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Abstract

We analyze how corrections linear in the effective range, r0, affect quantities in the three-body

sector within an effective field theory with short-range interactions. We demonstrate that relevant

observables can be straightforwardly obtained using a perturbative expansion in powers of r0.

In particular, we show that two linear-in-r0 counterterms are needed for renormalization at this

order if scattering-length-dependent observables are considered. We exemplify the implications

of this result using various three-body observables. Analytic expressions for the running of the

next-to-leading-order portion of the three-body force in this effective field theory are presented.
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I. INTRODUCTION

Symmetries are one of the most important concepts in modern-day physics. They are

the foundation of the standard model and are also frequently used as a starting point for

the building of new physical theories. Even if a symmetry is only approximately fulfilled it

can nonetheless serve as a starting point for a systematic description of physical observables,

since the symmetry breaking effects may be accounted for perturbatively. This approach has

been successfully employed in various effective field theories (EFTs) which are low-energy

expansions in the ratio of a small parameter over a large parameter. The small parameter

is frequently a small momentum and/or energy associated with explicit symmetry breaking.

A prominent example of such an EFT is the chiral EFT whose starting point is the chiral

symmetric limit in which pions constitute the Goldstone bosons of spontaneously broken

QCD. In this EFT the effects of the nonzero pion mass are included at higher order in the

low-energy expansion.

While the use of symmetries to constrain theories is usually associated with particle

physics, or possibly many-body physics, it has also become important in other fields, for

example in non-relativistic few-body physics. One example of an important symmetry in

this area is discrete scale invariance. Vitaly Efimov showed in 1970 that the non-relativistic

three-body system displays discrete scale invariance if the two-body scattering length is large

and the range of the interaction is zero [1]. One well-known consequence is that in the limit

of infinite scattering length the ratio of the binding energies of two successive three-body

bound states is approximately 515.

Efimov’s results also apply to systems where the two-body scattering length, a, obeys

|a| � `, with ` the natural length-scale of the two-body potential. They are therefore

relevant for a number of systems. For example, the nucleon-nucleon scattering length is large

compared to the range of the internucleon interaction; the scattering length of trapped atoms

can be manipulated with an external magnetic field such that atom-atom scattering displays

a Feshbach resonance; and the X(3872) can be regarded as a D0D̄0 bound state generated by

a short-range interaction between its constituents. Few-body systems of nucleons, atoms,

and D mesons, all with interactions tuned such that a shallow two-body bound state is

present, will therefore display discrete scale invariance or the remainders of this symmetry.

For a recent review of this topic see e.g. Ref. [2].
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Efimov also pointed out that the results of Ref. [1] can serve as a starting point in the

description of systems with a finite-range potential. This was a reemphasized when his

results were rederived in an EFT framework by Bedaque et al. [3, 4]. The first corrections

that have to be included in the EFT approach are those resulting from a finite two-body

effective range, r0. The effects of these corrections have been analyzed over the last years

in a number of works [5–7]. In these works effective-range corrections were considered for

systems in which the scattering length remains fixed. A full analysis requires, however, to

allow for a variable scattering length. Such an analysis was reported in [8, 9]. In this paper

we lay out the derivation of the results reported in [9]. We discuss the renormalization of

the pionless EFT in the three-body sector at next-to-leading order in the `/a expansion.

We show that if, and only if, scattering-length-dependent observables are considered, an

additional three-body counterterm is required for renormalization at next-to-leading order.

The analysis of Ref. [8] overlooked this result since the combination of the non-perturbative

treatment of effective-range corrections and the cutoffs Λ � 1/r0 employed there modifies

the ultraviolet properties of the theory. The results of Ref. [8] therefore are strict EFT

predictions only in the limit |r0| � `.

In Sec. II we will introduce the pionless EFT and briefly review what is known about

the three-body sector at leading order. We then discuss, in Sec. III, the so-called modi-

fied Skorniakov-Ter-Martirosian integral equation which constitutes the application of the

pionless EFT to the three-body sector at leading order. Section IV describes how NLO cor-

rections affect a variety of three-body observables. Finally, Sec. V discusses the running of

the NLO parts of the three-body force, and presents analytic results for these counterterms’

renormalization-group evolution. We end with a summary and outlook.

II. THE PIONLESS EFT

We employ an EFT that describes non-relativistic particles interacting through a finite-

range interaction with a large scattering length. The inverse of the range of the interaction

sets the breakdown scale for this EFT, which is constructed from contact interactions alone.

In nuclear physics this is the pionless EFT (see Refs. [10, 11] for reviews). But this EFT

can, for example, also describe atoms close to a Feshbach resonance. Since we perform our

analysis, without loss of generality, for bosons we will refer to the interacting particles as
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atoms.

At the heart of any EFT lies the Lagrangian. It includes all possible interaction terms

that are allowed by the symmetries of the underlying interaction and is built from fields that

correspond to the degrees of freedom included in the EFT. The pionless EFT in its original

form is therefore built from atom fields alone, however, it has proven useful to perform a

field transformation that adds a diatom field to the Lagrangian. We will work here with the

pionless EFT Lagrangian in the version that contains this diatom. For works that present

both forms of the Lagrangian and discuss their equivalence we refer to Refs. [4, 12]. The

Lagrangian is written as

L = ψ†
(
i∂0 +

∇2

2m

)
ψ−T †

(
i∂0 +

∇2

4m
−∆

)
T − g√

2

(
T †ψψ + h.c

)
+hT †Tψ†ψ+ · · · , (1)

with higher-order interactions suppressed at low momenta. The Lagrangian in Eq. (1) above

is constructed in a way that simplifies the inclusion of effective range corrections [4].

The Feynman rules are derived from Eq. (1) and the atom propagator in momentum

space is

iS(p0, p) =
i

p0 − p2

2m
+ iε

, (2)

where p0 is the energy and p = |p|. The large scattering length leads to large loop effects,

and the EFT power counting requires therefore that the two-body interaction is iterated to

all orders (Fig.1). The resulting dressed diatom propagator is

iD(p0, p) =
−i

p0 − p2

4m
−∆ + mg2

4π

√
−mp0 + p2

4
− iε+ iε

. (3)

It has to have a pole at the on-shell four-momentum p0 = p2

4m
− γ2

m
, where −γ2

m
is the diatom

binding energy. We can rewrite this condition and obtain

− γ2 −m∆ +
m2g2

4π
γ = 0, (4)

which has the solution

γ =
m2g2

8π

(
1−

√
1− 64π2∆

m2g2

)
. (5)

We can relate the coupling constants g and ∆ to scattering length a and effective range r0

by using the S-wave effective range expansion

− 1

a2

= −γ +
1

2
r0γ

2 (6)
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FIG. 1: Dressed diatom propagator. Figure from [4]

which leads to a2 = mg2

4π
1
∆

and r0 = 8π
m2g2

. In terms of these quantities, the wave-function

renormalization factor Z for this bound state is:

1

Z
= i

∂

∂p0

(iD(p))−1|
p0= p2

4m
− γ2
m

=
m2g2

8πγ
(1− r0γ), (7)

Thus, the dressed diatom propagator can be reexpressed as

iD(p0, p) =
−i4π/mg2

−γ + 1
2
r0(γ2 +mp0 − p2/4) +

√
−mp0 + p2/4− iε+ iε

. (8)

Two-body scattering phaseshifts for relative momentum k can be obtained from the

propagator D(p0, p) by evaluating it at the on-shell point of two atoms scattering with

center-of-mass momentum p = 0 and E = k2/m, and multiplying it by g2. This yields a

two-body amplitude:
4π

m

1

γ + 1
2
r0(γ2 + k2) + ik

, (9)

i.e. one in conformity with the effective-range expansion around the two-body bound-state

pole.

However, the propagator in Eq. (8) cannot be directly employed in an integral equation

for three-body physics, since it contains spurious poles. By expanding the propagator we

eliminate these and obtain corrections that are proportional to powers of γr0.

iD(p0, p) =
∑
n

−i4π/mg2

−γ +
√
−mp0 + p2 − iε+ iε

(r0

2

)n (
γ +

√
−mp0 + p2/4

)n
. (10)

The LO diatom propagator is therefore given by

iD(0)(p0, p) =
−i4π/mg2

−γ +
√
−mp0 + p2 − iε+ iε

, (11)

and the next-to-leading order O(γr0) correction is

iD(1)(p0, p) = −i 4π

mg2
× r0

2

γ +
√
−mp0 + p2/4

−γ +
√
−mp0 + p2/4

. (12)
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FIG. 2: The diagrams for the next-to-leading order t-matrix. Propagators and verticies with

squares labeled “1” are NLO range corrections.

III. THREE-BODY AMPLITUDES

The calculation of three-body observables requires the solution of an integral equation

which we will call the modified Skorniakov-Ter-Martirosian equation. It is the Faddeev

equation for non-relativistic particles interacting through two-body and three-body zero-

range interactions. The three-body interaction is included to ensure cutoff independent

results. The running of the associated coupling constant (h) evinces a limit cycle. We will

display this equation below. Details of its derivation can be found in Refs. [3, 4].

Our analysis concerns the corrections to this equation that we will include perturbatively.

It is based on rewriting all involved quantities in the form

D(p) = D(0)(p) +D(1)(p) + · · ·

t(k, p) = t(0)(k, p) + t(1)(k, p) + · · ·

H(Λ) = H0(Λ) +H1(γ,Λ) + · · · , (13)

where each quantity in Eq. (13) is expanded in powers of k r0 and γr0. I.e., all quantities in

the calculations that follow are computed up to next-to-leading order in the `/a expansion,

which, since γ, k ∼ 1/a and we assume r0 ∼ `, means that our goal in this work is to

compute t(1) and other NLO parts of physical observables in this expansion.

In order to do this we will need the three-body force H(Λ)(= Λ2h/2mg2), whose running

is known at leading order, up to corrections that scale with an additional factor of 1/Λ:

H0(Λ) = c
sin(s0 ln(Λ/Λ̄) + arctan(s0))

sin(s0 ln(Λ/Λ̄)− arctan(s0))
+O(

1

Λ
) (14)

The constant c = 0.879 has been numerically determined in Ref. [18]. The three-body

parameter Λ̄ is found by fitting the three-body force, H0(Λ), to one three-body observable.
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This can be done at leading order (LO) through the LO three-body amplitude, t0. t0 is

computed by iterating the two- and three-body interactions of Eq. (1) to all orders via the

integral equation [4]

t̃0(q, p;E) = M(q, p;E) +
2

π

∫ Λ

0

dq′
q′2

−γ +
√

3q′3/4−mE − iε
M(q′, p;E)t̃0(q, q′;E) (15)

where

M(q, p;E) =
1

qp
log

(
q2 + p2 + qp−mE
q2 + p2 − qp−mE

)
+

2H0(Λ)

Λ2
. (16)

The integral equation without the three-body force was first derived by Skorniakov and

Ter-Martirosian and corresponds to three particles interacting through zero-range two-body

interactions.

For elastic scattering, the magnitude of the relative incoming momentum |k| equals the

relative outgoing momentum |p| and the three-body energy E = 3k2

4m
− γ2

m
. We have rescaled

the t-matrix in Eq. (15) t0(q, p;E) = mg2t̃0(q, p;E) such that it depends only on physical

quantities.

We calculate corrections to the amplitude obtained from the LO modified STM equation,

t̃0, by considering diagrams with a single insertion of the NLO diatom propagator. It was

shown by Hammer and Mehen [5] that such a perturbative inclusion of effective range cor-

rections also requires the insertion of a subleading, energy-independent, three-body force. In

Fig. 2 we display the diagrams that have to be evaluated. The application of the Feynman

rules gives, for the first-order correction for the amplitude

it(1)(q,p;E) =

∫
d4q′

(2π)4
iS(E − q′0, q′)iD(1)(q′0, q

′)

×it(0)(q,q′, q′0 − E +
q2

2m
) it(0)(q′,p, E − p2

2m
− q′0)

+ i
2mg2H1(γ,Λ)

Λ2

×
[
1 +

∫
d4q′

(2π)4
iD(0)(q′0, q

′) iS(E − q′0, q′) it0(q,q′, q′0 − E +
q2

2m
)

]
×
[
1 +

∫
d4q′

(2π)4
iD(0)(q′0, q

′) iS(E − q′0, q′) it0(q′,p, E − q2

2m
− q′0)

]
.

(17)

7



The complete NLO correction to the t-matrix’s S-wave projection is therefore

t̃1(q, p;E) =
1

π

∫ Λ

0

dq′q′2
γ +

√
3q′2/4−mE

−γ +
√

3q′2/4−mE+
t̃0(q, q′;E)t̃0(q′, p;E)

+
2H̃1(γ,Λ)

Λ2

[
1 +

2

π

∫ Λ

0

dq′
q′2

−γ +
√

3q′2/4−mE+
t̃0(q, q′;E)

]

×

[
1 +

2

π

∫ Λ

0

dq′
q′2

−γ +
√

3q′2/4−mE+
t̃0(q′, p;E)

]
, (18)

where t̃1 and H̃1 are defined via t1(q, p;E) ≡ r0mg
2t̃1(q, p;E), and H1 ≡ r0H̃1.

The expression above is similar to the one obtained by Hammer and Mehen in Ref. [5].

However, in their work one contribution from the contour integration in Eq. (17) was erro-

neously omitted.

The t-matrix obtained in this way is related to the renormalized amplitude for s-wave

atom-diatom scattering at relative momentum k, T (k), via:

T (k) =
√
Z(t0(k, k;E) + t1(k, k;E) + . . .)

√
Z. (19)

Z is the wave-function renormalization factor given in Eq. (7). We also expand this Z-factor

in powers of γr0:

Z0 =
8πγ

m2g2
, Z1 =

8πγ2r0

m2g2
, (20)

and so on, thereby generating an expansion for T (k) analogous to those listed in Eq. (13).

Still, t̃0, t̃1, etc. are generally complex when scattering states are considered, albeit real

when the bound-state problem is considered. It is therefore convenient to introduce the real

K-matrix, which contains the same information as the t-matrix but is easier to calculate. The

LO half-on-shell K-matrix obeys an STM equation in which the iε prescription is replaced

by a principal-value integration (indicated by P)

K̃0(k, p;E) = M(k, p;E) +
8

3π
P
∫ Λ

0

dq′
q′2(γ +

√
3q′3/4−mE)

q′2 − k2
M(q′, p;E)K̃0(k, q′;E).

(21)

The half-on-shell t-matrix at LO is related to the K-matrix via

t̃0(k, p;E) =
K̃0(k, p;E)

1− i8γk
3
K̃0(k, k;E)

. (22)

The fully-off-shell t-matrix at leading order is also related to the K-matrix through a similar

transformation

t̃0(q, p;E) = K̃0(q, p;E) + i
8γk

3
K̃0(k, p;E)t̃0(q, k;E). (23)
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This allows us to write the fully-off-shell K-matrix as

K̃0(q, p;E) = M(q, p;E) +
8

3π
P
∫ Λ

0

dq′
q′2(γ +

√
3q′3/4−mE)

q′2 − k2
M(q′, p;E)K̃0(q, q′;E).

(24)

The half-on-shell NLO K-matrix can then be expressed in terms of the half-on-shell LO and

NLO t-matrix and the on-shell LO t-matrix, LO K-Matrix and NLO K-matrix

K̃1(k, p;E) =
t̃1(k, p;E)

1 + i8γk
3
t̃0(k, k;E)

− i8γk
3
t̃0(k, p;E)

[
K̃1(k, k;E) + γK̃0(k, k;E)

]
, (25)

or vice versa

t̃1(k, p;E) =
K̃1(k, p;E)

1− i8γk
3
K̃0(k, k;E)

+
i8γk

3
K̃0(k, p;E)

[
K̃1(k, k;E) + γK̃0(k, k;E)

]
[
1− i8γk

3
K̃0(k, k;E)

]2 . (26)

At next-to-leading order, the half-on-shell K-matrix is then given by the following principal-

value integral:

K̃1(k, p;E) =
1

π
P
∫ Λ

0

dq′q′2
γ +

√
3q′2/4−mE

−γ +
√

3q′2/4−mE
K̃0(k, q′;E)K̃0(p, q′;E)

+
2H̃1(γ,Λ)

Λ2

[
1 +

2

π
P
∫ Λ

0

dq′
q′2

−γ +
√

3q′2/4−mE
K̃0(k, q′;E)

]

×

[
1 +

2

π
P
∫ Λ

0

dq′
q′2

−γ +
√

3q′2/4−mE
K̃0(p, q′;E)

]
. (27)

IV. THREE-BODY OBSERVABLES AT NLO

In this section we will discuss how different observables are calculated at NLO in our

perturbative approach. We will consider not only obvious observables, such as phaseshifts

and three-body binding energies, but also observables related to three-body recombination

as measured in experiments with ultracold atoms. We follow the strategy outlined above

and calculate all quantities as a series in powers of γr0 and/or k r0. The leading order in

this series is then the universal result, and the NLO pieces we will derive here encode the

first corrections “beyond universality”.
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A. Phaseshifts

The amplitude T (k) for atom-diatom scattering is related to the atom-diatom S-wave

phaseshift through

T (k) =
3π

m

1

k cot δ(k)− ik
. (28)

The scattering amplitude T (k) in Eq. (28) can also be expanded in powers of γr0

T (k) =
3π

m

1

k cot δ0 + r0[k cot δ]1 + · · · − ik

=
3π

m

[
1

k cot δ0 − ik
− r0

[k cot δ]1
(k cot δ0 − ik)2

+ . . .

]
= T0(k) + T1(k) + . . . , (29)

where the dots refer to corrections beyond NLO. Here k cot δ is expanded as

k cot δ = k cot δ0 + r0[k cot δ]1 + . . . , (30)

where the []1 indicates the part of k cot δ that is the coefficient of the order r0 term in

the expansion in powers of r0. At leading order we recover the familiar relation between

phaseshifts and K-matrix

k cot δ0 =
3

8γ
K̃0
−1

(k, k;E), (31)

but our expansion also leads to a relation for the NLO part, that stems from Eqs. (29) and

(26):

[k cot δ]1 = − 3

8γ
K̃0
−1

(k, k;E)
(
γ + K̃1(k, k;E)/K̃0(k, k;E)

)
. (32)

As long as k cot δ0 is not large this will yield a correction of relative size γr0 to the leading

part of k cot δ.
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B. Bound States

The t-matrix is real for energies below the scattering threshold. The NLO correction to

the leading order t-matrix is then given by

t̃1(q, p;E) =
1

π

∫ Λ

0

dq′q′2
γ +

√
3q′2/4−mE

−γ +
√

3q′2/4−mE
t̃0(q, q′;E)t̃0(p, q′;E)

+
2H̃1(γ,Λ)

Λ2

[
1 +

2

π

∫ Λ

0

dq′
q′2

−γ +
√

3q′2/4−mE
t̃0(q, q′;E)

]

×

[
1 +

2

π

∫ Λ

0

dq′
q′2

−γ +
√

3q′2/4−mE
t̃0(p, q′;E)

]
, (33)

where we have explicitly dropped the iε prescription. The full t-matrix has a pole at E = B

if a three-body bound state exists with this energy. At leading order this implies:

t̃0(q, p;E) =
Z̃0(q, p)

E −B0

+R0(q, p;E) (34)

where the function R0 is a regular part. The residue Z̃0 depends on the incoming and

outgoing momenta q and p, but not on the three-body energy E. Although, in general, more

than one bound state exists for the systems under consideration here, the decomposition (34)

is the appropriate one if we are focusing on the NLO shift for a particular bound state. The

fact that LO bound-state energies are separated by a factor of much as 515 allows us to

employ the decomposition (34) for these purposes.

When considering the NLO correction, we must account for both the pole’s position (i.e.

the three-body binding energy) and the residue being shifted by an amount proportional to

r0. Therefore we have

t̃0 + r0t̃1 =
Z̃0 + Z̃1

E −B0 −B1

+R0 +R1

=
Z̃0

E −B0

+
Z̃0B1

(E −B0)2
+

Z1

E −B0

+R0 +R1, (35)

where, as usual, the subscript 1 indicates the parts which are first order in r0. In particular,

Eqs. (35) and (34) imply that the first-order part of t̃, r0t̃1, has a pole of order two at

E = B0:

r0t̃1(q, p;E) =
Z̃0(q, p)B1

(E −B0)2
+

Z̃1

E −B0

+R1(q, p;E). (36)
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The residue of this double pole is then related to the shift in the three-body binding energy

that is linear in the effective range:

B1 = r0
limE→B0(E −B0)2t̃1(q, p;E)

Z̃0(q, p)
. (37)

Eq. (37) seems to indicate that the incoming and outgoing momenta, q and p, affect the

three-body binding energy shift B1. However, we would expect that the binding energy is

independent of the incoming and outgoing momenta. This apparent contradiction can be

avoided if Z̃0(q, p) is separable with respect to q and p. Therefore, the residue function is

defined as

Z̃0(q, p) = Γ(q)Γ(p). (38)

By substituting Eqs. (38) and (34) into Eq. (15) and taking the residue at E = B0 we find

Γ(q) =
2

π

∫ Λ

0

dq′ M(q, q′;E)
q′2

−γ +
√

3q′2/4−mE
Γ(q′). (39)

The function Γ(q) is thus a solution to a homogeneous integral equation, and the overall

normalization is not immediately determined. We fix this normalization by the condition:

Γ2(q) = lim
E→B0

(E −B0)t̃0(q, q;E). (40)

With Γ(q) in hand, we can insert (38) in (33), and multiply by (E − B0)2 and take the

limit as E → B0. This yields a result for B1 that is independent of q and p:

B1 =
r0

π

∫ Λ

0

dq q2 γ +
√

3q2/4−mB0

−γ +
√

3q2/4−mB0

Γ2(q)

+
8H̃1(Λ)r0

(πΛ)2

[∫ Λ

0

dq
q2

−γ +
√

3q2/4−mB0

Γ(q)

]2

. (41)

And indeed, in numerical calculations, Eqs. (37) and (41) prove to be equivalent. B1 can be

obtained from Eq. (37) if desired, and the result found in that way is independent of q and

p.

C. Three-Body Recombination

Three-body recombination is a collision process in which three free atoms combine into a

diatom and an atom. The energy that is released when the two-atom bound state forms is

12



converted into kinetic energy and the atom and diatom are lost from the trap. The loss rate

of atoms in a cold atomic gas due to this three-body recombination is determined by the

scattering amplitude for the reaction A + A + A→ A + D, as we shall now show. Because

of this the scattering-length dependence of the loss rate provides an experimental signature

of Efimov physics in trapped systems of ultracold atoms.

The atom loss rate is expressed as

dn

dt
= −3

n3

3!
Wfi, (42)

where n is the number density of free atoms. (The factor of 3 arises due to the loss of three

atoms in each recombination event.) According to Fermi’s golden rule,

Wfi = 2π|T (pf )|2
dνf
dEf

, (43)

where T is the amplitude for three-atom recombination: A + A + A → A + D, and the

density of atom-diatom states dνf is

dνf =
d3pf
(2π)3

. (44)

The kinetic energy at a momentum pf in the atom-diatom system is

Ef =
pf

2

2m
+
pf

2

4m
=

3pf
2

4m
, (45)

and so the transition rate becomes

Wfi =
2m

3π
pf |trec(pf )|2. (46)

The recombination rate α is conventionally defined as

dn

dt
= −3αn3, (47)

and so

α =
m

9π
pf |trec(pf )|2. (48)

Since three-body recombination takes place at the three-atom threshold the pertinent value

of the relative momentum pf in the atom-diatom system is 2γ/
√

3.

The A+A+A→ A+D amplitude at leading order in Fig. 3 is related to the half-on-shell

atom-diatom scattering t-matrix by

t(0)
rec(pf ) = 3 · (−i

√
2g) · iD(0)(0, 0) ·

√
Z0t0(0, pf ; 0)

=
48π

3
2

m
√
γ
t̃0

(
0,

2γ√
3

; 0

)
, (49)

13



t(0)rec t0=

FIG. 3: Three-body recombination at leading order

t0

1

t1
+

t
(1)
rec

=

FIG. 4: Three-body recombination at next-to-leading order

which, combined with (48), determines the leading-order recombination rate as:

α0 =
512π2

√
3m

∣∣∣∣t̃0(0,
2γ√

3
; 0

)∣∣∣∣2 . (50)

Upon introducing the effective-range correction, we obtain the sum of the leading-order

and next-to-leading-order A+ A+ A→ A+D amplitude (Fig.4). This is expressed by

t(0)
rec(pf ) + t(1)

rec(pf ) = 3 · (−i
√

2g)
√
Z0 + Z1 ·

[
iD(0)(0, 0)t0 + iD(1)(0, 0)t0 + iD(0)(0, 0)t1

]
= t(0)

rec + 3
√

2g

[√
Z0 D(1)(0, 0)t0 +

Z1

2
√
Z0

D(0)(0, 0)t0 +
√
Z0 D(0)(0, 0)t1

]
+ . . .

= t(0)
rec +

48π3/2

mγ1/2

[
γr0t̃0 + r0t̃1

]
⇒ t(1)

rec(pf ) =
48π3/2

mγ1/2

(
γr0t̃0(0, 2γ/

√
3; 0) + r0t̃1(0, 2γ/

√
3; 0)

)
(51)

Therefore, the recombination rate is given at NLO by:

α0 + α1 =
512π2

√
3m

∣∣∣∣(t̃0(0,
2γ√

3
; 0) + γr0t̃0(0,

2γ√
3

; 0) + r0t̃1(0,
2γ√

3
; 0)

)∣∣∣∣2 . (52)

1. Atom-diatom Resonance

The atom-diatom scattering length diverges for positive scattering lengths for which B =

−γ2/m. At this value of the scattering length, a three-body state lies exactly at the atom-

diatom threshold. This feature shows up as resonant behavior in the atom-diatom relaxation

14



rate, a process in which shallow diatoms are transfered into deep diatoms. The two-body

binding momenta for which these resonances occur are denoted (at LO) by γ∗. They thus

obey the relation

B0(γ∗) = −γ
2
∗
m
. (53)

Discrete scale invariance in the leading-order bound-state spectrum implies that if γ∗ is a

solution of Eq. (53), then so are the quantities enπ/s0γ∗. The scale invariance is softly broken

by r0/a corrections. Here we will calculate the NLO corrections to these γ∗’s.

We will assume that the position of a particular resonance is shifted to γ∗+ ∆γ∗ at NLO.

The three-body binding energy at the atom-diatom threshold must then obey—up to terms

of relative order O(γ2
∗r

2
0):

B0(γ∗ + ∆γ∗) +B1(γ∗ + ∆γ∗) = −(γ∗ + ∆γ∗)
2

m
. (54)

We now expand both sides of (54) in powers of r0 and retain only terms up to O(r0):

B0(γ∗) +
dB0(γ)

dγ
|γ=γ∗∆γ∗ +B1(γ∗) = −γ

2
∗
m
− 2

γ∗∆γ∗
m

. (55)

Using Eq. (53) we find a NLO correction to γ∗

∆γ∗ = − mB1(γ∗)

2γ∗ +mdB0(γ)
dγ
|γ=γ∗

. (56)

We note that Eq. (41) implies that ∆γ∗ is linear in r0.

However, calculating ∆γ∗ according to Eq. (56) results in numerical difficulties, because

B1(γ∗) and the denominator are both zero to within the numerical accuracy of our calcula-

tion.

The fact that the denominator should go to zero is clear from the the analytic expression

given for B0(γ) in [12]:

κ = −H sin ξ

γ = H cos ξ

H =
(
e−π/s0

)n−n∗
κ∗ exp[∆(ξ)/(2s0)], (57)

where κ =
√
−mB0. When γ is near γ∗ the function ∆(ξ) can be approximated with the

expression

ξ ∈
[
−3π

8
,−π

4

]
: ∆ = 6.04− 9.63(−π

4
− ξ)1/2 + 3.10(−π

4
− ξ), (58)
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where ξ = −π/4 corresponds to the three-body bound state crossing the atom-diatom

threshold at γ = γ∗. We calculate dκ/dγ from Eq. (57) and find that at ξ = −π/4,

dκ

dγ

∣∣∣∣
γ=γ∗

=

dH
dξ
−H

dH
dξ

+H

∣∣∣∣∣
ξ=−π/4

=

d∆
dξ
− 2s0

d∆
dξ

+ 2s0

∣∣∣∣∣
ξ=−π/4

= 1, (59)

since d∆
dξ
→∞ when ξ → −π/4. dB0/dγ at the atom-diatom threshold is therefore

m
dB0

dγ

∣∣∣∣
γ=γ∗

= −2κ
dκ

dγ

∣∣∣∣
γ=γ∗

= −2γ∗. (60)

This indicates that the denominator in Eq. (56) indeed goes to zero at the point of interest,

which causes an accuracy problem in numerically calculating ∆γ∗ from the bound-state side.

We calculate therefore instead ∆γ∗ from the scattering amplitude, i.e. evaluate the atom-

diatom K-matrix as a function of γ along the threshold line E = −γ2. The LO three-body

scattering length a
(0)
3 is related to K̃0 at this energy by

a
(0)
3 = −8γ

3
K̃0(0, 0;−γ2). (61)

Now a
(0)
3 →∞ at γ = γ∗, and so the on-shell K̃0 has a pole of order one at γ = γ∗:

K̃0(0, 0;−γ2) =
Zad

0 (γ∗)

γ − γ∗
+R0(γ). (62)

Similarly the NLO shift of the position of the atom-diatom resonance ∆γ∗, can be written

as

K̃0(0, 0;−γ2) + γr0K̃0(0, 0;−γ2) + r0K̃1(0, 0;−γ2) =
Zad

0 + Zad
1

γ − γ∗ −∆γ∗
+R0(γ) +R1(γ)

=
Zad

0

γ − γ∗
+

Zad
1

γ − γ∗
+ ∆γ∗

Zad
0

(γ − γ∗)2
+R0(γ) +R1(γ) .

(63)

The shift ∆γ∗ is therefore calculated as:

∆γ∗ = r0
limγ→γ∗(γ − γ∗)2K̃1(0, 0;−γ2)

Zad
0 (γ∗)

. (64)

Our numerical calculation shows that both the numerator and the denominator in this form

are finite, and so calculating ∆γ∗ by evaluating the atom-diatom K-matrix at different γ’s

along the threshold line is an accurate procedure.
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However, we still have to show that Eqs. (56) and (64) are equivalent for calculating ∆γ∗.

The bound-state form of the leading-order atom-diatom amplitude near a bound state of

energy B0(γ) (Eq. (34)) is:

t̃0(0, 0;−γ2) =
mZ̃0(0, 0)

−γ2 −B0(γ)
+R0

= − mZ̃0(0, 0)

(γ − γ∗)
[
2γ∗ + dB0

dγ

∣∣∣
γ=γ∗

] + (regular). (65)

This relates Z̃0 in Eq. (34) to Zad
0 in Eq. (62) as

Z̃0(0, 0)
∣∣∣
γ=γ∗

= −

(
2γ∗ +

dB0

dγ

∣∣∣∣
γ=γ∗

)
Zad

0 (γ∗). (66)

Similarly we expand (36) about γ∗ and so relate Z̃0B1 to the numerator in Eq. (64) as:

Z̃0B1

∣∣∣
γ=γ∗

=

(
2γ∗ +

dB0

dγ

∣∣∣∣
γ=γ∗

)2

r0 lim
γ→γ∗

(γ − γ∗)2K̃1(0, 0;−γ2), (67)

which explains why B1 → 0 as γ → γ∗, and, moreover, shows that the coefficient of this zero

is precisely what is needed to render the expressions obtained for ∆γ∗ from the bound-state

and scattering-state side equivalent.

2. Three-atom resonance

When a state in the three-body bound-state spectrum crosses the zero-energy threshold

at negative scattering length, three free atoms can form a zero-energy trimer state. This

phenomena is called a three-atom resonance, and results in a maximum in the three-atom

recombination rate. It occurs at a value of γ denoted by γ′. (Since γ′ < 0 this does not

correspond to the binding momentum of a diatom, but it is still the inverse of the atom-

atom scattering length where this feature occurs.) At leading order the condition for this

three-atom resonance is B0(γ′) = 0, and scale invariance of the leading-order bound-state

spectrum then results in values of γ′ being related by the universal scaling factor eπ/s0 . (Here

and below γ′ denotes the leading-order position of the three-atom resonance.)

The NLO correction to γ′ is found at the NLO zero-energy threshold (B0+B1)(γ′+∆γ′) =

0. We thus have:

B0(γ′) +
dB0(γ)

dγ

∣∣∣∣
γ=γ′

∆γ′ +B1(γ′) = 0. (68)
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As B0(γ′) = 0 is given at LO, we find the NLO correction to γ′,

∆γ′ = − B1(γ′)
dB0(γ)
dγ

∣∣∣
γ=γ′

, (69)

and so ∆γ′ is linear in r0. Our numerical studies show that neither the numerator nor the

denominator in this equation are equal to zero at γ = γ′, although there is disagreement

between our numerical result for dB0(γ)
dγ

∣∣∣
γ=γ′

and the analytic form provided in Ref. [12]. (See

Appendix B.)

3. Recombination minimum

At leading order the recombination rate α is related to K̃0 by

α0 =
512π2

√
3m

K̃0
2
(0, 2γ√

3
; 0)∣∣∣1− i16γ2

3
√

3
K̃0( 2γ√

3
, 2γ√

3
; 0)
∣∣∣2 . (70)

Therefore, the recombination minimum is determined by the condition K̃0(0, 2γ0√
3
; 0) = 0,

which leads to t̃0(0, 2γ0√
3
; 0) = 0.

Because α0 = 0 at the minimum, the NLO recombination rate in Eq. (52) becomes O(r2
0)

in the vicinity of the leading-order minimum. This means that in what follows we cannot

neglect terms ∼ r2
0, which complete the square and guarantee that α > 0.

In order to calculate the NLO correction to the recombination minimum, we evaluate

α1 from Eq. (52) at γ = γ0 + ∆γ0, and expand it in powers of r0. First, we expand the

scattering amplitude before we square it:[
(1 + γr0)t̃0(0,

2γ√
3

; 0) + r0t̃1(0,
2γ√

3
; 0)

]∣∣∣∣
γ=γ0+∆γ

=
d

dγ
t̃0(0,

2γ√
3

; 0)

∣∣∣∣
γ=γ0

∆γ + r0t̃1(0,
2γ0√

3
; 0) +O(r2

0), (71)

where ∆γ is linear in r0, and we used the fact that t̃0(0, 2γ0√
3
; 0) = 0.

If we square the amplitude in Eq. (71), we can calculate α1 at γ near γ0 as

α1 =
512π2

√
3m

∣∣∣∣∣ d

dγ
t̃0(0,

2γ√
3

; 0)

∣∣∣∣
γ=γ0

∆γ + r0t̃1(0,
2γ0√

3
; 0)

∣∣∣∣∣
2

+O(r3
0), (72)

where we used the fact that α0 = 0 at γ = γ0. The leading term here is quadratic in r0

and purely determined by up-to-NLO scattering amplitudes. Higher-order corrections to
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the scattering amplitude only start to affect α at order r3
0. In other words, even though the

NLO α near γ0 is in the order of r2
0, it is purely determined by LO and NLO t-matrices.

From Eq. (23) and Eq. (26), we derive

d

dγ
t̃0(0,

2γ√
3

; 0)

∣∣∣∣
γ=γ0

=
1

1− i16γ20
3
√

3
K̃0(2γ0√

3
, 2γ0√

3
; 0)
· d

dγ
K̃0(0,

2γ√
3

; 0)

∣∣∣∣
γ=γ0

, (73)

and

t̃1(0,
2γ0√

3
; 0) =

K̃1(0, 2γ0√
3
; 0)

1− i16γ20
3
√

3
K̃0(2γ0√

3
, 2γ0√

3
; 0)

, (74)

where we again applied K̃0(0, 2γ0√
3
; 0) = 0.

Therefore, α1 near γ0 is

α1 =
512π2

√
3m

[
d
dγ
K̃0(0, 2γ√

3
; 0)
∣∣∣
γ=γ0

∆γ + r0K̃1(0, 2γ0√
3
; 0)

]2

∣∣∣1− i16γ20
3
√

3
K̃0(2γ0√

3
, 2γ0√

3
; 0)
∣∣∣2 (75)

The next-to-leading-order recombination minimum α1 = 0 is thus determined by

d

dγ
K̃0

(
0,

2γ√
3

; 0

)∣∣∣∣
γ=γ0

∆γ0 + r0K̃1

(
0,

2γ0√
3

; 0

)
= 0, (76)

which leads to an NLO shift in the position of the recombination minimum of:

∆γ0 = −r0

K̃1(0, 2γ0√
3
; 0)

d
d γ

K̃0(0, 2γ√
3
; 0)
∣∣∣
γ=γ0

. (77)

V. THE SUBLEADING THREE-BODY FORCE AT NLO

We will show in this section explicitly that the NLO counterterm contains a scattering-

length-dependent piece that will require a second piece of experimental data for renormal-

ization if scattering-length-dependent processes are considered. To do this we reconsider

Eq. (41), the expression for the NLO shift to the binding energy:

B1 =
r0

π

∫ Λ

dq q2 γ +
√

3q2/4−mB0

−γ +
√

3q2/4−mB0

Γ2(q)

+
8H̃1(Λ)r0

(πΛ)2

[∫ Λ

dq
q2

−γ +
√

3q2/4−mB0

Γ(q)

]2

. (78)

We will use the divergence structure of this observable to determine the behavior of H̃1(Λ) as

a function of Λ, up to corrections ∼ 1/Λ. The divergence structure of any other observable
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computed to NLO will be similar, and so it suffices to perform this calculation for B1. In

particular, we will expand both the explicit integrals and the behavior of H̃1(Λ), in powers

of Λ, and demand that the linear-in-Λ and log(Λ) divergences cancel.

In order to perform this analysis we need to know the large-momentum behavior of each

piece in Eq. (78). At large momenta q the function Γ(q) is known in the form of an expansion

in powers of γ/q (see Appendix of Ref. [6] where we have corrected an error in the result for

z1):

Γ(q) ∝ z0

q
+
γz1

q2
+ · · · , (79)

with

z0 = sin
(
s0 ln

q

Λ̄

)
(80)

z1 =
2√
3
|C−1| sin

(
s0 ln

q

Λ̄
+ argC−1

)
(81)

where

C−1 =
I(is0 − 1)

1− I(is0 − 1)
(82)

and

I(s) =
8 sin(πs

6
)

√
3s cos(πs

2
)
. (83)

Inserting the asymptotic form of Γ(q), (79), up to ∼ 1/q2, into Eq. (78), and evaluating

the first integral shows that H1 has to absorb both a linear divergence and a logarithmic

divergence proportional to γ. In order to cancel these cutoff dependencies we will thus write

H̃1 as

H̃1 = Λh10(Λ) + γh11(Λ). (84)

Analytic expressions for both h10(Λ) and h10(Λ) can then be obtained by inserting the

expansions (84) and (79) in Eq. (78), while also expanding all explicit functions of q in

powers of γ/q also. In this way we find:

ζ =
1

π

∫ Λ

dq q2

(
1 +

4γ√
3q

)
1

q2

(
z2

0 +
2γ

q
z0z1

)
+

8Λ

π2Λ2

(
h10 +

γ

Λ
h11

)[ 2√
3

∫ Λ

dq q

(
1 +

2γ√
3q

)
1

q

(
z0 +

γ

q
z1

)]2

=
1

π

∫ Λ

dq

(
z2

0 +
4γ√
3q
z2

0 +
2γ

q
z0z1

)
+

8

π2Λ

(
h10 +

γ

Λ
h11

) 4

3

[∫ Λ

dq

(
z0 +

2γ√
3q
z0 +

γ

q
z1

)]2

+ · · · , (85)
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where ζ is finite, the dots represents finite parts of the integration, and
∫ Λ

defines an integral

that is regulated in the ultraviolet by a cutoff Λ and whose infrared regularization (if any)

is unspecified.

In order to simplify the notation we denote integrals that contain a product of the z

functions by a W . The first and second indices indicate the z-functions in the integrand,

while the third index gives the power of q that resides in the denominator of the integrand,

so

Wlmn ≡
1

π

∫ Λ

dq
zlzm
qn

. (86)

In the same spirit of notational convenience and compactness we define:

Zmn ≡
1

π

∫ Λ

dq
zm
qn

. (87)

All integrals Wlmn and Zmn can be evaluated analytically, and this is done in Appendix A.

The divergences linear in Λ in Eq. (85) are then cancelled by requiring:

W000(Λ) +
32h10

3Λ
Z2

00(Λ) = 0 . (88)

Meanwhile, the divergence which is logarithmic in the cutoff is canceled by

2√
3
W001(Λ) +W011(Λ) +

16h11

3Λ2
Z2

00(Λ)

+
32h10

3Λ
Z00(Λ)

(
2√
3
Z01(Λ) + Z11(Λ)

)
= 0 . (89)

By using the results for these integrals which are given in Appendix A1 we derive the

analytic forms for the NLO piece of the three-body force. First,

h10(Λ) = − 3π(1 + s2
0)

64
√

1 + 4s2
0

√
1 + 4s2

0 − cos
(
2s0 ln(Λ/Λ̄)− arctan 2s0

)
sin2

(
s0 ln(Λ/Λ̄)− arctan s0

) . (90)

Since Λ̄ is determined by the LO renormalization condition (e.g. Λ̄ = 13.1κ∗ in the unitary

1 The result for, e.g. Z00(Λ), would seem to neglect the effect of the infrared regularization, which could

affect the answer for h11. However, the combination of the infrared-regularization dependence of Z01(Λ)

and Z11(Λ) is zero, and those of W001(Λ) and W011(Λ) can be absorbed into the numerically fitted

parameter µ, which is included in h11(Λ).
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limit), Eq. (90) is a prediction for h10(Λ). Meanwhile, Eq. (89) gives

h11(Λ) = −
√

3π(1 + s2
0)

16

(1 + |C−1| cos(argC−1))

sin2
(
s0 ln(Λ/Λ̄)− arctan s0

) ln(Λ/µ)

+

√
3π(1 + s2

0)

32s0

sin
(
2s0 ln(Λ/Λ̄)

)
+ |C−1| sin

(
2s0 ln(Λ/Λ̄) + argC−1

)
sin2

(
s0 ln(Λ/Λ̄)− arctan s0

)
−
√

3π(1 + s2
0)3/2

16s0

cos
(
s0 ln(Λ/Λ̄)

)
+ |C−1| cos

(
s0 ln(Λ/Λ̄) + argC−1

)
sin3

(
s0 ln(Λ/Λ̄)− arctan s0

) ×[
1− 1√

1 + 4s2
0

cos
(
2s0 ln(Λ/Λ̄)− arctan(2s0)

)]
(91)

The µ in Eq. (91) subsumes information on the finite part of O(Λ0), and its value is de-

termined by the renormalization conditions at NLO. Numerically this piece is of the same

order as ln Λ, as long as Λ is not extremely large.

We compare the numerical values of h10 and h11, which are obtained by keeping κ∗ = 1

fixed at LO and NLO and maintaining the LO prediction γ0 = κ∗/0.32 at NLO, with the

predicted analytic funtions of Λ in Figs. 5 and 6. The agreement is excellent when µ = 0.99κ∗.

Note that in order to do this comparison in Fig. 6 we have fit the value of µ to the

numerical results, because µ is determined by the choice of renormalization conditions at

NLO. However, the coefficient of the log(Λ/µ) term in Eq. (91) is still predictive, and is

confirmed by comparison to the numerical results. Moreover, the behavior of the second

and third term in Eq. (91) is also clearly seen in the comparison.

VI. SEMI-UNIVERSAL RELATIONS

In the limit r0/a = 0, the two-body scattering lengths at which key three-body recom-

bination features occur, such as the atom-diatom resonance at positive scattering length

a = a∗, the 3-atom resonance at negative scattering length a = a′, and the recombination

minimum at a = a0, obey a set of “universal relations”. Indeed, all three features can be

related to the binding momentum of the three-atom state in the unitary limit, κ∗ [12]:

a∗ = 0.0707κ−1
∗ (92)

a′ = −1.56κ−1
∗ (93)

a0 = 0.32κ−1
∗ . (94)

22



10
2

10
3

10
4

10
5

10
6

Λ/κ
*

-2.5

-2

-1.5

-1

-0.5

0
1 

/ h
10

(Λ
)

FIG. 5: h10(Λ): The dots are numerical results for h10 with the NLO calculation renormalized such

that the LO prediction of κ∗ = 1 (Λ̄ = 13.1) is maintained. The solid line (red) is the analytic

function h10(Λ) given by Eq. (90) with the same parameter Λ̄.

Therefore, any two positions of these three-body observables can be universally related

in the unitary limit. For example, the universal relation between a∗ and a0 is

a∗ = a0/θ∗ (95)

where θ∗ = 4.526.

In the limit r0/a = 0, Eq. (95) indicates a universal relation between the momenta

associated with the positions of the resonant features at a∗ and a0:

γ∗ = θ∗γ0, (96)

where γ = 1/a at leading order. The universal relation has been numerically demonstrated

in a leading-order EFT calculation based on the expansion in r0/a [4].

Once the two-body effective range, r0, is non-zero we can analyze effective-range correc-

tions to “universal relations” such as Eq. (96). However, a complication arises, because these
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FIG. 6: h11(Λ): The dots are results of a numerical calculation of h11 with the additional NLO

counterterm fitted to maintain the value of γ0 = κ∗/0.32 predicted at LO. The LO renormalization

condition, κ∗ = 1 (Λ̄ = 13.1), is also kept at NLO. The solid line (red) is the analytic function

h11(Λ) given by Eq. (91), with µ fitted to 0.99κ∗ in order to obtain good agreement with the

numerical values.

corrections are not only sensitive to r0 6= 0 in the two-body sector. As we have explained

in detail above, the fact that r0 6= 0 induces the need for a new counterterm in the three-

body sector, and this means that—at least at relative order r0/a—observables that were

correlated through the relations (92) are no longer strictly related in this way. Therefore in

what follows we will choose to fix two of these three-body observables, and then show how

effective-range corrections affect the others. By doing this for different pairs of observables

in turn we map out a set of “semi-universal relations”: correlations between a∗, a0, and a′

which hold up to relative accuracy (r0/a)2.

The NLO corrections to the positions of atom-diatom resonance γ∗, three-atom resonance

γ′, and recombination minimum γ0 were derived in section IV. As we have the freedom to

fix any two observables, we pick one of the three γ’s and fix the universal relation between
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κ∗ and that γ. At fixed κ∗ we relate the NLO correction ∆γ∗, for example, to γ∗ by a

dimensionless factor ξ∗:

∆γ∗ =
r0ξ∗

2
γ2
∗ , (97)

where ξ∗ is obtained numerically. A similar analysis is also applied to the calculation of ∆γ′

and ∆γ0, and so all our semi-universal relations are obtained for a fixed value of κ∗, i.e.

under the assumption that the value of κ∗ is not corrected at NLO.

Under these conditions, the universal relation in Eq. (96) is corrected to:

γnlo∗ = θ∗γ0 +
r0ξ∗

2
(θ∗γ0)2 (98)

Moreover, the leading-order relation 1/a = γ is corrected by linear-in-r0 effects, based on

the effective-range expansion:
1

a
= γ − 1

2
r0γ

2, (99)

or vice versa

γ =
1

a
+
r0

2

1

a2
. (100)

In this way we derive a semi-universal relation, which modifies the universal relation,

(95), by terms linear in r0:

1

anlo∗
= γnlo∗ −

1

2
r0(γnlo∗ )2

= θ∗γ0 +
r0ξ∗

2
(θ∗γ0)2 − r0

2
(θ∗γ0)2 +O(r2

0)

=
θ∗
a0

(
1 +

r0

2a0

)
+
r0

2
(ξ∗ − 1)

θ2
∗
a2

0

+O(r2
0)

=
θ∗
a0

[
1 +

r0

2a0

(1− θ∗ + θ∗ξ∗)

]
. (101)

If we invert both sides of the above equation, we have

anlo∗ =
a0

θ∗
− r0

2

(
1

θ∗
− 1 + ξ∗

)
. (102)

This provides an analytic form which predicts the value of a∗, given the value of a0, and the

assumption that the LO relation between κ∗ and γ0, κ∗ = 0.32γ0 still holds at NLO.

Furthermore, we can apply the semi-universal relation (102) to observables in different

branches:

anlo∗(n) =
a0

θ∗(n)

− r0

2

(
1

θ∗(n)

− 1 + ξ∗(n)

)
, (103)
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n θ∗(n) ξ∗(n) semi-universal relations

-1 103 -3.51 anlo∗(−1) = 9.74× 10−3a0 + 2.25r0

0 4.53 -1.37 anlo∗(0) = 0.221a0 + 1.07r0

1 0.199 0.766 anlo∗(1) = 5.01a0 − 2.39r0

TABLE I: Semi-universal relations: anlo∗(n) = a0/θ∗(n)−r0(1/θ∗(n)−1+ξ∗(n))/2. The NLO calculation

is renormalized to κ∗ = 0.32γ0

.

n θ′(n) ξ′(n) semi-universal relations

-1 -4.76 -1.10 a
′nlo
(−1) = −0.210a0 + 1.15r0

0 -0.210 1.10 a
′nlo
(0) = −4.76a0 + 2.33r0

1 9.25× 10−3 3.28 a
′nlo
(1) = 108a0 + 52.9r0

TABLE II: Semi-universal relations: a
′nlo
(n) = a0/θ

′
(n)− r0(1/θ′(n)−1 + ξ′(n))/2. The NLO calculation

is renormalized to κ∗ = 0.32γ0

.

where n refers to the nth branch that is shallower than the branch which obeys a0κ∗ = 0.32

at LO. Discrete scale invariance implies that θ∗(n) = θ∗(22.7)−n. The results for the first

three branches are listed in Table I.

A similar derivation yields a set of relations between a′nlo(n) and a0, again under the assump-

tion that κ∗ = 0.32γ0. These relations are listed in Table II. But, it is not mandated to fix

κ∗ = 0.32γ0. If we fix take the value of γ∗ as input and fix κ∗ = 0.0707γ∗, i.e. maintain the

LO relation between γ∗ and κ∗, we can also obtain semi-universal relations. The resulting

predictions for anlo0 on different branches, and a′nlo on different branches are seen in Tables

III and IV.

VII. CONCLUSION

In this work we have presented a perturbative calculation of next-to-leading order (in

`/|a|) corrections to universal three-body physics. We have shown that an additional three-

body counterterm is required for renormalization if and only if scattering-length-dependent

quantities are considered. The inverse scattering length therefore plays a similar role in
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n θ0(n) ξ0(n) semi-universal relations

-1 5.01 -0.805 anlo0(−1) = 0.199a∗ + 0.803r0

0 0.221 1.44 anlo0(0) = 4.53a∗ + 2.48r0

1 9.74× 10−3 3.28 anlo0(1) = 103a∗ + 52.7r0

TABLE III: Semi-universal relations: anlo0(n) = a∗/θ0(n) − r0(1/θ0(n) − 1 + ξ0(n))/2. The NLO

calculation is renormalized to κ∗ = 0.0707γ∗.

n θ′(n) ξ′(n) semi-universal relations

-1 -1.03 0.332 a
′nlo
(−1) = −0.971a∗ + 0.820r0

0 4.53× 10−2 2.68 a
′nlo
(0) = −22.1a∗ + 10.2r0

1 2.00× 10−3 5.03 a
′nlo
(1) = −501a∗ + 248r0

TABLE IV: Semi-universal relations: a
′nlo
(n) = a∗/θ

′
(n)−r0(1/θ′(n)−1+ξ′(n))/2. The NLO calculation

is renormalized to κ∗ = 0.0707γ∗.

the pionless EFT to that of the pion mass in chiral perturbation theory. Counterterms

proportional to the inverse of the scattering length occur at orders beyond leading, and

these must be fitted by considering scattering-length-dependent data.

The advantages of the perturbative analysis we have presented here are twofold. First,

it allowed us to derive analytic expressions for the next-to-leading-order shifts of resonance

positions in recombination experiments. Second, it permitted an explicit treatment of the

renormalization of divergent integrals while keeping the LO counterterm fixed. This pro-

duced analytic forms for the running of the NLO pieces of the three-body force.

Our analysis is applicable to systems for which the scattering length and effective range

are known as a function of the magnetic field. If data on three-body processes at different

values of the two-body scattering length exists then effective-range corrections to recombi-

nation features can be treated in the manner described above. Data from the Bar-Ilan and

Rice groups [20, 21] on Lithium-7 recombination were recently analyzed in this way [9].

A calculation of the divergence structure of bosonic observables in pionless EFT at next-

to-next-to-leading order (O(`2/a2)) is underway [22].
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Appendix A: Relevant Integrals

The following functions are used in the derivation of the analytical expression for the

NLO three-body counterterms h10 and h11.

Z00 =
1

π

∫ Λ

dq z0 =
1

π

∫ Λ

dq sin
(
s0 ln

q

Λ̄

)
=

Λ

π
√

1 + s2
0

sin

(
s0 ln

Λ

Λ̄
− arctan s0

)
, (A1)

Z01 =
1

π

∫ Λ

dq
z0

q
=

1

π

∫ Λ dq

q
sin
(
s0 ln

q

Λ̄

)
= − 1

πs0

cos

(
s0 ln

Λ

Λ̄

)
, (A2)

Z11 =
1

π

∫ Λ

dq
z1

q
=

2|C−1|√
3π

∫ Λ dq

q
sin
(
s0 ln

q

Λ̄
+ argC−1

)
= −2|C−1|√

3πs0

cos

(
s0 ln

Λ

Λ̄
+ argC−1

)
. (A3)

Integrals that contain a product of the z functions are denoted by W . The first and

second index indicates the order of the two z-functions in the integrand’s numerator, and

the third index gives power of q in its denominator. I.e.

W000 =
1

π

∫ Λ

dq z2
0 =

1

2π

∫ Λ

dq
[
1− cos

(
2s0 ln

q

Λ̄

)]
=

Λ

2π

[
1− 1√

1 + 4s2
0

cos

(
2s0 ln

Λ

Λ̄
− arctan(2s0)

)]
, (A4)

W001 =
1

π

∫ Λ

dq
z2

0

q
=

1

2π

∫ Λ dq

q

[
1− cos

(
2s0 ln

q

Λ̄

)]
=

1

2π

[
ln Λ− 1

2s0

sin

(
2s0 ln

Λ

Λ̄

)]
, (A5)

W011 =
1

π

∫ Λ

dq
z0z1

q
=
|C−1|√

3π

∫ Λ dq

q

[
cos (argC−1)− cos

(
2s0 ln

q

Λ̄
+ argC−1)

)]
=
|C−1|√

3π

[
cos (argC−1) ln Λ− 1

2s0

sin

(
2s0 ln

Λ

Λ̄
+ argC−1

)]
. (A6)
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Appendix B: Parameterization of the three-body spectrum on the negative-

scattering-length side

We follow Ref. [12] and define B0 on the negative γ side as

B0(γ) = −γ2G
(
γ

γ′

)
, (B1)

where the dimensionless function G(1) = 0 at threshold. By substituting this into Eq. (69)

we have

∆γ′ =
∆B

(1)
0 (γ′)

γ′G ′(1)
. (B2)

The calculation of ∆γ′ is numerically accurate because G ′(1) 6= 0. We find G ′(1) = 0.98.

That G ′(1) 6= 0 is supported by the analytic approximation in [12] near γ = γ′, where κ

and γ obey Eq. (57), while the function ∆(ξ) obeys a different expression from Eq. (58),

because now we are near the three-atom resonance, not the atom-diatom resonance, which

is indicated by ξ = −π:

ξ ∈
[
−π,−5π

8

]
: ∆ = −0.89 + 0.28z + 0.25z2

z = (π + ξ)2 exp[−1/(π + ξ)2], (B3)

dB0/dγ in this region is

dB0

dγ
=

2H sin ξ
(

1
2s0

d∆
dξ

sin ξ + cos ξ
)

1
2s0

d∆
dξ

cos ξ − sin ξ
, (B4)

whose numerator and denominator both go to zero when ξ → −π. After applying I′Hôpital’s

rule we calculate dB0/dγ at γ′:

dB0

dγ

∣∣∣∣
γ=γ′

=
2H

1− 1
2s0

d2∆
dξ2

∣∣∣∣∣
ξ=−π

. (B5)

Eq. (B3) indicates that d2∆/dξ2 = 0 at ξ = −π, therefore

dB0

dγ

∣∣∣∣
γ=γ′

= 2H = −2γ′, (B6)

and so

G ′(1) = 2. (B7)
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Thus function G ′(1) is finite and nonzero from the analytic approximation in [12]. However,

the value in Eq. (B7) differs from our numerical value by about a factor of two.
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