numerical adaptive approximation to (5), especially asthe number of steps for the adaption
to settle grows linearly withp, so a weak dependence on the dimension could be expected.

A simulation study with targets of dimensions2n for n = 1, . . . , 4 was performed. To limit
the sources of variability, only one covariance structure was considered for the unconstrained
distribution, with unit diagonals and a single non-zero off-diagonal element of 0·9. The SMC
algorithm was initialized so that after an initial move the Studentt target would be truncated
to a region containing one quarter of the probability mass ofan independent Gaussian, and we
denote byr0 the actual estimated probability. The cutoff for the final target, the same in all
directions, was drawn so as to ensure that the log probability of a multivariate standard normal
would be uniform on a given interval. The number of steps needed to reach the target are plotted
againstlog(r0/r) in Fig. 1, for 400 runs of a SMC sampler with 4000 particles forthe different
dimensions. A behaviour close to linear can be observed, though the offset increases by a factor
of about 1·4 over the range of dimensions and the slope increases roughly linearly withp, which
is likely due to any inexactness in the adaptation. The theoretical stability of these types of
algorithms has recently been investigated in depth by Beskos et al. (2011).

3·5. Sequential Monte Carlo EM
After the initial sampling, which provides a particle approximation from the truncated target

distribution corresponding to the initial parameter values, a sequential Monte Carlo approach
can also be adopted to move between subsequent estimatesψm = (βm,Σm) without the need to
perform the complete truncation again. Multiple sub-stepsmight be needed to updateψm−1 to
ψm, depending on how different the two corresponding targets are. For each observationj the
local (to the EM iteration) initial and final distributions of the artificial sequence{πn} are defined
asπ0 = TMN(Aj ,Xjβm−1,Σm−1) andπT = TMN(Aj ,Xjβm,Σm) respectively, while the
parameterθn defining the intermediate targets moves fromψm−1 to ψm, possibly in a single
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step. To avoid the situation where we would effectively needto move to a bigger region, which
would prevent us from using a simplified version of the backward kernelLn (see section 3.3.2.3
of Del Moral et al., 2006), we first rescale the previous sample to lie in the new truncation region,
which can be done as long as the scaling factors are all positive, and then we apply the algorithm
to update to the new covariance matrix.

4. CYCLING CONDITIONAL MAXIMIZATIONS

4·1. Two step maximization
To overcome the difficulties associated with numerical maximization, Meng & Rubin (1993)

suggested replacing the maximization over the full parameter space by a multi-step conditional
maximization over several subspaces in turn. They treat theexample of multivariate normal re-
gression with incomplete data, where the parametersψm at stepm can again be split intoΣm

andβm. This leads to a two-step conditional maximization which can be performed analytically.
KeepingΣ fixed and maximizing equations (2) and (3) overβ we obtain

β̂ =

( N∑

j=1

(Xj)TΣ−1Xj

)−1 N∑

j=1

(Xj)TΣ−1
M∑

k=1

(
W j(k)Zj(k)

)
, (7)

so that by settingΣ = Σm we can update the mean vector parameters for the next step asβm+1
MR =

β̂. Fixing β, theΣ which maximizes equation (2) is instead

Σ̂ =
1

N

N∑

j=1

M∑

k=1

W j(k)(Zj(k) −Xjβ)(Zj(k) −Xjβ)T, (8)

so that by settingβ = βm+1
MR we can the update the covariance matrix toΣm+1

MR = Σ̂ to give
the new parametersψm+1

MR . Though this two-step approach does not maximizeψ at each step,
it removes the need for computationally intensive maximization and increases the likelihood at
each step to ensure convergence of the (generalized) EM.

4·2. Further maximization
Since equation (8) maximizesQ(ψ,ψm) overΣ for any value ofβ, we can substitutêΣ into

Q(ψ,ψm) in (2) and obtain a function which only depends onβ

Q̂(β, ψm) = −N
2
log |Σ̂| − Np

2
, (9)

Finding the valuẽβ which maximizes (9) overβ and setting̃Σ = Σ̂(β̃) in (8) provides the new
parameterψ̃ which maximizes the likelihood. Performing the differential of (9) leads to the
conditiontr{Σ̂−1dΣ̂} = 0. ThoughdΣ̂ is linear in the components ofβ, the inverse matrix̂Σ−1

leads to a system of coupled higher order polynomial equations. Solving these is impracticable,
but one can proceed iteratively. As a starting point we can chooseβm+1 from the conditional
maximization of (7) so that̂Q has the value found from the two-step conditional maximization
above (i.e. we set̃βm+1,n = βm+1

MR for n = 0). One option would be to perform Newton-Raphson
iterations, but if the starting point is not too far from the maximum we can employ a simpler
approximate maximization. Setting̃Σm+1,n = Σ̂(β̃m+1,n), we separatêΣ = Σ̃m+1,n +∆Σ̃ and
make the approximationlog(1 + x) ≈ x to rewrite

Q̂(β, ψm) ≈ −N
2
tr
{
log Σ̃m+1,n

}
− N

2
tr
{
(Σ̃m+1,n)−1∆Σ̃

}
.
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Maximizing this is solving

− N

2
tr
{
(Σ̃m+1,n)−1dΣ̂

}
= dβT

N∑

j=1

M∑

k=1

W j(k)(Xj)T(Σ̃m+1,n)−1(Zj(k) −Xjβ) = 0,

where we used the cyclicity of the trace to simplify. These are now linear equations in the com-
ponents ofβ, which can easily be solved to find̃βm+1,n+1. In fact the solutions are given
precisely by (7) but now evaluated at the pointΣ̃m+1,n, so thatβ̃m+1,n+1 = β̂(Σ̃m+1,n) and
Σ̃m+1,n+1 = Σ̂(β̃m+1,n+1) to giveψ̃m+1,n+1.

4·3. From generalized EM to EM
Neatly, the logarithmic approximation and the two step conditional maximization of

Meng & Rubin (1993) are equivalent when started at the same point, (ψm or ψm+1
MR for exam-

ple). Because of the approximation, the values ofβ found in this way do not maximizêQ but
can be used as starting points for the next iteration to get closer to the maximum. In general with
approximations the surety of convergence or even of not decreasingQ̂ is lost, but, due to the
equivalence above, each iteration does not decrease the likelihood and convergence follows from
Meng & Rubin (1993). To complete the EM algorithm one can setψm+1 = limn→∞ ψ̃m+1,n,
and numerically stop the iterations when the Euclidean norm||β̃m+1,n+1 − β̃m+1,n|| is small.

Though we have focused on multivariate normals, cycling through the conditional maximiza-
tions of Meng & Rubin (1993) until convergence can be appliedmore generally, turning the
generalized EM of their single round procedure into an EM again. However, as they mention, it
may be computationally advantageous to perform an E step between conditional maximizations
when these are more demanding, and then the algorithm remains a generalized one.

5. IDENTIFIABILITY ISSUE

5·1. Identifiability
When the data is ‘incomplete’ maximization of the likelihood will not lead to uniquely iden-

tified parameters. Imposing constraints is a standard measure to ensure identifiability, but often
with the effect of making the M step more involved (Bock & Gibbons, 1996; Chan & Kuk, 1997;
Kuk & Chan, 2001). The issue is directly linked to symmetriesof the likelihood, where it is in-
variant under some change of coordinates of the parameters.Focusing onglobal symmetries
where the invariance of the likelihoodL(ψ) does not depend on the particular value ofψ ∈ Ψ
we can decomposeΨ = ∆× Ξ into an invariant space∆ and a reduced parameter spaceΞ so
thatψ = (δ, ξ) with δ ∈ ∆ andξ ∈ Ξ. Due to the invariance of the likelihood over∆

L(ψ) = L(δ, ξ) = L̂(ξ) ⇒ max
ψ

L(ψ) = max
ξ

L̂(ξ),

unconstrained maximization over the whole spaceΨ is identical to performing it ‘constrained’
over the reduced spaceΞ, with the difference that the parameters maximizing the likelihood in
the larger space areψ∗ = ∆× ξ∗. Conversely, if the likelihood depended on some subspace of
∆ then it would be identified during the maximization process.Therefore the dimension of∆ is
the number of constraints needed to ensure identifiability.

In addition to any global symmetries, the likelihood function could also show alocal symme-
try so thatL̂(ξ) is maximized by a higher dimensional manifold rather than a single point (as
discussed in Wu, 1983). In principle a local change of variables is possible (for example mak-
ing the non-zero eigenvalues of the Hessian equal to−1 around the maximum) to decompose
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the space further, but in practice this presumes knowledge of the likelihood function. As above
though, maximization over the subspace or the whole space are exactly equivalent because we
still have (local) dimensions which do not affect the value of the likelihood.

Within the EM algorithm the identifiability issue becomes more subtle since the likelihood is
not maximized directly, but by proxy through the functionQ(ψ,ψm). If this were to share the
symmetries of the likelihood, then the simpler unconstrained maximization would be equivalent
to the constrained version, as for the likelihood. If this isnot the case, for example due to con-
ditioning on the previous parameter valueψm, then any changes inQ arising from shiftingψ in
the invariant space∆ of the likelihood must be exactly mimicked by changes inH. This spu-
rious dependence can create differences between constrained and unconstrained maximization.
The non decreasing behaviour of the likelihood remains preserved, since neither maximization
decreasesQ nor, because of Jensens’s inequality, increasesH. Hence either choice leads to the
EM algorithm finding a maximum of the likelihood (though not necessarily the same one) and
explains the conjecture of Bock & Gibbons (1996); Chan & Kuk (1997) and the agreement be-
tween constrained and unconstrained maximization found inKuk & Chan (2001).

5·2. Identifiability for the multivariate probit model
In the multivariate probit model, the symmetries are related to the invariance of the likeli-

hood under a rescaling of the coordinates of the normal variables. The full parameter space
Ψ comprisesp(p+ 1)/2 entries from the covariance matrixΣ and k regression coefficients
from β. Scaling the coordinatesZj = DU j by means of a diagonal matrixD with positive
entries(d1, . . . , dp), transforms the covariance matrix toΩ = D−1ΣD−1 and the vectorβ to
λ = (d−1

1 βT1 , . . . , d
−1
p βTp )

T but can easily be checked to leave the likelihood unchanged.Choos-
ing the entries ofD to be the square root of the diagonal elements ofΣ reducesΩ to corre-
lation form. The invariant space∆ can then be spanned by thep diagonal elements ofΣ (i.e.
δ1 = 1/

√
σ11 etc.) while the reduced spaceΞ includes thep(p− 1)/2 rescaled upper triangular

elements ofΩ (i.e.ωij = δiδjσij) and thek elements ofλ = (δ1β
T
1 , . . . , δpβ

T
p )

T.
The likelihood is not maximized directly, but through the function

Q(ψ,ψm) =

N∑

j=1

∫

Aj

log

[
1

|Σ|1/2 exp

(
−1

2
(z(j) −Xjβ)TΣ−1(zj −Xjβ)

)]

×TMN(Aj ,Xjβm,Σm)dzj , (10)

which is only invariant under a change of integration variablesZj = DU j , for a diagonal matrix
D, if we include a factor|D| inside the log. Moreover, bothψ andψm need to be scaled by same
matrix so that essentiallyδ = δm. Although bothψ andψm have independent invariant spaces for
the likelihood, theQ function ties them together in this apparent constraint. Chib & Greenberg
(1998) therefore maximized inside the constrained spaceΞ, while keepingδi = 1. Denote byψc

the parameter value found under such constraints, and byψu the one obtained through uncon-
strained maximization ofQ. ClearlyQ(ψu, ψ

m) ≥ Q(ψc, ψ
m), but if we projectψu to a point

ψp in the constrained spaceΞ so thatδi = 1 thenQ(ψp, ψ
m) ≤ Q(ψc, ψ

m). Since the likelihood
is invariant under this projection

Q(ψu, ψ
m)−Q(ψp, ψ

m) = H(ψu, ψ
m)−H(ψp, ψ

m),

and without any information onH(ψu, ψ
m)−H(ψc, ψ

m) it is impossible to say which maxi-
mization increases the likelihood most and is to be preferred in that respect.
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5·3. Reintroducing invariance
To remove the above ambiguity,Q can be redefined to respect the invariance of the likelihood,

for example by replacing(Σ, β) in (10) by their projection(Ω, λ). Such a replacement effectively
enforces invariance of the resulting functioñQ with respect to a rescaling of(Σ, β), making
constrained and unconstrained maximization identical. However, this is no longer true if we
perform a (cyclical) two-step conditional maximization. With the replacement̃Q becomes

Q̃(ψ,ψm) = −N
2

[
log

|Σ|
|D|2 + tr

{
DΣ−1DŜ

}]
, (11)

Ŝ ≃ 1

N

N∑

j=1

M∑

k=1

W j(k)(Zj(k) −D−1Xjβ)(Zj(k) −D−1Xjβ)T, (12)

with D a diagonal matrix whose elements are the square roots of the diagonal elements ofΣ (so
thatΩ = D−1ΣD−1). ThoughQ̃ may appear to be limited to the constrained space, it depends
on the full parameter space when one ofΣ orβ are given. Assume that for givenψm andβm+1 =
λm+1 we wish to findΣm+1. Constrained maximization enforcesδi = 1 to findΩm+1

c and hence
ψm+1
c . An unconstrained maximization allowsδi to vary, leading toΣm+1

u and correspondingly
toψm+1

u , such thatQ̃(ψm+1
u , ψm) ≥ Q̃(ψm+1

c , ψm). Because of the invariance, the projection of
ψm+1
u does not now changẽQ resulting in a point in the constrained space with a higher value.

In fact β is only defined up to a scale, which need not be preserved during each conditional
maximization, nor given the stochastic nature of the estimation step.

Fixing Σ, the value ofβ maximizing equations (11) and (12) is as in (7), but with an extra
factorD before the sum overk. Maximization with fixedβ overΣ can in turn be done in two
steps. The differentialdΣ is split into a diagonal and an off-diagonal part. The condition for the
latter to vanish is that(Ω−1 − Ω−1ŜΩ−1) be itself a diagonal matrix. As long as the diagonal
elements ofŜ are not too far from 1, a solution can be found by a simple iterative approach
starting from an arbitraryΩ0 and then solving for the diagonal matrixA the linear equations

Ωk+1 = Ŝ +ΩkAΩk, (13)

so thatΩk+1 is in correlation form. For fixedD the steps above allow us to perform constrained
maximization for both (11) and (2). IfD can vary, for the diagonal elements ofdΣ to vanish

A− I +Ω−1 1

N

N∑

j=1

M∑

k=1

W j(k)(Zj −D−1Xjβ)(Zj)T, (14)

must have zero along the diagonal; a linear equation in the inverse elements ofD. The solution
depends onΩ, which in turn depends (througĥS) onD so to perform the unconstrained maxi-
mization of (11) overΣ for a givenβ we would need to cycle through solving (14) and (13). As
such, the difference between constrained and unconstrained maximization is made transparent.

5·4. Model constraints
In practice some constraints might already be imposed at themodelling stage. Typical for

the multivariate probit model is to require that all the regression vectors are identical:βi = β1,
replacingXjβ byXj

cβ1, withXj
c a matrix whoseith row is(xji )

T. The conditional maximization
steps in Section 4 then allow one to maximize over the constrained space of(Σ, β1).

However, the invariance of the likelihood needs to be reconsidered in light of the new con-
straints, which are broken when scaling the coordinate directions, and hence theβi, by different
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positive factors. The likelihood is now left unchanged, independently ofXj , only when rescal-
ing all the directions by the same amount, corresponding to aone dimensional invariant space.
A reduced space can be defined by fixing the first diagonal element of the covariance matrix to
1, call(Ω′, λ′1) the corresponding parameters. An invariantQ̃ is obtained by replacingXj ,Σ and
β in (10) byXj

c , Ω′ andλ′1 respectively and by setting all the elements ofD in (11) to be the
square root of the first element ofΣ. Constrained and unconstrained maximization follow from
subsection 5·3 but with the slight changes that only the first element of thematrixA in (13) is
non-zero and just the trace of (14) needs to be 0.

The effect on the invariance of assuming equal regression coefficients across components
seems to have been overlooked by Chib & Greenberg (1998) as they requiredΩ′ to be in corre-
lation form. Maximizing over an overly constrained space leads in general to a lower likelihood
than when only imposing the conditions needed to ensure identifiability. Nevertheless, were the
correlation form desired for modelling reasons, one can perform the maximization by setting D
to be the identity matrix and usingXj

c in the formulae in subsection 5·3.

6. COMPARISON TO EXISTING APPROACHES

6·1. The data and model used
To assess the performance of our method, we treat the widely analysed data set from the Six

Cities longitudinal study on the health effects of air pollution, for which a multivariate probit
model was considered by Chib & Greenberg (1998), who conducted both Bayesian and non-
Bayesian analysis. Later Song & Lee (2005) proposed a confirmatory factor analysis for the
same model. More recently Craig (2008) used the example as a test case for his new method
of evaluating multivariate orthant probabilities.

The study was meant to model a probabilistic relation over time between the wheezing status
of children, the smoking habit of their mother during the first year of observation and their age.
In particular the subset of data considered for analysis refers to the observation of537 children
from Stueberville, Ohio. The wheezing conditionyji of each childj at agei ∈ {7, 8, 9, 10} and
the smoking habithj of their mother are recorded as binary variables, with value1 indicating
the condition (wheezing/smoking) present. Three covariates are assumed for each componenti,
namely the agexji1 = i− 9 of child j centred at9, the smoking habitxji2 = hj and an interaction
termxji3 = (i− 9)hj between the two. A probit model can then be constructed

pr{yji = 1} = pr(zji > 0) = Φ(β0 + β1 · xji1 + β2 · xji2 + β3 · xji3),

wherezji is thei-th component of a multivariate random variableZj ∼ N (Xj
cβ,Σ) andΦ is the

cumulative distribution function of a standard normal random variable.

6·2. Testing our algorithm
To fit the model, a SMC sampler was implemented with the numberof particles increasing

from a starting value of 100 by 100 at each iteration up to 40, followed by 10 further steps of
variance reduction (described below) with 4000 particles.Results for the constrained maximiza-
tion are presented in Table 1 along with those of Chib & Greenberg (1998) and Craig (2008).
Good agreement both for the estimates and the standard errors can be observed. Also given are
average values of the corresponding log-likelihoods, easily obtained as a by-product of the SMC
samplers, together with the standard deviation estimates over 40 runs. No real differences can be
seen, with likelihoods comparable to, but slightly below, the estimate of -794·74 in Craig (2008).
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Table 1.Maximum likelihood estimates for the six cities dataset as obtained by
using the constrained SMC algorithm with variance reduction and for a single
run where the samples are recycled. Included for comparisonare the results of

Chib & Greenberg (1998) and Craig (2008).

Chib & Greenberg (1998) Craig (2008) variance reduction recycled samples
β0 -1118 (65) -1122 (62) -1123 (62) -1124 (62)
β1 -79 (33) -78 (31) -78 (31) -79 (32)
β2 152 (102) 159 (101) 159 (101) 159 (101)
β3 39 (52) 37 (51) 37 (51) 37 (51)
σ12 584 (68) 585 (66) 582 (67) 582 (66)
σ13 521 (76) 524 (72) 522 (72) 523 (71)
σ14 586 (95) 579 (74) 575 (75) 572 (74)
σ23 688 (51) 687 (56) 684 (57) 683 (56)
σ24 562 (77) 559 (74) 557 (75) 554 (74)
σ34 631 (77) 631 (67) 629 (68) 629 (68)
l(ψ) -795·26 (0·75) -795·21 (0·97) -795·22 (0·82) -795·30 (0·91)

The value in brackets next to each estimate is the estimated standard error. The values of the param-
eters (and their errors) have all been multiplied by 1000.

Table 2.Example maximum likelihood estimates for the six cities dataset obtained using the
unconstrained SMC algorithm for non-invariantQ, invariantQ̃ and by fixingσ11 = 1

β0 β1 β2 β3 σ12 σ13 σ14 σ22 σ23 σ24 σ33 σ34 σ44 l(ψ)
Q -1176 84 159 41 647 592 572 1208 855 619 1255 715 1001 -793·37
Q̃ -1235 -113 168 47 664 622 612 1275 921 683 1383 802 1146 -793·15

fixedσ11 -1241 -116 169 48 666 626 615 1279 927 686 1395 809 1158 -793·07

The standard deviations of the log-likelihood estimates are 0·90, 0·75 and 0·70 respectively. The values of the param-
eters have all been multiplied by 1000.

Results from recycling the samples in a SMC EM algorithm as insubsection 3·5, with 4000
particles and 40 iterations are in the last column of Table 1.Since oscillations before the variance
reduction step were around 0·001 between interations (with 4000 particles), parameter estimates
when recycling the sample are essentially equivalent, at a much reduced computational cost.

An additional 20 iterations with 4000 particles are included before the variance reduction step
for the unconstrained maximization, since it may take longer for the EM algorithm to explore
a larger space. A fairly robust point is found with the non-invariantQ, while the invariantQ̃
seems to lead to a flatter likelihood neighbourhood, with thesolution appearing more sensitive to
the number of particles during earlier iterations or on imposing the constraint of fixingσ11 to 1.
Results are given in Table 2, and again can be quite closely reproduced by recycling the samples
in a sequential manner between parameter updates. Unfortunately, noise in the estimation of the
observed information matrix overly influenced its numerical inversion, so that robust standard
errors could not be obtained.

6·3. Variance reduction
To reduce the variance associated with the stochastic nature of the Monte Carlo E step, the

parameter can be updated according to a stochastic approximation type rule

ψm = ψm−1 + ζm(ψ̂
m − ψm−1) ≡ (1− ζm)ψ

m−1 + ζmψ̂
m,
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whereψ̂m is the actual estimate obtained from the M-step andζm ∈ (0, 1) a stepsize with the
purpose of gradually shifting the relative importance fromthe innovation(ψ̂m − ψm−1) to the
value of the parameterψm−1 learned through the previous iterations. The scheme is liketaking
a weighted average of the previous estimates, so we have referred to it as a ‘variation reduction’
step. This way the monotonicity property of the EM algorithmis not guarateed, but as long
as the parameter remain within a neighbourhood of the maximum likelihood where it can be
approximated quadratically, monotonicity follows so thatin many practical cases this matter
may not cause any issues.
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