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Abstract

Financial volatility risk is addressed through a multiple round evo-

lutionary quantum game equilibrium leading to Multifractal Self-Organized

Criticality (MSOC) in the financial returns and in the risk dynamics.

The model is simulated and the results are compared with financial

volatility data.

Quantum Financial Economics, Multifractal Self-Organized Criticality, Quan-

tum Chaotic Volatility.

1 Introduction

The development of quantum game theory has led to the expansion of Quan-

tum Financial Economics (QFE) [9, 10], as an attempt to understand and

explain financial systems and processes, in particular, the problem of Multi-

fractal Self-Organized Criticality (MSOC) in financial returns [3, 4].
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Ever since Mandelbrot identified the presence of multifractal turbulence in

the markets [6, 7, 8], this empirical fact has become a major research problem

within financial economics, especially the branch of financial economics that

deals with financial risk.

Mandelbrot hypothesized that financial systems’ dynamics has to be ad-

dressed in terms of an intrinsic temporal notion, linked to the economic

rhythms and (chaotic) business cycles. Such intrinsic time would not be

measured in clock time, but in terms of economic rhythms that would rescale

volatility with the usual square root rule that holds for clock-based temporal

intervals.

In the present work, we return to such a proposal, providing for a quantum

game theoretical approach to market turbulence with multifractal chaotic

intrinsic time. The approach followed is that of path-dependent quantum

computation approach to quantum games, such that a game is divided in

rounds and, for each round, an equilibrium condition is formalized in terms of

a payoff quantum optimization problem, subject to: (1) a time-independent

Schrödinger equation for the round; (2) an update rule for the Hamiltonian,

depending on some evolutionary parameter(s)1.

A clock time independent quantum state is associated with each round,

such that intrinsic time emerges from the quantum game itself2, without any

stochastic temporal subordination over clock time [6, 7].

1The time-independent Schrödinger equation can be addressed either as attaching an
eigenstate to the whole round, for the game’s result, or to assign it to the round’s end,
and the change in the parameters leads to a change in the time-independent equation for
the round, given the previous round. In [3], such approach with discrete game rounds
was also considered, with unitary evolution between each two rounds. In the present case,
instead of a unitary evolution operator, we have a quantum optimization problem per
round, leading to a quantum strategy formulation. For the game proposed in [3] the two
approaches are, actually, equivalent, since they form part of the underlying approach to
the path-dependent quantum computation approach to quantum games.

2Therefore, we are dealing with Multifractal Self-Organized Criticality [1, 3, 4, 5].
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2 A Quantum Financial Game

Let St be the financial market price of a company’s shares, transactioned

synchronously by traders in discrete rounds at the end of each round, and rt

be a rate of return, such that:

St = St−△te
rt (1)

with:

rt = ln

(

St

St−△t

)

= µ△t+ σxt (2)

where µ is a fixed average return, △t is the duration of a game’s round, σ is

a fixed volatility component.

The subscript t labels the round in accordance with its final transaction

time, t = △t, 2△t, 3△t, ..., as is the usual framework in game theory for a re-

peated game, where each round corresponds to an iteration of the game with

the same game conditions (fixed repeated game) or with evolving conditions

(evolutionary repeated game).

Considering a financial market composed by value investors, it is as-

sumed that market participants accurately evaluate the company’s funda-

mental value such that rt is a fair return on the company’s shares.

An adaptive process is considered such that the company is character-

ized by an quantum evolutionary strategy ψt(x), which corresponds to the

amplitude for the systemic propensity of actualization of different potential

alternative values of x, at the end of the round. The subscript t labels the

corresponding wave function ψt(x) as the quantum strategy for the round t.

Each round’s strategy results from a quantum optimization problem defining

a quantum business game evolutionary equilibrium.

For the present game, it is assumed that ψt(x) reflects economic and

financial conditions linked to the company’s business cycle, such that: x < 0

signals negative factors and possibly a downward period in the business cycle
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dynamics, while x > 0 signals positive factors and possibly business grown.

It is assumed that negative x is dampened by actions on the part of the

company towards the recovery, while positive x may be dampened by busi-

ness growth restrictions, which includes competition with other companies.

The existence of such contra-cyclical dynamics, affecting both positive and

negative business cycle processes, can be modelled through a harmonic os-

cillator potential, thus, introducing the quantum operator x̂ for the variable

xt, the game framework for the business evolutionary process leads to the

following family of quantum game equilibrium conditions at each round:

max
{

−〈x̂2〉ψt

}

s.t. Ĥtψt(x) = Eψt(x)

Ĥt = − ~
2
s

2mt

d2

dx2
+ b

2
x2

(3)

The quantum business cycle Hamiltonian operator translates, to the financial

economic setting, with a few adaptation in units. Indeed, energy is, in this

case, expressed in units of returns and the shares’ Planck-like constant ~s

plays a similar role to that of quantum mechanics’ Planck constant, indeed,

the quanta of energy for the quantum harmonic oscillator game’s restrictions

at round t are:

En(t) =

(

n+
1

2

)

~sωt (4)

where ωt represents the angular frequency of oscillation of the business cycle

at for the round t, expressed as radians over clock time3, and ~s is expressed

as hs
2π

, where hs is, in turn, expressed in units of returns over the business

cycle oscillation frequency for the round t, such oscillation frequency is, in

turn, obtained from νt =
ωt

2π
, thus, being expressed in terms of the number

of business-related oscillation cycles per clock time.

3It should be stressed that ωt is associated with the round itself, as a part of the
game’s restrictions and the subscript identifies the angular frequency as such, and not as
a continuous clock time dependency. One may assume, alternatively, that ωt is assigned
to the round’s end where the decision takes place with a wave function that results from
the optimization problem presented in the text.

4



The parameter b is the evolutionary pressure, which includes the ability

of the company to quickly adapt to adverse conditions, as well as increased

business growth restrictions, such that the higher the value of b is, the more

competitive is the business environment. Unlike in physics, within the eco-

nomic setting, the parameter b is dimensionless.

We also consider a business cycle-related mass-like term which can be

obtained from the relation:

ωt =

(

b

mt

)
1
2

(5)

leading to:

mt =
b

ω2
t

(6)

thus, since b is dimensionless, the business cycle mass-like term is expressed

in units of inverse squared angular frequency.

The above quantum optimization problem is formulated in such a way

that one is dealing with a quantum game of risk, in which a (negative valued)

expected payoff is defined in terms of the operator x̂2 which measures the risk

of fluctuation of excess returns. The negative of the expected risk −〈x̂2〉
ψt

expresses the expected payoff such that the lower the expected risk is, the

higher is the expected payoff. The maximization assumes that there is a risk

management process underlying the adaptation of the company such that

the company tries to anticipate the factors affecting the expected risk and

then tries to adaptively respond to such factors leading to a minimization of

the financial risk.

Solving first for the quantum Hamiltonian restrictions, the feasible set

of quantum strategies is obtained for the round as the eigenfunctions of the

quantum harmonic oscillator:

ψn,t(x) =

(

αt√
π2nn!

)
1
2

e−α
2
t
x2

2 Hn(αtx) (7)
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αt =
4

√

mtb

~2
s

(8)

The round specific expected payoff for each alternative strategy is, then,

given by:

−
〈

x̂2
〉

ψn,t
= − 1

α2
t

(

n +
1

2

)

= −
(

n +
1

2

)

~s

mtωt
= −En(t)

mtω
2
t

= −En(t)
b

(9)

Maximizing the expected payoff leads to the minimization of expected

risk, such that:

max
{

−
〈

x̂2
〉

ψn,t

}

= −E0(t)

b
(10)

Therefore, the quantum game’s evolutionary equilibrium strategy is the eigen-

function for the zero-point energy solution of the quantum harmonic oscilla-

tor:

ψ0,t(x) =

(

αt√
π

)
1
2

e−α
2
t
x2

2 =

(

1

θt
√
2π

)
1
2

e
− x2

4θ2
t (11)

where θt is a business cycle-related volatility parameter defined as:

θt =
1√
2αt

=

√

−max
{

−〈x̂2〉ψn,t

}

=

√

E0(t)

b
(12)

which makes explicit the connection between the quantum game equilibrium

strategy for the round and the risk optimization problem.

Introducing the volatility component Kt, such that:

Kt =
E0(t)

2b
=

〈T 〉ψ0,t

b
(13)

that is, Kt is equal to the expected value of the quantum harmonic oscillator’s

kinetic energy for the round divided by the evolutionary pressure constant,

thus, Kt is called kinetic volatility component. Replacing in θt, we obtain:
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θt =
√

2Kt (14)

The final result of this quantum game, for the financial returns, is the

returns’ wave function for the game round:

ψ0,t(r) =

(

αt

σ
√
π

)
1
2

e−α
2
t
(r−µ△t)2

2σ2 =

(

1
(√

2Ktσ
)√

2π

)
1
2

e
− (r−µ△t)2

4(
√

2Ktσ)
2

(15)

In the Gaussian random walk model of financial returns, within neoclassical

financial theory, the following density is assumed:

dP
△t
neoclassical =

1
(√

△tσ
)√

2π
exp

[

(r − µ△t)2

2
(√

△tσ
)2

]

dr (16)

where △t is a discrete time step.

Mandelbrot’s proposal is that the business cycle has a multifractal behav-

ior so that, instead of an interval of △t, the business cycle rhythmic time4

marks a round duration that does not numerically coincide with a clock time

interval, but rather with an intrinsic business cycle time interval, for the

round t, denoted by τB(t) which affects the volatility as follows:

τB(t) = 2Kt =
E0(t)

b
=

~sωt

2b
(17)

thus the intrinsic time frame is expressed not in clock time but in units

of returns related to the financial energy, as explained earlier. The intrinsic

temporal sequence is, thus, given by τB =
~ω1△

2b
,
~(ω1△+ω2△)

2b
,
~(ω1△+ω2△+ω3△)

2b
, ...,

this sequence naturally defines a nondecreasing sequence. When ωt has a

4Volume, absolute returns or any other relevant such measure have been used as surro-
gates for multifractal intrinsic market time, any such notion that can define a sequence of
steps on a devil’s staircase can represent a form of fractal or multifractal time, which may
not necessarily coincide with clock time units. Intrinsic time is a financial-related time
which is usually measured in financially relevant units [7].
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multifractal behavior, the sequence leads to a multifractal devil’s staircase,

corresponding to a multifractal intrinsic time related to the business cycle

rhythmic time.

The corresponding Gaussian probability density is, in this case, given by:

dPt =
1

(

√

τB(t)σ
)√

2π
e
− (r−µ△t)2

2τB (t)σ2 (18)

the two temporal notions, that of clock time and that of intrinsic time, appear

in the density. The clock time appears multiplying by the average returns,

since the evidence is favorable that the intrinsic time is directly related to

market volatility rather than to the average returns5.

Multifractality arises from the dynamics of τB(t), through the following

power-law map:

Kt =









(1− ε) 2u

(

K
1

1−D

t−△t − 1

)

mod 1 + ε|rt−△t|

u
+ 1









1−D

(19)

with parameters 0 < u < 1 and 0 ≤ ε ≤ 1. The above map is conjugate to

the coupled shift map:

It = (1− ε)2It−△tmod 1 + ε |rt−△t| (20)

5That is, the market seems to evaluate the average returns with a clock temporal scale,
while the volatility scales in intrinsic time, which is related to the fact that the volatility
is linked to transaction rhythms and to the business cycle risk processing by the markets
[6, 7].
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through the power law relation defined over the kinetic volatility component6:

Kt =

(

1 +
It

u

)1−D
(21)

The Bernoulli shift map for the dynamics of It formalizes a dynamics of

business cycle-related expansion and contraction in volatility conditions with

a uniform invariant density7. The Bernoulli map is coupled to the previous

round’s financial returns, formalizing a feedback from the market itself upon

the economic behavior of the volatility fundamentals It. For a coupling of

ε 6= 0, the quantum feedback affects the chaotic map, leading to a situation

in which the previous round’s volatility, measured by the absolute returns,

affects the current round’s chaotic dynamics.

Taking all of the elements into account, the final quantum game’s struc-

ture is given by:

max
{

−〈x̂2〉ψt

}

s.t. Ĥtψt(x) = Eψt(x)

Ĥt = − ~2s

2mt

d2

dx2
+ b

2
x2

mt =
~2s

4bτB(t)2

τB(t) = 2Kt =
~sωt

2b

Kt =







(1−ε)2u
(

K

1
1−D
t−△t

−1

)

mod 1+ε|rt−△t|

u
+ 1







1−D

(22)

In figure 1 is shown the result of a simulation of the quantum financial

game with this structure. The presence of market turbulence can be seen

in the financial returns series, resulting from the Gaussian density shown in

6The power law dependency is to be expected, following Mandelbrot’s empirical work,
which shows that economic processes seem to lead to scale invariance in risk dynamics[6,
7, 8].

7Conceptually, the It variable can be interpreted as synthesizing risk factors associated
with fundamental value, that is, to fundamental value risk drivers.
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Eq.(18).
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Figure 1: Netlogo simulation of the model, with parameters: ε = 0.001,
u = 1.0E − 5, D = 1.83, µ = 1.0E − 6, σ = 0.02. Simulation with 30,000
rounds, the first 10,000 having been removed for transients.

In figure 2, a multifractal large deviation spectrum is presented for the

financial returns, showing a peak around 0.5, which is in accordance with

Mandelbrot, Fisher and Calvet’s hypothesis of multifractal financial efficiency

[9].
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Figure 2: Large deviation spectrum obtained from a Netlogo simulation of the
quantum market game with parameters: ε = 0.001, u = 1.0E − 5, D = 1.83,
µ = 1.0E − 6, σ = 0.02. The spectrum was estimated with 30,000 rounds,
the first 10,000 removed for transients.

In figure 3, the multifractal spectra for the dynamics of Kt is shown, as-

suming three different values for the coupling parameter. The presence of

multifractality for ε = 0 shows that the chaotic dynamics is responsible for

the emergence of the multifractal turbulence, thus, we are dealing with mul-

tifractal chaos with origin in the adaptive processing of risk by the market8.
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Figure 3: Large Deviation Spectrum obtained in Fraclab, from a Netlogo
simulation of the quantum market game, for different coupling values, with
parameters: u = 1.0E − 5, D = 1.83, µ = 1.0E − 6, σ = 0.02. The spectrum
was estimated with 30,000 rounds, the first 10,000 removed for transients.

8The presence of chaos in business cycles is a known empirical fact [2], the current
model addresses the chaos in connection to volatility.

11



For ε 6= 0, the quantum fluctuations that affect the dynamics for Kt seem

to lead to a lower value of the peak of the multifractal spectrum, indicating

a higher irregularity in the motion. On the other hand, when ε = 0 there

emerges a multifractal spectrum with a peak that is closer to 1, showing

evidence of higher persistence and more regular dynamics. For all of the

couplings, however, there is evidence of persistence in the dynamics of Kt,

which is in accordance with previous findings for the financial markets and

business cycles’ empirical data [2, 6, 7, 8].

One can also identify, in the volatility spectra of the simulations, Hölder

exponents larger than 1, which is characteristic of turbulent processes where

there are clusters of irregularity representing short run high bursts of activity

which tend to be smoothed out by laminar periods in the longer run. This

signature is not dominant in the game’s simulations but may take place,

which is favorable evidence since such spectra signatures take place in ac-

tual market volatility measures expressing adaptive expectations regarding

volatility fundamentals, as it is shown in figure 4, for the volatility index

“VIX” which is the volatility index on the S&P 500.
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Figure 4: Large deviation spectrum estimated in Fraclab for the VIX daily
closing historical values during the period from 02-01-1990 to the period 27-
06-2011. The spectrum peaks at a value of Hölder exponent larger than 0.5
showing evidence of persistence, and there is a region of scaling with Hölder
exponents larger than 1.
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Even though the Kt is not a volatility index, the conceptual proximity

regarding the incorporated expectations allow for some comparison. The

large deviation spectrum of the VIX also shows a lower persistence which is

more consistent with the cases for ε 6= 0, a result to be expected since the

financial returns’ volatility seem to be affected by the magnitude of previous

returns.

3 Conclusions

The present work has combined chaos theory and quantum game theory to

provide for a game theoretic equilibrium foundation to the arguments of in-

trinsic time linked to the business cycle as a source of multifractal turbulence

in the financial markets.

The game’s simulations show that the interplay between the economic

chaos and the volatility dynamics explains the emergence of multifractal tur-

bulence. The quantum approach has advantages over the classical stochastic

processes since it provides for theoretical foundations underlying the proba-

bility measures, linking the probabilities densities with the underlying game

structures and economic dynamics, while sharing the same advantage of being

ammenable to econometric analysis and estimation, which can prove useful

in portfolio management, derivative pricing and risk management.
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