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Two-Photon Exchange Effect Studied with Neural Networks
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The novel approach to the extraction of the two-photon exchange (TPE) correction from the elastic
ep scattering data is presented. The Bayesian framework for the neural networks is adapted. As the
result the empirical fits of the TPE correction and electromagnetic form-factors are obtained. They
are given by the one multidimensional function approximated by the feed forward neural network. In
order to get a model independent approximation a large number of the different network architectures
is considered. The Bayesian algorithm for choosing the best model is applied. A strong dependence
of the TPE fit on the choice of parameterization is observed.
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Study of the elastic ep scattering gives an opportu-
nity to explore the structure of the proton. From the ep
cross section data the magnetic (GM ), and electric (GE)
proton form-factors are obtained, via the Longitudinal-
Transverse (LT) separation [1]. It is convenient to con-
sider, in the data analysis, the reduced cross section
which, in the one-photon exchange (OPE) approxima-
tion, reads

σ1γ,R(Q
2, ǫ) = τG2

M (Q2) + ǫG2
E(Q

2), (1)

τ = Q2/4M2, ǫ =
(

1 + 2(1 + τ) tan2(θ/2)
)−1

,

where Q2 and θ are the four-momentum transfer and
scattering angle respectively.
The form-factor ratio R1γ(Q

2) = µpGE(Q
2)/GM (Q2)

(µp – the magnetic moment of the proton) can be ex-
tracted from the so-called polarization transfer (PT)
measurements [2]. It turned out that there exists the sys-
tematic discrepancy between the form-factor ratio data
obtained via the LT separation and the PT measure-
ments. It seems that taking into account the TPE correc-
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FIG. 1: Network of 2-(3-2)-3 type: 2 input units, one layer
of hidden units, 2 output units. Notice that the FF sector
(grey filled units and dashed connections) in contrast to TPE
sector (black units and solid connections) is connected only
with Q2. Dotted lines denote the ”switched off” connections.
Every solid/dashed line represents one weight parameter.
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tion, the one which is not included in the classical treat-
ment of the radiative corrections, cancels this discrepancy
[3, 4]. Moreover it is claimed that the TPE correction to
µpGE/GM ratio extracted from the PT measurements
is negligible [3, 6]. But taking into account the TPE
contribution in the LT separation: σ1γ+2γ,R(Q

2, ǫ) →
σ1γ,R(Q

2, ǫ) + ∆C2γ(Q
2, ǫ), affects significantly the val-

ues of the proton form-factors. For review of the TPE
physics see [5] while the recent discussions of the TPE
effect can be found in: [6, 7].

The dominant TPE contribution, ∆C2γ(Q
2, ǫ), is given

by the interference between the OPE and TPE am-
plitudes. Hence for the e+p scattering ∆C2γ(e

+p) →
−∆C2γ(e

−p). Therefore the magnitude of the TPE term
can be evaluated by measuring the ratio of the e+p to e−p
elastic cross sections [8]: R+/− = 1 − 2∆C2γ/σ1γ+2γ,R.
A deviation of this function from unity indicates the im-
portance of the TPE effect.

The direct prediction of the proton form-factors and
TPE correction is a difficult task. One has to deal
with the problems of quantum chromodynamics in the
non-perturbative regime. The successful approaches are
rather phenomenological, and contain plenty of internal
parameters, which are fixed to reproduce the experimen-
tal data (for review see [1, 5]).

On the other hand, the existing elastic polarized and
unpolarized e−p and e+p scattering data, covers kine-
matical region broad enough to reconstruct the Q2 de-
pendence of the form-factors. Combining the cross sec-
tion data with the PT measurements and the e−p/e+p
ratio data allows to get an information about the TPE
contribution. The aim of this paper is to find the pa-
rameterization of the form factors and TPE contribution
relying only on the knowledge of the experimental data
(without additional model dependent assumptions).

It is interesting that only three complex form factors
are required to describe the scattering amplitude for the
elastic unpolarized/polarized ep [3] scattering. They de-
pend on Q2 and ǫ. Hence six real functions have to be
determined from the data. In this analysis we assume
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FIG. 2: Log of evidence.

that the PT ratio data is not affected by TPE. Then
one can show that only three unknown functions have
to be found: two proton form-factors and ∆C2γ TPE
function. In this analysis we consider also three differ-
ent data types: the cross section, PT, and e+p/e−p ratio
data. Using at least three different data types appeared
to be necessary because lack of model assumptions about
TPE term.
In order to approximate the form-factors and TPE

function one has to assume particular empirical parame-
terization. However, it is obvious that the choice of the
functional form of the parameterization has an impact on
the fit and its uncertainties. In particular it is the case
of the TPE contribution. This problem has not been
discussed in the previous analyses.
In this approach fitting the data means the construc-

tion of the statistical model with ability to predict the
from factors and TPE term. The Bayesian statistics al-
lows us to compare different models. Indeed we consider
as many different data parameterizations as possible and
the best model is indicated by the objective Bayesian pro-
cedure. In practise one has to evaluate the probability
distribution in the space of all functional parameteriza-
tions of the form-factors and the TPE contribution. The
best model maximizes this probability. This idea has
been already developed to approximate the electromag-
netic form-factors [9] and, here, it is adapted to study
the TPE effect.

In order to construct the statistical model, the space of
GM , GE and ∆C2γ functions is spanned by the artificial
neural networks (ANN). Given ANN of architecture Ai

represents the class of functions, which has an ability to
represent the data. At the beginning of the analysis it is
assumed that all possible models are equally likely. Then
with the help of Bayes’ theorem the posterior probabil-
ity for given model (network) P(Ai|D) is computed. D
is the experimental data. In order to choose the most
suitable approximation of the data, it is enough to eval-
uate the evidence P(D|Ai) – the probabilistic measure
of goodness of the fit (Sec. 3.1 of [9]). The logarithm of
evidence is given by two main contributions: the misfit of
the approximate data (the experimental error function at
the minimum) and the Occam factor. The latter penal-
izes complex models. The most optimal model has the
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FIG. 3: Top panel: GE/GD, GM/µpGD (GD = 1/(1 +
Q2/0.71)2) and ratio µpGE/GM . The predictions of the
proton form-factors of Ref. [12] are also shown. The PT
µpGE/GM data are taken from [2, 6, 11]. Shaded areas de-
note 1σ uncertainty. Bottom panel: the Q2-dependence of
the ∆C2γ/σ1γ+2γ,R at ǫ =0.4 and 0.8. The shaded area de-
notes 1σ uncertainty computed for the fit at ǫ = 0.4. The
dotted lines denote the TPE term predicted at ǫ = 0.4 by the
networks which have lower than the best fit evidence values.

highest value of the evidence.
It is obvious that the magnetic and electric form-

factors as well as the TPE correction function are corre-
lated. All of them should be determined by the same un-
derlaying fundamental model. Therefore, one can imag-
ine that there exists a multidimensional function, de-
fined by the set of parameters, which simultaneously
describes all GM , GE and ∆C2γ . In order to approxi-
mate such multidimensional map, we consider the par-
ticular type of ANN, the feed-forward neural network
in the so-called multi-layer perceptron (MLP) configu-
ration. In this analysis MLP maps 2-dimensional input
space (~in = (Q2, ǫ)T ) to output space, spanned by three
functions ~out = (GM , GE ,∆C2γ)

T . We consider MLP
networks which consist of three layers of units: input,
hidden layer of units and output. Using MLP with only
one hidden layer is motivated by the Kolmogorov func-
tion superposition theorem. It states that every contin-
uous function can be approximated by one-hidden layer
feed forward neural network.
Each single neuron (unit) of network calculates its out-

put value as an activation function fact of the weighted
sum of its inputs fact (

∑

iwiµi), where wi denotes the i-
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th weight parameter, while µi represents the output value
of the unit from the previous layer. In this analysis the
activation functions of the hidden units are given by the
sigmoid function while for the output units the linear ac-
tivation functions are applied. The process of finding the
optimal values of the weights is called the training of the
network.

Notice that MLPs with larger number of units (with
many weights) have better ability to represent the data.
However, usually too complex parameterizations exactly
resemble the data and the generality of the description
is lost (the data is over-fitted). Moreover the complex
parameterizations lead to larger uncertainties then the
simple models. On the other hand too simple param-
eterizations are not capable to code all the important
information hidden in the measurements. Simple func-
tions tend to underestimate the uncertainties. A task of
finding the optimal statistical model which represents the
data accurately enough, but does not overfit the data is
known in the statistic as bias-variance trade off problem.
In the previous global analyses of the ep data the degree
of the complexity of the form-factor and TPE parame-
terizations was chosen with the help of phenomenological
arguments and common sense. In this work we wish to
replace the common sense with the objective Bayesian al-
gorithm, while the phenomenological constraints are re-
duced to the necessary minimum.

The GM and GE depend only on Q2. This property
is achieved by the particular choice of the architecture
of MLP, namely some of the connections are erased. As
the result the network is divided into two sectors. One,
called FF sector, is disconnected with ǫ input and the
second, called TPE sector, is connected with both input
values. The form-factors and TPE correction are still
determined by the large subset of common weights. An
example of 2-(3-2)-3 network (A3,2) is drawn in Fig. 1.
It consists of: 2 input units, 5 units in hidden layer (3
units belong to FF sector, and 2 units belong to the TPE
sector), and 3 output units.

In this work we consider the networks of type 2-(g-t)-3,
where 4 ≤ g + t = M ≤ 12. In the preliminary stage of
the analysis, it has been observed that the networks with
either g=1, or t=1 have been not able to approximate
the data well (similarly as the networks with M < 4).
Therefore we consider only models with g, t > 1. Finally
we discuss 45 different ANN architectures. For every
network Ag,t type the evidence is computed (see Fig. 2).
The network 2-(5-6)-3 is obtained as the most optimal
model. It has the highest evidence value.

Every map Ag,t, which has been discussed in the model
comparison, is defined by set of weight parameters which
maximizes the posterior probability:

P (~w| D, {I},Ag,t) =
P (D| ~w, {I},Ag,t)P (~w| {I},AM )

P (D| {I},AM )
.

(2)

P (D| ~w, {I},AM ) is the likelihood function of the data,
while P (~w| {I},AM ) denotes the prior probability. {I}
is the set of initial constraints.

The data likelihood function is defined by:
P(D|~w, {I},Agt) ∼ exp (−Sex(D, ~w)), where
Sex(D, ~w) = χ2

σ + χ2
PT + χ2

+/− + χ2
GM

+ χGE is

the total error function. By χ2
σ,PT,+/− we denote the

error functions of: the cross section (27 sets, similarly
as in [10]), PT (14 sets) and e+p/e−p ratio (3 sets)
data. In the case of the cross section data, similarly as
in [10], the systematic normalization uncertainties are
taken into account: for every data set a normalization
parameter is introduced and is fixed during the training.
The selection of the PT ratio data is the same as in
[10], but the two data sets are replaced with their recent
updates [2]. Eventually we include also the latest PT
measurements of the form-factor ratio [6, 11]. Since the
presence of the PT ratio data is required to properly
extract the TPE contribution, we consider only the cross
section points below Q2 = 10 GeV2. Above this limit
the PT data is not available. Eventually χ2

GM/E
denotes

the error function introduced to take into account the
two artificial form-factor points (see discussion below).

We distinguish the ANN and physical initial con-
straints. The ANN constraints are introduced in or-
der to face the over-fitting problem. Indeed, defining
the prior probability as it follows: P (~w| {I},Agt) ∼

exp
[

−(α/2)
∑

i∈all weights w
2
i

]

prevents from getting the

over-fitted parameterizations. This kind of the prior as-
sumption does not affect the final results [9]. Notice that
the regularization parameter, α, is also established in
the optimal way (see: [9], Sec. 3.1). The physical con-
straints are motivated by the general properties of the
form-factors and the TPE term. We assume that: at
Q2 = 0, GM/µp = GE = 1 and ∆C2γ(ǫ = 1) = 0. In
practice, three artificial data points are added to the ex-
perimental data sets, namely (GM (0)/µp = 1,∆GM (0) =
∆), (GE(0) = 1,∆GM (0) = ∆) and (R+/−(0, 1) =
1,∆R+/−(0, 1) = ∆), where ∆ = 0.01.

The optimal values of the weight parameters are estab-
lished by applying the quick-prop gradient descent train-
ing algorithm. In reality for every network Ag,t 10

3 net-
works, with the randomly chosen initial values of weights,
have been trained. Among them, the parameterization
with the highest evidence was taken for the further mod-
els comparison.

In Fig. 3 (top panel) we plot the form-factor ratio
R1γ computed with the network A5,6 (our best fit). The
shaded areas denote 1σ uncertainty computed from the
covariance matrix of the fit. Our predictions of the form-
factors are compared to the results of Ref. [12] where
the TPE function has been postulated based on the phe-
nomenological arguments. The discrepancies between
our fits and those of Ref. [12] appear above Q2=4 GeV2.

In the bottom panel of Fig. 3 the Q2 dependence
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FIG. 4: Ratio R+/− predicted by the network 2-(5-6)-3. The
grey areas denote 1σ uncertainty.

of the ratio ∆C2γ/σ1γ+2γ is presented. We see that at
Q2 ∼ 0.2 GeV2 the TPE correcting term has a local min-
imum and it becomes an decreasing function of Q2 above
2 GeV2. With growing Q2 fit uncertainty also enlarges.
Indeed, above Q2 = 6 GeV2 the number of experimental
points is limited and the data is not accurate enough to
get an exact approximation. It is interesting to mention
that for large ǫ (above 0.8) and Q2 around 1.5 GeV2 the
TPE correction is positive.
In the bottom panel of Fig. 3 we plot also the TPE con-

tribution (dotted lines) predicted by the models: A4,2,
A4,3, A6,2, A6,3, A6,4, and A5,7. They are characterized
by lower evidence values than A5,6 model, but they could
be acceptable due to the χ2 method (their χ2

min values
are much lower then number of points). The difference
between these fits and prediction of A5,6 is spectacular.
It demonstrates that the model comparison is crucial for
the proper choice of the TPE parameterization.
Having in mind the forthcoming measurements of the

elastic e−p and e+p scattering [8] in Fig. 4, we plot our
predictions of the ratio R+/−. Even thought, we have
not assumed the linearity of TPE term in ǫ, the final fit
behaves like linear function of ǫ, as it has been observed
in plenty of previous global analyses [5].
The obtained TPE function has particular analytical

form (see [14]), which can be written as the Taylor series
in ǫ. If one neglects higher than linear ǫ terms then the
TPE correction is the sum of two contributions, which
play the particular role in the LT separation. The one
corrects the magnetic form-factor and it appears to be
negative. The other modifies the electric form-factor and
it is the positive function of Q2.
The aim of this work was to extract from the elas-

tic ep scattering data the proton form-factors and TPE
function. It was done by adapting the Bayesian statisti-
cal methods developed for the feed forward neural net-
works. The phenomenological constraints were limited
to the necessary minimum. The final form-factors and

TPE parameterizations were chosen among the large set
of possible models. Therefore the obtained empirical pa-
rameterizations are model independent and unbiased.

The analytical form of the fits and covariance matrix
can be taken from [14]. All numerical computations have
been done with the use of the C++ library developed by
K.M.G.
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