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I. INTRODUCTION

Semiclassical approaches to finite Fermi systems provide a very efficient way of extracting

the average behaviour of relevant physical quantities which characterize such systems. The

most well known example is the celebrated Droplet Model and its extensions developed by

Myers and Swiatecki which describe nicely the average behaviour of the nuclear masses [1].

Semiclassical techniques have also been applied to study the average behaviour of other

properties such as inertias [2], charge radii [3], one- and two-body matrix elements[4], etc.

Our aim here is to present a new Thomas-Fermi (TF) theory, i.e. the h̄ → 0 limit, for

describing the average trends of the effect of pairing correlations in finite Fermi systems.

Semiclassical approaches to the pairing problem can be of interest in scenarios like, e.g.,

cold atomic gases where the huge number of particles makes the full quantal calculation

numerically very complicated. Also these calculations are useful if one is only interested in

the average behaviour of the pairing gap, as is the case of the pairing term in the nuclear mass

formula. The Local Density Approximation (LDA) is the standard semiclassical technique

for dealing with the average behaviour of the pairing which was developed by Schuck and

collaborators more than twenty years ago [10]. In LDA one considers the BCS equations in

1

http://arxiv.org/abs/1106.0187v1


infinite homogeneuous matter and replaces the Fermi momentum kF by its local version in

terms of the density. The validity of LDA applied to the pairing problem is restricted on one

hand to situations where the local Fermi wavelength 2π/kF (R) is small as compared with

the distance where the mean field potential varies appreciably. In the case of a harmonic

oscillator potential V (R) = mω2R2/2 this distance is the so-called oscillator length defined

as l =
√

h̄/mω. On the other hand, a second length scale introduced by pairing is the

coherence length ξ which measures the extension of the Cooper pairs. The validity of LDA

in the pairing case also implies that the coherence length be smaller than the oscillator legth,

i.e. ξ/l < 1, which is usually equivalent to the condition ∆/h̄ω > 1 , where ∆ is the gap

in the single-particle spectrum. The condition ξ/l < 1 is always violated in the outer tail

of the surface because the LDA coherence length behaves as ξ ∼ ∆−1 and the gap vanishes

in this region. In spite of these deficiences, integrated quantities as pairing energies may be

quite accurate when considered on average [10].

In this contribution we present a novel TF theory for pairing which improves the LDA.

This theory can be applied in the weak pairing regime where the chemical potential µ and

the Fermi energy εF have similar values and ∆/µ << 1. This TF theory works, for the

average, in the region ∆ < h̄ω, where LDA generally fails.

An important point that will be discussed in this contribution is the possible quenching

of the pairing gap when approaching the drip line. This fact is well documented in the

recent nuclear physics literature [5–9] and we will see, using some examples, that this effect

is a general feature when superfluid (superconducting) fermions come in a finite confining

potential to an overflow situation.

The contribution is organized as follows. The basic theory is presented in the second

section. The main results are discussed in the third section. Our conclusions are laid out in

the last section.

II. BASIC THEORY

It is well known that in the Hartree-Fock-Bogoliubov theory single-particle density matrix

and the pairing tensor or anomalous density matrix are simultaneously diagonalized by the

so-called canonical or natural basis, |nc〉 [11]. As far as in this work we are only interested
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in the weak coupling limit where the gap is small as compared with the Fermi energy, i.e.

∆/µ < 1, one can replace with only small error the canonical basis by the basis of the normal,

non-superfluid mean field (HF) Hamiltonian. In this situation the gap equation reduces to

its BCS approximation and can be written as

∆n = −
∑

n′

Vnn′

∆n′

2En′

, (1)

where Vnn′ = 〈nn̄|v|n′n̄′〉 is the matrix element of the interaction with |n̄〉 the time reversed

state of |n〉 and En = [(ǫn − µ)2 + ∆2
n]

1/2 the quasi-particle energies, with ǫn the diagonal

elements of the normal mean field Hamiltonian [11] written in the basis of the standard mean

field hamiltonian, that is H|n〉 = ǫn|n〉.

At equilibrium and for time reversal invariant systems canonical conjugation and time

reversal operation are related by 〈r|n̄〉 = 〈n|r〉 ⇒ 〈r1r2|nn̄〉 = 〈r1|ρ̂n|r2〉, where ρ̂n = |n〉〈n|

is the density matrix corresponding to the state |n〉. Therefore the pairing matrix element

can be writeen as:

Vnn′ = 〈nn̄|v|n′n̄′〉 =

∫

dr1dr2dr
′

1dr
′

2〈r
′

1|ρ̂n|r1〉〈r1r2|v|r
′

1r
′

2〉〈r
′

2|ρ̂n|r2〉. (2)

The density matrix ρ̂n fulfills the Schödinger equation

(H − ǫn)ρ̂n = 0, (3)

therefore we can write ∆n = Tr[∆̂ρ̂n] and ǫn = Tr[Hρ̂n] and consequently the state depen-

dence of the gap equation (1) is fully expressed through the density matrix ρ̂n.

Performing the Wigner transform (WT) of Eq.(3) and taking into account that the WT

of the product of two single-particle operators Â and B̂ equals, to lowest order in h̄, the

c-number product of the corresponding WT’s, i.e. A(R,p)B(R,p), one easily obtains the

h̄ → 0 limit of Eq.(3) [11]

(Hcl. − ǫ)fǫ(R,p) = 0, (4)

where Hcl. =
p2

2m∗(R)
+ V (R) is the classical Hamiltonian which contains a local mean field

potential V (R) and a position dependent effective mass m∗(R) and fǫ(R,p) is the Wigner

transform of ρ̂n. Equation (4) has to be read in the sense of distributions. Taking into

account that xδ(x) = 0 one obtains the normalized distribution function

fE(R,p) =
1

gTF (E)
δ(E −Hcl.) +O(h̄2), (5)
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which corresponds to the Thomas-Fermi (TF) approximation of the normalized on-shell or

spectral density matrix [4]. Its norm is equal to the level density (without spin-isospin

degeneracy):

gTF (E) =
1

(2πh̄)3

∫

dRdpδ(E −Hcl.). (6)

The semiclassical pairing matrix element can then be written as [4]:

V (E,E ′) =

∫

dRdp

(2πh̄)3

∫

dR′dp′

(2πh̄)3
fE(R,p)fE′(R′,p′)v(R,p;R′,p′), (7)

where v(R,p;R′,p′) is the double WT of < r1r2|v|r
′

1r
′

2 >. For a local translationally

invariant force this matrix element reduces to v(R,p;R′,p′) = δ(R − R′)v(p − p′) with

v(p− p′) the Fourier transform of the force v(r− r′) in coordinate space.

The gap equation in the TF approximation is obtained by replacing in (1) ρ̂n and Vnn′

by their corresponding semiclassical counterparts Eqs. (5) and (7) respectively. In this way

the TF gap equation reads

∆(E) =

∫

∞

0

dE ′gTF (E ′)V (E,E ′)
∆(E ′)

2
√

(E ′ − µ)2 +∆2(E ′)
, (8)

Eqs.(8)-(7) can readily be solved for a given mean field and the chemical potential is fixed

by the usual particle number condition.

III. RESULTS

As a realistic application of our TF theory we analyze the semiclassical pairing gaps

as a function of mass number along the tin isotopic chain from 100Sn to 132Sn. To this

end we use the D1S Gogny force [12] for both, mean field and pairing fields. The main

ingredients for solving the semiclassical pairing equation (8) are the on-shell density matrix

fE(R,p) (5), which depends on the classical Hamiltonian Hcl that is determined by the

effective mass m∗(R) and the mean field V (R). These two quantities, namely m∗(R) and

V (R), are obtained through the Extended Thomas-Fermi (ETF) theory for finite-range non-

relativistic interactions [13, 14]. Using these quantities as input, one obtains the level density

(6) and the pairing matrix element (7) which allow to solve the gap equation (8) in our TF

approximation. As explained in Refs. [14, 15], the ETF energy density functional can be

transformed, inspired by the Kohn-Sham scheme, into a quantal functional from where the
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FIG. 1: Left: Average pairing gap along the Sn isotopic chain. See text for details. Right: Average

TF gaps at the Fermi energy as a function of the chemical potential in a WS potential computed

in a box of radius R=25, 50, and 100 fm.

quantal average gaps are obtained. It should be noted that within this approximation the

quantal functional associated to a finite- range effective interaction becomes local [14, 15].

The quantal pairing gaps averaged with u2v2 are depicted by circles in the left panel of Fig.

1 and show the typical arch structure. In the same panel we also display the semiclassical

TF gap at the Fermi energy by a thick solid line. We see that in this case the quantal arch

structure completely disappears, as expected due the absence of shell effects in this case,

and that the TF gaps decrease smoothly when the neutron number increases. As it has

been discussed in Ref. [16], quantal effects, i.e. the arch structure over the shell, can be

almost recovered by introducing some additional quantal fluctuations in the level density

and retaining the TF pairing matrix elements (7) in the gap equation (8). The average gaps

obtained in these conditions are displayed by diamonds in the left panel of Figure 2. We see

that the arch structure for the tin isotopic chain is recovered and that the quantal gaps are

predicted quite well in this way.

An important feature of the average TF gaps is that they show a downward trend with

increasing neutron number along a given isotopic chain as it can be appreciated in the left

panel of Fig. 1. To investigate the behaviour of the TF gap at the Fermi energy approaching

the drip line, we show in the right panel of Fig. 1 the TF gap as a function of the chemical

potential employing a Woods-Saxon potential as mean field [17]. From this panel it can be

seen that in the TF limit the gap vanishes just at the drip line when the chemical potential
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FIG. 2: Left: Energy per baryon as a function of the average density in different WS cells corre-

sponding to the inner crust of neutron stars. Right: Radial dependence of TF gap in the analyzed

WS cells. End points indicate radius of WS cells.

equals the depth of the single-particle potential. Actually we put the Woods Saxon potential

in a large external container with radius R what can simulate a Wigner-Seitz (WS) cell as

relevant in the inner crust of neutron stars, see below. We see that the gap becomes more and

more suppressed at the edge of the Woods-Saxon potential for increasing values of the cell

radius. Continuing filling the cell with a neutron gas, the gaps raise again. This quenching

of the gap when approaching the drip line has also been studied by Hamamoto [5] analyzing

the effective gap in weakly bound neutron levels in spherical and deformed nuclei, finding

that the presence of a s1/2 component in the wavefunction of these levels strongly reduces

the effective gap. Other gap components with l 6= 0 show a less decreasing tendency near

the drip line probably because of the centrifugal barrier which keeps the wave functions

localised. This could mask the behaviour of the state dependent gaps in real nuclei near the

neutron drip line.

As mentioned already, another scenario where the quenching of the neutron gap appears

is near the neutron drip line in the inner crust of neutron stars. This region is a crystal of

nuclei embeded in a gas of free neutrons and electrons. The inner crust was described by

Negele and Vautherin [18] at HF level by means of the energy density functional method

together with a spherical WS approach to deal with the crystal structure in an approximated

way. The WS cell is electrically neutral and the ground state of the system of neutrons,

protons and electrons is reached when they are in β-equilibrium. We have performed a
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similar calculation but at TF level and using the BCP energy density functional [19]. This

functional consists of a bulk part provided by a microscopic calculation complemented by

a phenomenological surface term. This functional with only four adjustable parameters

reproduces nuclear binding energies and charge radii of finite nuclei with the same quality

as obtained with the most performant effective forces. The ground state energy per baryon

obtained in this way for average densities in the WS cells ranging from 2.79 × 10−4 to

7.89 × 10−2 fm−3 are displayed in the left panel of Fig. 2 (black dots) in comparison with

the Negele-Vautherin results (red diamonds) finding an excellent agreement between both

calculations. Although pairing correlations in the inner crust of neutron stars are mainly

driven by the free neutron gas, they have, however, a noticeable influence on the composition

and pairing properties of the nuclear cluster inside the WS cell [7]. On top of this TF

calculation in the inner crust, we have also performed a TF pairing calculation in the studied

WS cells. To this end, we have used the Gogny D1S force renormalized by a factor 0.85 to

take into account that in the BCP functional the effective mass equals the physical one. A

specially relevant quantity in this context is the radial dependence of the pairing gap ∆(R)

which is obtained from the WT of the average quantal gap ∆av = Tr[∆̂κ̂]/Tr[κ̂] [20] which

reads:

∆(R) =
1

κ(R)

∫

dp

(2πh̄)3
∆(R,p)κ(R,p) (9)

where κ(R,p) =
∫

dEgTF (E)κ(E)fE(R,p) and ∆(R,p) = −
∫

dp′

(2πh̄)3
v(p− p′)κ(R,p′),

We see in the right panel of Fig. 2 that ∆(R) takes a constant value in the outer part of

the WS cell which corresponds to the gap of the free neutron gas [9]. The predicted behaviour

for ∆(R) are in qualitative agreement with previous calculations [6–9]. The nuclear cluster

inside the WS cell disappears when the homogeneous phase is reached at an average density

of about 0.08 fm−3 (982Ge32). In this case the gap in the cell is practically the gap obtained in

pure neutron matter at the same density. The density of the free neutron gas diminishes in

approaching to drip configurations. In this situation the gap is strongly reduced not only in

the gas but also inside of the nuclear cluster (200Nb41) and it even may disappear completely

in the nucleus when the drip line is reached (see right panel of Fig. 1). Therefore, locally

the TF ∆(R)’s are qualitatively different from what LDA would predict.
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Conclusions and Outlook

We have presented a TF theory for pairing in finite Fermi systems for weak coupling

situations where ∆/εF << 1. This TF theory differs from the usual LDA. This essentially

stems from the fact that we approximate the gap equation in configuration space and, thus,

keep the size dependence of the matrix elements of the pairing force. This is not the case in

LDA where the matrix elements of the force are always evaluated in plane wave basis. This

semiclassical approach to pairing is only based on the usual validity criterion of Thomas-

Fermi theory, namely that the Fermi wave length is smaller than the oscillator length. At no

point the LDA condition that the coherence length must be smaller than the oscillator length

enters the theory. Thus, the present TF approach yields for all pairing quantities the same

quality as TF theory does for quantities in the normal fluid state. An interesting feature

of our study is that the average gap breaks down going to the drip line. This unexpected

result is confirmed by quantal calculations, though strongly masked by shell fluctuations.

For systems with large numbers of particles the fluctuations should die out and, thus, the

semiclassical behaviour prevail. Indeed preliminary results in a slab configuration show good

agreement between quantal and TF gaps around the drip region. We also investigated in slab

geometry the inverse scenario where the external potential gets in the upper part suddenly

strongly constricted rather than widened. Very preliminary results show that the gaps now

become much enhanced where before they were suppressed. Putting such kind of slabs into

a series could create a macroscopic system with strongly enhanced pairing properties. More

studies of this kind are under way.
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[16] X. Viñas, P. Schuck and M. Farine, Int. J. Mod. Phys. E20 399 (2011).

[17] S. Shlomo, Nucl. Phys. 539, 17 (1992).

[18] J.W. Negele and D. Vautherin, Nucl. Phys. 207, 298 (1973).

[19] M. Baldo, P. Schuck and X. Viñas Phys. Lett. B663, 390 (2008).
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