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Abstract. Analytical results for the anisotropic collective flow of a Lorentz gas of

massless particles scattering on fixed centres are presented.

A remarkable feature of nucleus-nucleus collisions is the anisotropy of the particle

emission pattern in the plane transverse to the collision axis: the transverse momentum

distribution of outgoing particles reads

d2N

d2p
=

1

2π

dN

pT dpT

[

1 +
∞
∑

n=1

2vn(pT ) cosn(ϕ− Φn)

]

, (1)

with vn(pT ) the “anisotropic flow” coefficients, ϕ the azimuth of transverse momentum p

and Φn the event-by-event varying reference angle for the nth flow harmonic. Hereafter

we shall neglect fluctuations, and all Φn will coincide with the x-axis.

The experiment-driven focus of theoretical studies in the recent years has been

on anisotropic flow for matter close to equilibrium. Here, we want to investigate the

opposite case when particles undergo very few rescatterings, so that their evolution can

meaningfully be described by a kinetic equation of the Boltzmann type. We specifically

aim at obtaining analytical results—similar to those derived in [1]—which allow us to

clearly identify qualitative behaviours together with their possible origins.

As a further simplification, we consider the anisotropic flow of a “Lorentz gas” of

massless particles diffusing on infinitely massive particles. This constitutes a regular yet

much simpler limiting case for the scattering of light particles on massive ones [2].

We wish to stress that the qualitative features which we derive in the following

Sections are to our eyes more robust and thereby more important than the quantitative

results. The model of a Lorentz gas may have little relevance for the phenomenology

of heavy-ion collisions, yet it allows us to exemplify how in a more realistic description

one should naturally expect

• the mixing of different flow harmonics;

• the evolution of anisotropic flow in the absence of spatial asymmetry when some

flow is already present;

• the non-monotonic time evolution of anisotropic flow.

Our simple model also shows that such complex qualitative behaviours are not the

exclusive privilege of approaches assuming many rescatterings like (dissipative) fluid
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dynamics, but can appear quite generally, and play a role either at very early times [3,4]

or around the kinetic freeze-out, as well as for the anisotropic flow of fragile states.

1. Expansion of a Lorentz gas

Consider a gas of N massless particles, described by the distribution density f(t, r,p),

that scatter elastically with the differential cross section σd on a distribution nc(r) of

fixed scattering centres. We shall assume that the problem is two-dimensional, i.e. we

focus on the transverse dynamics of the gas, so that σd has the dimension of a length.

f then obeys the Boltzmann–Lorentz kinetic equation

∂tf(t, r,p) + v · ∇rf(t, r,p) = nc(r) c

∫

dΘ σd(Θ) [f(t, r,p′)− f(t, r,p)], (2)

with v the particle velocity and Θ the scattering angle of the diffusing particle.

Integrating Equation (2) over space, the gradient term disappears, and one finds

the evolution equation for the particle momentum distribution d2N/d2p. The latter can

then be multiplied by cosnϕ, with ϕ the azimuth of p, and averaged over ϕ, yielding

the evolution equation for the anisotropic flow harmonic vn.

At vanishing cross section, the solutions to Equation (2) are the free-streaming

solutions

f (0)(t, r,p) = f (0)(0, r− vt,p), (3)

which are entirely determined by the initial distribution at t = 0.

In the following, we study small deviations f = f (0) + f (1) with |f (1)| ≪ f (0) to

these solutions—which corresponds to considering very few scatterings per particle—by

injecting the free-streaming solution in the collision integral in Equation (2). Introducing

the total elastic cross section

σel. ≡
∫

dΘ σd(Θ)

and the unintegrated kernel

C(X,p) ≡
∫

d2rnc(r) f
(0)(0, r−X,p), (4)

one finds

∂t

[

d2N

d2p
(t,p)

]

≃ c

[
∫

dΘ σd(Θ) C(v′t,p′)− σel. C(vt,p)
]

. (5)

The scattering rate at time t is given by

Γ(t) =

∫

d2p d2rnc(r) f(t, r,p) σel.c ≈ σel.c

∫

d2p C(vt,p). (6)

Integrated over time, this rate gives the total number of rescatterings Nscat., which for

the consistency of our approach should be small.

For the density of scattering centres and the density distribution of diffusing

particles at the initial time t = 0, we assume Gaussian profiles in position space

nc(r) =
Nc

2πRxRy
exp

(

− x2

2R2
x

− y2

2R2
y

)

, (7)
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with Nc the total number of scattering centres, and

f (0)(0, r,p) =
Nf̃(p)

4π2RxRy
exp

(

− x2

2R2
x

− y2

2R2
y

)

, (8)

where the initial momentum distribution f̃(p) is normalized to 2π, so that the integral

of f(0, r,p) over space and momentum yields the total number of diffusing particles.

For the sake of simplicity we consider identical radii Rx, Ry for both distributions. Let

R2
x ≡ R2

1 + ǫ
, R2

y ≡
R2

1− ǫ
.

With the initial profiles (7) and (8), the unintegrated kernel (4) reads

C(X,p) =
NcNf̃(p)

8π2R2

√
1− ǫ2 exp

[

−X2(1 + ǫ) + Y 2(1− ǫ)

4R2

]

, (9)

with X = (X, Y ).

2. Isotropic initial momentum distribution, isotropic cross section

Let us first consider the simplest case of an isotropic initial momentum distribution

f̃(p) ≡ f̃0(pT ) as well as an isotropic differential cross section σd. The latter can then

be replaced by σel./2π and taken out of the gain term in Equation (5). Note that our

normalization choice for f̃(p) is equivalent to
∫ ∞

0

f̃0(pT ) pT dpT = 1.

Let ϕ (resp. ϕ′) denote the azimuth of p (resp. p′) with respect to the direction of

the x-axis of the scattering centre distribution nc. Then

C(vt,p) = NcNf̃0(pT )

8π2R2

√
1− ǫ2 e−c2t2/4R2

exp

(

− c2t2

4R2
ǫ cos 2ϕ

)

, (10)

and an analogous equation for C(v′t,p′).

This expression is readily integrated over p, yielding the rate

Γ(t) =
NcNσel.c

4πR2

√
1− ǫ2 e−c2t2/4R2

I0

(

c2t2

4R2
ǫ

)

, (11)

with I0 the modified Bessel function of the first kind. Integrating from t = 0 to infinity

gives the total number of rescatterings over the evolution:

Nscat. =
NcNσel.

2π3/2R

√
1− ǫK

(

2ǫ

1 + ǫ

)

, (12)

where K denotes the complete elliptic integral of the first kind. At given Nc, N , R and

σel., this number of rescatterings is maximal for ǫ = 0: one can thus fix the average

number of rescatterings per diffusing particle Nscat./N at some small value in central

collisions—which amounts to fixing the ratio Ncσel./R—and ensure a small number of

rescatterings over all centralities.
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The time evolution of the nth anisotropic flow harmonic follows from

∂tvn(t, p) ≡ ∂t

[
∫ 2π

0
dϕ d2N

d2p
(t,p) cosnϕ

∫ 2π

0
dϕ d2N

d2p
(t,p)

]

=
1

Nf̃0(pT )

∫ 2π

0

dϕ∂t

[

d2N

d2p
(t,p)

]

cosnϕ, (13)

where in writing the denominator we have used the fact that elastic collisions on fixed

scattering centres leave the momentum modulus pT unchanged, so that the momentum

spectrum is actually independent of time. The integrand in the rightmost expression

can be rewritten using Equation (5) and corresponds to the collision integral. The

unintegrated kernel involved is given by Equation (10). First, the gain term depends on

ϕ′, not on ϕ, and thus does not contribute to ∂tvn(t, pT ). Then, the loss term yields

∂tvn(t, pT )
∣

∣

∣

loss
=











0 for odd n;

(−1)1+n/2Ncσel.c

4πR2

√
1− ǫ2 e−c2t2/4R2

In
2

(

c2t2

4R2
ǫ

)

for even n.
(14)

Note that a factor of 2 is missing in the denominator of the equation as written in [2].

All v4n+2 coefficients, in particular v2, are increasing with time, while the Fourier

harmonics v4n are decreasing. Since the coefficients vanish at t = 0—the momentum

distribution f̃ is isotropic—one deduces for instance v2 > 0, but v4 < 0: this reflects

the alternating signs of the corresponding moments (in position space) of the initial

Gaussian profiles.

Integrating Equation (14) over time from 0 to t yields the time dependence of the

Fourier coefficients vn(t, pT ). At early times |vn(t, pT )| ∝ tn+1, while at late times one

finds for even n [5, formula 2.15.3(2)]

vn(pT ) ≡ lim
t→∞

vn(t, pT )

= (−1)n/2+1Ncσel.

√
1− ǫ2

4
√
πR

(n− 1)!!

2n(n
2
)!

2F1

(n+ 1

4
,
n+ 3

4
;
n

2
+ 1; ǫ2

)

ǫn/2, (15)

where (2k − 1)!! = 1 · 3 · · · (2k − 1) if k ≥ 1, 1 if k = 0, while 2F1 denotes the Gaussian

hypergeometrical function. For n = 2 (resp. n = 4), this formula reduces to Equation

(C4) (resp. (C5)) of [2]. Interestingly, vn(pT ) scales as ǫ
n/2 for small eccentricities.

In Figure 1, we show the dependence of v2 on impact parameter b in Pb-Pb

collisions, where the eccentricity ǫ is related to b through the Glauber optical model,

assuming that the eccentricity dependence of v2 is given by Equation (15) with n = 2.

3. Anisotropic initial momentum distribution, isotropic cross section

We now allow for the possibility that the expanding gas possess an initially anisotropic

momentum distribution, which we describe by introducing its Fourier series

f̃(p) = f̃0(pT )

[

1 + 2

∞
∑

k=1

(wk,c cos kϕ+ wk,s sin kϕ)

]

. (16)

The Fourier coefficients wk,c, wk,s could generally depend on pT , yet we shall hereafter

leave this dependence aside. The coefficients wn,c of the cosine harmonics correspond to
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Figure 1. Centrality dependence of v2 (here, for an evolution with on average 0.1

collision per particle).

the “usual” anisotropic flow coefficients, taken at the initial time, vn(t = 0, pT ). As in

the previous Section, the differential cross section is taken to be isotropic.

The initial momentum distribution (16) gives for the unintegrated kernel

C(vt,p) = NcNf̃0(pT )

8π2R2

√
1− ǫ2 e−c2t2/4R2

× exp

(

− c2t2

4R2
ǫ cos 2ϕ

)[

1 + 2

∞
∑

k=1

(wk,c cos kϕ+ wk,s sin kϕ)

]

.(17)

With this kernel, the scattering rate is given by

Γ(t) =
NcNσel.c

4πR2

√
1− ǫ2 e−c2t2/4R2

[

I0

(

c2t2

4R2
ǫ

)

+ 2
∑

q≥1

(−1)qw2q,cIq

(

c2t2

4R2
ǫ

)]

,

and the total number of rescatterings, which has to be kept small, by

Nscat. =
NcNσel.

4
√
πR

√
1− ǫ2

[

2F1

(

1

4
,
3

4
; 1; ǫ2

)

+
∑

q≥1

(−1)qw2q,c
(2q−1)!!

22q−1q!
2F1

(

2q+1

4
,
2q+3

4
; q+1; ǫ2

)

ǫq
]

.

The unintegrated kernel (17) also allows one to compute the time derivative of the

anisotropic flow coefficient vn. As in Section 2, the gain term of the collision integral

does not contribute to ∂tvn(t, pT ), whereas the contribution of the loss term follows from

multiplying Equation (17) with cosnϕ and then integrating over ϕ. The only terms from

the sum over k that result in a non-vanishing integral are those in cos kϕ with k of the

same parity as n, so that n−k and n+k are even. The isotropic part of the momentum

distribution only contributes when n is even, as in Equation (14).
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All in all, one finds

∂tv2m(t, pT )
∣

∣

∣

loss
= (−1)m+1Ncσel.c

4πR2

√
1− ǫ2 e−c2t2/4R2

{

Im

(

c2t2

4R2
ǫ

)

+
∑

q≥1

(−1)qw2q,c

[

Im+q

(

c2t2

4R2
ǫ

)

+ Im−q

(

c2t2

4R2
ǫ

)]}

, (18a)

∂tv2m+1(t, pT )
∣

∣

∣

loss
= (−1)m+1Ncσel.c

4πR2

√
1− ǫ2 e−c2t2/4R2

×
∑

q≥1

(−1)qw2q−1,c

[

Im+q

(

c2t2

4R2
ǫ

)

+ Im−q

(

c2t2

4R2
ǫ

)]

. (18b)

Let us shortly discuss these results, focusing first on the short-time behaviour.

Taking m = 1, Equation (18a) gives for the evolution of elliptic flow

∂tv2(t, pT ) ∼
Ncσel.c

4πR2

√
1− ǫ2

[

−w2,c +
c2

8R2
(ǫ+ 2w2,c + ǫw4,c)t

2 +O(t4)

]

for t ≪ R

c
.

That is, in the presence of a positive initial elliptic flow, v2(t, pT ) first decreases (linearly),

before it starts increasing: since more particles are emitted in-plane than out-of-plane,

there are more particles “lost” at ϕ = 0 or 180o than at ±90o. On the contrary, a

negative initial w2,c = v2(0, pT ) accelerates the initial increase of elliptic flow, while the

later behaviour depends on the sign of ǫ(1+w4,c)+2w2,c. In either case, v2 evolves even

for vanishing eccentricity ǫ = 0, which is quite a nontrivial finding. One also sees that

v2 is influenced by the presence of any finite initial w4,c = v4(0, pT ).

For odd harmonics n, Equation (18b) shows that some finite vn(t, pT ) can develop

if and only if there exist at least one non-vanishing odd harmonic at t = 0. In the case

of directed flow v1 for instance, Equation (18b) with m = 0 gives

∂tv1(t, pT ) = −Ncσel.c

2πR2

√
1− ǫ2 e−c2t2/4R2

∑

q≥1

(−1)qw2q−1,cIq

(

c2t2

4R2
ǫ

)

∼ Ncσel.c
3

16πR4

√
1− ǫ2w1,cǫt

2 +O(t4) for t ≪ R

c
,

whereas for triangular flow v3, one finds

∂tv3(t, pT ) ∼
Ncσel.c

4πR2

√
1− ǫ2

[

−w1,c +
c2

8R2
(w3,cǫ+ 2w1,c)t

2 +O(t4)

]

for t ≪ R

c
.

Thus, v3 evolves even in the absence of any “triangularity” in the collision geometry—

in obvious similarity to the evolution of v2 for ǫ = 0. Additionally, ∂tv3(t, pT ) again

illustrates the mixing of different harmonics present in Equations (18a)–(18b).

The latter can be integrated from t = 0 to ∞. One in particular gets

v2(pT ) = w2,c +
Ncσel.

√
1−ǫ2

16
√
πR

{

2F1

(

3

4
,
5

4
; 2; ǫ2

)

ǫ

+
∑

q≥1

(−1

4

)q

w2q,c

[

(2q+1)!!

(q+1)!
2F1

(

2q+3

4
,
2q+5

4
; q+2; ǫ2

)

ǫq+1

+ 16
|2q−3|!!
(q−1)!

2F1

(

2q−1

4
,
2q+1

4
; q; ǫ2

)

ǫq−1

]}

.
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The initial elliptic flow w2,c = v2(t=0, pT ) breaks the linear scaling of v2 with eccentricity

at small ǫ both trivially as well as through its influence on the anisotropic flow developed

in the rescatterings:

v2(pT ) ∼
ǫ≪1

(

1− Ncσel.

4
√
πR

)

v2(t=0, pT ) +
Ncσel.

16
√
πR

[1 + 3v4(t=0, pT )] ǫ.

Again, we find the mixing of different harmonics as well as an evolving v2 at ǫ = 0.

Note that the ratio Ncσel./4
√
πR necessarily takes a small value when the mean number

of rescatterings per particle is small. Accordingly, v2(pT ) does not differ much from its

initial value, which is normal within our few-rescatterings approach.

4. Isotropic initial momentum distribution, anisotropic cross section

We now come back to an isotropic initial momentum distribution, but consider the case

of an anisotropic differential cross section σd(Θ). The latter can generally be expanded

as a Fourier series. The first harmonic in the expansion describes an asymmetry

between forward and backward scattering, the former being favored if the corresponding

coefficient is positive. Then, the second harmonic accounts for increased or suppressed

scattering at ±90o with respect to 0 or 180o. Higher harmonics describe less natural

behaviours, which we shall not consider in the following. Additionally, we assume that

the interaction preserves parity, so that sine harmonics vanish. We thus restrict ourselves

to a differential cross section given by

σd(Θ) =
σel.

2π
(1 + 2ς1 cosΘ + 2ς2 cos 2Θ). (19)

Note that the coefficients ς1 and ς2 are not totally arbitrary, since σd must remain non-

negative when Θ spans the range [0, 2π]: one for example easily checks that, irrespective

of the value of ς1, one should have |ς2| ≤ 1
2
.

The anisotropy of the differential cross section does not affect the scattering rate

nor the resulting total number of rescatterings, which are thus given by Equations (11)

and (12). The loss term of the collision integral relies on the total elastic cross section

and is thus the same as in Section 2: it still yields a contribution to ∂tvn(t, pT ) given by

the right-hand side of Equation (14).

On the other hand, the gain term of the collision integral now gives a non-vanishing

contribution, since ϕ′ is no longer arbitrary, but related to ϕ through ϕ′ = ϕ+Θ, with

a non-uniform distribution in Θ. Inspecting Equations (5), (10) and (13) together with

the differential cross section (19), the contribution to ∂tvn(t, p) of the gain term reads

∂tvn(t, pT )
∣

∣

∣

gain
=

Ncσel.c

8π2R2

√
1− ǫ2 e−c2t2/4R2

×
∫ 2π

0

dϕ cosnϕ

{
∫ 2π

0

dϕ′

2π
exp

(

− c2t2

4R2
ǫ cos 2ϕ′

)

×
[

1 + 2ς1 cos(ϕ
′−ϕ) + 2ς2 cos 2(ϕ

′−ϕ)
]

}

.
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Irrespective of the value of n, the ς1 term leads to a vanishing integral over ϕ′, while

the integrals of the constant and ς2 terms yield modified Bessel functions, so that the

expression between curly brackets equals

I0

(

c2t2

4R2
ǫ

)

− 2ς2I1

(

c2t2

4R2
ǫ

)

cos 2ϕ.

In turn, the remaining integral over ϕ is trivial and yields for n = 2

∂tv2(t, pT )
∣

∣

∣

gain
= −Ncσel.c

4πR2

√
1− ǫ2 e−c2t2/4R2

I1

(

c2t2

4R2
ǫ

)

ς2,

while it vanishes for n 6= 2, i.e. the gain term only contributes to the second harmonic

of anisotropic flow, that is elliptic flow. Putting the gain and loss terms together, one

eventually obtains after integrating over time

v2(pT ) = (1− ς2)
Ncσel.

√
1− ǫ2

16
√
πR

2F1

(

3

4
,
5

4
; 2; ǫ2

)

ǫ, (20)

while vn(pT ) for even n 6= 2 remains given by Equation (15). Thus, an increased

(resp. decreased) scattering probability at ±90o, as found e.g. in collisions of identical

bosons (resp. fermions)—which is obviously not the case of the colliding particles in our

Lorentz-gas model—, leads to a larger (resp. smaller) v2.

Eventually, one can mix the various ingredients together and consider an anisotropic

differential cross section together with some initial anisotropic flow. In that case, the ς1
coefficient starts playing a role when combined with non-vanishing initial wn,c, while ς2
will affect further flow harmonics besides v2.
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