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Abstract

A fragmentation of a set A is a graph with vertices labeled by subsets of A which
obey a certain parent-child relationship. A random fragmentation tree is a probability
distribution on the space of fragmentations of a set. It is often convenient to regard a
fragmentation tree as a collection of subsets such that each subset is associated with
a non-trivial partition of itself, called its children. In this paper, we study a Markov
process on the space of fragmentation trees whose transition probabilities are a product
of consistent transition probabilities on the space of partitions. The result is a consistent
family of transition probabilities on fragmentation trees which characterizes an infinitely
exchangeable process on trees labeled by subsets of the natural numbers. We show that
this process possesses a unique stationary measure and can be extended to a process on
weighted trees, or trees with edge lengths, as well as mass fragmentations.

1 Introduction

Fragmentation processes and random fragmentation trees have been studied in several dif-
ferent contexts in the literature. Theoretical examination of such processes has been under-
taken in the field of probability theory, see [7, 27] for a review of this work. In particular,
the study of consistent families of fragmentation trees appears in [1, 2, 23].

The connection of coalescent theory to population genetics was introduced by Kingman
[19, 20] and is reviewed by Nordberg [25]. Ewens [15] introduced his sampling formula
as a distribution on integer partitions in the context of theoretical population biology.
Kingman [17] later showed that the Ewens distribution sits more naturally on the space of set
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2 PRELIMINARIES 2

partitions. Extensions of the Ewens process are covered in [26]. Applications of the Ewens
process appear in various places, see [21] for a brief overview of statistical applications.

Aldous [3] and Aldous and Pitman [4] study tree-valued Markov chains which are related
to the Poisson-Galton-Watson process on unlabeled, rooted trees. Diaconis and Holmes
[13] discuss a Markov chain on trees in the context of random matchings and Markov chain
convergence.

In this paper, we construct a Markov process on the projective system of rooted leaf-
labeled fragmentation trees. The transition mechanism for this process is based on a consis-
tent Markov process on partitions constructed by Crane [12] which is based on the paintbox
process due to Kingman [20].

Section 4 shows the construction of a transition measure on T (k) and shows that a
Markov chain governed by this transition law possesses a unique equilibrium measure. Sec-
tion 5 shows how to embed such a process in continuous time via a Poisson point process
construction and also shows several nice properties of this process. Section 6 constructs
a process on fragmentations of unit mass, M1, which is associated with the asymptotic
frequencies of the processes of the previous sections. Finally, we discuss weighted trees in
section 7 and how above processes can be generalized to this context.

2 Preliminaries

In this paper, we study a family of Markov processes on T , the space of fragmentations of N,
defined below. We now introduce some terminology and notation to make our development
precise.

2.1 Partitions

Throughout this paper, P denotes the space of set partitions of the natural numbers N,
with each element B of P regarded as a collection of disjoint non-empty subsets of N,
{B1, B2, . . .}, called blocks, such that

⋃

iBi = N. The blocks are unordered, but, where
necessary, they are listed in the order of their least element. We write B = (B1, B2, . . .)
whenever we wish to emphasize that blocks are listed in a particular order.

For B ∈ P and b ∈ B, #B is the number of blocks of B and #b is the number of
elements of b. We write P(k) to denote the space of partitions of N with at most k ≥ 1
blocks, P(k) := {B ∈ P : #B ≤ k}. For a partition B with blocks {B1, B2, . . .} and any
A ⊂ N, let B|A denote the restriction of B to A, i.e. B|A := {Bi ∩A : i ≥ 1} (excluding the

empty set). We write PA and P
(k)
A to denote the restriction to A of P and P(k) respectively.

In particular, for n ∈ N, P[n] and P
(k)
[n] are the restriction to [n] := {1, . . . , n} of P and P(k)
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respectively.

For each n ∈ N, we define the deletion operation Dn : 2N → 2N which acts on subsets
of N by removing {n} from A, i.e. A 7→ DnA := A\{n} for each A ⊂ N. In general, for
A,B ⊂ N non-empty, DBA := A\B = A−B = A∩Bc. For each n ≥ 1, we define the deletion
operation on partitions Dn,n+1 : P[n+1] → P[n] in terms of Dn+1 by Dn,n+1B ≡ B|[n] :=
{Dn+1b : b ∈ B} for every B ∈ P[n+1], and for m < n define Dm,n := Dm,m+1 ◦ · · · ◦Dn−1,n.

A sequence (B1, . . .) such that Bn ∈ P[n] for each n ≥ 1 is said to be compatible if
Bn = Dn,n+1Bn+1 for each n ≥ 1. Any B ∈ P can be represented as the compatible
sequence of its finite restrictions, (B|[n], n ≥ 1), and we often write B := (B|[n], n ≥ 1).

2.2 Fragmentation trees

For any subset A ⊂ N, a collection of non-empty subsets T ⊂ 2A, the power set of A, is a
rooted tree if

(i) A ∈ T , called the root of T and denoted root(T ) = A, and

(ii) A,B ∈ T implies A ∩B ∈ {∅, A,B}. That is, either A and B are disjoint or one is a
subset of the other.

If T contains all singleton subsets of A, T is a fragmentation tree. Throughout the rest of
this paper, the word tree and fragmentation are both understood to mean fragmentation
tree. We write TA to denote the space of fragmentations of A and T ≡ TN to denote the
space of fragmentations of N.

As a collection of subsets of A ⊂ N, the elements of T ∈ TA are partially ordered by
inclusion. That is, if A,B ∈ T such that A ⊂ B, then the intervals [A,B], (A,B], and
[A,B) are well-defined subsets of T . This partial ordering induces a natural genealogical
interpretation of the relationships among the elements of a tree. For each t ∈ T , the
subset anc(t) := (t, A] := {s ∈ T : t ⊂ s} denotes the set of ancestors of t. Note that
anc(root(T )) = ∅ and for each t 6= root(T ), anc(t) has a least element denoted by pa(t) :=
min anc(t), the parent of t.

Conversely, except for the singleton elements of T , each t ∈ T is the parent of some
collection of subsets of T , called the children of t, which is given by pa−1(t) := frag(t) :=
{t′ ∈ T : pa(t′) = t}. For each non-singleton t ∈ T , frag(t) forms a non-trivial partition
of t. In particular, for any tree T , the children of root(T ) form the root partition, denoted
ΠT := rp(T ) := frag(root(T )). The fragmentation degree of T is given by maxt∈T #frag(t),

which may be infinite. For k ≥ 1, we write T
(k)
A to denote the collection of trees of A with

fragmentation degree at most k.
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For any subset S ⊂ A, the restriction of T ∈ TA to S is defined by T|S := {S∩ t : t ∈ T}
(excluding the empty set), the reduced sub-tree of Aldous [1]. Recall the deletion operation
DS : 2N → 2N defined above by restriction to the complement of S. For any tree T ∈ TA
and S ⊂ A, DST := {DSt : t ∈ T} = {t ∩ Sc : t ∈ T} ≡ T|A∩Sc. We use the notation
Dn,n+1 : Tn+1 → Tn to denote the operation Dn,n+1T := T|[n] on trees. Note that the
apparent overloading of Dn,n+1 as a function on both P[n+1] and Tn+1 should cause no
confusion as it is fundamentally defined, in both cases, as a function on collections of
subsets of N.

As in the description of partitions of N, any fragmentation T ∈ T can be expressed as a
compatible sequence (T|[n], n ≥ 1) of reduced subtrees, and we often write T := (T|[n], n ≥ 1).

2.3 Random fragmentations

A random fragmentation of A is a probability distribution on TA which satisfies

(a) the branching property: Given the root partition ΠT , the subtrees {T|b : b ∈ ΠT } are
distributed independently, and

(b) for each S ∈ ΠT , the subtree T|S is a random fragmentation of S.

Any permutation σ of A, i.e. a one-to-one function A → A, acts on T ∈ TA componentwise,
i.e. σ(T ) := {σ(t) : t ∈ T}. A random fragmentation of A is exchangeable if T ∼ σ(T ) for
any σ ∈ SA, the symmetric group of all permutations acting on A. A family of random
fragmentations {QS : S ⊂ A} is consistent if T ∼ QA implies T|S ∼ QS for all S ⊂ A. That
is, the marginal distribution of each restricted subtree to S ⊂ A corresponds to the random
fragmentation QS. A family of distributions Q := {QA : A ⊂ N} defines an infinitely

exchangeable fragmentation of N if for each A ⊂ N

(1) QA is exchangeable, and

(2) Q is consistent.

The trees discussed so far are unweighted, or boolean, meaning their edges are assigned
unit weight. A weighted tree T̄ is a boolean tree T together with non-negative edge lengths
{tb : b ∈ T}. We write T̄ to denote the space of weighted trees. We discuss weighted trees
in more detail in section 7.

Infinitely exchangeable fragmentation trees have been studied in the literature, see
[1, 7, 23, 27]. In this work, we study a family of Markov processes on T (k) whose transition
probabilities are based on a consistent family of Markov processes on P(k) due to Crane
[12]. The transition kernel of the associated partition process is based on the paintbox
representation of infinitely exchangeable partitions [18, 20].
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2.4 ̺ν-Markov process on P(k)

Let Pm = {(s1, s2, . . .) : s1 ≥ s2 ≥ . . . ≥ 0,
∑

i si ≤ 1} be the space of ranked-mass

partitions. For s ∈ Pm, let X := (X1,X2, . . .) be independent random variables with
distribution

Ps(Xi = j) =







sj, j ≥ 1
1−

∑∞
k=1 sk, j = −i
0, otherwise.

The partition Π(X) generated by s through X satisfies i ∼Π(X) j if and only if Xi = Xj .
The distribution of Π(X) is written ̺s and Π(X) is called the paintbox based on s. For
a probability measure ν on Pm, the paintbox based on ν is the ν-mixture of paintboxes,
written ̺ν(·) :=

∫

Pm
̺s(·)ν(ds). Any partition obtained in this way is an exchangeable

random partition of N and every infinitely exchangeable partition admits a representation
as the paintbox generated by some ν. See [8] and [27] for more details on the paintbox
process.

For any probability measure ν on P
(k)
m := {s ∈ Pm : sj = 0 ∀j > k,

∑
sj = 1}, the

ranked k-simplex, let ̺ν(·) be the paintbox based on ν as described above. For each n ≥ 1,

define finite-dimensional transition probabilities on P
(k)
[n] by

pn(B,B′; ν) :=
k!

(k −#B′)!

∏

b∈B

(k −#B′
|b)!

k!
̺ν(B

′
|b). (1)

The collection (pn(·, ·; ν), n ≥ 1) of transition probabilities characterizes an infinitely ex-
changeable Markov process on P(k), called the ̺ν-Markov process, under the usual deletion
operation Dn,n+1 : P[n+1] → P[n], B 7→ Dn,n+1(B) := B|[n] [12].

The transition mechanism on P(k) characterized by the finite-dimensional transition
probabilities in (1) admits the following useful construction. Let B ∈ P(k), C := (C1, . . . , Ck)
be i.i.d. ̺ν paintboxes and σ := (σ1, . . . , σk) be i.i.d. uniform random permutations of [k].
Construct the matrix








C.1 C.2 . . . C.k

B1 C1,σ1(1) ∩B1 C1,σ1(2) ∩B1 . . . C1,σ1(k) ∩B1

B2 C2,σ2(1) ∩B2 C2,σ2(2) ∩B2 . . . C2,σ2(k) ∩B2

...
...

...
. . .

...
Bk Ck,σk(1) ∩Bk Ck,σk(2) ∩Bk . . . Ck,σk(k) ∩Bk








=: B ∩ Cσ.

We write Part(B,C, σ) :=
{
⋃k

j=1(Bj ∩ Cj,σj(i)), 1 ≤ i ≤ k
}

\∅ to be the partition whose

blocks are given by the column totals of B ∩ Cσ. This formulation corresponds to the
finite-dimensional transitions in (1) and is useful in our development of a Markov process
on T (k).
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Let πn(·, ·) be a transition probability on Tn for each n ≥ 1. The collection (πn, n ≥ 1)
is consistent under selection from N if and only if for each n ≥ 1 and T, T ′ ∈ Tn

πn(T, T
′) =

∑

T ′′∈D−1
n,n+1(T

′)

πn+1(T
∗, T ′′) (2)

for any T ∗ ∈ Dn,n+1(T ) [11].

Likewise, for a continuous-time Markov process, (Tn(t), t ≥ 0)n∈N, where Tn(t) is a
process on Tn with infinitesimal generator Qn, it is sufficient that the entries of Qn satisfy
(2) for there to exist a Markov process on T with those finite-dimensional transition rates.

3 Branching Markov kernel on T

A Markov kernel on a set A is a collection {p(x, ·) : x ∈ A} of probability distributions on
A indexed by the elements of A. For any A ⊂ N, a Markov kernel on PA is a collection
PA := {pA(B, ·) : B ∈ PA} of probability distributions on PA indexed by the elements of
PA. Given a collection of Markov kernels {PS : S ⊂ A} on PS for each S ⊂ A, we define
the associated branching Markov kernel QA(·, ·) on TA, fragmentations of A, as the family
{QA(T, ·) : T ∈ TA} indexed by the elements of TA such that for each T, T ′ ∈ TA

QA(T, T
′) =

∏

b∈T ′

pb(ΠT|b
,ΠT ′

|b
)

1− pb(ΠT|b
,1b)

, (3)

the product of Markov kernels on the root partitions of the reduced subtrees of all parents
of T ′ conditioned to be non-trivial, i.e. not the one block partition 1b.

The form of (3) admits the recursive expression

QA(T, T
′) =

pA(ΠT ,ΠT ′)

1− pA(ΠT ,1A)

∏

b∈ΠT ′

Qb(T|b, T
′
|b) (4)

which has an intuitive interpretation in terms of independent self-similar transitions on the
space of reduced subtrees of the children of the root of T ′. For A ⊂ N such that #A < ∞,
any family of Markov kernels on PS for each S ⊂ A such that pb(B,1b) < 1 for all b ⊂ A
and B ∈ Pb defines a branching Markov kernel on TA.

Proposition 3.1. Let A ⊂ N with #A < ∞, PA := {pb(·, ·) : b ⊂ A} be a collection of

Markov kernels on Pb for each b ⊂ A, and QA(·, ·) be the branching Markov kernel on TA
associated to PA. Then QA(·, ·) is a transition probability on TA.

Proof. Since #A < ∞, TA is finite and pA(·, ·) is a transition probability on PA. Hence, we
need only show that

∑

T ′∈TA
πA(T, T

′) = 1 for every T ∈ TA.
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Let PA := {pS(·, ·) : S ⊂ A} be the collection of Markov kernels on PS for each S ⊂ A
in the statement of the proposition. For B ⊂ A, let QB(·, ·) be the branching Markov kernel
on TB associated to PA, as in (3). For #B = 2, TB has one element and so QB(T, T

′) ≡ 1 for
T = T ′ ∈ TB. Suppose that

∑

T ′∈TB
QB(T, T

′) = 1 for all B ⊂ A such that #B < k < #A.
Then for C ⊂ A such that #C = k, we have

∑

T ′∈TC

QC(T, T
′) =

∑

T ′∈TC

pC(ΠT ,ΠT ′)

1− pC(ΠT ,1C)

∏

b∈ΠT ′

Qb(T|b, T
′
|b) (5)

=
∑

π∈PC\{1C}

pC(ΠT , π)

1− pC(ΠT ,1C)

∏

b∈π

∑

T ′∈Tb

Qb(T|b, T
′) (6)

=
∑

π∈TC\{1C}

pC(ΠT , π)

1− pC(ΠT ,1C)
(7)

= 1.

The equality in (5) follows from (4); (6) follows from (5) by the recursive definition of a
fragmentation tree according to its restrictions to the blocks of the partitioning of its root;
and (7) follows from (6) by the induction hypothesis for all b ⊂ A such that #b < k.

A Markov kernel QA on TA is exchangeable if

QA(T, ·) = Qσ(A)(σ(T ), σ(·)) =: QAσ(T, ·) (8)

for any one-to-one function σ : A → A, a permutation of the elements of A.

A family {QS : S ⊂ A} of Markov kernels defined on the projective system {TS : S ⊂ A}
is consistent if for all ∅ 6= C ⊂ B ⊂ A, π ∈ TC and π∗ ∈ D−1

C (π) ∩ TB,

QB(π
∗,D−1

C (·)) = QC(π, ·). (9)

A consistent family of Markov kernels {QS : S ⊂ N} for which each QS is exchangeable is
said to be infinitely exchangeable. In general, a branching Markov kernel need not be either
exchangeable or consistent. Below we construct an infinitely exchangeable Markov chain on
T (k) for arbitrary k ≥ 2 from the ̺ν-Markov transition probabilities on P(k). We call this
the ̺ν-branching Markov chain on T (k).

4 ̺ν-branching Markov chain on T (k)

In general, the branching Markov kernel based on a generic collection of Markov kernels on
partitions need not have any natural or intuitive mathematical properties. In this paper,
we construct a Markov kernel based on the ̺ν-Markov process from section 2.4 which is
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both exchangeable and admits a collection of consistent finite-dimensional Markov kernels
in addition to having some other nice properties.

For n ≥ 1, k ≥ 2 and ν a probability measure on P
(k)
m , let pn(·, ·; ν) denote the ̺ν-

Markov transition probability on P
(k)
[n] and qn(·, ·; ν) = 1 − pn(·, ·; ν) its complementary

probability. The family {pn(·, ·; ν) : n ≥ 1} is infinitely exchangeable and so defines a

transition probability pA(·, ·; ν) on P
(k)
A for each A ⊂ N by

pA(·, ·; ν) := p#A(·, ·; ν).

Furthermore, for ν non-degenerate at (1, 0, . . . , 0) we have that pb(·,1b; ν) < 1 for all b ⊂ N

with #b > 1.

We define finite-dimensional transition probabilities on T
(k)
n for each n ≥ 1 by

πn(T, T
′; ν) =

∏

b∈T ′

pb(ΠT|b
,ΠT ′

|b
; ν)

qb(ΠT|b
,1b; ν)

. (10)

For each n ∈ N, the transition probabilities in (10) depend on T and T ′ through the
transition probabilities in (1) which are finitely exchangeable for each n ≥ 1. By regarding
T ∈ Tn as a collection of sets, {T1, . . . , Tm}, so that σ(T ) = {σ(T1), . . . , σ(Tm)}, it is clear
that πn(σ(T ), σ(T

′); ν) = πn(T, T
′; ν) for any permutation σ of [n] and πn(·, ·; ν) is finitely

exchangeable for each n ≥ 1.

Proposition 4.1. For any probability measure ν on P
(k)
m , the collection of transition prob-

abilities (πn(·, ·; ν), n ≥ 1) in (10) is a consistent family of transition probabilities on T
(k)
n

under selection from N.

Proof. Fix k ≥ 2 and let T, T ′ ∈ T
(k)
n . To establish consistency it is enough to verify that

(2) holds for each n ≥ 1, i.e. for each ν and T ∗ ∈ D−1
n,n+1(T ),

πn+1(T
∗,D−1

n,n+1(T
′); ν) = πn(T, T

′; ν).

For convenience, we drop the dependence on ν and write πn(·, ·) = πn(·, ·; ν). Note first

that T
(k)
1 = {{1}} and T

(k)
2 = {{12, 1, 2}} for all k ≥ 2 so that T

(k)
1 and T

(k)
2 each contain

exactly one element, which we write as T1 and T2 respectively. Hence, D−1
1,2(T1) = {T2} and

π1(T1, T1) = π2(T2, T2) = 1 so that (2) holds trivially for n = 1.

Now, assume that πm(T, T ′) =
∑

T ′′∈D−1
m,m+1(T

′) πm+1(T
∗, T ′′) for all T, T ′ ∈ T

(k)
m and

T ∗ ∈ D−1
m,m+1(T ) for all m ≤ n− 1. We now show that (2) holds for n by induction.

Let T, T ′ ∈ T
(k)
n and T ∗ ∈ D−1

n,n+1(T ). Write en+1 = {[n], {n + 1}} ∈ P[n+1], the

partition of [n+ 1] into two blocks, one of which is the singleton {n+ 1}. In what follows,
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for partition B ∈ P[n] and B′ ∈ D−1
n,n+1(B), we write b∗ ∈ B′ as the block of B′ obtained by

inserting {n + 1} in block b ∈ B ∪ {∅}.

∑

T ′′∈D
−1
n,n+1(T

′)

πn+1(T
∗, T ′′) =

=
∑

T ′′∈D
−1
n,n+1(T

′)

pn+1(ΠT∗ ,ΠT ′′ )

qn+1(ΠT∗ ,1n+1)

∏

b∈ΠT ′′

πb(T
∗
|b, T

′′
|b) (11)

=
∑

B∈D
−1
n,n+1(ΠT ′)

pn+1(ΠT∗ , B)

qn+1(ΠT∗ ,1n+1)

∏

b∈B

∑

T ′′∈Tb:T ′′
|b
=T ′

|b

πb(T
∗
|b, T

′′) +
pn+1(ΠT∗ , en+1)

qn+1(ΠT∗ ,1n+1)
πn(T, T

′)(12)

=
∑

B∈D
−1
n,n+1(ΠT ′)

pn+1(ΠT∗ , B)

qn+1(ΠT∗ ,1n+1)

∏

b∈B:b6=b∗

πb(T|b, T
′
|b)

∑

T ′′∈D−1(T ′
|b∗

)

πb∗(T
∗
|b∗

, T ′′
|b∗

) +

+
pn+1(ΠT∗ , en+1)

qn+1(ΠT∗ ,1n+1)
πn(T, T

′) (13)

=
∑

B∈D
−1
n,n+1(ΠT ′)

pn+1(ΠT∗ , B)

qn+1(ΠT∗ ,1n+1)

∏

b∈B

πb(T|b, T
′
|b) +

pn+1(ΠT∗ , en+1)

qn+1(ΠT∗ ,1n+1)
πn(T, T

′) (14)

= πn(T, T
′)
qn(ΠT ,1n) + pn+1(ΠT∗ , en+1)

qn+1(ΠT∗ ,1n+1)
(15)

= πn(T, T
′). (16)

Line (13) follows (12) since the children of the root of T ′′ ∈ D−1
n,n+1(T

′) are the same except
for the child containing {n + 1}, which we denote b∗; (14) follows (13) by the induction
hypothesis for all m ≤ n− 1 and the fact that each subtree restricted to the children of the
root of T ′′ is a tree on at most n elements; (15) is obtained from (14) by the consistency of
the pn(·, ·; ν) in (1); and (16) follows from qn(·, ·; ν) := 1− pn(·, ·; ν).

The finite-dimensional ̺ν-branching Markov kernels on T
(k)
n for each n ≥ 1 characterize

an infinitely exchangeable Markov kernel on T (k) by Kolmogorov’s extension theorem [9].
Here we have shown a construction of this Markov chain by specifying explicitly its finite-
dimensional distributions. We now show an alternative construction which is useful in later
sections.

4.1 Alternative construction of ̺ν-branching Markov chain

Intuitively, the ̺ν-branching Markov kernel governs the transition T 7→ T ′ ∈ T (k) as follows.

For A ⊂ N, let pA(·, ·; ν) be the ̺ν -Markov transition probability on P
(k)
A given in (1). Given

an initial state T ∈ T (k)

(i) generate ΠT ′ , the root partition of T ′, from pN(ΠT , ·; ν).
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(ii) Given b ∈ T ′, generate frag(b), the children of b in T ′, from pb(ΠT|b
, ·; ν), the transition

measure on P
(k)
b with initial state given by the root partition of the reduced subtree

T|b. If frag(b) = 1b ≡ {b}, discard and generate a new set of children until frag(b) 6= 1b.

Though this description is well-defined, we provide a more explicit construction which is
particularly useful in later sections. For our development, it is convenient to use a ge-

nealogical indexing system to label the elements of tA ∈ TA (chapter 1.2.1 of Bertoin [7]) as
follows.

We write

U :=
∞⋃

n=0

N
n

to denote the infinite set of all indices, with convention that N0 = {∅}.

For a fragmentation tree T , the nth generation of T is the collection of children t ∈ T
such that #anc(t) = n−1. For each u = (u1, . . . , un) ≡ u1u2 · · · un ∈ U , n is the generation
of u. Write u− := (u1, . . . , un−1) to denote the parent of u and ui := (u, i) := (u1, . . . , un, i)
for the ith child of u. As we are working in the context of fragmentations of subsets of N,
the ith child of t ∈ T is the ith child to appear in a list when the elements of frag(t), the
children of t, are listed in order of their least element.

We construct a Markov chain on T (k) which is governed by the same transition law as
in the previous section as follows.

Let k ≥ 2 and ν be a probability measure on P
(k)
m which is non-degenerate at (1, 0, . . . , 0).

For T, T ′ ∈ T (k), the transition T 7→ T ′ occurs as follows. Generate {Bu : u ∈ U} i.i.d. ̺
(k)
ν

partition sequences, where ̺
(k)
ν := ̺ν ⊗ · · · ⊗ ̺ν is the product measure of paintboxes based

on ν, and {σu : u ∈ U} i.i.d. k-tuples of i.i.d. uniform permutations of [k].

(i) Put ΠT ′ = Part(ΠT , B
∅, σ∅), the partition obtained from the column totals of ΠT ∩

(B∅)σ
∅
, as shown in section 2.4;

(ii) for Au ∈ T ′, put Auj equal to the jth block of Part(ΠT|Au , B
u, σu) listed in order of

least elements.

In other words, each Bu is an independent k-tuple of independent paintboxes based on ν
and we index this sequence just as we index the vertices of a tree. Likewise, each σu is
an independent k-tuple (σu

1 , . . . , σ
u
k ) of i.i.d. uniform permutations of [k]. The next state

T ′ is obtained from T by a sequential branching procedure which starts from the root
and progressively branches the roots of the subtrees restricted to each child of T ′. The
children of T ′ are given by {Au, u ∈ U} and for each n ≥ 1 the restriction to [n] of T ′ is
T ′
|[n] = {Au ∩ [n], u ∈ U}.
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It should be plain that this construction is equivalent to that in section 4 since it uses

the matrix construction of the ̺ν-Markov transition probabilities on P
(k)
A . The benefit to

this construction is that it gives and explicit recipe which will be employed in the proofs
of various nice properties of this process in later sections. For completeness, we provide a
proof that the finite-dimensional transition probabilities of this process coincide with (10).

Proposition 4.2. Let T 7→ T ′ ∈ T (k) be a transition generated by the above alternative con-

struction. For n ≥ 1, the finite-dimensional transition probability of the restricted transition

T|[n] 7→ T ′
|[n] is

πn(T, T
′; ν) :=

∏

b∈T ′

pb(ΠT|b
,ΠT ′

|b
; ν)

qb(ΠT|b
,1b; ν)

. (17)

Proof. Write pn(·, ·) ≡ pn(·, ·; ν) and qn(·, ·) ≡ qn(·, ·; ν). For n ≥ 1, the distribution of the
branching of the root of T ′

|[n] given T|[n] is

∞∑

i=0

pn(ΠT|[n]
,ΠT ′

|[n]
)pn(ΠT|[n]

,1n)
i =

pn(ΠT|[n]
,ΠT ′

|[n]
)

qn(ΠT|[n]
,1n)

.

That is, the root of the reduced subtree is the first non-trivial partition obtained by the
above procedure. If the restriction of a child to [n] is the one block partition of the parent
subset, this branching is not represented in the reduced subtree.

Hence, the transition T 7→ T ′ can be written recursively as

πn(T, T
′) =

pn(ΠT ,ΠT ′)

qn(ΠT ,1n)

∏

b∈ΠT ′

πb(T|b, T
′
|b).

Iterating the above argument yields (17).

4.2 Equilibrium measure

The form of πn(·, ·; ν) in (10) is a product of independent transition probabilities of the
branching at the root in each of the subtrees of T ′. It is known that for ν non-degenerate

at (1, 0, . . . , 0) ∈ P
(k)
m , pn(·, ·; ν) has a unique equilibrium distribution for each n ≥ 1 [12].

It follows by the aperiodicity and irreducibility of pn(·, ·; ν) that πn(·, ·; ν) is aperiodic and

irreducible for each n ≥ 1 and ν non-degenerate at (1, 0, . . . , 0) ∈ P
(k)
m . The following

proposition is immediate.

Proposition 4.3. Let ν be a probability measure on P
(k)
m such that ν((1, 0, . . . , 0)) < 1 and

let πn(·, ·; ν) be the ̺ν-branching Markov kernel, then there exists a unique measure ρn(·; ν)

on T
(k)
n which is stationary for πn(·, ·; ν) for each n ≥ 1.
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The existence of ρn(·; ν) and the finite exchangeability and consistency of πn(·, ·; ν) for
each n ≥ 1 induce finite exchangeability and consistency for the collection (ρn(·; ν), n ≥ 1)
of equilibrium measures.

Proposition 4.4. For ν non-degenerate at (1, 0, . . . , 0) ∈ P
(k)
m , the collection of stationary

measures (ρn(·; ν), n ≥ 1) in proposition 4.3 is finitely exchangeable for each n ≥ 1 and

consistent. In particular, for each A ⊂ N, the stationary distribution of πA(·, ·; ν) is the

same as ρ#A(·; ν).

Proof. Fix ν non-degenerate and let n ≥ 1. Then for T ′′ ∈ T
(k)
n+1 and T ′ ∈ T

(k)
n

ρn+1(T
′′) =

∑

T ∗∈T
(k)
n+1

ρn+1(T
∗)πn+1(T

∗, T ′′)

by stationarity and
∑

T ′′∈D−1
n,n+1(T

′)

ρn+1(T
′′)

︸ ︷︷ ︸

(ρn+1D
−1
n,n+1)(T

′)

=
∑

T ′′∈D−1
n,n+1(T

′)

∑

T ∗∈T
(k)
n+1

ρn+1(T
∗)πn+1(T

∗, T ′′) (18)

=
∑

T∈T
(k)
n

∑

T ∗∈D−1
n,n+1(T )

ρn+1(T
∗)






∑

T ′′∈D−1
n,n+1(T

′)

πn+1(T
∗, T ′′)




(19)

=
∑

T∈T
(k)
n

∑

T ∗∈D−1
n,n+1(T )

ρn+1(T
∗)πn(T, T

′) (20)

=
∑

T∈T
(k)
n

(ρn+1D
−1
n,n+1)(T )πn(T, T

′). (21)

The expression in (19) follows from (18) by changing the order of summation and noting

that each T ∗ ∈ T
(k)
n+1 corresponds to exactly one T ∈ T

(k)
n ; (20) follows from (19) by the

consistency of πn(·, ·; ν); and (21) follows (20) by the definition of induced measures. Hence,
the induced measure ρn+1D

−1
n,n+1 is stationary for πn. By uniqueness, ρn+1D

−1
n,n+1 ≡ ρn and

ρn is consistent for each n ≥ 1.

Let σ ∈ Sn be a permutation of [n]. Finite exchangeability of ρn follows by the ex-
changeability of πn since

ρn(σ(T
′)) =

∑

T∈T
(k)
n

ρn(σ(T ))πn(σ(T ), σ(T
′))

by stationarity. Exchangeability of πn implies that πn(σ(T ), σ(T
′)) = πn(T, T

′) and so

ρn(σ(T
′)) =

∑

T∈T
(k)
n

ρn(σ(T ))πn(T, T
′).
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Hence, uniqueness implies ρn ◦σ ≡ ρn for any σ and ρn is exchangeable for every n ≥ 1.

The existence of an infinitely exchangeable equilibrium measure ρ(·; ν) on N-labeled
trees, T (k), is a direct consequence of the finite exchangeability and consistency of the
system (ρn(·; ν), n ≥ 1) shown in proposition 4.4 and Kolmogorov’s extension theorem [9].

Theorem 4.5. For ν non-degenerate at (1, 0, . . . , 0) ∈ P
(k)
m , there exists a unique measure

ρ(·; ν) on
(

T (k), σ
(
⋃

n T
(k)
n

))

such that for each n ≥ 1 and Tn ∈ T
(k)
n

ρn(Tn; ν) = ρ
(

{T ∈ T (k) : T|[n] = Tn}
)

. (22)

The existence of a unique stationary measure on T (k) is implicit in the construction of
the transition at the beginning of this section; however, the form of the finite-dimensional
and infinite-dimensional stationary measure remains unknown. Note that, though the tran-
sition probabilities (3) are conditionally of fragmentation type, i.e. given T and b ∈ T ′ the
children of b are distributed independently of the rest of T ′, the equilibrium measure need
not be of this form. Furthermore, it is of interest whether or not some subclass of the
̺ν-branching Markov chains is reversible and, if so, under what conditions this property
holds.

5 Continuous-time Markov fragmentation process

The ̺ν-branching Markov chain can be embedded in continuous-time in a straightforward
way as follows.

Let λ > 0, ν be a probability measure on P
(k)
m and for each n ≥ 1 define Markovian

infinitesimal jump rates for a Markov process on T
(k)
n by

rn(T, T
′; ν) =

{
λπn(T, T

′; ν), T 6= T ′

0, otherwise,

where πn(·, ·; ν) is the transition probability on T
(k)
n in (10). The infinitesimal generator

Qν
n of the process on T

(k)
n governed by rn has entries

Qν
n(T, T

′; ν) = λ×

{
πn(T, T

′; ν), T 6= T ′

πn(T, T ; ν)− 1, T = T ′.
(23)

Definition 5.1. A process T := (T (t), t ≥ 0) is a ̺ν-branching Markov process if for each

n ≥ 1, the restriction T|[n] := (T|[n](t), t ≥ 0) is a Markov process on T
(k)
n with infinitesimal

generator Qν
n.
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A process on T (k) whose finite-dimensional restrictions are governed by Qν
n can be

constructed by running a Markov chain on T
(k)
n governed by (10) in which only transitions

T 7→ T ′ for T 6= T ′ are permitted, and adding a hold time which is exponentially distributed
with mean −1/Qν

n(T, T ).

Proposition 5.2. For measure ν on P
(k)
m , the collection (Qν

n, n ≥ 1) of finite-dimensional

Q-matrices in (23) satisfy (2).

Proof. Fix n ≥ 1 and let T, T ′ ∈ T
(k)
n such that T 6= T ′ and let T ∗ ∈ D−1

n,n+1(T ). Then

∑

T ′′∈D−1
n,n+1(T

′)

Qν
n+1(T

∗, T ′′) =
∑

T ′′∈D−1
n,n+1(T

′)

rn+1(T
∗, T ′′; ν)

=
∑

T ′′∈D−1
n,n+1(T

′)

λπn+1(T
∗, T ′′; ν)

= λπn(T, T
′, ν)

= Qν
n(T, T

′),

by the consistency of πn(T, ·; ν) for each n ≥ 1.

For T = T ′ and T ∗ ∈ D−1
n,n+1(T )

∑

T ′′∈D−1
n,n+1(T )

Qν
n+1(T

∗, T ′′) =

= Qν
n+1(T

∗, T ∗) +
∑

T ′′∈D−1
n,n+1(T )\{T ∗}

rn+1(T
∗, T ′′; ν)

= λ




πn+1(T

∗, T ∗; ν)− 1 +
∑

T ′′∈D−1
n,n+1(T )\{T ∗}

πn+1(T
∗, T ′′; ν)






= λ






∑

T ′′∈D−1
n,n+1(T )

πn+1(T
∗, T ′′; ν)− 1






= λ (πn(T, T ; ν)− 1)

= Qν
n(T, T ).

Theorem 5.3. There exists a continuous-time Markov process (T (t), t ≥ 0) on T (k) with

Q-matrix Qν such that

Qν
n(T, T

′) = Qν(T∞, {T ′′ ∈ T (k) : T ′′
|[n] = T ′}),

for each T∞ ∈ {T ∗ ∈ T (k) : T ∗
|[n] = T}.
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Proof. Proposition 5.2 shows that the collection of finite-dimensional Q-matrices (Qν
n, n ≥

1) is finitely exchangeable and consistent. Kolmogorov’s extension theorem implies the
existence of Qν with finite-dimensional restrictions given by (Qν

n, n ≥ 1). Furthermore, for

each n ≥ 1 and T ∈ T
(k)
n , −Qν

n(T, T ) = λ(1 − πn(T, T ; ν)) < λ < ∞ so that the finite-
dimensional paths are càdlàg for each n, which implies the paths of (T (t), t ≥ 0) governed
by Qν are càdlàg.

The transition rates above are defined in terms of πn(·, ·; ν) which are known to be
finitely exchangeable and consistent and characterize a process on T (k) with unique equi-
librium measure ρ(·; ν). We have the following corollary for the stationary measure of the
continuous-time process.

Corollary 5.4. For ν non-degenerate at (1, 0, . . . , 0) ∈ P
(k)
m , the continuous-time process

T := (T (t), t ≥ 0) with finite-dimensional infinitesimal generator in (23) has unique equi-

librium measure ρ(·; ν) as in theorem 4.5.

5.1 Poissonian construction

Let P = {(t, Bu : u ∈ U)} ⊂ R
+ ×

∏

u∈U

[
∏k

j=1P
(k)
]

be a Poisson point process with

intensity measure dt ⊗ λ
⊗

u∈U ̺
(k)
ν , where ̺

(k)
ν is the product measure ̺ν ⊗ · · · ⊗ ̺ν on

∏k
j=1P

(k). So for each (t, Bu) ∈ P , Bu := (Bu
1 , . . . , B

u
k ) ∈

∏k
j=1P

(k) is distributed as ̺
(k)
ν

and is labeled according to the genealogical index system of section 4.1.

Construct a continuous time ̺ν-branching Markov process as follows. Let τ ∈ T (k) be
an infinitely exchangeable random fragmentation tree. For each n ≥ 1, put T|[n](0) = τ|[n]
and for t > 0

• if t is not an atom time for P , then T|[n](t) = T|[n](t−);

• if t is an atom time for P so that (t, Bu : u ∈ U) ∈ P , generate σ := (σu : u ∈

U) ∈
∏

u∈U

[
∏k

j=1 Sk

]

, an i.i.d. collection of k-tuples of uniform permutations of [k].

Put T := T (t−) and T ′ equal to the tree constructed from T , {Bu : u ∈ U} and σ
which is described in section 4.1. If T ′

|[n] 6= T|[n], put T|[n](t) = T ′
|[n]; otherwise, put

T|[n](t) = T|[n](t−).

Proposition 5.5. The above process T is a Markov process on T (k) with transition matrix

Qν defined by theorem 5.3.

Proof. By the above construction, for every n ≥ 1 and t > 0, T|[n](t) evolves according to
Qν

n in (23), Dm,nT|[n](t) = T|[m](t) for all m ≤ n, and T|[p](t) ∈ D−1
n,p(T|[n](t)) for all p > n.
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Hence, the restriction T|[n] is a Qν
n-governed Markov process for each n ≥ 1 and the result

is clear by consistency of Qν
n.

5.2 Feller process

Define the metric d : T × T → R
+ by

d(T, T ′) := 1/max{n ∈ N : T|[n] = T ′
|[n]}, (24)

for every T, T ′ ∈ T , with the convention that 1/∞ = 0.

Proposition 5.6. d is a metric on T .

Proof. Positivity and symmetry are obvious. To see that the triangle inequality holds,
let T, T ′, T ′′ ∈ T so that d(T, T ′) = 1/a for some a ≥ 1. Now suppose that d(T, T ′′) =
1/b ≥ 1/a. Then the triangle inequality is trivially satisfied. If d(T, T ′′) = 1/b < 1/a
then T|[b] = T ′′

|[b] for b > a and T|[a] = T ′
|[a] but T|[a+1] 6= T ′

|[a+1] by assumption. Hence,

d(T ′, T ′′) = 1/a and the triangle inequality holds.

Proposition 5.7. (T , d) is a compact space.

Proof. Let (T 1, T 2, . . .) be a sequence in T . Any element T ∈ T can be written as a com-
patible sequence of finite-dimensional restrictions, T := (T|[1], T|[2], . . .) := (T1, T2, . . .). The

set Tn is finite for each n, and so one can extract a convergent subsequence (T (1), T (2), . . .) of
(T 1, T 2, . . .) by the diagonal procedure such that d(T (i), T (j)) ≤ 1/min{i, j} for all i, j.

Lemma 5.8. Cf := {f : T → R : ∃n ∈ N s.t. d(T, T ′) ≤ 1/n ⇒ f(T ) = f(T ′)} is dense in

the space of continuous functions T → R under the metric ρ(f, f ′) := supτ∈T |f(τ)−f ′(τ)|.

Proof. Let ϕ : T → R be a continuous function. Then for every ǫ > 0 there exists n(ǫ) ∈ N

such that τ, σ ∈ T satisfying d(τ, σ) ≤ 1/n(ǫ) implies |ϕ(τ) − ϕ(σ)| ≤ ǫ.

For fixed ǫ > 0, let N = n(ǫ) and define f : T → R as follows. First, partition T into
equivalence classes {τ ∈ T : τ|[N ] = t|[N ]} for each t ∈ T . For each equivalence class U ,
choose a representative element ũ ∈ U and put f(u) := ϕ(ũ) for all u ∈ U . For any t ∈ T ,
let t̃ denote the representative of t obtained in this way. Hence, f(t) = f(t′) = f(t̃) for all
t, t′ such that d(t, t′) ≤ 1/N and f ∈ Cf . Thus,

|f(τ)− ϕ(τ)| = |ϕ(τ̃ )− ϕ(τ)| ≤ ǫ

by continuity of ϕ and
ρ(f, ϕ) = supτ |f(τ)− ϕ(τ)| ≤ ǫ,

which establishes density.
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Let Pt be the semi-group of a ̺ν -branching Markov process T (·), i.e. for any continuous
ϕ : T (k) → R

Ptϕ(τ) := Eτϕ(T (t)),

the expectation of ϕ(T (t)) given T (0) = τ.

Corollary 5.9. A ̺ν-branching Markov process has the Feller property, i.e.

• for each continuous function ϕ : T (k) → R, for each τ ∈ P one has

lim
t↓0

Ptϕ(τ) = ϕ(τ),

• for all t > 0, τ 7→ Ptϕ(τ) is continuous.

Proof. The proof follows the same line of reasoning as corollary 4.2 in [12]. Let ϕ be a
continuous function T (k) → R.

For g ∈ Cf , limt↓0 Ptg(τ) = g(τ) is clear since the first jump-time of T (·) is exponential
with finite mean. Denseness of Cf establishes the first point.

For the second point, let n ≥ 1 and τ, τ ′ ∈ T (k) such that d(τ, τ ′) < 1/n, i.e. τ|[n] = τ ′|[n].

Use the same Poisson point process P , as in section 5.1, to construct T (·) and T ′(·) such
that T (0) = τ and T ′(0) = τ ′. By construction, T|[n] = T ′

|[n] and d(T (t), T ′(t)) < 1/n for all
t ≥ 0. Hence, for any continuous ϕ, τ 7→ Ptϕτ is continuous.

By corollary 5.9, we can characterize the ̺ν-branching Markov process (T (t), t ≥ 0)
with finite-dimensional rates (qn(·, ·; ν), n ≥ 1) by its infinitesimal generator G given by

G(f)(τ) =

∫

T (k)

f(τ ′)− f(τ)Qν(τ, dτ ′)

for every f ∈ Cf .

6 Mass fragmentations

A mass fragmentation of x ∈ R
+ is a collection Mx of masses such that

(i) x ∈ Mx and

(ii) there are m1, . . . ,mk ∈ Mx such that
∑k

i=1mi ≤ x and

Mx = {x} ∪Mm1 ∪ · · · ∪Mmk
.
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We write Mx to denote mass fragmentations of x. Essentially, a mass fragmentation of
x is a fragmentation tree whose vertices are labeled by masses such that the children of
a vertex comprise a ranked-mass partition of its parent vertex. The case where children
{m1, . . . ,mk} of a vertex m satisfy

∑k
i=1 mi < m is called a dissipative mass fragmentation.

Herein, we are interested in conservative mass fragmentations which have the property
that the children {m1, . . . ,mk} of every vertex m ∈ Mx satisfy

∑k
i=1 mi = m. It is plain

that Mx is isomorphic to M1 by scaling, i.e. Mx = xM1 and so it is sufficient to study
M1. See Bertoin [7] for a study of Markov processes on M1 called fragmentation chains.
Here we construct a Markov process on M1 which corresponds to the associated mass
fragmentation valued process of the ̺ν-branching Markov process on T (k), which has been
studied in previous sections.

Definition 6.1. A subset A ⊂ N is said to have asymptotic frequency λ if

λ := lim
n→∞

#(A ∩ [n])

n
(25)

exists.

A partition B = {B1, B2, . . .} ∈ P is said to possess asymptotic frequency ||B|| if each of
its blocks has asymptotic frequency and we write ||B|| := (||B1||, . . .)

↓ ∈ Pm, the decreasing
rearrangement of block frequencies of B. According to Kingman’s correspondence [19],
any infinitely exchangeable partition B of N possesses asymptotic frequencies which are
distributed according to ν where ν is the unique measure on Pm such that B ∼ ̺ν .

6.1 Associated ̺ν-branching Markov chain on M1

Fix k ≥ 2 and let ν be a probability measure on P
(k)
m . Let M

(k)
1 := {µ ∈ M1 : #A ≤

k for every A ∈ µ} be the subspace of conservative mass fragmentations of 1 such that each

A ∈ µ ∈ M
(k)
1 has at most k children.

Construct a Markov chain on M
(k)
1 as follows. For µ ∈ M

(k)
1 , the transition µ 7→ µ̃ ∈

M
(k)
1 is generated by an i.i.d. collection S := {su : u ∈ U} of ν(k) mass partitions, i.e.

su := (su1 , . . . , s
u
k) ∈

∏k
i=1 P

(k)
m is an i.i.d. collection of mass partitions distributed according

to ν and sw is independent of sv for all w 6= v, and Σ := {σu : u ∈ U} i.i.d. k-tuples of i.i.d.
uniform permutations of [k].

(i) Write µ := {µu : u ∈ U} and µ̃ := {µ̃u : u ∈ U}.

(ii) Put µ̃∅ = 1, the root of µ̃.
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(iii) Given µ̃u ∈ µ̃, put µ̃uj equal to the jth largest column total of the matrix









su1. su2. . . . srik.
µ̃uµ1 µ̃uµ1su1,σu

1 (1)
µ̃uµ1su1,σu

1 (2)
. . . µ̃uµ1su1,σu

1 (k)

µ̃uµ2 µ̃uµ2su2,σu
2 (1)

µ̃uµ2su2,σu
2 (2)

. . . µ̃uµ2su2,σu
2 (k)

...
...

...
. . .

...
µ̃uµk µ̃uµksu

k,σu
k
(1) µ̃uµksu

k,σu
k
(2) . . . µ̃uµksu

k,σu
k
(k)









i.e. µ̃uj :=
(
∑k

i=1 µ̃
uµisu

i,σu
i
(m),m = 1, . . . , k

)↓

j
, where µ1, . . . , µk correspond to the

mass fragmentation of the root of µ.

Definition 6.2. For a fragmentation tree T ∈ T , we write M(T ) to denote the associated

mass fragmentation of T , i.e. the mass fragmentation of 1 obtained by replacing each child

of T by its asymptotic frequency, if it exists.

Theorem 6.3. Let T := (Tn, n ≥ 1) be a ̺ν-branching Markov chain with transition mea-

sure π(·, ·; ν) on T (k) and let µ := (µn, n ≥ 1) be the Markov chain on M
(k)
1 generated from

the above procedure, then M(T) =L µ. Moreover, the transition measure λ(·, ·; ν) for µ is

given by

λ(µ, µ′; ν) = π(Tµ,M
−1(µ′); ν)

where Tµ is any element of M−1(µ) := {T ∈ T (k) : M(T ) = µ}.

Proof. Fix k ≥ 2 and ν a probability measure on P
(k)
m . For T ∼ π(·, ·; ν) we have that

for every n ≥ 1 and t ∈ Tn, the set of children {t1, . . . , tm} of t forms an exchangeable
partition of {t} ⊂ N given Tn−1 and so possesses asymptotic frequency ||t|| almost surely
by Kingman’s correspondence.

The alternative construction of the Markov chain T with transition measure π(·, ·; ν)
constructed in section 4.1 can also be constructed as follows. Let S := {su : u ∈ U} be
the collection of mass partitions in the construction at the beginning of this section. Given

S, generate B := {Bu : u ∈ U} ∈
∏

u∈U

[
∏k

i=1P
(k)
]

by letting Bu := (Bu
1 , . . . , B

u
k ) and

Bu
j ∼ ̺suj independently of all other Bv

i . Constructed in this way, {Bu : u ∈ U} is a

collection of i.i.d. ̺
(k)
ν partitions whose asymptotic frequencies satisfy ||Bu

j || = suj almost

surely. Furthermore, the unconditional distribution of each Bu is ̺
(k)
ν .

Next, we let Σ := {σu : u ∈ U} be a collection of i.i.d. k-tuples of i.i.d. uniform
permutations of [k] and generate transitions of T from the alternative construction of sec-
tion 4.1 based on Σ and {Bu : u ∈ U} and generate a Markov chain µ on M1 based
on Σ and S. Then we have the T is a Markov chain with transition measure π(·, ·; ν)

on
(

T (k), σ
(
⋃

n≥1 T
(k)
n

))

and, furthermore, by the above construction, we have that the

associated mass fragmentation chain M(T) := (M(Tn), n ≥ 1) is equal to µ almost surely.
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By the three step construction of transitions on M1 at the beginning of this section, it
is clear that µ is a Markov chain. Hence, the function M(T) is a Markov chain and so the
result of Burke and Rosenblatt [11] states that it is necessary that the transition measure
of M(T) satisfies

πM−1(m,m′; ν) =

∫

M−1(m′)
π(Tm, dt)

for all Tm ∈ M
−1(m) := {T ∈ T : M(T ) = m}.

Finally, since M(T) = µ almost surely, we have that the transition measure λ of µ on
M1 satisfies λ = πM−1.

Corollary 6.4. The associated mass fragmentation process M(T) exists almost surely.

6.2 Equilibrium measure

As in section 4.2, suppose ν is non-degenerate at (1, 0, . . . , 0) ∈ P
(k)
m . Theorem 4.5 states

that a Markov chain T := (Tn, n ≥ 1) governed by π(·, ·; ν) possesses a unique equilibrium
measure ρ(·; ν). The following theorem follows immediately from this fact and from theorem
6.3.

Theorem 6.5. Let ν be a probability measure on P
(k)
m such that ν((1, 0, . . . , 0)) < 1. The

mass fragmentation chain µ := (µn, n ≥ 1) on M1 governed by πM−1(·, ·; ν) possesses a

unique stationary measure ζ(·; ν). Moreover, for µ ∈ M
(k)
1 ,

ζ(µ; ν) = ρ(M−1(µ); ν)

where ρ(·; ν) is the unique equilibrium measure of π(·, ·, ν) on T (k) from theorem 4.5.

Proof. Let µ be a Markov chain on M1 with transition measure λ(·, ·; ν) governed by the
transition procedure at the beginning of section 6. By theorem 6.3 we have that λ ≡ πM−1

where π(·, ·; ν) is the transition measure of the ̺ν-branching Markov chain on T (k) with
unique equilibrium measure ρ(·; ν) from theorem 4.5.

Furthermore, it is shown in theorem 6.3 that µ is equal in distribution to the associated
mass fragmentation chain of a Markov chain on T (k) governed by π(·, ·; ν). Hence, we have

ρ(τ ′; ν) =

∫

T (k)

π(τ, τ ′; ν)ρ(dτ)
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and for µ′ ∈ M1

ρM−1(µ′; ν) = ρ[M−1(µ); ν]

=

∫

M−1(µ)

∫

T (k)

π(τ, dt; ν)ρ(dτ ; ν)

=

∫

T (k)

π(τ,M−1(µ′); ν)ρ(dτ ; ν)

=

∫

M1

πM−1(µ, µ′; ν)ρM−1(dµ)

=

∫

M1

λ(µ, µ′; ν)ρM−1(dµ)

which shows that ζ := ρM−1 is stationary for λ.

6.3 Poissonian construction

We now show a Poisson point process construction of a Markov process in continuous time
which corresponds to the associated mass fragmentation Markov process in continuous time
from section 5.

Let ν be a probability measure on P
(k)
m . Let S = {(t, su) : u ∈ U} ⊂ R

+×
∏

u∈U

[
∏k

i=1 P
(k)
m

]

be a Poisson point process with intensity dt ⊗ λ
⊗

u∈U ν(k) for some λ > 0 where ν(k) :=

ν ⊗ · · · ⊗ ν is the k-fold product measure on
∏k

i=1P
(k)
m and su := (su1 , . . . , s

u
k) ∈

∏k
i=1 P

(k)
m

for each u ∈ U .

Construct a Markov process µ := (µ(t), t ≥ 0) in continuous-time on M1 as follows.
Let µ0 be a mass fragmentation drawn from some distribution on M1. Put µ(0) = µ0 and

• if t is not an atom time for S, µ(t) = µ(t−);

• if t is an atom time for S, generate Σt := {σu : u ∈ U} where σv and σw are
independent for all v 6= w and σu := (σu

1 , . . . , σ
u
k ) is an i.i.d. sequence of uniform

permutations of [k] for each u ∈ U . Given (t, su) ∈ S, σu and µ(t−) = {µu : u ∈ U},
put µ(t) = {µ̃u : u ∈ U} where

1) µ̃∅ = 1 and
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2) given µ̃u, put µ̃uj equal to the jth largest column total of the matrix









su1. su2. . . . srik.
µ̃uµ1 µ̃uµ1su1,σu

1 (1)
µ̃uµ1su1,σu

1 (2)
. . . µ̃uµ1su1,σu

1 (k)

µ̃uµ2 µ̃uµ2su2,σu
2 (1)

µ̃uµ2su2,σu
2 (2)

. . . µ̃uµ2su2,σu
2 (k)

...
...

...
. . .

...
µ̃uµk µ̃uµksu

k,σu
k
(1) µ̃uµksu

k,σu
k
(2) . . . µ̃uµksu

k,σu
k
(k)









i.e. µ̃uj :=
(
∑k

i=1 µ̃
uµisu

i,σu
i (m),m = 1, . . . , k

)↓

j
.

Theorem 6.6. Let T := (T (t), t ≥ 0) be a ̺ν-branching Markov process from section 5 and

let X := (X(t), t ≥ 0) be the Markov process on M1 generated from the above Poisson point

process, then M(T ) =L X.

Proof. Let k ∈ N and ν be a measure on P
(k)
m .

Let S = {(t, su) : u ∈ U} ⊂ R
+ ×

∏

u∈U

[
∏k

i=1 P
(k)
m

]

be a Poisson point process with

intensity dt ⊗ λ
⊗

u∈U ν(k) for some λ > 0 as shown above and let X := (X(t), t ≥ 0) be
the process on M1 constructed above. Given S, generate P := {(t, Bu) : u ∈ U} ⊂ R

+ ×
∏

u∈U

[
∏k

i=1P
(k)
]

where for each (t, su : u ∈ U) ∈ S we let Bu := (Bu
1 , . . . , B

u
k ) ∈

∏k
i=1 P

(k)

be a k-tuple of partitions such that Bu
i ∼ ̺sui for each i = 1, . . . , k and all components are

independent. Thus, we have that P is a Poisson point process on R
+ ×

∏

u∈U

[
∏k

i=1 P
(k)
]

with intensity measure dt ⊗ λ
⊗

u∈U ̺
(k)
ν . Given P and S, generate Σ := {σu : u ∈ U}

independently of P and S such that σv and σw are independent for all v 6= w and each
σu = (σu

1 , . . . , σ
u
k ) is an i.i.d. collection of uniform permutations of [k].

Let T := (T (t), t ≥ 0) be the process on T (k) constructed from Σ and P , as shown in
section 5.1, so that T is a ̺ν-branching Markov process. Likewise, let X := (X(t), t ≥ 0)
be the process on M1 constructed from Σ and S shown above.

Now for all t ≥ 0, let T (t−) = τ . Then T (t) = τ̃ where

τ̃uj = τ̃u
⋂
(

k⋃

i=1

(τ i ∩Bu
i,σu

i (j)
)

)

for each u ∈ U and j = 1, . . . , k which has asymptotic frequency

||τ̃u||
k∑

i=1

||τ i||||Bu
i,σu

i (j)
|| = µ̃u

k∑

i=1

µisui,σu
i (j)

a.s.

Hence we have that µ = M(T) a.s. in this construction and so µ =L M(T).

Corollary 6.7. The process M(T) := (M(T (t)), t ≥ 0) exists almost surely.
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7 Weighted trees

A weighted tree is a fragmentation tree with edge lengths. We write T̄ := T × (R+)
U

to
denote the space of weighted trees; i.e. each T̄ ∈ T̄ is a pair (T, {tb : b ∈ T}) consisting of a
fragmentation tree T and a set of edge lengths corresponding to each edge of the tree with
the convention that tb ≡ 0 if b /∈ T . We prefer the term weighted tree to the alternative
fragmentation process which is generally thought of as a non-increasing sequence of random
partitions of N, B := (B(t), t ≥ 0), indexed by t ∈ R

+, i.e. B(t) ≤ B(s) for all t ≥ s.
By referring to these objects as weighted trees, we hope to emphasize T̄ ∈ T̄ as an object,
rather than a process. In this way, our construction of a Markov process on T̄ (k) is naturally
interpreted as a random walk on this space of objects with only one temporal component,
that being how our process on T̄ (k) evolves in time.

In section 3 we introduce a family of finite-dimensional transition probabilities πn(T, ·; ν)

for each k ≥ 2, T ∈ T
(k)
n and ν a probability measure on P

(k)
m . The results of section 4

establish the existence of a transition measure π(T, ·; ν) on T (k) with infinitely exchangeable
stationary measure θ(·; ν).

We now construct a transition probability on T̄ (k). Let T̄ = (T, {tb : b ∈ T}) ∈ T̄
(k)
n

and generate T̄ ′ = (T ′, {t′b : b ∈ T ′}) ∈ T̄
(k)
n by the following two-step procedure.

1. Generate T ′ from πn(T, ·; ν);

2. given T ′, generate each t′b from an exponential distribution with rate parameter
ρqb(ΠT|b

,1b; ν) (i.e. mean 1/ρqb(ΠT|b
,1b; ν)) independently for each b ∈ T ′, for some

ρ > 0.

This procedure yields a transition density on T̄
(k)
n given by

π̄n(T̄ , T̄
′; ν) =

∏

b∈T ′

ρpb(ΠT|b
,ΠT ′

|b
; ν)e

−ρt′
b
qb(ΠT|b

,1b;ν)dt′b. (26)

The purpose of choosing each waiting time t′b to be an exponential random variable with
parameter ρqb(ΠT|b

,1b; ν) is to ensure the consistency of the process under restriction.

Consider T̄ = (T, {tb : b ∈ T}) and T̄ ∗ = (T ∗, {t∗b : b ∈ T ∗}) such that T ∗ ∈ D−1
n,n+1(T ).

Then T ∗ has a vertex A ∪ {n+ 1} with children {n + 1} and A ∈ T . This is the branch of
T on which the leaf {n + 1} is attached. Denote this vertex by A∗ ∈ T ∗ and require that
t∗b = tb for b /∈ {A∗, A} and t∗A∗ + t∗A = tA. We denote by D̄−1

n,n+1(T̄ ) the set of T̄ ∗ satisfying
these conditions.

Consistency requires that for a tree T̄ ′′ ∼ π̄n+1(T̄
∗, ·; ν), the restriction T̄ ′ := T̄ ′′

|[n] is

distributed as π̄n(T̄
∗
|[n], ·; ν).
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Proposition 7.1. Let ν be a probability measure on P
(k)
m , n ≥ 1, T̄ ∗ ∈ T̄

(k)
n+1 and T̄ ′′ ∼

π̄n+1(T̄
∗, ·; ν). Then the restriction T̄ ′ := T̄ ′′

|[n] is distributed as π̄n(T
∗
|[n], ·; ν).

Proof. Let T̄ ∗ = (T ∗, {t∗b : b ∈ T ∗}) ∈ T̄
(k)
n+1 and T̄ ′′ = (T ′′, {t′′b : b ∈ T ′′}) ∈ T̄

(k)
n+1. By

construction of π̄n(·, ·; ν) on T̄
(k)
n for each n ≥ 1, we have that T ′′

|[n] ∼ πn(T
∗
|[n], ·; ν) and the

induced process on boolean trees is consistent.

Let t′′n+1 denote the length of the root edge of T̄ ′′ and consider the length of the root edge
of the restriction T̄ ′′

|[n], denoted t′n. If ΠT ′′ 6= en+1, then t′n = t′′n+1. Otherwise, t′n = t′′n+1+t′′n.

Hence, t′n ∼ τ + τ ′IA where τ and τ ′ are, respectively, independent exponential random
variables with parameters ρqn+1(ΠT ∗ ,1n+1; ν) and ρqn(ΠT ∗

|[n]
,1n; ν) for some ρ > 0 and

A := {ΠT ′′ = en+1}, the event that the children of the root [n+1] in T ′′ are [n] and {n+1},
is independent of τ and τ ′.

For notational convenience, we drop the dependence on ν and write qb(·, ·) ≡ qb(·, ·; ν)
for any b ⊂ N, likewise for pb(·, ·; ν), where qn and pn are defined in section 3.

An exponential random variable with rate parameter λ > 0 has moment generating
function Eλ(t) := λ/(λ− t). The moment generating function of t′n is

Eet(τ+τ
′
IA) =

= EetτEetτ
′
IA (27)

=
ρqn+1(ΠT∗ ,1n+1)

ρqn+1(ΠT∗ ,1n+1)− t

[

E

(

etτ
′
IA |A

)

P(A) + E

(

etτ
′
IA |Ac

)

P(Ac)
]

(28)

=
ρqn+1(ΠT∗ ,1n+1)

ρqn+1(ΠT∗ ,1n+1)− t

[

pn+1(ΠT∗ , en+1)

qn+1(ΠT∗ ,1n+1)

ρqn(ΠT∗
|[n]

,1n)

ρqn(ΠT∗
|[n]

,1n)− t
+ 1−

pn+1(ΠT∗ , en+1)

qn+1(ΠT∗ ,1n+1)

]

(29)

=
ρqn+1(ΠT∗ ,1n+1)

ρqn+1(ΠT∗ ,1n+1)− t

[
pn+1(ΠT∗ , en+1)ρqn(ΠT∗

|[n]
,1n) + qn+1(ΠT∗ ,1n+1)(ρqn(ΠT∗

|[n]
,1n)− t)

qn+1(ΠT∗ ,1n+1)(ρqn(ΠT∗
|[n]

,1n)− t)
−

−
pn+1(ΠT∗ , en+1)(ρqn(ΠT∗

|[n]
,1n)− t)

qn+1(ΠT∗ ,1n+1)(ρqn(ΠT∗
|[n]

,1n)− t)

]

(30)

=
ρqn+1(ΠT∗ ,1n+1)

ρqn+1(ΠT∗ ,1n+1)− t

[
qn+1(ΠT∗ ,1n+1)ρqn(ΠT∗

|[n]
,1n)− tqn+1(ΠT∗ ,1n+1)

qn+1(ΠT∗ ,1n+1)(ρqn(ΠT∗
|[n]

,1n)− t)

+
tpn+1(ΠT∗ , en+1)

qn+1(ΠT∗ ,1n+1)(ρqn(ΠT∗
|[n]

,1n)− t)

]

(31)

=
ρqn+1(ΠT∗ ,1n+1)

ρqn+1(ΠT∗ ,1n+1)− t

[
qn+1(ΠT∗ ,1n+1)ρqn(ΠT∗

|[n]
,1n)− tqn(ΠT∗

|[n]
,1n)

qn+1(ΠT∗ ,1n+1)(ρqn(ΠT∗
|[n]

,1n)− t)

]

(32)

=
ρqn(ΠT∗

|[n]
,1n)

ρqn(ΠT∗
|[n]

,1n)− t
(33)

the moment generating function of τ ′.
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Line (27) follows by independence of τ, τ ′ and A; (28) uses the tower property of con-
ditional expections; (29) substitutes explicit expressions for the expression in (28); (31)
is obtained from (30) by canceling terms in the numerator; (32) follows (31) by fact that
qn(ΠT ∗

|[n]
,1n) = qn+1(ΠT ∗ ,1n+1) − pn+1(ΠT ∗ , en+1) by consistency of (1); finally, (33) is

obtained by simplifying the expression (32).

By the branching property of π̄n(·, ·; ν) we have that the restriction T̄ ′′
|[n] is distributed

as π̄n(T̄
∗
|[n], ·; ν).

Finite exchangeability is immediate by inspecting the form of (26). The existence of a
transition density on T̄ (k) is once again immediate by Kolmogorov’s theorem.

Theorem 7.2. There exists a transition density π̄(·, ·; ν) on T̄ (k) whose finite-dimensional

restrictions are given by (26).

8 Discussion

We have constructed a Markov process on T (k), the space of N-labeled fragmentation trees
for which each parent has at most k children. The transition procedure in section 4 and
subsequent sections is based on the ̺ν-Markov process on P(k). The so-called ̺ν-Markov
fragmentation process and its associated process on mass fragmentations have some sur-
prisingly nice properties, many of which are readily seen by their Poisson point process
construction. In the preceding sections, in addition to deriving these properties, we have
outlined a general procedure for constructing and studying Markov processes on the space
of fragmentation trees which could lead to further development in this area.
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