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Abstract

A simple, yet reasonably accurate, analytical technique is proposed for multi-factor structural
credit portfolio models. The accuracy of the technique is demonstrated by benchmarking against
Monte Carlo simulations. The approach presented here may be of high interest to practitioners
looking for transparent, intuitive, easy to implement and high performance credit portfolio model.

1 Introduction

Structural multi-factor economic capital (EC) models derived from the CreditMetrics framework (Gupton
et al., 1997) have become the most widely adopted tools for risk quantification in credit portfolios. An
outcome of these models, a portfolio EC and its allocation down to individual facilities, is used by financial
institutions for any or all of the following: internal capital adequacy assessment, external reporting, risk-
based pricing, performance management, acquisition/divestiture analyses, stress-testing and scenario
analysis, etc. While in most cases Monte Carlo simulations are used due to limited analytical tractability
of the multi-factor models, the recently reported advanced analytical techniques (Voropaev, 2011) may
be viewed as an alternative.

Unfortunately, neither the industry standard simulation-based approach nor the existing analytical
techniques can fully address the needs of the financial institutions. In particular, the risk-based real-time
pricing remains the ultimate challenge: none of the existing models is capable of providing sufficiently
accurate, stable and time-efficient input. Yet another practical aspect which has not received enough
attention in the literature is the sometimes overly complex structure of the models as perceived by end
users. Very often the complexity of the models makes them hard to be understood and, hence, affects
their acceptance within an organization.

The approach presented here aims to overcome the above mentioned difficulties and is in its spirit
similar to the one reported by Cespedes et al. (2006). The content, however, is quite different since the
presented model has more solid theoretical background, is easier to implement and use and is capable of
covering fully featured multi-factor setup. The model described here was developed with KISS principle
1 in mind. While based on the previous author’s research on the analytical tractability of multi-factor
models (Voropaev, 2011), the proposed model has very simple and intuitive structure. Despite the simple
structure, the model produces meaningful and reasonably accurate results and can be used by financial
institutions for any of the purposes described above. In particular, the problem of capital allocation has
a simple and time-efficient solution allowing real-time risk-based pricing. From conceptual point of view,
one of the most attractive features of the model is its ability to quantify risk concentrations on both
sector and obligor levels in a similar fashion.

This article is organized as follows. A short description of structural multi-factor model and the
necessary theoretical background are given in Section 2. Mathematical foundations of the proposed
model are presented in Section 3 and are substantiated by benchmarking with Monte Carlo simulations
in Section 4. Section 5 contains some concluding remarks and summarizes the presentation.

∗ING Bank. E-mail: mikhail.voropaev@ingbank.com.
1Keep It Simple and Straightforward, http://en.wikipedia.org/wiki/KISS principle
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2 Background

Let us consider a portfolio of credit risky facilities with loss functions {li}(εi) at horizon (one year) being
a function of random variables (normalized asset returns) {εi}. Dependencies within the portfolio are
modeled by means of a set of common factors {ηk}:

εi = ρi
∑
k

(βi)kηk +
√

1− ρ2i ξiβ (2.1)

The random variables {{ηk}, {ξi}} are independent and standard normally distributed 2. The instrument
specific |ρi| < 1 and {βik} define the systematic sensitivities of the instruments. The latter are subject
to normalization condition

∑
k β

2
ik = 1. The idiosyncratic risk components are represented by {ξi}.

The economic capital of the portfolio is defined as na α - quantile (usually set to 99.9% or higher) of
the portfolio loss distribution L =

∑
i li relative to the expected loss of the portfolio:

EC = qα[L]− E[L] (2.2)

The above quantifies the overall portfolio risk which can be consistently distributed between the under-
lying facilities using the Euler principle as (Tasche, 2008, see e.g.):

EC =
∑
i

eci, eci = wi
∂

∂wi
EC (2.3)

where wi is a weight of the ith asset in the portfolio. To simplify the notations, these weights will not be
written explicitly in what follows.

No closed form analytical solution exists for either portfolio EC or its allocation {eci} in general case.
However, in a single-factor case, i.e. one common factor η1f and ρi = 1 for any i, the portfolio loss
distribution L1f quantile can be trivially found to be3 qα[L1f ] = L1f (η1f = N−1(α)), where N−1() is
an inverse cumulative standard distribution function. This provides motivation to look for a solution of
(2.2) in a form of a sum of a single factor approximation and some corrections (for detailed explanation
of this approach see e.g. Voropaev (2011) and references therein):

qα[L] = qα[L1f ] + δqα[δLmf ], L1f = E[L|η1f ], E[Lmf ] = 0 (2.4)

Here L1f is conditional on the single factor value loss distribution of the portfolio. The single factor
is constructed as a linear combination of the systematic factors η1f =

∑
k αkηk with the normalization

condition
∑
k α

2
k = 1. Obviously, the choice of η1f significantly affects the quality of the approximation

(2.4) and will be given a particular attention in what follows.
The conditional expectation series expansion technique (Voropaev, 2011) can be applied to facilitate

calculations of L1f (η1f ). Translated to the notations introduced here this technique allows writing the
conditional portfolio loss distribution L1f as a sum of the conditional expectations of the constituents
li = E[li|η1f ] which can be expressed as:

li(η1f ) =

∞∑
n=0

(ρi ~βi~α)n

n!
l
(n)
i Hen(η1f ), l

(n)
i =

∫
li(ε)Hen(ε)

e−ε
2/2

√
2π

dε (2.5)

where the inner vector product ~βi~α stands for
∑
n αnβin and Hen() are Hermite polynomials. The series

converge very well provided values of ρi ~βi~α are not too close to 1 (which is the case in practice) and allow

for very fast (re)calculations of the conditional expectations once the constants l
(n)
i have been computed.

The above technique is particularly useful when considering arbitrary loss functions {li}.
2In practice the common factors are not independent are correspond to industry and geographic sectors. However, their

correlation matrix can always be diagonalized. The latter is used here to simplify the notations.
3Here it is assumed that L1f (η1f ) is an invertible function.
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3 KISS model

3.1 Systematic and idiosyncratic risk: happy marriage

As long as credit portfolio modeling is concerned, it became a common practice to distinguish the un-
systematic {ηk} and the idiosyncratic {ξi} risk components. The usual assumption is that the former
drive the portfolio risk dynamics while the latter only give minor contributions. However, the two sets
of random variables do not differ from mathematical point of view. In fact, one cannot draw a clear
line between the systematic and idiosyncratic components using practical considerations either. Indeed,
imagine that the portfolio contains a single relatively big exposure or a set of exposures corresponding
to the same borrower and, hence, sharing the same idiosyncratic random variable ξi. Depending on the
size of this exposure(s), the risk brought to the portfolio by ξi may be higher than the one originating
from some or even all of the systematic factors {ηk}. Big enough exposure will eventually dominate the
portfolio dynamics even if its sensitivity ρi to the systematic factors is zero. Introducing credit contagion
effects by assigning more than one overlapping idiosyncratic factors to a group of dependent borrowers
makes it even harder to make a distinction between the systematic and idiosyncratic factors.

Treating the systematic and the idiosyncratic risk equally not only simplifies the model structure,
but also allows straightforward incorporation of the borrower concentration effects into the portfolio risk
metrics. The notations used so far can be generalized as follows. For M common factors {ηk} and the
portfolio consisting of N borrowers let us introduce

~ρi = (ρiβi1, ρiβi2, . . . , ρiβiM , 0, . . . ,
√

1− ρ2i , . . . , 0), ‖~ρi‖ = 1 (3.1)

~α = (α1, . . . , αM , αM+1, . . . , αM+N ), ‖~α‖ = 1 (3.2)

ri = ~ρi · ~α =

M+N∑
k=1

ρikαk (3.3)

The single factor approximation L1f of the portfolio loss can be written as

L1f =
∑
i

li, li(ri, η1f ) =

∞∑
n=0

rni
n!
l
(n)
i Hen(η1f ) (3.4)

Unification of the systematic and idiosyncratic risk factors results in idiosyncratic factors being in-
corporated in ~α which, as will be shown, defines the portfolio risk dynamics. Thus, the idiosyncratic risk
is accounted for in the same fashion as the systematic one.

3.2 Best single factor approximation

As was mentioned before, analytical tractability of the single factor case is the starting point for approach-
ing the more general multi-factor setup. Starting with a single factor approximation and calculating
multi-factor (including idiosyncratic) adjustments as in (2.4), one can in principle calculate the portfolio
economic capital. This approach, however, suffers from some difficulties. First, the choice of η1f is not
obvious, yet a very important first step. Next, calculations of the multi-factor corrections may be quite
laborious and hardware demanding. Finally, as will be demonstrated later, the multi-factor corrections
are not guaranteed to be convergent.

Instead of trying to overcome the difficulties associated with the multi-factor adjustments calculations,
let us put all the efforts into constructing the single-factor approximation. Some factor 1f should exist
which maximizes the relative contribution of the single-factor approximation in (2.4) and, thus, dimin-
ishing the relative importance of the multi-factor corrections. Assuming that the multi-factor corrections
give positive contribution4 to the α-quantile of the portfolio loss distribution L, the optimization problem
reduces to maximization of the contribution from the single-factor approximation L1f :

qα[L] ≈ max
1f

qα[L1f ] (3.5)

4This is not a solid assumption from mathematical point of view; however, it is true for any portfolio one may encounter
in practice. In the worst case scenario, i.e. negative multi-factor corrections being neglected and the maximum single-factor
contribution being used, one is only risking being somewhat conservative.
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The validity of this crucial assumption will be substantiated later in Section 4 by benchmarking with
Monte Carlo simulations.

From now on let us define the economic capital EC of the credit portfolio as an α-quantile of the
optimal single factor distribution L1f . Using the notations introduced in this section the economic
capital can be written as

EC =
∑
i

li(ri)
∣∣∣
η1f=N−1(α)

−
∑
i

E[li], ri = ~α · ~ρi (3.6)

The optimal single factor is defined by ~α which maximizes the above expression

∇~α
∑
i

li(ri) = 0 (3.7)

and has the following solution

~α =
~p

‖~p‖
, ~p =

∑
i

∂li(ri)

∂ri
~ρi (3.8)

This equation, however, contains ~α on both sides (ri on the right contains α) and does not allow a
straightforward analytical solution. The problem (3.5) can still be solved numerically by applying, for
example, the method of steepest descent. Based on (3.8), the following starting point can be suggested

~α0 =
~p0
‖~p0‖

, ~p0 =
∑
i

∂li(ri)

∂ri
~ρi

∣∣∣
ri=0

(3.9)

The calculations can be significantly facilitated by the series expansion (3.4). In practice, only few
iterations are needed to have an accurate solution to the optimization problem (3.5). The calculations
are not hardware demanding and very fast.

The optimal single factor defined by (3.8) leads to another simplification for the portfolio capital
allocation problem (2.3). The individual capital contributions

eci = wi
∂

∂wi
EC = wi

∂

∂wi

∑
i

(
li(ri)− E[li]

)
(3.10)

can be written as

eci = li − E[li] +
∑
j

∂li
∂ri

~ρj · wi
∂

∂wi

~p

‖~p‖
= li(~α~ρi)− E[li] (3.11)

where the third term can be shown to be zero:∑
j

∂lj
∂rj

~ρj · wi
∂

∂wi

~p

‖~p‖
= ~p · wi

∂

∂wi

~p

‖~p‖
= ~p ·

(
~ρi
‖~p‖
− ~p(~p · ~ρi)
‖~p|3

)
= 0 (3.12)

In other words, the choice of ~α according to (3.8) leads to particularly simple expressions for capital
contributions (3.11). The overall portfolio EC is a sum of conditional expectations of the excess losses
li(η1f = N−1(α))− E[li] which happen to coincide with the individual capital contributions.

Let us emphasize that once the optimal single factor (3.8) has been computed, the set of parameters
~α is sufficient to perform the capital allocation calculations (3.11). This allows real time calculations
necessary for risk-based pricing. In fact, the proposed method for the economic capital calculations and
its allocation is so efficient that the calculations can be performed on huge portfolios containing millions
of facilities in minutes using entry level desktop computer. The accuracy of the method is demonstrated
in the next section through benchmarking against Monte Carlo simulations.
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4 Benchmarking

To highlight the points made and substantiate the assumptions used in the previous section, let us compare
the performance (accuracy) of the proposed analytical approximation with Monte Carlo simulations.
To demonstrate the advantages of the proposed technique, the comparison analysis will also cover the
previously reported analytical technique (Voropaev, 2011) which, in contrast with the one presented here,
aims at precise calculations of the multi-factor corrections in (2.4).

capital vs concentration, pd=1%
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Figure 1: Portfolio EC: Monte Carlo vs. analytical estimates.

4.1 Artificial portfolio, high concentrations

Let us start the analysis by considering a simple portfolio of 1000 bullet loans maturing at the horizon.
Each loan has sensitivity ρ2i = 0.2 to the single systematic factor η and a unique idiosyncratic component
ξi. The loss at horizon functions are

li(εi) =

{
l0 if ε > −N−1(PD)
0 if ε ≤ −N−1(PD)

(4.1)

where PDi are probabilities of default and are equal for all the loans. Two sets of experiments were
conducted with PD=1% and PD=0.1%. The loss severities l0 are initially set equal to all loans in the
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portfolio. The concentration effects are studied by gradually increasing the loss severity of one of the
loans and examining the impact on the portfolio EC. The confidence level for EC is set to 99.9% except
for the last experiment where the dependency of the EC on the confidence level was investigated for fixed
10% concentration. Both EC and concentration are measured as a fraction of the total portfolio exposure
(i.e. the sum of all the loss severities).

The results of the Monte Carlo simulations are compared with the numbers produced using the KISS
model (Section 3) and with the output of the approach based on the calculations of the multi-factor
corrections in (2.4). In the latter case the single systematic factor η was used for the single-factor
approximation.

Based on the results of the comparison presented in Fig. 1, one can conclude the following. Multi-
factor corrections may lead to very accurate results in case of moderate concentrations (PD=1%, concen-
tration < 10%). In case of high concentrations, however, the results suggest that the higher order (3rd
order in this case) multi-factor corrections are divergent, while limiting the multi-factor contributions to
the 2nd order corrections leads to significant underestimation of EC.

The KISS model, on the other hand, despite being not extremely accurate, produces robust and
reliable EC estimates for a wide range of parameters. This is especially obvious when studying the
dependency of the portfolio EC on the confidence level.

4.2 Realistic portfolio, moderate concentrations

Here the analysis of the previous section is complemented by the one conducted on more realistic portfolio.
The portfolio consisted of 2,000 loans to distinct customers randomly selected from a loan portfolio of
a large European bank5. The set of common systematic factors covering 45 geographic regions and 61
regions, as well as the valuation function at horizon li(ε) used in the experiment were similar to those of
the PortfolioManager (Kealhofer, 2001) model.

Both the portfolio EC and its allocation {eci} were estimated using unbiased Monte Carlo simulations.
The confidence level was set to 99.9% and the EC contributions were estimated as average realized values
in the interval 99.85%-99.95%. A total of 1010 (ten billion) scenarios were used.

The simulation-based estimates were compared to both the KISS model outcome as well as with the
output of the approach based on the calculations of the multi-factor corrections in (2.4). In the latter case
the single-factor 1f used as a starting point was obtained using (3.9) restricted to systematic components.
Second (mf2) and third order (mf3) corrections were calculated.

The results on the portfolio level are summarized in Table 1 and the facility-level results are presented
as scatter plots in Fig.2.

1f KISS 1f+mf2 1f+mf2+mf3

-4.3% -2.0% -0.5% -0.1%

Table 1: Relative differences between analytical and simulation-
based estimates of the portfolio EC.

On the portfolio level the accuracy of the proposed approximation is more than sufficient for any
practical purposes. The performance may seem to be less impressive on the facility level. As expected,
the most significant mismatch is observed for the facilities with high concentrations of capital. These
discrepancies, however, do not jeopardize the practical validity of the KISS model. Indeed, the uncertainty
in the input parameters observed in practice (i.e. default rates, recoveries, correlation parameters, etc)
as well as dependencies on the modeling assumptions diminish to large extent the approximation errors
of the proposed technique. This, combined with the robustness demonstrated in the previous section,
makes the KISS approximation a valid alternative for quantification of risks in credit portfolios.

5The same portfolio was used by Voropaev (2011).
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Figure 2: Relative differences between Monte Carlo and analytical estimates.
Ten biggest consumers of capital accounting for 19% of EC are marked.

5 Summary

Despite its simplicity, the analytical approximation presented here is capable of quantifying credit port-
folio risks in a general multi-factor setup. The VaR risk measure used here can easily be replaced with
the Expected Shortfall. The arbitrary loss functions {li(εi)} used allow for covering not only default-only
regime, but also MtM valuation or even the dependency of in-default loss severities on the systematic
factors. The default-only case has a particularly simple solution mimicing the well-known IRB capital
rules:

eci = EaDi · LGDi ·

(
N

(
N−1(PDi) + (~α~ρi)N

−1(α)√
1− (~α~ρi)2

)
− PDi

)
(5.1)

The less than perfect accuracy of the approximation is not crucial for day-to-day practical needs of
credit portfolio managers. The advantages of the proposed technique are significant. the model allows
very fast and straightforward calculations including real-time risk-based pricing. The simple, robust and
transparent structure can facilitate user acceptance and integration on all levels of financial institutions.
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