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SUMMARY

A Monte Carlo EM algorithm is considered for the maximum likeod estimation of multi-
variate probit models. To sample from truncated multitarizormals we introduce a sequential
Monte Carlo approach, while to improve the efficiency in toiiythe sample particles to the
truncation region Studentdistributions are invoked before taking their limit to a mad. After
the initial sampling, a sequential Monte Carlo step can ipeed to shift to new parameter
values, recycling the samples and so reducing the compnétcost. We discuss the identifi-
ability issue and show that the invariance of the likelihgdvides the means to ensure that
constrained and unconstrained maximization are equivat@mally, for the multivariate probit
model we derive a simple iterative procedure for either méation which takes effectively no
computational time. Applying our method to the widely usedGties dataset we find parame-
ters which improve the maximum likelihood compared to o@qgrroaches.

Some key word$aximum likelihood, Multivariate probit, Monte Carlo EMdaptive sequential Monte Carlo

1. INTRODUCTION

Multivariate probit models, originally introduced by Ashfl & Sowdeh [(1970) for the bi-
variate case, are particularly useful tools to capture sohike correlation structure of binary,
and more generally multinomial, response variables (M€t |1994; McCulloch & Rossi,
1994; Bock & Gibbons, 1996; Chib & Greenberg, 1998; Nataraial.| 2000; Imai & van Dyk,
2005). Inference for such models is typically computatigniavolved and often still impracti-
cable in high dimensions. To mitigate these difficulties;ivV& Czado (2010) recently proposed
a pseudo-likelihood approach as a surrogate for a fulliikeld analysis. Similar pairwise likeli-
hood approaches were also previously proposed by Kuk & IR68() and Renard etlal. (2004).

Due to the data augmentation nature of the problem, the astimmaximization (EM) algo-
rithm (Dempster et all., 19777) is typically employed for mmaiding the likelihood as its iterative
procedure is usually more attractive than classical nurakdptimization schemes. Each itera-
tion consists of an estimation (E) step and a maximizatioh gtdp and both should ideally be
easy to implement. For cases in which the E step is anallticatactable| Wei & Tanner (1990)
introduced a Monte Carlo version of the EM algorithm. Samgplirom the truncated normal
distributions involved is often based on Markov chain Mo@tlo (MCMC) methods and the
Gibbs sampler in particular (see e.g. Geweke, 1991). Aderdift option we employ a sequen-
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tial Monte Carlo (SMC) sampler (Del Moral etlal., 2006) irssle Though originally introduced
in dynamical scenario$ (Gordon et al., 1993; Kitagawa, [1896& Chen, 1993| Doucet et al.,
2001) as a more general alternative to the well known Kalniger {iKalman, 1960), SMC al-
gorithms can also be used in static inference (see_e.g. €h2@02) where artificial dynamics
are introduced. When the target is a truncated multivanatenal, as in our case, an obvious
sequence of distributions is obtained by gradually shgftime truncation region to the desired
position. Since normal distributions decay very quicklyfia tails, we propose to use flatter Stu-
dentt distributions to drive the SMC particles more efficientlwards the end region, and only
then take the appropriate limit to recover the requireddated multivariate normal.

The main difficulty in the M step rests with the computationamplexity of standard nu-
merical optimization over large parameter spaces, for WMeng & Rubin (1993) suggested
a conditional maximization approach. A simple extensiortheir method allows us to define
an iterative procedure to further maximize the likelihoo@ach M step. Though the likelihood
converges, there is no guarantee that the parameters genteea point/(Wu, 1983). Restric-
tions to the parameter space have then been introduceditdhesidentifiability issue where the
data does not determine the parameters uniquely (McCulidRbssi, 1994 Bock & Gibbons,
1996), raising the problem of constrained maximizationymadly significantly more difficult
than unconstrained. However, the constraints are nedgsadificial and we show that the two
maximizations can be made identical, and how they can bl easnputed. Finally we validate
our methods by comparison with previous approaches (Chilyéetberg, 1998; Craig, 2008).

2. MULTIVARIATE PROBIT MODEL
2-1. Notation

Following the formulation in_Chib & Greenberg (1998), demdty 4/ a binary vector cor-
responding to theth observation of a response varialifé with p components. Let:! be
a sizek; column vector containing the covariates associated tathtsomponent and define
Xﬂ_é diag((@{)T, e (_xfg)T) as ap x k block diagonal matrix, withk =377, k;. A multi-
variate probit model with parametefisc R* andX, ap x p covariance matrix, can be specified

Vi— i | X7 8.3 = J-XIB.Y)ded. Al —
pI‘{ Yy ’ a/Ba } /A{ /Ai)(bp(za /Ba ) 27, 1 {(_0070] Ifyf:O,

1)
whereg, is the density function of a multivariate normal random abke with mean: = X7 3
and covariance matriX. The vector of regression coefficientds= (3, ..., 3) )", with each

subvectors; € R* corresponding to théth component of the response variable. Naturally the
situation where th@; are all identical is a special case.

The probit model can also be understood in terms of a laterdhta construction, where the
observations are actually obtained from a sample of muiéite Gaussian vectofg!, ..., 2V}
from random variableg ~ N (X8, %) asy] = I.<o(z]), with I the indicator function.

The covariance matrix is a crucial parameter for the multivariate probit model amdi-
rectly accounts for any dependence among the componetits tfdponse variable. The identity
matrix corresponds to the assumption of independence andthtdel reduces to a collection
of one dimensional cases, for whi¢ghcan be easily estimated and used as starting point for
more elaborate inference strategies. An alternativeisgadovariance matrix can be obtained
(Emrich & Piedmontel, 1991) by pairwise approximations, ckhare likely however to lead to
non positive definite matrices. ‘Bending’ techniques asgested by Hayes & Hilll (1981) are
then necessary to ensure the positivity of the eigenvalues.
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2:2. Monte Carlo EM
An EM algorithm (Dempster et al., 1977) allows us to build guence{y™} of estimated
parameters such that the likelihood is non decreasingrimstef the completéY’, Z) and condi-
tional (Z | Y, ™) missing data distributions for a given estimate at iterationm and observed
dataY’, the log-likelihood is

[ [Y) =log(pr{Y | 9}) = Q(v, ™) — H(¢, ™),

Q,9™) = Ezyym [log(pr{Y, Z [ ¥})],  H(, ™) = Egjyym [log(pr{Z [ Y, 9}))]

Having the difference of two logs means that the argumentaches only defined up to the
same multiplicative factor. Jensen’s inequality implibattH (v, v™) < H(¢™,¢™), so that
the likelihood is certainly increased at each ste@{fy™*!,y™) > Q(v™,¢™), leading to a
generalized EM. Ideally we wish to set**! to the value ofy which maximizesQ(w,¢™), as
required by the actual EM.

For the multivariate probit model, in terms of the latentahlesZ’ ~ N (X7 3, %) and letting
¥ = (B, X) be the parameter vector, the complete data log-likelihoodtfon is

N
log(pr{Y, Z | ¢}) = > log [14;(7)p(z7; X7 8, %)].
j=1

Using the cyclicity of the trace and ignoring some normaligziconstants, the corresponding
Q (¥, ™) function (Chib & Greenberg, 1998) can be written as

N
™) _g [log | +tr{2_1% N Egipyigm {(27 = XIB)(Z7 - XJ’B)T}H. )
=1

The second term of [2) is analytically intractable sincenitoives expectations with respect
to high dimensional truncated multivariate Gaussian diessiln a Monte Carlo EM approach
(Wei & Tanner| 1990) the expectations can be approximated as

M
Egsiyipm {(Z2) = XIB)(27 = XI)T} = 3 wil(Z1®) — x7g)(270) — XIB)T, (3)
k=1

over a weighted sampl¢Ww7(*) zi(k)3M - nossibly approximated, from (27 | y7,¢™) =
TMN (A7, X7, %), a multivariate normal distribution truncated to the damai .

3. SMCAND THE E STEP

3:1. Sequential Monte Carlo for truncated multivariate norsal

Sequential Monte Carlo samplers (Del Moral etlal., 2006)aactass of iterative algorithms
to produce weighted sample approximations from a sequéngg of distributions of interest
where the normalizing constant, need not be knowny,, = v, /C,,. For a given probability
distributionr, one obtains a collection of weighted sampl&g(¥), Z(¥)} such thatF,. (h(Z)) ~

M WkR(Z*®)), whereM is the number of particles arida function of interest. In a static
scenario the main purpose is to obtain such an approximftonthe last element of the targeted
sequence.

In order to control for the degeneracy of the sample, resagisee Douc et al., 2005, for a
review of resampling schemes) is typically performed whendffective sample size (ESS), as
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defined by Liu & Chenl(1998): ESS = "M (w,{¥))2, falls below a given threshold ESS-
rM (with 0 < r < 1). The move from the target, ; to the targetr,, is achieved by means of a

transition kernelk,,, so thathf”) ~ Kn(ZT(f”_)l, -), and updating the normalized weights

(ZEN Ly (2P, 20 )
Vo1 (ZF ) K (29 2

Wk o w® a® o, (20 ZE)) =

n—1"“n

k=1,...,M.

The quantityL,,_; in the expression for the incremental weigm,%“) is a backward kernel in-
troduced by Del Moral et al. (2006) to address computatissles. A typical choice fak,, is
given by MCMC kernels withr,, as an invariant distribution and in particular we adopt @cen
walk Metropolis Hastings kernel. The samples at a giveaiitein» are obtained by moving each

particlek to a new locatiorz") = v* ~ A7(z\¥), | 32,,) with probability a* = 1 A p* and leav-

n—1°
ing it unchanged otherwise, with = wn(Y’“)/wn(Zr(f”_)l). The covariance matrig,, = k&,
in the random walk proposal is a scaled version of an appraiam iﬂ (typically obtained
from the previously simulated sample) of the target covengamatrix. As extensively investi-
gated in the MCMC literature (for example the original papkGilks et al.| 1998; Haario et al.,
2001; Atchadé & Rosenthal, 2005, or the more recent reviesnalrieu & Thoms, 2008) the
scaling factorx can be adaptively tuned by monitoring the average empigcegéptance prob-
ability &, at iterationn. For the Metropolis Hastings transition kernel, this canelbaluated
aséy, = M Wi 1 A m, (Vi) /7, (27,)). Adaptation of the transition kernel specifically
within SMC has recently been considered by Jasralet al. (2011

3.2.  Multivariate normals via Students

Since the probability of the random walk Metropolis to moge/drds the tails of a Gaussian
distribution decreases exponentially, a SMC method inaglwormals may be highly inefficient
in moving samples towards regions of low probability. Toiael higher rates of acceptance in
the tails we suggest starting with a flatter distributiore thultivariate (of dimensiop) Student
distribution7 (v, 1, 3) with degree of freedom, mean vector, and covariance matrix, which
can be defined (Nadarajah & Kotz, 2005) as

v+ )
) L+ %(2 SRR CEDI @)

18 = vy s

Replacing the’ in the denominator inside the square bracketg:by- 2), and correspondingly
changing the normalization factor, would provide the ShidBstribution with a covariance of
Y. As it stands, the distribution ifl(4) actually has a covar@ofvY /(v — 2) which further
increases the acceptance in the tails. Once in the regiawoptobability we allow the degree
of freedom to grow to infinity» — oo) so the distribution approachegaariate Gaussian with
the same mean and covariance maltix

To sample in the region of interest, we define a sequence of target distributidns, }
such that the first target is an unconstrained multivariateléht and the last one is the same
distribution truncated tod. Quite naturally the intermediate distributions are defimeterms
of intermediate target domaifs4,, }7, included in each othed;; C Ay, with Ar = A and
Ao = RP. The local targetr,, at iterationn of the SMC algorithm is then

v+p

R L Cat D a CEO | I MO}

mn(z) =
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whereC,, is a normalizing constant which can be estimated (Del Mdral@2006) from

—

~ n 6\ O M k k k
Co=Co]l & ==y w25, 2,

Ci_1’ Ci_
i=1 1 1 i—1 h—1

and () follows from (4). This ultimately allows us to obtain the pabilities of the regions in
(@) and hence the likelihood for the probit model.

After reaching the required region, we define another sempiehtarget distributions starting
from the truncated Student and increasing the degree aldrae until it is large enough that
we can replace the Student with the desired truncated raulite normal. One could also vary
both the truncation region and the degree of freedom coewtlyr in the sequence of target
distributions, but since the main reason for introducing fllatter Student distribution is to aid
moving to regions of low probability we chose this two-st@pr@ach.

3-3. Adaptive approach to artificial dynamics

Other than for tuning the transition kernkl,, adaptive strategies can also be used to define
the artificial dynamics leading to the distribution of ir@str. We do not address the problem of
finding the optimal path linking an initial measurgto the targetr; on the space of distributions
in the sense of Gelman & Meng (1998), who actually deal with i¥sue in relation to Monte
Carlo sampling methods for the evaluation of ratios of ndizitay constants. Here we assume
instead that the functional form of the intermediate disttion is given and can be described in
terms of a parametér. An adaptive strategy to move from to = is one that does not require
the sampling pointg6,,} defining the intermediate targefs,, } to be fixed a priori, but allows
us to determine them dynamically on the basis of the locétdlfy of the problem.

Adaptation can be achieved by controlling some statisttasted to the performance of the
algorithm and evolving with the parametérand the ESS introduced in subsectiodl & an
ideal quantity to monitor. Theoretically we wish to solve

ESS,(6,) — ESS, =0, 5)

where ES§ is a value chosen to compromise between efficiency and amcunspired by the
Robbins-Monro recursion (see for example Kushner & Yin,Z@age 3) for stochastic approx-
imation, and aiming at the dynamical design of a sequencehwkeeps the ESS on average
close to the threshold E3$Swe define the updating scheme

ESS, — ESS,

0, =
M

Hn—l + (Cn \ AHmin)] A 9T7 (6)

where I§§& is the value observed for ESS at iteratiorand the division by the number of
particlesM is only introduced for scaling purposes. Taking the maxini@tween the correction
term andA#6,;, ensures that the resulting sequence approaches the figal taonotonically,
while taking the minimum with¥r ensures that the sequence ends at the desired tasget
Theoretically the ESS should ideally be equal to the totahlber of particlesM of the SMC
sampler, but to promote motion as a compromise betweenawcand efficiency, the threshold
ESS; can be fixed as a fractianc (0, 1) of M, namely ES§ = M. The number of iterations
needed to reach the target is reduced for smaller. Similar adaptive ideas have also recently
been applied to inference for stochastic volatility modslslasra et all (2011).
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Fig. 1. The number of steps required for the SMC algorithrretch a region of
probabilityr for dimensions 2 (diamonds), 4 (crosses), 8 (dots) and 1&¢g).

3-4. Scaling behaviour

The advantage of the SMC method, over alternatives whichbeayore efficient in sampling
from truncated multivariate normals in low dimensionshis scaling behaviour with the dimen-
sion p. Solving the adaptive equationl (5) exactly means that we éofixed proportion of the
probability mass at each iteration. The number of stepsimredjtio reach a target region of low
probability , then behaves likibg(r), independently op. This may not be true when usirg (6)
as a numerical adaptive approximation[ib (5), especialthasniumber of steps for the adaption
to settle grows linearly witlp, so a weak dependence on the dimension could be expected.

A simulation study with targets of dimensio8 for n = 1,...,4 was performed. To limit
the sources of variability, only one covariance structues wonsidered for the unconstrained
distribution, with unit diagonals and a single non-zercdifigonal element of-0. The SMC
algorithm was initialized so that after an initial move theei®nt¢ target would be truncated
to a region containing one quarter of the probability masaroindependent Gaussian, and we
denote byr, the actual estimated probability. The cutoff for the finab&, the same in all
directions, was drawn so as to ensure that the log probabilia multivariate standard normal
would be uniform on a given interval. The number of steps addd reach the target are plotted
againstlog(ro/r) in Fig.[d, for 400 runs of a SMC sampler with 4000 particlestfar different
dimensions. A behaviour close to linear can be observedgththe offset increases by a factor
of about 14 over the range of dimensions and the slope increases soliggéirly with p, which
is likely due to any inexactness in the adaptation. The #tamal stability of these types of
algorithms has recently been investigated in depth by Besekal. [(201/1).

3:5. Sequential Monte Carlo EM

After the initial sampling, which provides a particle apxiroation from the truncated target
distribution corresponding to the initial parameter valua sequential Monte Carlo approach
can also be adopted to move between subsequent estifffates(5™, ¥"*) without the need to
perform the complete truncation again. Multiple sub-steyight be needed to updat&™ ! to
™, depending on how different the two corresponding targeds Feor each observationthe
local (to the EM iteration) initial and final distribution$ the artificial sequencér,, } are defined
asmy = TMN (A7, X7 gm=1 ym=1) and 7 = TMN (A7, X7 3™, ¥™) respectively, while the
parameted,, defining the intermediate targets moves frgit—! to 4™, possibly in a single
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step. To avoid the situation where we would effectively needove to a bigger region, which
would prevent us from using a simplified version of the baakikeernelL,, (see section 3.3.2.3
ofIDel Moral et al., 2006), we first rescale the previous saplie in the new truncation region,
which can be done as long as the scaling factors are all p®sithd then we apply the algorithm
to update to the new covariance matrix.

4. CYCLING CONDITIONAL MAXIMIZATIONS
4-1. Two step maximization

To overcome the difficulties associated with numerical mmézation,[ Meng & Rubin| (1993)
suggested replacing the maximization over the full paranmstace by a multi-step conditional
maximization over several subspaces in turn. They treagxhenple of multivariate normal re-
gression with incomplete data, where the parametétsat stepm can again be split int&™
ands™. This leads to a two-step conditional maximization which ba performed analytically.
KeepingX fixed and maximizing equations! (2) and (3) oykwe obtain

N -1 N M
B = (Z (Xj)TE‘lXj> Z (X)) Tyt Z (Wj(k)Zj(k)) (7)
k=1

j=1 j=1

so that by setting: = ¥ we can update the mean vector parameters for the next sﬁﬁgés:
A. Fixing 3, the X which maximizes equatiofi(2) is instead

N M

j=1 k=1

so that by settings = Ay;+! we can the update the covariance matrix>ig;! = 3 to give
the new parameter$erl Though this two-step approach does not maximizat each step,
it removes the need for computationally intensive maxitiraand increases the likelihood at
each step to ensure convergence of the (generalized) EM.

4.2. Further maximization

Since equatior (8) maximiz&3(v, ¢'™) over X for any value of53, we can substitut& into
Q(¢,¢™) in (@) and obtain a function which only depends®n

Q3w =~ 1og[8) - 2. ©)

Finding the value3 which maximizes[{9) oves and settingt = 2( ) in (8) provides the new
parameter)) which maximizes the likelihood. Performing the differetof (J) leads to the
conditiontr{>~'d>} = 0. Thoughd3: is linear in the components & the inverse matris.~*
leads to a system of coupled higher order polynomial equgtiSolving these is impracticable,
but one can proceed iteratively. As a starting point we cavosbs™*! from the conditional
maximization of [¥) so thaf) has the value found from the two-step conditional maxinhizat
above (i.e. we set" 1" = m“ for n = 0). One option would be to perform Newton-Raphson
iterations, but if the starting pomt is not too far from th@ximum we can employ a simpler
approximate maximization. Setting™ 1" = $(3m*1"), we separat& = ™17 + AY and
make the approximatiolvg(1 + z) ~ x to rewrite

Q3w & St {log e} N [(gme1m1a8)
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Maximizing this is solving

N M
N som+1,ny—1 35 | T i (k \T /svm+1,n\—1 i (k j _
- Etr{(E ) dE} =ag"y 1:; le]< )X T(Em+Lmy=1(zikh) _ xig) =0,
= =

where we used the cyclicity of the trace to simplify. Theseraow linear equations in the com-
ponents off3, which can easily be solved to find™t1"+1 In fact the solutions are given
precisely by [[V) but now evaluated at the pokitt17, so thatgm+1n+1 = g(Sm+1n) and
Sm+1,n+1 — 2(5m+1,n+1) to givefl/;m+1,n+1'

4-3. From generalized EM to EM

Neatly, the logarithmic approximation and the two step dmuhl maximization of
Meng & Rubin (1993) are equivalent when started at the sanmd, @™ or w{’ﬁgl for exam-

ple). Because of the approximation, the values3dbund in this way do not maximiz€ but
can be used as starting points for the next iteration to geseclto the maximum. In general with
approximations the surety of convergence or even of notedsangQ is lost, but, due to the
equivalence above, each iteration does not decrease ¢flibdigd and convergence follows from
Meng & Rubin (1993). To complete the EM algorithm one can@&t! = lim,,_,oo ™17,
and numerically stop the iterations when the Euclidean ngsiit! 7! — gm+17|| is small.

Though we have focused on multivariate normals, cyclingugh the conditional maximiza-
tions of_Meng & Rubin [(1993) until convergence can be applieote generally, turning the
generalized EM of their single round procedure into an EMragdowever, as they mention, it
may be computationally advantageous to perform an E stepeleatconditional maximizations
when these are more demanding, and then the algorithm reragjaneralized one.

5. IDENTIFIABILITY ISSUE
5-1. Identifiability

When the data is ‘incomplete’ maximization of the likeliltbwill not lead to uniquely iden-
tified parameters. Imposing constraints is a standard medswensure identifiability, but often
with the effect of making the M step more involved (Bock & Gilnls, 1996; Chan & Kuk, 1997;
Kuk & Chan, 2001). The issue is directly linked to symmetidéshe likelihood, where it is in-
variant under some change of coordinates of the paramétecsising onglobal symmetries
where the invariance of the likelihoofl(y) does not depend on the particular value/of ¥
we can decompos® = A x Z into an invariant spacé and a reduced parameter sp&teo
thaty = (6,&) with § € A and¢ € =. Due to the invariance of the likelihood ovar

L) = L(5,€) =L(E) = max L(1) = mgxﬁ@,

unconstrained maximization over the whole spdcis identical to performing it ‘constrained’
over the reduced spaé& with the difference that the parameters maximizing thelililood in
the larger space arg* = A x £*. Conversely, if the likelihood depended on some subspace of
A then it would be identified during the maximization procédserefore the dimension & is
the number of constraints needed to ensure identifiability.

In addition to any global symmetries, the likelihood functicould also show Bcal symme-
try so that£(¢) is maximized by a higher dimensional manifold rather thaingls point (as
discussed in Wu, 1933). In principle a local change of véemls possible (for example mak-
ing the non-zero eigenvalues of the Hessian equattaround the maximum) to decompose
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the space further, but in practice this presumes knowlefitfgedikelihood function. As above
though, maximization over the subspace or the whole spacexarctly equivalent because we
still have (local) dimensions which do not affect the valfighe likelihood.

Within the EM algorithm the identifiability issue becomesmmgubtle since the likelihood is
not maximized directly, but by proxy through the functiQi«, ¢'"). If this were to share the
symmetries of the likelihood, then the simpler unconsedimaximization would be equivalent
to the constrained version, as for the likelihood. If thisid the case, for example due to con-
ditioning on the previous parameter vali&, then any changes i) arising from shiftingy in
the invariant spacé\ of the likelihood must be exactly mimicked by changegdnThis spu-
rious dependence can create differences between coestraind unconstrained maximization.
The non decreasing behaviour of the likelihood remainsgovesl, since neither maximization
decreases) nor, because of Jensens’s inequality, incred$eklence either choice leads to the
EM algorithm finding a maximum of the likelihood (though na&aessarily the same one) and
explains the conjecture of Bock & Gibbons (1996); Chan & KuRY7) and the agreement be-
tween constrained and unconstrained maximization fouikn& Chan (2001).

5-2. ldentifiability for the multivariate probit model

In the multivariate probit model, the symmetries are relate the invariance of the likeli-
hood under a rescaling of the coordinates of the normal biasa The full parameter space
¥ comprisesp(p + 1)/2 entries from the covariance matrix and k regression coefficients
from 3. Scaling the coordinateg’ = DU’ by means of a diagonal matri® with positive
entries(dy, . .., d,), transforms the covariance matrix &= D~!>D~! and the vector to
A= (d'BT,...,d; B1)T but can easily be checked to leave the likelihood unchar@edos-
ing the entries ofD to be the square root of the diagonal element&akduces() to corre-
lation form. The invariant spacA can then be spanned by thediagonal elements ot (i.e.
01 = 1/4/011 etc.) while the reduced spageincludes thep(p — 1)/2 rescaled upper triangular
elements of2 (i.e.w;; = 6;6,04;) and thek elements o = (6187 ,...,6,6,)T.

The likelihood is not maximized directly, but through thedtion

Q(p,Y™) = i / log [L exp (—3<z<j> - XB)Te N - Xﬂﬂ)ﬂ
o ||/ 2
xTMN (A7, X7 8™, 2™)d27 (10)

which is only invariant under a change of integration vddaly’ = DU/, for a diagonal matrix
D, if we include a factofD| inside the log. Moreover, both andy™ need to be scaled by same
matrix so that essentially = 6. Although bothy andy™ have independent invariant spaces for
the likelihood, thel function ties them together in this apparent constrainib@Greenberg
(1998) therefore maximized inside the constrained sgaeehile keeping); = 1. Denote by,
the parameter value found under such constraints, angl,lihe one obtained through uncon-
strained maximization of). Clearly Q (¢, ¢v™) > Q(v., ™), but if we projecty, to a point
1, in the constrained spa@so thaty; = 1 thenQ (1, ¥™) < Q (3., ™). Since the likelihood

is invariant under this projection

Q(thu, ™) = Q(p, ™) = H (Y, ™) — H(tpp, ™),

and without any information ot (v, y"™) — H (1., ™) it is impossible to say which maxi-
mization increases the likelihood most and is to be predeiméhat respect.
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5-3. Reintroducing invariance

To remove the above ambiguity, can be redefined to respect the invariance of the likelihood,
for example by replacing®, ) in (10) by their projectior{2, \). Such a replacement effectively
enforces invariance of the resulting functiGhwith respect to a rescaling @k, 5), making
constrained and unconstrained maximization identicalwéi@r, this is no longer true if we
perform a (cyclical) two-step conditional maximizationitithe replacemenf) becomes

Q™) = —g [log % +tr{D2 IDSH (11)
1 N M
S~ ~ > witk(zi® — D=l xig)(ZzI*) - D' XIB)T, (12)

j=1k=1

with D a diagonal matrix whose elements are the square roots ofaberthl elements of. (so

thatQ = D=1 D~1). ThoughQ may appear to be limited to the constrained space, it depends

on the full parameter space when on&Xdr 3 are given. Assume that for giveii” andg™+! =

A+ we wish to finds™+1. Constrained maximization enforc&s= 1 to find 2! and hence
m+1An unconstrained maximization allowsto vary, leading t&=™*! and correspondingly

to wm“ such tha)(ym+, ™) > Q (¢ +!, ™). Because of the invariance, the projection of

¥™*! does not now chang@ resulting in a point in the constrained space with a highéreza

In fact 5 is only defined up to a scale, which need not be preservedgleach conditional

maximization, nor given the stochastic nature of the estonastep.

Fixing X, the value of3 maximizing equationd (11) and (12) is as|ih (7), but with atraex
factor D before the sum ovet. Maximization with fixedS over ¥ can in turn be done in two
steps. The differentialy is split into a diagonal and an off-diagonal part. The caodifor the
latter to vanish is thatQ—' — Q~1501) be itself a diagonal matrix. As long as the diagonal
elements ofS are not too far from 1, a solution can be found by a simple titeraapproach
starting from an arbitrar$2, and then solving for the diagonal mattikthe linear equations

Qpi1 =S + U A, (13)

so that(2;1 is in correlation form. For fixed the steps above allow us to perform constrained
maximization for both[(111) and2). IP can vary, for the diagonal elementsdf to vanish

A-T+071% ZZWJ - D' XIB)(Z)", (14)

jlkl

must have zero along the diagonal; a linear equation in trerse elements ab. The solution
depends o2, which in turn depends (throug$i) on D so to perform the unconstrained maxi-
mization of [11) ove for a given we would need to cycle through solvirlg {14) ahd] (13). As
such, the difference between constrained and unconddrai@aimization is made transparent.

5.4, Model constraints

In practice some constraints might already be imposed atnibgelling stage. Typical for
the multivariate probit model is to require that all the e=gion vectors are identical; = i,
replacingX’ 3 by X? 31, with X? a matrix whoseth row is(z?)™. The conditional maximization
steps in Sectionl4 then allow one to maximize over the cansaspace ofX, 31 ).

However, the invariance of the likelihood needs to be reidansd in light of the new con-
straints, which are broken when scaling the coordinatectiines, and hence the, by different



Sequential Monte Carlo EM for multivariate probit models 11

positive factors. The likelihood is now left unchanged,épdndently ofX7, only when rescal-
ing all the directions by the same amount, correspondingdoneadimensional invariant space.
A reduced space can be defined by fixing the first diagonal eleoig¢he covariance matrix to
1, call (€, \}) the corresponding parameters. An invari@nis obtained by replacing”, and

B in (I0) by XZ, ' and )| respectively and by setting all the elements/bfn (I1) to be the
square root of the first element Bf Constrained and unconstrained maximization follow from
subsectio B but with the slight changes that only the first element ofrtiadrix A in (13) is
non-zero and just the trace 6f {14) needs to be O.

The effect on the invariance of assuming equal regressiefficients across components
seems to have been overlooked by Chib & Greenberg (1998 pwsdhuired?’ to be in corre-
lation form. Maximizing over an overly constrained spacaein general to a lower likelihood
than when only imposing the conditions needed to ensurdifiddrility. Nevertheless, were the
correlation form desired for modelling reasons, one cafop@rthe maximization by setting D
to be the identity matrix and using? in the formulae in subsection®

6. COMPARISON TO EXISTING APPROACHES
6-1. The data and model used

To assess the performance of our method, we treat the widalysed data set from the Six
Cities longitudinal study on the health effects of air ptiin, for which a multivariate probit
model was considered hy Chib & Greenberg (1998), who coedubbth Bayesian and non-
Bayesian analysis. Later Song & l.ee (2005) proposed a coatiimy factor analysis for the
same model. More recently Craig (2008) used the example ast&dse for his new method
of evaluating multivariate orthant probabilities.

The study was meant to model a probabilistic relation oveetbetween the wheezing status
of children, the smoking habit of their mother during thetfirsar of observation and their age.
In particular the subset of data considered for analyserseb the observation 687 children
from Stueberville, Ohio. The wheezing conditigh of each child; at agei € {7,8,9,10} and
the smoking habif’ of their mother are recorded as binary variables, with valiuedicating
the condition (wheezing/smoking) present. Three covesiare assumed for each compongnt
namely the age?, = i — 9 of child j centred a#, the smoking habit’, = 17 and an interaction

term x{3 = (i — 9)h’ between the two. A probit model can then be constructed
pr{y] = 1} = pr(z] > 0) = ®(By + Bu - &)y + B - wly + B3 - aly),

Wherezf is thei-th component of a multivariate random varialié ~ N(Xgﬂ, Y) and® is the
cumulative distribution function of a standard normal ramdvariable.

6-2. Testing our algorithm

To fit the model, a SMC sampler was implemented with the nurobgarticles increasing
from a starting value of 100 by 100 at each iteration up to dbpwed by 10 further steps of
variance reduction (described below) with 4000 partidRessults for the constrained maximiza-
tion are presented in Tablé 1 along with those of Chib & Greent§1993) and Craig (2008).
Good agreement both for the estimates and the standard eaoibe observed. Also given are
average values of the corresponding log-likelihoods leabtained as a by-product of the SMC
samplers, together with the standard deviation estimais4®) runs. No real differences can be
seen, with likelihoods comparable to, but slightly beldve estimate of -7944 in Craig (2008).
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Table 1.Maximum likelihood estimates for the six cities dataset laigiaed by

using the constrained SMC algorithm with variance reductamd for a single

run where the samples are recycled. Included for compar@enthe results of
Chib & Greenbergl(1998) and Craig (2008).

Chib & Greenberg (1998) Craig (2008) variance reduction ycled samples

Bo -1118  (65) 1122 (62) 1123 (62) 1124 (62)
B 79 (33) 78 (31) 78 (31) 79 (32)
Bo 152 (102) 159  (101) 159  (101) 159  (101)
Bs 39 (52) 37 (51) 37 (51) 37 (51)
o1z 584 (68) 585  (66) 582  (67) 582  (66)
013 521  (76) 524 (72) 522 (72) 523 (71)
o1 586  (95) 579  (74) 575 (75) 572 (74)
023 688 (51) 687 (56) 684 (57) 683 (56)
o2 562  (77) 559  (74) 557 (75) 554 (74)
o34 631 (77) 631 (67) 629 (68) 629 (68)
I(y) -79526 (075) 79521 (097) -79522 (082) -79530 (091)

The value in brackets next to each estimate is the estimtaadard error. The values of the param-
eters (and their errors) have all been multiplied by 1000.

Table 2.Example maximum likelihood estimates for the six citieiskit obtained using the
unconstrained SMC algorithm for non-invaria®t invariant and by fixingr1; = 1

Bo B1 B2 B3 o012 013 04 022 023 024 033 034 044 I(y)
Q -1176 84 159 41 647 592 572 1208 855 619 1255 715 1001 -3793
Q -1235 -113 168 47 664 622 612 1275 921 683 1383 802 1146 -1393

fixedo1: -1241 -116 169 48 666 626 615 1279 927 686 1395 809 1158 -0793

The standard deviations of the log-likelihood estimates80, 075 and 070 respectively. The values of the param-
eters have all been multiplied by 1000.

Results from recycling the samples in a SMC EM algorithm asuinsection &, with 4000
particles and 40 iterations are in the last column of Tab&irice oscillations before the variance
reduction step were aroundd@1 between interations (with 4000 particles), paramedtmates
when recycling the sample are essentially equivalent, aiehmeduced computational cost.

An additional 20 iterations with 4000 particles are inclddefore the variance reduction step
for the unconstrained maximization, since it may take lorfgethe EM algorithm to explore
a larger space. A fairly robust point is found with the nowainant (, while the invariantQ
seems to lead to a flatter likelihood neighbourhood, wittstiiation appearing more sensitive to
the number of particles during earlier iterations or on isipg the constraint of fixing; to 1.
Results are given in Tablé 2, and again can be quite clospipdeaced by recycling the samples
in a sequential manner between parameter updates. Urditetynnoise in the estimation of the
observed information matrix overly influenced its numdrioaersion, so that robust standard
errors could not be obtained.

6-3. Variance reduction

To reduce the variance associated with the stochasticenafuhe Monte Carlo E step, the
parameter can be updated according to a stochastic appticimnype rule

P =™ G (™ — ™) = (1 G+ Grd™,
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whereq),, is the actual estimate obtained from the M-step gnde (0,1) a stepsize with the
purpose of gradually shifting the relative importance frthva innovation(q,f)m — 9™ 1) to the
value of the parametef,,_, learned through the previous iterations. The scheme iddikieg

a weighted average of the previous estimates, so we haveaete it as a ‘variation reduction’
step. This way the monotonicity property of the EM algoritienot guarateed, but as long
as the parameter remain within a neighbourhood of the manxirnikelihood where it can be
approximated quadratically, monotonicity follows so tiatmany practical cases this matter
may not cause any issues.
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