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Abstract. The Gallant-Lambert-Vanstone (GLV) method is a very ef-
�cient technique for accelerating point multiplication on elliptic curves
with e�ciently computable endomorphisms. Galbraith, Lin and Scott (J.
Cryptol. 24(3), 446-469 (2010)) showed that point multiplication exploit-
ing the 2-dimensional GLV method on a large class of curves over Fp2 was
faster than the standard method on general elliptic curves over Fp, and
left as an open problem to study the case of 4-dimensional GLV on spe-
cial curves (e.g., j(E) = 0) over Fp2 . We study the above problem in this
paper. We show how to get the 4-dimensional GLV decomposition with
proper decomposed coe�cients, and thus reduce the number of doublings
for point multiplication on these curves to only a quarter. The resulting
implementation shows that the 4-dimensional GLV method on a GLS
curve runs in about 0.78 the time of the 2-dimensional GLV method on
the same curve and in about 0.87 the time of the 2-dimensional GLV
method using the standard method over Fp. In particular, our imple-
mentation reduces in up to 17% the time of the previously fastest im-
plementation of point multiplication on x86-64 processors due to Longa
and Gebotys (CHES2010).

Key words: Elliptic curves, point multiplication, GLV method, GLS
curves.

1 Introduction

The fundamental operation in elliptic curve cryptography is point multiplication.
In 2001, Gallant, Lambert, and Vanstone [7] described a new method (a.k.a.
GLV method) for accelerating point multiplication on certain classes of elliptic
curves with e�ciently computable endomorphisms. Let E be an elliptic curve
over a �nite �eld Fq and let P ∈ E(Fq) have prime order r. Given an e�ciently
computable endomorphism ψ for E s.t. ψ(P ) = [λ]P ∈ 〈P 〉, the GLV method
consists in replacing the computation [k]P by a multi-scalar multiplication with
the form [k1]P +[k2]ψ(P ), where the decomposition coe�cients |k1|, |k2| ≈ r1/2.



Since the number of doublings is halved, this method potentially injects a signif-
icant speedup in the point multiplication computation on these elliptic curves.
This approach might be generalized to m-dimensional case, which can achieve
further speedups, if one could get higher degree decompositions with the form
[k1]P + [k2]ψ(P ) + . . .+ [km]ψ(P )m−1 where |ki| ≈ r1/m.

Constructing e�ciently computable endomorphisms is one of the key prob-
lems in the GLV method. Gallant, Lambert and Vanstone gave some special
examples in [7]. In 2002, Iijima, Matsuo, Chao and Tsujii [12] constructed an
e�cient computable homomorphism on elliptic curves E(Fp2) with j(E) ∈ Fp
arising from the Frobenius map on a twist of E. Galbraith, Lin, and Scott [5,6]
generalized their construction for a large class of elliptic curves over Fp2 (referred
to as GLS curves) and applied the GLV method. They gave detailed implemen-
tations on these curves, showing that their method ran in between 0.70 and 0.84
the time of the best methods for elliptic curve point multiplication on general
curves at that time. A detailed analysis on various x86-64 processors was carried
out in [15] and later extended by Longa in [17]. Longa showed that GLS curves
over Fp2 reduce costs in the range 9%-45% in comparison with general curves
over Fp, implying that the boost in performance obtained with GLS tightly
depends on the particular platform.

Since previous applications of the GLV method have been limited to di-
mension 2, only scalar decomposition with coe�cients of size O(r1/2) has been
extensively studied [14,20,21,4,5,6]. Galbraith, Lin and Scott showed how to get
a 4-dimensional construction on certain GLS curves with j-invariant 0. However,
the decomposition of the scalar k with coe�cients of size O(r1/4) for this case is
not straightforward and has not been studied so far. In an earlier work [24], Zhou
et al. tried the LLL algorithm [3, Alg. 2.6.3] to get a reduced basis for computing
Babai rounding in the 3-dimensional case. Hence, the study and analysis of the
4-dimensional case is missing.

Our contributions can be summarized as follows:

� We propose a lattice-based decomposition for 4-dimensional GLV on GLS
curves with j-invariant 0. The decomposed coe�cients are shown to have size
O(2
√
2r1/4) ≤ 2

√
2p, thus enable the reduction of the number of doublings

on these curves to a quarter.
� We extend Brown, Myers and Solinas's decomposition method for �compact
curves� to support 2-dimensional GLV decomposition on ordinary curves
with j-invariant 0 [2]. We observe that our upper bound for the absolute
values of decomposition coe�cients is better than the previous results. Ac-
cording to Sica et al.'s analysis [21], this upper bound is optimal.

� We realize high-speed implementations of point multiplication at the 128-bit
security level on x86-64 processors using j-invariant 0 curves: i) over Fp using
the 2-dimensional GLV method; ii) over Fp2 using the 2-dimensional GLV
method; and iii) over Fp2 using the 4-dimensional GLV method.

The resulting implementations show that the 4-dimensional GLV method
on a j-invariant 0 GLS curve runs in 0.78 the time of the 2-dimensional GLV
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method on the same curve and in 0.87 the time of the 2-dimensional GLV method
using the standard method over Fp. In comparison with the previously fastest
implementation using 2-dimensional GLV-based GLS curves with Twisted Ed-
wards coordinates by Longa and Gebotys [15], which runs in 181,000 cycles on
a 3.0GHz AMD Phenom II X4 940 processor [17, Ch. 5], the presented imple-
mentation reduces the time in up to 17%, running in only 150,000 cycles on the
same platform.

The rest of the paper is organized as follows. Section 2 presents the de�ni-
tion of twist maps on elliptic curves and their constructions. Section 3 describes
Galbraith-Lin-Scott elliptic curves and some e�ciently computable endomor-
phisms on them. In Section 4 we describe our decomposition method for sup-
porting 4-dimensional GLV. In Section 5 we present a new 2-dimensional GLV
decomposition method for ordinary curves over Fp with j-invariant 0. Our ef-
�cient implementations and the corresponding benchmark results are described
in Section 6. We end this paper with some conclusions in Section 7.

2 Twists on Elliptic Curves

Let E and E′ be two elliptic curves over Fq where q is a power of some prime p.
E′ is called a twist of degree d of E if there exists an isomorphism φd : E

′ → E
de�ned over Fqd and d is minimal.

If E′ is a degree d twist of E, then the automorphism group Aut(E)must con-
tain an element of order d [9]. Moreover, if p ≥ 5, we have #Aut(E)|6 according
to [23, Th. III.10.1].

All twists can be described explicitly as in [23, Prop. X.5.4]. Suppose p ≥ 5,

the set of twists of E is canonically isomorphic to Fq∗/(Fq∗)
d
with d = 2 if

j(E) 6= 0, 1728, d = 4 if j(E) = 1728 and d = 6 if j(E) = 0. Let E be given by
a short Weierstrass equation y2 = x3 + ax + b with a, b ∈ Fq and D ∈ F∗q . The
twists corresponding to D mod (F∗q)

d
are given by

d = 2 : y2 = x3 + a/D2x+ b/D3,

φd : E
′ → E : (x, y) 7→ (Dx,D3/2y)

d = 4 : y2 = x3 + a/Dx,

φd : E
′ → E : (x, y) 7→ (D1/2x,D3/4y)

d = 6 : y2 = x3 + b/D,

φd : E
′ → E : (x, y) 7→ (D1/3x,D1/2y).

Iijima, Matsuo, Chao and Tsujii [12] constructed an e�cient computable
homomorphism on elliptic curves E(Fpk) arising from the Frobenius map π on
a twist of E:

ψd : E
′(Fpk)

φd→ E(Fpdk)
π→ E(Fpdk)

φ−1
d→ E′(Fpk).
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3 The GLS Elliptic Curves

Galbraith, Lin and Scott [5,6] implemented the 2-dimensional GLV method by
using an e�ciently computable homomorphism on elliptic curves over Fp2 . They
generalized Iijima et al.'s construction as follows:

Theorem 1. [5,6] Let E be an elliptic curve de�ned over Fq such that #E(Fq) =
q + 1− t and let φ : E → E′ be a separable isogeny of degree i de�ned over Fqk
where E′ is an elliptic curve de�ned over Fqm with m|k. Let r|#E′(Fqm) be a
prime such that r > i and r|#E′(Fqk). Let π be the q-power Frobenius map

on E and let φ̂ : E′ → E be the dual isogeny of φ. De�ne ψ = φπφ̂, then
ψ ∈ EndF

qk
(E′), and for P ∈ E′(Fqk) we have ψk(P ) − [ik]P = OE′ and

ψ2(P )− [it]ψ(P ) + [i2q]P = OE′ .

Corollary 1. [5,6] Let p > 3 be a prime. Let u be a non-square in Fp2 . De�ne
a′ = u2a and b′ = u3b, then E′(Fp2) : y2 = x3 + a′x + b′ is the quadratic

twist of E(Fp2) and #E′(Fp2) = (p− 1)2 + t2. De�ne φ(x, y) = (ux, u3/2y) and
ψ = φ−1πφ. For P ∈ E′(Fq2)[r], we have ψ(P )2 + P = OE′ , and ψ(P ) = [λ]P
where λ ≡ t−1(p− 1) mod r.

Consider the lattice L = {(x, y) ∈ Z2 : x + yλ ≡ 0 mod r}. Galbraith et al.
used the basis {(t, p−1), (1−p, t)} of some lattice L′ ⊂ L to get the 2-dimensional
decomposition, with each coe�cient bounded by (p+ 1)/

√
2.

Galbraith et al. also described how to get higher dimensional expansions by
using elliptic curves E over Fp2 with #Aut(E) > 2. The basic principle is to use
a twist φ : E → E′ where E′ is de�ned over Fp2 and φ is de�ned over Fp2d , and
not de�ned over any sub�eld of Fp2d , for some even integer d ≥ 4. A natural
example is to use twist of degree 6 on elliptic curves with j-invariant 0.

Corollary 2. [5,6] Let p ≡ 1 mod 6 and let B ∈ F∗p. De�ne E : y2 = x3 + B.
Choose u ∈ F∗p12 such that u6 ∈ Fp2 and de�ne E′ : y2 = x3+u6B over Fp2 . The
isomorphism φ : E′ → E is given by φ(x, y) = (u2x, u3y) and is de�ned over
Fp12 . Let ψ = φ−1πφ. For P ∈ E′(Fp2), we have ψ4(P )− ψ2(P ) + P = OE′ .

Hence the 4-dimensional GLV method can be e�ciently applied to these
curves. Note that −ψ2 satis�es the characteristic equation x2 + x + 1 = 0 and
so acts as the standard automorphism (x, y) 7→ (ζ3x, y) on E

′; ψ3 satis�es the
characteristic equation x2+1 = 0 and so acts as the homomorphism in Corollary
1.

4 4-Dimensional GLV Method on GLS Curves with

j-Invariant 0

Let E′, ψ be de�ned as in Corollary 2, and suppose r|#E′(Fp2) is prime. We
assume that #E′(Fp2) is prime or nearly prime, i.e., log2 r ≈ 2 log2 p. In the
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following we show how to decompose the scalar k in suitable coe�cients of size
O(r1/4).

Let P ∈ E′(Fp2) be a point of order r, and suppose ψ(P ) = [λ]P where
λ ∈ Z/rZ. Denote 〈·, ·〉 as the inner product of two vectors. De�ne vectors
Ψ = (1, ψ, ψ2, ψ3), Λ = (1, λ, λ2, λ3), and lattice L = {(k0, k1, k2, k3) ∈ Z4 :
〈(k0, k1, k2, k3),Λ〉 ≡ 0 mod r}.

Let {v0,v1,v2,v3} be a basis for lattice L′, where 0 ⊂ L′ ⊆ L. By Babai
rounding method, we consider (k, 0, 0, 0), vi, i = 0, . . . , 3 as vectors in Q4. We
can write (k, 0, 0, 0) = β0v0 + β1v1 + β2v2 + β3v3, where βi ∈ Q for i = 0, . . . 3.
Then round βi to the nearest integer bi = bβie. Hence k can be decomposed as

(k0, k1, k2, k3) = (k, 0, 0, 0)− (b0v0 + b1v1 + b2v2 + b3v3)

= (β0 − b0)v0 + (β1 − b1)v1 + (β2 − b2)v2 + (β3 − b3)v3.

Since |βi − bi| ≤ 1/2, by the triangle inequality

max
i
{|ki|} ≤ ‖(k0, k1, k2, k3)‖

≤ 1

2
(‖v0‖+ ‖v1‖+ ‖v2‖+ ‖v3‖)

≤ 2max
i
{‖vi‖}.

In order to �nd a proper lattice basis {v0,v1,v2,v3} that satis�es the upper
bound maxi{‖vi‖} = O(r1/4), we �rst study the relations among the charac-
teristic p, the group order r and the Frobenius trace t on our targeted elliptic
curves.

Lemma 1. Let n be an integer, then the binary quadratic form x2+xy+y2 = n
has 6M(n) integral solutions, where M(n) = #{k : k|n, k ≡ 1 mod 3} − #{k :
k|n, k ≡ 2 mod 3}.

Proof. Since the discriminant of the binary quadratic form is −3 and the number
of classes h(−3) = 1, from Theorem 1 in [10, Ch. 12.4] we can obtain that the
number of integral solutions is 6Σk|n(

−3
k ), where (·) is the Kronecker symbol. It

follows that 6Σk|n(
−3
k ) = 6M(n) by the de�nition of Kronecker symbol. ut

Lemma 2. Let p be prime. If the equation x2 + xy + y2 = p has one integral
solution, then there exist exactly 12 integral solutions.

Proof. Let T = {(x, y) ∈ Z2 : x2 + xy + y2 = p}. If (a, b) ∈ T , then T is not
an empty set, which implies that p ≡ 1 mod 3. By Lemma 1, #T = 12. We can
easily verify that

T ′ ={(a, b), (−a,−b), (b, a), (−b,−a),
(a+ b,−a), (−a− b, a), (−a, a+ b), (a,−a− b),
(a+ b,−b), (−a− b, b), (−b, a+ b), (b,−a− b)}

is also a set of solutions for x2 + xy + y2 = p. Since p is prime, we must have
gcd(a, b) = 1. Then the vectors in T ′ are pairwise di�erent, and thus T = T ′. ut
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For counting the rational points on our targeted curves, we have the next
theorem.

Theorem 2. [13, Ch. 18.3,Th. 4] Let p ≥ 5 be prime and p - B. Consider the
elliptic curve E : y2 = x3 +B over Fp. If p ≡ 2 mod 3 then #E(Fp) = p+ 1. If
p ≡ 1 mod 3 let p = ππ with π ∈ Z[ω] and π ≡ 2 mod 3. Then

#E(Fp) = p+ 1 + (
4B

π
)
6
π + (

4B

π
)
6
π.

If p ≡ 1 mod 3, by the construction in Lemma 2, we can �nd one integral
solution (a, b) ∈ T such that a ≡ 2 mod 3, b ≡ 0 mod 3. So we can choose
π = a− bω in Theorem 2, and then p = ππ = a2 + ab+ b2. Hence there are six

cases of Frobenius trace t = −( 4Bπ )
6
π − ( 4Bπ )

6
π given by

t = ±(a+ 2b),±(2a+ b),±(a− b).

#E′(Fp2) can be computed through [9, Prop. 8]. For example, if t = p +
1 − #E(Fp) = a + 2b, we can obtain that #E′(Fp2) = (p − 1)2 + (2a + b)2 or
#E′(Fp2) = (p− 1)2 + (a− b)2. In fact, if we assume that #E′(Fp2) is prime or
nearly prime, there are only three cases of #E′(Fp2) given by

r1(a, b) = (p− 1)2 + (a+ 2b)2,

r2(a, b) = (p− 1)2 + (2a+ b)2,

r3(a, b) = (p− 1)2 + (a− b)2.

By Theorem 1 we have ψ4−ψ2+1 = 0 and ψ2−tψ+p = 0, and the following
proposition can be de�ned.

Proposition 1. Let notation be as above. Suppose that p = a2 + ab+ b2, where
a, b ∈ Z, a ≡ 2 mod 3, b ≡ 0 mod 3. For
(1) #E′(Fp2) = r1(a, b), de�ne λ

′ ≡ a(1− p)(b2 + 2ab+ 1)−1 mod r;
(2) #E′(Fp2) = r2(a, b), de�ne λ

′ ≡ b(1− p)(a2 + 2ab+ 1)−1 mod r;
(3) #E′(Fp2) = r3(a, b), de�ne λ

′ ≡ (bp− a)(b2 + 2ab− 1)−1 mod r.

Then λ′ satis�es λ′
4 − λ′

2
+ 1 ≡ 0 mod r. Moreover, there exists some i ∈

(Z/12Z)∗ such that ψi(P ) = [λ′]P .

Proof. We only give the detailed proof for case (1), the other two cases are
analogous. De�ne

x = a(1− p),
y = b2 + 2ab+ 1,

f = x4 − x2y2 + y4.

Since r|#E′(Fp2), gcd(y, r) = 1 and

f = r1(a, b) · (a8 + 2a7b+ 3a6b2 − 3a6 + 2a5b3 − 6a5b+ a4b4 + 2a4

− 10a4b2 − 4a3b3 + 2a3b− a2b4 + 11a2b2 + 6ab3 + 6ab+ b4 + 2b2 + 1).
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We obtain that λ′ ≡ y−1x( mod r) satis�es λ′
4−λ′2+1 ≡ 0 mod r. Moreover,

since ψ4(P )− ψ2(P ) + P = OE′ , there must exist some i ∈ (Z/12Z)∗ such that
ψi(P ) = [λ′]P . ut

For convenience, we assume that λ = λ′ in the following. Otherwise we can
replace ψ with some ψi, where i ∈ (Z/12Z)∗.

Proposition 2. Let notation be as above. For
(1) #E′(Fp2) = r1(a, b), de�ne v = (1,−a, 0,−b);
(2) #E′(Fp2) = r2(a, b), de�ne v = (1,−b, 0,−a);
(3) #E′(Fp2) = r3(a, b), de�ne v = (1,−a− b, 0, a).
Then 〈v,Λ〉 = 0.

Proof. We only give proof for case (1); the other two cases are analogous. Let
x, y be de�ned as in Proposition 1. Since

y3〈v,Λ〉 = r1(a, b) · (a5b+ a4b2 − 2a3b+ a3b3 + a2b2 + 4ab+ b2 + 1),

it follows that 〈v,Λ〉 ≡ 0 mod r. ut

Proposition 3. Let notation be as above. De�ne the matrix

A =


0 1 0 0
0 0 1 0
0 0 0 1
−1 0 1 0

 ,
and vectors vi = vAi, i = 0, . . . , 3. Then {v0,v1,v2,v3} is a basis for a sublat-
tice of L.

Proof. We only give proof for the case #E′(Fp2) = r1(a, b); the other two cases
are analogous. Because 〈vi,Λ〉 = 0, we have vi ∈ L. Since det(v0,v1,v2,v3) 6=
0, we de�ne lattice L′ = v0Z+ v1Z+ v2Z+ v3Z, and then L′ ⊆ L. ut

Note that det(v0,v1,v2,v3) = #E′(Fp2), thus L′ is a sublattice of Z4 of
index r1(a, b). If r = #E′(Fp2), we have L′ = L.

Theorem 3. For any integer k ∈ [1, r), {v0,v1,v2,v3} induces a 4-dimensional
GLV decomposition k ≡ k0+k1λ+k2λ2+k3λ3 mod r, with maxi{|ki|} ≤ 2

√
2p =

O(2
√
2r1/4).

Proof. We only give proof for the case #E′(Fp2) = r1(a, b); the other two cases
are analogous. By Proposition 3, we have

v0 = v = (1,−a, 0,−b),
v1 = vA = (b, 1,−a− b, 0),
v2 = vA2 = (0, b, 1,−a− b),
v3 = vA3 = (a+ b, 0,−a, 1).
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Since |a− b| ≥ 1, we have that |ab| ≤ (a2 + b2 − 1)/2 and

p =a2 + b2 + ab ≥ a2 + b2 − (a2 + b2 − 1)/2

=(a2 + b2 + 1)/2 = ‖v0‖2/2.

Then, ‖v0‖ ≤
√
2p.

Note that (−a,−b), (b,−a− b), (a+ b,−a) all satisfy the quadratic form x2+
xy + y2 = p by Lemma 2. We have ‖vi‖ ≤

√
2p, i = 0, ..., 3. Thus

max
i
{|ki|} ≤ 2max

i
{‖vi‖} ≤ 2

√
2p = O(2

√
2r1/4).

ut

Remark 1. The 4-dimensional decomposition for GLS curves with j-invariant
1728 can be done in a similar way. In this case we �nd that the integral solutions
of quadratic form t2 + s2 = p induce a natural decomposition with coe�cients
of size O(2r1/4) < 2

√
p+ 1. Here we omit the details.

5 2-Dimensional GLV Method on Ordinary Curves with

j-Invariant 0

For comparison, we also consider ordinary elliptic curves over Fp with j-invariant
0. Let p ≡ 1 mod 3 be prime and E(Fp) : y2 = x3+B be such an ordinary elliptic

curve. Also, let r|#E(Fp) and r > 2
√
#E(Fp) be prime.

There is a standard automorphism ψ(x, y) = (ζ3x, y) = [λ](x, y) on this
elliptic curve. For P ∈ E(Fp), ψ2(P )+ψ(P )+P = OE . Thus λ2+λ+1 ≡ 0 mod r,
which implies that r ≡ 1 mod 3.

Two-dimensional GLV decomposition methods for this case have been pro-
posed in [14,20,21]. Here we extend Brown, Myers and Solinas's decomposition
method for �compact curves� to decompose the scalar. Since ψ can be regarded as

ω = − 1
2+
√
−3
2 , which is the third root of unity in C, if we apply the 2-dimensional

GLV method on this curve by using ψ, then we can consider decomposing k in
the algebraic integer ring Z[ω].

First we recall two tools de�ned in [2] as follows:
The Round operation

Round[s+ zω] := b(bs+ zc+ b2s− zc+ 2)/3c
+ b(bs+ zc+ b2z − sc+ 2)/3c · ω

where s + zω ∈ Q[ω]. This operation rounds an element of Q[ω] to the closest
element of Z[ω], and |(s+ zω)−Round(s+ zω)| ≤ 1/

√
3.

The Mod reduction

k Mod (a− bω) := k − (a− bω)Round[k/(a− bω)]
= k1 + k2ω

where k ∈ Z and a− bω ∈ Z[ω].
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Lemma 3. Let notation be as above. If there exist a, b ∈ Z such that a2 + ab+
b2 = r, then for P ∈ E(Fp)[r], either (a− bψ)(P ) = OE or (b− aψ)(P ) = OE.

Proof. It easily follows since a− bλ ≡ 0 mod r or b− aλ ≡ 0 mod r.

Since r ≡ 1 mod 3, by Cornacchia algorithm [3, Alg. 1.5.3] we can get an
integral solution (x, y) to the equation x2+3y2 = 4r such that a = (x+y)/2 and
b = −y (a, b ∈ Z) satisfy a2 + ab+ b2 = r. In practice, we usually choose elliptic
curves generated by the complex multiplication method such that #E(Fp) = r.
In the parameter generation stage we have 4p = 3s2 + t2 for some s ∈ Z. Then
we obtain a = (t+ s− 2)/2 and b = −s, which satisfy a2 + ab+ b2 = r.

By Lemma 3 and the property of the Round operation, we obtain the next
result.

Theorem 4. Let notation be as above and P ∈ E(Fp)[r]. If (a − bψ)(P ) =
OE and k Mod (a − bω) = k1 + k2ω, then [k]P = [k1]P + [k2]ψ(P ), where
max{|k1|, |k2|} ≤ 2

√
r/3.

Compared with the previous results in [14,20,21], we observe that our upper
bound in Theorem 4 is better. Actually, this bound is optimal for these curves
and endomorphism, according to the special case of equilateral triangle in Sica,
Ciet and Quisquater's work [21, Lemma 2].

6 Performance Evaluation

In this section, we evaluate the performance of di�erent variants of the GLV
method in practice. The main objective is to determine the gain obtained with
the use of GLS curves with j-invariant 0 exploiting the 4-dimensional GLV
method. We describe an e�cient parameter selection, carry out the correspond-
ing operation count and present timings when computing a variable-scalar vari-
able-point scalar multiplication at the 128-bit security level on representative
x86-64 processors. We compare results of four e�cient alternatives based on:
a GLS curve with j-invariant 0 using 4-dimensional GLV; a GLS curve with
j-invariant 0 using 2-dimensional GLV; a GLS curve with Twisted Edwards co-
ordinates using 2-dimensional GLV; and an ordinary j-invariant 0 curve using
2-dimensional GLV.

6.1 Curves

GLS curve with j-invariant 0 using 4-dimensional GLV. In this case, we
use the elliptic curve given by the equation

E′1 : y2 = x3 + u · 7 (1)

de�ned over Fp21 , where p1 = 2128 − 40557, u ∈ Fp21 and #E′1(Fp21) = 0xFFFFF
FFFFFFFFFFFFFFFFFFFFFFEC327FF5BF96F8A8A7FFFE37C5E4F5FA9A
8CD is a 256-bit prime. We have that p1 = a2 + ab + b2, a = −5328132332142
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06943 and b = 18707378648059847118, where a ≡ 2 mod 3, b ≡ 0 mod 3. Note
that p1 ≡ 3 mod 8 and hence Fp21 = Fp1 [i], where i2 = −1. Let u = 1 + i and

ξ = 45401944847829159044964786890828045383 (ξ3 ≡ 1 mod p1). The homo-
morphism on a�ne points of E′1 is given by

ψ(x, y) = (w2xp, w3yp) = [λ](x, y),

where

w = ξ2u(1−p)/6 = 274247897208633065225091197380782857056 + 2742478972

08633065225091197380782857056i,

λ = a(1− p)(b2 + 2ab+ 1)−1 mod r

= 426408418061806223086189537530769555908320353659075508641649191

26143300965390.

The 4-dimensional GLV decomposition is described in Section 4.

GLS curve with j-invariant 0 using 2-dimensional GLV. In this case, we
also use curve equation (1) de�ned over Fp21 with ψ1 = ψ3 to get a 2-dimensional
GLV expansion using Galbraith et al.'s techniques [5,6].

GLS curve with Twisted Edwards coordinates using 2-dimensional

GLV. For this case, we use the elliptic curve given by the equation

E′2 : −ux2 + y2 = 1 + 109ux2y2 (2)

de�ned over Fp22 with the Mersenne prime p2 = 2127 − 1; u = 2+ i ∈ Fp22 is non-
square. Also,#E′2(Fp2) = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFA626
1414C0DC87D3CE9B68E3B09E01A5= 4r, where r is a 252-bit prime. Note that
the same curve is used in [15].

Ordinary curve with j-invariant 0 using 2-dimensional GLV. For this
case, we use the elliptic curve given by the equation

E3 : y2 = x3 + 5 (3)

de�ned over Fp3 with the pseudo-Mersenne prime p3 = 2256 − 1539. Also,
#E3(Fp3) = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEF95AE576CE7C
6CCA38E2B32E6FB6214B, which is a 256-bit prime. The 2-dimensional GLV
decomposition method is described in Section 5.

6.2 Operation Count and Timings

For all implementations using the curves above we apply the interleaving method
(INT) [8, Alg. 3.51] to perform the multi-scalar multiplication with dimensionm,

10



where m = 2, 4. To compute [k]P =
∑
i[ki]ψ

i(P ) where i = {0, 1, ...,m− 1} and
P is a variable point, we use the (fractional) width-w non-adjacent form (denoted
by (f)wNAF) representation of each ki, where log2 |ki| ≈ log2 |k|/m. In this case
we need to precompute Pj = [j]P and [j]ψi(P ) = ψi(Pj) for j = {1, 3, 5, ..., t}
and i = {1, 2, ...,m− 1}. Denote by DBL, mADD and ADD the cost of perform-
ing point doubling, mixed addition and addition on a given curve, respectively.
Denote by Precomp the cost of precomputing Pj = [j]P and [j]ψi(P ) = ψi(Pj).
The expected cost of computing [k]P is approximately

log2 |k| ·((
2

t+ 1
) ·δfwNAF ·mADD+(

t− 1

t+ 1
) ·δfwNAF ·ADD+

1

m
·DBL)+Precomp,

where δfwNAF =
(
blog2 tc + (t+ 1)/(2blog2 tc) + 1

)−1
.

The costs of mADD, ADD and DBL depend on the chosen coordinate system.
In the following, we assume that the costs of multiplication by 2, division by 2
and subtraction are roughly equivalent to addition for simpli�cation purposes.
For the case of elliptic curves with j-invariant 0 we use Jacobian coordinates.
A state-of-the-art doubling formula can be found in Longa [17, formula (6.7)],
which involves 3 multiplications, 4 squarings and 7 additions (note that line
evaluation operations are not considered). Addition formulas are taken from [8].
Point addition involves 11 multiplications, 3 squarings and 7 additions (Z2

j and

Z3
j are precomputed), and mixed addition involves 8 multiplications, 3 squarings

and 7 additions. For the case of Twisted Edwards curves we use mixed homoge-
neous/extended homogeneous coordinates [11]. Formulas considered in this work
can be found in [17, Appendix B1]. Point doubling involves 4 multiplications, 3
squarings and 7 additions; point addition involves 9 multiplications and 9 addi-
tions; and mixed addition involves 8 multiplications and 9 additions (considering
that the cost of a multiplication with the curve parameter u is approx. equivalent
to 2 additions).

Interestingly enough the LM precomputation scheme [16] also applies to
curves with j-invariant 0. Since inversion in the quadratic extension �eld is not
so expensive, we use the scheme that converts precomputation points to a�ne
(cost given by [17, formula (3.6)]) for the GLS curves over Fp21 . In the case of
the ordinary curve over Fp3 precomputed points are left in Jacobian coordinates
(cost given by [17, formula (3.4)]). For the 2- and 4-dimensional GLV method on
GLS curves we need to compute 1 and 3 tables with the form [j]ψi(P ) = ψi(Pj),
respectively. In these cases each multiplication by ψ costs approx. 2 multipli-
cations and 1 addition. Since we set t = 13 (optimal), the cost is given by 14
multiplications and 7 additions in the 2-dimensional case and 42 multiplications
and 21 additions in the 4-dimensional case. The total cost of Precomp is then
69 multiplications, 17 squarings, 56 additions and 1 inversion for dimension 2
and 97 multiplications, 17 squarings, 70 additions and 1 inversion for dimen-
sion 4. For the ordinary curve using 2-dimensional GLV, the cost of multiplying
by ψ is approx. one multiplication. Since in this case t = 15 (optimal), the
cost of computing [j]ψi(P ) = ψi(Pj) is given by 8 multiplications. Then the
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total cost of Precomp is 52 multiplications, 25 squarings and 56 additions. For
Twisted Edwards we follow a traditional precomputation scheme (see details in
[17, Sec. 5.6.2]). To compute the table [j]ψi(P ) = ψi(Pj) with t = 15 (optimal)
one needs 7 multiplications with ψ on projective points, each costing approx.
4 multiplications, 1 squaring and 1.5 additions; and one multiplication with ψ
on an a�ne point, costing 2 multiplications and 1 addition. Thus the cost is 30
multiplications, 7 squarings and 11.5 additions; and the total cost of Precomp is
97 multiplications, 9 squarings and 80.5 additions.

Finally, at the end of point multiplication the result should be converted to
a�ne. This cost is given by 1 inversion, 3 multiplications and 1 squaring in those
cases using Jacobian coordinates; and 1 inversion and 2 multiplications in the
case using Twisted Edwards coordinates.

Table 1 summarizes operation counts of the four implementations using the
curves described in Section 6.1. The notation mGLV+INT means interleaving
using (f)wNAF with (t+1)/2 precomputed points and the m-dimensional GLV
method. M, S, A and I denote multiplication, squaring, addition and inversion
over Fp, and m, s, a and i denote the same operations over Fp2 .

Table 1. Point multiplication operation count, 128-bit security level

Curve Method Operation Count

E′
1(Fp21

) 128-bit p 4GLV+INT, 7pts. 648.0m+407.5s+829.5a+2i

E′
1(Fp21

) 128-bit p 2GLV+INT, 7pts. 812.0m+663.5s+1263.5a+2i

E′
2(Fp22

) 127-bit p [15,17] 2GLV+INT, 8pts. 994.5m+393.0s+1360.8a+1i

E3(Fp3) 256-bit p 2GLV+INT, 8pts. 892.8M+666.1S+1250.9A+1I

As can be seen, extending GLV from two to four dimensions introduces a
signi�cant reduction in the number of operations on the j-invariant 0 GLS curve
E′1. The GLS curve using 4-dimensional GLV is also signi�cantly more e�cient in
terms of operation counts than a state-of-the-art implementation based on the
GLS-based Twisted Edwards curve E′2 using 2-dimensional GLV [15][17]. The
comparison with the ordinary curve E3 with j-invariant 0 using 2-dimensional
GLV is more complicated. Although quadratic extension �eld operations are de-
�ned on a smaller �eld each one requires a few �eld operations internally (e.g., a
multiplication over Fp2 involves 3 �eld multiplications and 5 �eld additions when
using Karatsuba). Actual implementations are ultimately required to determine
e�ciency.

We have implemented the di�erent variants mostly in C language using the
MIRACL library [22]. We have written most relevant �eld operations in assem-
bly and applied aggressive optimizations at the di�erent arithmetic levels closely
following the techniques discussed in [15][17]. Cycle counts obtained when run-
ning the implementations on a 3.0GHz AMD Phenom II X4 940 and a 2.67GHz
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Intel Core 2 Duo E6750 are detailed in Table 2. In our tests we averaged the cost
of 105 variable-scalar variable-point scalar multiplications and approximated the
results to the nearest 1000 cycles. All experiments were performed on one core of
the targeted processors using the same tool for compilation (i.e., GCC v4.4.3).

Table 2. Point multiplication timings (in clock cycles), 64-bit processors

Curve Method Core2Duo AMD Phenom

E′
1(Fp21

) 128-bit p 4GLV+INT, 7pts. 194,000 150,000

E′
1(Fp21

) 128-bit p 2GLV+INT, 7pts. 251,000 193,000

E′
2(Fp22

) 127-bit p [15,17] 2GLV+INT, 8pts. 210,000 181,000

E3(Fp3) 256-bit p 2GLV+INT, 8pts. 221,000 173,000

Closely following results from the operation count analysis, our GLS-based
implementation using 4-dimensional GLV is faster than the state-of-the-art GLS-
based implementation using Twisted Edwards with 2-dimensional GLV. In fact,
these timings set a new speed record for point multiplication on x86-64 proces-
sors. For instance, on an AMD Phenom II X4 940 processor the new implemen-
tation reduces the best numbers presented by Longa [17, Ch. 5] in 17%. This
translates to a latency of only 50us per point multiplication running on one core
and a throughput of 80,000 point multiplications/second running on the four
cores of the targeted AMD processor.

In comparison with an ordinary curve using 2-dimensional GLV, the use
of the GLS method for enabling a 4-dimensional GLV injects cost reductions
in between 12% and 13%. Our results also show that the use of dimension 2
with GLS-based j-invariant 0 curves is insu�cient to get competitive with the
standard approach.

For extended benchmark results and comparisons on di�erent 64-bit plat-
forms, the reader is referred to our updated online database [18].

7 Conclusion

We studied the performance of the 4-dimensional GLV method for faster point
multiplication on some GLS curves with j-invariant 0. We showed how to get
the 4-dimensional GLV decomposition with suitable coe�cients bounded by
O(2
√
2r1/4), thus enabling the reduction in the number of doublings to only

a quarter for point multiplication on these curves. Our high-speed implementa-
tions showed that the 4-dimensional GLV method using a j-invariant 0 curve
over Fp2 runs in about 0.78 the time of the 2-dimensional GLV method on the
same curve and in about 0.87 the time of the 2-dimensional GLV method on an
ordinary curve over Fp.
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