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Abstract

Using interpolators with different SU(2)L × SU(2)R transformation
properties we study the chiral symmetry and spin contents of the ρ- and ρ′-
mesons in lattice simulations with dynamical quarks. A ratio of couplings
of the qγiτq and qσ0iτq interpolators to a given meson state at different
resolution scales tells one about the degree of chiral symmetry breaking
in the meson wave function at these scales. Using a Gaussian gauge in-
variant smearing of the quark fields in the interpolators, we are able to
extract the chiral content of mesons up to the infrared resolution of ∼ 1
fm. In the ground state ρ meson the chiral symmetry is strongly broken
with comparable contributions of both the (0, 1) + (1, 0) and (1/2, 1/2)b
chiral representations with the former being the leading contribution. In
contrast, in the ρ′ meson the degree of chiral symmetry breaking is man-
ifestly smaller and the leading representation is (1/2, 1/2)b. Using a uni-
tary transformation from the chiral basis to the 2S+1LJ basis, we are able
to define and measure the angular momentum content of mesons in the
rest frame. This definition is different from the traditional one which uses
parton distributions in the infinite momentum frame. The ρ meson is
practically a 3S1 state with no obvious trace of a “spin crisis”. The ρ′

meson has a sizeable contribution of the 3D1 wave, which implies that the
ρ′ meson cannot be considered as a pure radial excitation of the ρ meson.

1 Introduction

The structure of hadrons in the infrared is a challenging topic. At low resolution
scales (i..e., large distances O(1 fm)) both, confinement and chiral symmetry
breaking, are crucial phenomena. They influence mass and angular momentum
generation of hadrons. These phenomena are of primary interest both theo-
retically and experimentally. To understand physics at these deeply nonper-
turbative scales one needs direct information about the chiral and the angular
momentum content of hadrons.
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Such information can be obtained from dynamical lattice simulations. Using
a set of interpolators that form a complete basis with respect to the SU(2)R ×
SU(2)L transformations, one is able to define in a gauge invariant manner and
measure the chiral content of mesons at different resolution scales [1]. One basi-
cally measures a ratio of couplings of different interpolators to a given hadron.
Such a ratio tells us something about chiral symmetry breaking in a hadron
wave function. If chiral symmetry were unbroken in a hadron, then only in-
terpolators with definite chiral transformation properties would couple to this
hadron. Chiral symmetry breaking in a hadron would imply that interpolators
with different chiral transformation properties would create this hadron from
the vacuum.

The output of the two-flavor dynamical simulations with mAWI ∼ 15 −
30 MeV [1] was that at the resolution scales 0.15 − 0.6 fm the ρ meson is
approximately a 55% - 45% mixture of the two possible chiral representations
(0, 1) + (1, 0) and (1/2, 1/2)b. Given a unitary transformation from the quark-
antiquark chiral basis to the 2S+1LJ basis in the rest frame [2], we were able
to extract the angular momentum content of the ρ meson in the rest frame [1].
The result was that the ρ meson at the scales 0.15 − 0.6 fm is approximately
a 3S1 state with a tiny contribution of a 3D1 wave. In this definition of total
angular momentum (in the rest frame) there is no “spin crisis”, at least for the
ρ meson. This definition of the spin content of a hadron is very different from
the traditional one. The latter relies on the parton distributions in the infinite
momentum frame extracted from the deep inelastic scattering with polarization
[3]. Accordingly only about 30% spin of the nucleon is carried by the spins of
valence quarks [4], which gave rise to the term “spin crisis”. Similar results
within this same definition are obtained on the lattice both for the nucleon and
mesons, for a review and references see [5]. Then a natural question is which of
these two definitions does reflect the spin content of a hadron?

In [6] we have also measured the chiral and angular momentum content of
the first excitation of the ρ meson, ρ′ ≡ ρ(1450). As compared to the ground
state ρ, we have observed a very different dependence of the chiral and angu-
lar momentum content on the resolution scale. In particular, we have found
weaker chiral symmetry breaking in the ρ′ state with the (1/2, 1/2)b represen-
tation being the leading one in the infrared. We have also found a significant
contribution of the 3D1 wave in the ρ′ wave function. This means that the ρ′

cannot be considered as a pure radial excitation of the ρ meson.
In these studies only two different resolution scales were used. This did

not allow to reliably extrapolate the results up to the resolution scale of the
excited hadron size, ∼ 1 fm. In the present paper we extend our correlation
matrix from 4 × 4 to 6 × 6 by providing three different Gaussian smearings of
the quark fields in the vector and tensor interpolators. This allows us to discuss
the chiral symmetry and angular momentum content of both ρ and ρ′ mesons
in the infrared region of 1 fm, where mass is generated.

2 Theoretical foundations of the method

In this paper we study the chiral and angular contents of the ρ-mesons, conse-
quently we restrict our discussions specifically to the I = 1, JPC = 1−− states.
But the formalism is generic and can be used for mesons with other quantum
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numbers as well.
A chiral classification of some interpolators is performed in Ref. [7] and a

full classification of the quark-antiquark states as well as of the corresponding
interpolators is done in Ref. [8]. In the case of the I = 1, JPC = 1−− states
there are two allowed chiral representations, (0, 1) + (1, 0) and (1/2, 1/2)b. The
state that transforms as (0, 1) + (1, 0) can be created from the vacuum by the
vector current,

OV
ρ (x) = q(x) γi~τ q(x) , (1)

and the state that belongs to the (1/2, 1/2)b representation can be created by
the pseudotensor operator,

OT
ρ (x) = q(x)σ0i~τ q(x) . (2)

The chiral partner of the first operator is the axial vector current,

Oa1(x) = q(x) γiγ5~τ q(x) , (3)

that creates from the vacuum the a1 states, I = 1, JPC = 1++. The chiral
partner of the second operator is the operator

Oh1(x) = εijkq(x)σjk q(x) , (4)

that couples to the I = 0, JPC = 1+− h1 mesons.
It is well established in quenched [9] and dynamical [1, 6, 10] lattice simu-

lations that the ground and excited states of the ρ meson can be created from
the vacuum by both the vector and pseudotensor operators. This fact by itself
means that chiral symmetry is broken in the vacuum and in the physical states,
and these states are mixtures of these two representations [1, 6].

The chiral basis in the quark-antiquark system is a complete one and can be
connected to the complete angular momentum basis in the rest frame via the
unitary transformation [2]

(
|(0, 1)⊕ (1, 0); 1 1−−〉
|(1/2, 1/2)b; 1 1−−〉

)
= U ·

(
|1; 3S1〉
|1; 3D1〉

)
(5)

with

U =




√
2
3

√
1
3√

1
3 −

√
2
3


 . (6)

Consequently, if we know the mixture of the two allowed chiral representations
in a physical state, we are also able to obtain the angular momentum content
of this state in the rest frame.

In particular, we can answer a question whether or not a spin of a meson
is carried by spins of its valence quarks in the rest frame. This definition of
the spin content is different from the traditional one that relies on the parton
distributions in the infinite momentum frame. According to the latter only
about 30% of the nucleon spin is carried by the valence quarks, which has been
referred to as “spin crisis”. Hence we can compare a spin content of a meson
obtained according to our definition with the spin content extracted from the
parton distributions in the infinite momentum frame.
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3 Reconstruction of the coupling constants with

the variational method

In order to resolve a few subsequent physical states with the same quantum
numbers one has to choose a convenient set of operators Oi with the same
quantum numbers and a significant overlap with the physical states, and calcu-
late a cross-correlation matrix at zero spatial momentum (i.e., in the rest frame)
[11],

C(t)ij = 〈Oi(t)O
†
j (0)〉 =

∞∑

n=1

a
(n)
i a

(n)∗
j e−E(n)t , (7)

with the coefficients giving the overlap of the operators with the physical state,

a
(n)
i = 〈0|Oi|n〉 . (8)

With a set of operators spanning a complete and orthogonal basis with
respect to some symmetry group, these overlaps (coupling constants) give the
complete information about symmetry breaking. The interpolating composite
operators Oi are not normalized on the lattice and consequently the absolute

values of the coupling constants a
(n)
i cannot be obtained. However, a ratio of

the couplings is a well defined quantity and can be computed as [1]

a
(n)
i

a
(n)
k

=
Ĉ(t)iju

(n)
j

Ĉ(t)kju
(n)
j

. (9)

Here Ĉ is the cross-correlation matrix from (7), a sum is implied for the in-

dex j on the right-hand side and u
(n)
j are the eigenvectors obtained from the

generalized eigenvalue problem,

Ĉ(t)iju
(n)
j = λ(n)(t, t0)Ĉ(t0)iju

(n)
j , (10)

with t0 being some normalization point in Euclidean time.
In our calculation a set of interpolatorsOi complete with respect to SU(2)L×

SU(2)R and the angular momentum basis consists of the vector (1) and pseu-
dotensor (2) operators. However, there is an infinite amount of nonlocal opera-
tors with the same chiral and angular momentum structure like (1) and (2) but
with different radial spatial form. We want to construct these nonlocal oper-
ators in such a way that each of them would probe the hadron structure at a
given physical resolution scale.

In the continuum the corresponding amplitudes are given as

〈0|q(0)γµq(0)|V (p;λ)〉 = mρf
V
ρ eµλ , (11)

〈0|
(
q(0)σαβq(0)

)
(µ)|V (p;λ)〉 = ifT

ρ (µ)eµλ(e
α
λp

β − eβλp
α) , (12)

where V (p;λ) is the vector meson state with the mass mρ, momentum p and po-
larization λ. The vector current is conserved, consequently the vector coupling
constant fV

ρ is scale-independent. The pseudotensor “current” is not conserved
and is subject to a nonzero anomalous dimension. Consequently the pseudoten-
sor coupling fT

ρ (µ) manifestly depends on the scale µ. In the rest frame the
ratio

fV
ρ

fT
ρ (µ)

=
〈0|q(0)γiq(0)|V (λ)〉

〈0| (q(0)σ0iq(0)) (µ)|V (λ)〉
(13)
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Set βLW am0 #conf a [fm] mπ [MeV] mρ [MeV] mρ′ [MeV]
A 4.70 -0.050 200 0.1507(17) 526(7) 911(11) 1964(182)
B1 4.65 -0.060 300 0.1500(12) 469(5) 870(10) 1676(106)
B2 4.65 -0.070 200 0.1406(11) 296(6) 819(18) 1600(181)
C 4.58 -0.077 300 0.1440(12) 323(5) 795(15) 1580(159)

Table 1: Specification of the data used here; for the gauge coupling only the
leading value βLW is given, m0 denotes the bare mass parameter of the CI
action. Further details on the action, the simulation and the determination of
the lattice spacing and the π- and ρ-masses are found in [16, 17].

Set Rn [fm] Rw [fm] Ruw [fm]
A 0.36 0.67 –
B1 0.34 0.69 0.81
B2 0.34 0.66 0.85
C 0.33 0.66 –

Table 2: Specification of the smearing radii R.

coincides with the ratio of matrix elements (9) with i ≡ V ; k ≡ T .

4 Physical resolution scale

We want to probe the hadron structure at infrared scales, where mass is gen-
erated. The hadron interpolators that create and annihilate the hadrons are
built from quark fields. With the local lattice interpolators of type q(x)Γq(x)
we study the hadron structure at the scale given by the lattice spacing a. Given
a reasonably small value of a we can fix a smaller resolution (larger size) of
our probe by a gauge invariant smearing of the quark fields in the interpolator.
Namely, we smear the quark fields in the source and sink in spatial directions
with a Gaussian profile of the size R . Technically this Gaussian type of smear-
ing is achieved by Jacobi smearing [12]. For examples of the resulting quark
profiles see, e.g., [13].

The eigenvectors of the cross correlation matrix then give us information on
the contribution of the various interpolators (with different Dirac structure and
built from differently smeared quark sources) to the physical state.

Then, even in the continuum limit a → 0 we may probe the hadron structure
at a scale fixed by R. Such a definition of the resolution is similar to the
experimental one, where an external probe is sensitive only to the quark fields
(it is blind to gluonic fields) at a resolution that is determined by the typical
momentum transfer in spatial directions.
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Figure 1: The masses of both ρ and ρ′ states extracted from different 4 ×
4 and 6 × 6 correlation matrices. The crosses indicate the mass values from
experiments.

5 Lattice details and choices of correlation ma-

trix

In our study we use Chirally Improved fermions [14] and the Lüscher-Weisz
gauge action [15]. The lattice size is 163 × 32. We use dynamical gauge con-
figurations with two mass-degenerate light quarks. With the lattice spacing
≈ 0.15 fm the spatial volume of the lattice is ≈ 2.43 fm3. For the ground states
and some their first excitations such a volume turns out to be sufficient to get
approximately correct masses of hadrons in the physical limit [17], though it
is certainly too small to consider higher excitations. In our present study we
limit ourselves to the ρ and ρ′ states. For details on the simulation we refer the
reader to the Table 1 and to [16, 17] .

We use three different smearing radii R for the quark fields in the source
and sink, see Table 2. The “narrow” smearing width (index n) varies between
0.33 and 0.36 fm, depending on the set of configurations. The “wide” smearing
radius (index w) lies between 0.66 and 0.69 fm and the “ultrawide” one is 0.81
– 0.85 fm (index uw). Hence we can study the hadron structure at resolutions
0.33 fm – 0.85 fm and will be able to extrapolate the results up a resolution of
O(1 fm).

We have the following set of operators:

OV
n = unγ

idn , OV
w = uwγ

idw , OV
uw = uuwγ

iduw ,

OT
n = unγ

tγidn , OT
w = uwγ

tγidw , OT
uw = uuwγ

tγiduw , (14)

where γi is one of the spatial Dirac matrices and γt is the γ-matrix in (Eu-
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Figure 2: A ratio of the vector to the pseudotensor couplings versus a resolution
scale R, as extracted from all 4× 4 and 6× 6 correlation matrices. Broken lines
are drawn only to guide the eye.

clidean) time direction. For the sets A and C we construct 4 × 4 correlation
matrices (i.e., with both vector and pseudotensor interpolators using narrow
and wide smearing radii), while for the sets B1 and B2 we study the 6×6 corre-
lation matrix (with narrow, wide and ultrawide smearings for both vector and
pseudotensor operators) as well as different possible 4× 4 sub-matrices.

For the parameters of the simulation the ρ mass is below the p wave decay
energy. As has been discussed in [17] no coupling to the ππ channel is observed,
which may be due to the fact that no meson-meson interpolator has been ex-
plicitly included in the set. We thus may identify the second lowest observed
energy level with the ρ′ (see also [18]). The masses of both ρ and ρ′ states,
extracted from different sets and correlation matrices, are shown in Fig. 1.

6 Chiral symmetry breaking and the angular

momentum content of ρ and ρ
′ mesons

A measure of chiral symmetry breaking in ρ and ρ′ states at some resolution
R is given by the ratio aV /aT , which is the same as the ratio (13), obtained
at a given resolution scale. At µ → ∞ (i.e., at a → 0, R → 0) this ratio is
divergent, because the pseudotensor operator decouples from the physical state
in the asymptotic freedom regime. This can be understood in two ways. In
the asymptotic freedom regime chiral symmetry is not broken, hence only one
of the two interpolators (which have different chiral transformation properties)
can couple to the state. The vector current is conserved and the constants
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fV are scale-independent. The pseudotensor “current” is not conserved and in
the asymptotic freedom regime its coupling approaches zero [9]. Indeed, in our
previous study [1] we did observe this behavior for the ρ meson towards the
ultraviolet regime. However, the way how this ratio approaches the ultraviolet
regime for different physical states is a priori unknown and explicitly depends
on the hadron wave functions.

The results for this ratio for both the ρ and ρ′ states obtained from different
4×4 and 6×6 correlation matrices are consistent with each other. Fig. 2 shows
the results for ρ and ρ′ from both sets of correlation matrices. A complete set of
operators would include all possible smearing radii R and the correlation matrix
would be of infinite dimension. Given the consistency of the results fror 4 × 4
and 6× 6 we can deduce reliable physical information already from the present
results.

In particular, we clearly see that the ratio for the ρ and ρ′ mesons ap-
proaches the ultraviolet regime in a very different manner. For the ρ′ state the
pseudotensor operator decouples much faster towards the ultraviolet than for
the ρ meson. This demonstrates that the wave functions of these two states
are significantly different. Since the ratio reflects a degree of chiral symmetry
breaking at different scales, this symmetry breaking is very different for both
states.

The ratio aV /aT , which is a ratio of two possible chiral representations in
a hadron wave function, also defines an angular momentum decomposition of a
state via the unitary transformation (5), (6). In particular, in the asymptotic
freedom regime, where only the (0, 1) + (1, 0) representation couples, the an-
gular momentum content of ρ mesons is fixed to be

√
2/3 |3S1〉 +

√
1/3 |3D1〉.

Deviation from this superposition of the S- and D-waves in a state towards the
infrared regime is due to chiral symmetry breaking in this state. From Fig. 2 we
clearly see that the ratio is very different for both states at all possible scales.
Hence chiral symmetry breaking as well as the angular momentum generation
are also very different for both states. This difference shows that the ρ′ state
cannot be considered as simply a radial excitation of the ρ meson, since the lat-
ter would require that their angular momentum content is the same at different
resolutions.

Existing data at the resolutions R ∼ 0.65− 0.85 fm allows us to extrapolate
results up to a resolution of 1 fm. A tentative extrapolation with uncertainties
is represented by a shadowed area on Fig. 2. Given that the physical size of the
ρ state is of the order 0.7− 0.8 fm, as could be deduced from the experimental
charge radii of the nucleon and ρ-meson, and for the excited ρ′ meson it should
be of the order of 1 fm, we can deduce chiral symmetry breaking and the angular
momentum content of both states at the infrared scales of their size.

For the ground state ρ meson this ratio is within aρV /a
ρ
T = 1.14− 1.19 while

for its first excitation this ratio aρ
′

V /aρ
′

T = 0.48−0.84. Chiral symmetry is almost
maximally broken (i.e., close to 1) in the ground state ρ, while a degree of chiral
symmetry breaking in the ρ′ state is essentially smaller, which is consistent with
effective chiral restoration in highly excited hadrons [8]. In the ground state ρ
the slightly leading representation is (0, 1) + (1, 0), while in the excited ρ′ state
a leading chiral representation is (1/2, 1/2)b.

Given these ratios, we can obtain the angular momentum contents of both
mesons from (5), (6). For the ρ meson it is approximately 0.99 |3S1〉−0.1 |3D1〉.
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Hence the ground state in the infrared is practically a pure 3S1 state with a tiny
admixture of the 3D1 wave.

In contrast, in the excited ρ meson there is a sizeable contribution of the 3D1

wave. In the latter case the angular momentum content is between the following
two lower and upper bound values. For the lower bound it is 0.88 |3S1〉 −
0.48 |3D1〉 and for the upper bound it is 0.97 |3S1〉−0.25 |3D1〉. This once again
demonstrates that the first excitation of the ρ meson cannot be considered as
a pure radial excitation of the ground state ρ. Obviously, both radial and
orbital degrees of freedom are excited which reflects yet unknown dynamics of
confinement and chiral symmetry breaking.

The fact that the angular momentum content of the ρ meson is given by
the 3S1 state means that according to a definition used in our study there is no
“spin crisis” . The spin of the ρ meson in the rest frame is carried by spins of its
valence quarks dressed by gluons. The gluonic field is important for the angular
momentum generation, because it is this field that provides chiral symmetry
breaking and is responsible for most of the hadron mass. However, it is not
clear to us whether it is possible to separate contributions of quarks and gluons
in the highly non perturbative, confining regime.

7 Conclusions

We summarize the most important implications of our study. It is possible to
define and measure a degree of chiral symmetry breaking in mesons at different
resolution scales. We are able to define and measure in a gauge invariant man-
ner the angular momentum content of mesons in the rest frame. The angular
momentum content of hadrons is deeply connected with chiral symmetry break-
ing in hadrons. Chiral symmetry is strongly broken in the ρ meson and its wave
function (Bethe-Salpeter amplitude) is approximately a 55% - 45% mixture of
the chiral representations (0, 1)+(1, 0) and (1/2, 1/2)b. The angular momentum
content of the ρ meson is almost completely represented by the 3S1 partial wave
at resolution scales of 0.15− 1 fm. According to our definition of the spin con-
tent, the spin of the ρ meson is carried by its valence quarks. Chiral symmetry
breaking in the excited ρ′ meson is weaker and the leading chiral representation
in this case is (1/2, 1/2)b. There is a significant contribution of the 3D1 wave
in the ρ′ wave function and consequently the ρ′ meson cannot be considered as
a radial excitation of the ρ.
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