
Cryptanalysis of the Smart-Vercauteren and 

Gentry-Halevi’s Fully Homomorphic Encryption 

 

Gu Chunsheng 
School of Computer Engineering 

Jiangsu Teachers University of Technology 
Changzhou, China, 213001 
guchunsheng@gmail.com 

 
Abstract: In this paper, we first analyze the security of the fully homomorphic encryption 
schemes based on principal ideal lattice in [SV10, GH11] by using block lattice reduction 
algorithm. Our result implies that their schemes are insecure for lattice dimensions n=2048, 
and even for n=8192 if we suppose the random assumption and the geometric series 
assumption of [Sch03] for a lattice basis. If we suppose the average-case behavior of LLL in 
[NS06], then their schemes are also insecure for lattice dimension n less than 6000. Moreover, 
we further analyze how to find the small generator of a principal ideal lattice for the practical 
parameters in their schemes. 
Keywords: Fully Homomorphic Encryption, Cryptanalysis, Principal Ideal Lattice, Lattice 
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1. Introduction 

Homomorphic encryption has many applications in cryptography. Rivest, Adleman and 
Dertouzos [RAD78] first presented this concept. But until 2009, Gentry [Gen09] constructed 
the first fully homomorphic encryptions based on ideal lattice, all previous schemes are 
insecure. After the scheme of [Gen09], Smart and Vercauteren presented an optimization FHE 
scheme with smaller ciphertext and key [SV10] by using principal ideal lattice. Dijk, Gentry, 
Halevi, and Vaikuntanathan [vDGHV10] proposed a simple fully homomorphic encryption 
scheme over the integers, whose security depends on the hardness of finding an approximate 
integer GCD. Stehle and Steinfeld [SS10] improved Gentry's fully homomorphic scheme and 
obtained to a faster fully homomorphic scheme. Gentry and Halevi [GH11] implemented 
Gentry’s scheme also by applying principal ideal lattice. Currently, the security of FHE in 
[SV10, GH11] depends on the hardness assumption of finding small principal ideal lattice, 
given its HNF form or two elements form. The problem is whether or not it is hard to solve 
small principal ideal lattice? In this paper, we negatively answer this problem for practical 
parameter values (such as n=2048, 8192). That is, we can recover the message bit in an 
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encrypted ciphertext. Moreover, we can also solve the small principal ideal lattice problem for 
the practical parameter values of their schemes. 

1.1 Our Cryptanalysis 

In our cryptanalysis of their FHE schemes we use for the concrete parameters suggested in 
[SV10, GH11]. We show that their scheme are not secure for the practical parameters (such as 
lattice dimensions n=2048 or n=8192 under certain assumption) by using block lattice 
reduction algorithm [Sch87, GHKN06]. In addition, according to the average case behavior of 
LLL [NS06], we may use the LLL lattice reduction algorithm [LLL82] to attack lattice 
dimensions  for the parameter setting in [GH11]. Since the average-case bound of 6000n ≈

1
1/(det ) n

b
L

 is about , namely, (1.02)n 2 104 380
1 1 1(1.02) ( ) 10 ( ) 2 ( )nb L Lλ λ≤ ≈ < 1 Lλ , 

where  is the bit length of each coefficient in the secret key polynomial of [SV10, 
GH11]. Our second result is to solve the small principal ideal lattice by using ideal-GCD 
algorithm given the HNF form or two elements representation of principal ideal lattice for the 
practical parameters in their schemes. 

380

1.2 Organization 

The rest of this paper is organized as follows: In Section 2, we give some notations and 
definitions, and the lattice reduction algorithms, and then in Section 3, 4, we respectively 
analyze the security of the Smart-Vercauteren’s scheme and the Gentry-Halevi’s scheme. In 
Section 5, we describe an algorithm that solves the smallest generator of a principal ideal 
lattice by using standard ideal-GCD algorithm for the practical parameters in [SV10, GH11] 

2. Preliminaries 

2.1 Notations 

Let  be a security parameter, n [ ] {0,1,..., }n n= . Let R  be the ring of integer polynomials 

modulo ( )nf x , i.e., [ ] / ( )R x f x= ] , where ( )nf x  is an integer monic and irreducible 

polynomial of degree . Let n pR  denote the polynomial ring [ ] / ( )p x f x]  over modulo 

p . For , we denote by u R∀ ∈ u
∞

 the infinity norm of u , 0[ ,..., ]nu u u −= 1
K  the 

coefficient vector of , u [ ]2
u  the polynomial of u ’s coefficients modulo 2. For the ring R , 

its expansion factor is , that is, n u v n u v
∞ ∞ ∞

× ≤ ⋅⋅ , where ×  is multiplication over 
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the ring R . 

2.2 Lattices 

A lattice in  is the set of all integral combination of  linearly independent vectors 

 in  ( m ), namely 

m\ n

1,..., nb b m\ n≥ 1 1
( ,..., ) { , }n

n i i ii
L L b b x b x Z

=
= = ∈∑ , usual denoted as 

a matrix B . Any such -tuple of vectors  is called a basis of the lattice . Every 

lattice has an infinite number of lattice bases. Two lattice bases  are equivalent 

if and only if 

n 1,..., nb b L

1 2, m nB B ×∈\

1 2B B U=  for some unimodular matrix n nU ×∈] . The volume of a lattice  

is the determinant of any basis of , namely 

L

L ( ) det( ) Tvol L L B B= = . For every full-rank 

lattice , there is a unique Hermite normal form (HNF) basis which given any basis of  
can be efficiently computed by using Gaussian elimination. The HNF usually uses as the 
public key of the lattice-based public key cryptography. 

L L

2.3 Ideal Lattices 

In this paper, we take  with n  a power of . Let ( ) 1n
nf x x= + 2 I  be a principal ideal of 

R , namely, it only has a single generator. For the coefficient vector 0 1 1( , ,..., )T
nu u u u −=K  of 

, we define the cyclic rotation u R∈ 1 0 2( )u ( , ,..., )T
n nrot u u u− −= −K , and the corresponding 

circulant matrix 1( ) ( , ( ),..., ( ))n TRot u u rot u rot u−= K K K . ( )Rot u  is called the rotation basis of 

the ideal lattice . For ( )u ,f u R∀ ∈ , [ ]uf  is the coefficient vector of f  modulo the 

rotation basis of , namely, u mod ( )f Rot u
K

. So, we consider each element of R  as being 

both a polynomial and a vector. 

We focus on principal ideals of pR  in this paper since the scheme in [SV10, GH11] only 

used the principal ideals. 

2.4 Lattice Reduction Algorithm 

Given a basis of the lattice , one of the most famous problems of the algorithm 1,..., nb b
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theory of lattices is to find a short nonzero vector. Currently, there is no polynomial time 
algorithm for solving a shortest nonzero vector in a given lattice. The most celebrated LLL 
reduction finds a vector whose approximating factor is at most . In 1987, Schnorr 
[Sch87] introduced a hierarchy of reduction concepts that stretch from LLL reduction to 

Korkine-Zolotareff reduction which obtains a polynomial time algorithm with  

approximating factor for lattices of any rank. The running time of Schnorr’s algorithm is 
poly(size of basis)*HKZ(2k), where HKZ(2k) is the time complexity of computing a 

2k-dimensional HKZ reduction, and equal to . If we use the probabilistic AKS 

algorithm, HKZ(2k) is about . In the following, we will choose  to guarantee 

computation to be feasible. 

( 1)/22 n−

2 /2(4 )n kk

/2 ( )( k o kO k + )

2(2 )kO 16k =

Theorem 2.1 (Sch87 Theorem 2.6) Every block -reduced basis  of lattice  

satisfies 

2k 1,..., mkb b L

1
2

1 1( )
m

k kb γ β λ
−

≤ L , where kβ  is another lattice constant using in Schnorr’s 

analysis of his algorithm. 

Shnorr [Sch87] showed that , and Ajtai improved this bound to 24k kβ ≤ k k εβ ≤  for some 

positive number 0ε > . Recently, Gama Howgrave, Koy and Nguyen [GHKN06] improved 
the approximation factor of the Schnorr’s 2k-reduction to  

(3 1)/4 /2 1
1 1/ ( ) (4 / 3) k n k

kb Lλ γ β−≤ k
− , and proved the following result via Rankin’s constant. 

Theorem 2.2 (GHKN06 Theorem 2, 3) For all , Schnorr’s constant 2k ≥ kβ  satisfies: 

. Asymptotically it satisfies . In particular, 

 for all 

2ln 2 1//12 (1 / 2) k
kk kβ +≤ ≤ + 2ln 2 1/0.1 k

k kβ +≤ ×

1.1
k kβ ≤ 100k ≤ . 

3. Cryptanalysis of Smart-Vercauteren’s Scheme 

3.1 Fully Homomorphic Encryption (FHE) 

For completeness, we here give the somewhat homomorphic encryption (SHE) and the fully 
homomorphic encryption (FHE) in [SV10]. 
Key Generation Algorithm (SHE-KeyGen).  

(1) Choose a random polynomial 
1

0
( ) [ ]n i

ii
u x u x Z x−

=
= ∈∑ , such that ( )u x

∞
 is a 

η -bit integer, , and ( ) 1mod 2u x = det( ( ( )))p Rot u x=  is a prime. 
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(2) Compute  over . Assume ( ) gcd( ( ), ( ))nd x u x f x= [ ]pF x pFα ∈  is the unique 

root of . ( )d x

(3) Apply the XGCD-algorithm over  to obtain [ ]Q x 1

0
( ) [ ]n i

ii
v x v x Z x−

=
= ∈∑  such 

that ( ) ( ) mod ( )nu x v x p f x× = . 

(4) Set ( ( ) mod ) mod(2 )v x x pβ = . 

(5) Output the public key ( , )pk p α= , the secret key ( , )sk p β= . 

Encryption Algorithm (Enc). Given the public key pk  and a bit , choose a 

small random polynomial  with 

{0,1}m∈

( )r x ( )r x
∞

 is a µ -bit integer. Output the ciphertext 

(2 ( ) ) modc r m pα= + . 

Add Operation (Add). Given the public key pk , and two ciphertexts , evaluate the 

ciphertext . 

1 2,c c

1 2( ) modc c c p= +

Multiplication Operation (Mul). Given the public key pk  and two ciphertexts , 

evaluate a new ciphertext . 

1 2,c c

1 2( ) modc c c p= ×

Decryption Algorithm (Dec). Given the secret key  and a ciphertext , decipher the 

message bit . 

sk c

( / 0.5 ) mm c c pβ= − × +⎢ ⎥⎣ ⎦ od 2

Key Generation Algorithm (FHE-KeyGen). 

(1) Choose  uniformly random integers 1s iβ  in [ , ]p p−  such that there is a subset 

 of  elements with S 2s ii S
β β

∈
=∑ . 

(2) Define 1isk =  if i  and S∈ 0isk =  otherwise. 

(3) Encrypt the bits  under the SHE to get isk ( , )i iEnc sk pkβ =
K

. 

(4) Output the public key 1
1 2 1( , , , ,{ , } )s

i i ipk p s sα β β ==
K

, the secret key ( , )sk p β= . 

To implement FHE, Smart and Vercauteren constructed Recrypt algorithm by introducing the 
sparse subset sum problem. Here we omit this algorithm. 

 5



3.2 Cryptanalysis of Smart-Vercauteren’s FHE 

In this subsection, we merely give an algorithm recovering message bit and postpone to 
Section 5 recovering the private key. 

According to SHE-KeyGen algorithm, we know that ( )u xγ =  is an element of prime norm in 

the number field  defined by K ( )nf x , and α  is a root of ( ) modnf x p . Namely, we get 

the prime ideal [ ] [ ] ( ) [ ]I Z x p Z x x Z xγ α= = + −i i i , and ( ) 0modu pα = . 

The security of the scheme above depends on the hardness of solving the following small 
principal ideal problem. 
Definition 3.1 (Small Principal Ideal Problem (SPIP)). Given a principal ideal π  in either 
two element or HNF representation, compute a small generator of the ideal. 

On the surface, we need to get the private key  to attack the scheme. In fact, if we can 

get a small multiple 

( )v x

( ) ( ) ( )w x x v xδ= ×  of the secret key , where ( )v x ( )xδ  is a small 

integer polynomial, then we can directly decrypt a ciphertext. Since ( ) ( )C x c q x γ= + ×  

according to [SV10], we have ( ) ( ( ) ) ( ) 0.5 '( )x C x c c w x h q xδ γ γ× − = + × = ×⎢ ⎥⎣ ⎦i , where 

'( ) ( ) ( )q x x q xδ= × , namely, [ ]2
( ) ( ( ) ) '( )x C x c q xδ × − =  via [ ]2

1γ = . Thus, we may 

select a small polynomial , evaluate its corresponding ciphertext ( )C x ( ) modc C pα= , 

and then solve [ ]2
( )xδ  by the above equation. Once one knows  and [( )w x ]2

( )xδ , one 

can decipher arbitrary ciphertext with small error term. Now, we only need to give an 

algorithm which generates a suitable polynomial . ( )w x

Theorem 3.1. Given a principal ideal π  in either two element ( , )p α  or HNF 

representation, there is a polynomial time algorithm which finds ( ) ( ) ( )w x x v xδ= × over  

such that 

]

(3 1)/4 /2 1( ) (4 / 3) k n k
k kxδ γ β− −

∞
≤ . 

Proof. Since α  is a root of ( ) 1n
nf x x= +  over modulo p , so we can factor 

1 ( ) ( ) modnx x g xα+ = − i p . It is easy to verify ( ) ( ) ( )g x t x v x= i  over modulo p . 

Without loss of generality, assume 1 2
2( ) n n

ng x x g x g− −
− 0= + + +" . We need to row reduce 

the following matrix 
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0 1 2

0 3

1 2 0

1
1

1
0 0

0 0

0 0 0

n

n n

g g g
g g g

g g g
M

p
p

2

0
0

p

−

− −

⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟
⎜ ⎟
− − −⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

"
"

# # # # #
"
"
"

# # " # #
"

. 

We call the lattice reduction algorithm in [Sch87, GHKN06] to get ( ) ( ) ( )w x x v xδ= ×  such 

that (3 1)/4 /2 1
2

( ) ( ) (4 / 3) k n k
kx xδ δ γ βk

− −
∞
≤ ≤ . Recall that here  since 

.■ 

( )w x R∈

( ) ( ) mod ( )nu x v x p f x× =

Thus, if ( ) ( ) / 2w x C x p
∞

× < , we can correctly recover the message bit in a ciphertext. 

According to Theorem 2.2, when 2048n = , 16k = , we can recover the message bit in an 

encrypted ciphertext if (3 1)/4 /2 1 12(4 / 3) 2k n k
k k

ηγ β− − −< , namely 298η > . 

Example 3.1 Let , , 

, . 

We factor  and 

4n = 2 3( ) 159 8 4 2 [159 8 4 2]u x x x x= + + + =

det( ( ( ))) 641407153p Rot u x= = 2 3( ) 4027071 204800 91520 40898v x x x x= − − −

( )u x 4
4 ( ) 1f x = + x  over modulo p  as follows: 

[159 8 4 2]
2*[[[26912186 1] 1] [[522671888 1] 1] [[91823081 1] 1]]mod641407153=

  (3-1) 

[1 0 0 0 1]
[[[26912186 1] 1] [[258567259 1] 1] [[382839894 1] 1] [[614494967 1] 1]]mod641407153=

 

(3-2) 

So, we evaluate 26912186 614494967pα = − = , and output the public key ( , )pk p α= . 

By pk , we can evaluate ( ) [382839894 343459750 614494967 1]g x = . Now, we 

construct the corresponding matrix M  and call the LLL algorithm for it to obtain . In 

fact, we get the exact solution  for this example. Without loss of generality, assume 

( )w x

( )v x

( ) ( ) ( ) [1 1 1 4] ( ) [4896893 3824893 4303943 15954106]w x x v x v xδ= = − =i i . To be 
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simplicity, we compute  and . 2 mod 343459750pα = 3 mod 382839894pα =

To solve 2[ ( )]xδ , we first compute a ciphertext 

( )( ) (2 ( ) ( ))( ) mod( )
(3*382839894+4*343459750+5*614494967+9) mod( )
463576302

c a x r x m x p
p

α α= = +
=
=

 

463576302 / [4896893 3824893 4303943 15954106] [0.5 0.5 0.5 0.5]
[3539224   2764437    3110670   11530812]

d p= × +⎢ ⎥⎣ ⎦
= −

 

Thus, according to 2 2mod 2 [ ( )] [ ( )] mod 2d x a xδ= × , we have 

1
2 2[ ( )] mod 2 ([ ( )] ) mod 2 [1 1 1 0]x d a xδ −= × =  

Now, we can decrypt a ciphertext by using  and ( )w x 2[ ( )]xδ .□ 

4. Cryptanalysis of Gentry-Halevi’s Scheme 

In this section, we first present the SHE and the FHE in [GH11], and then mainly analyze the 
security of FHE for their practical parameters. 

4.1 Fully Homomorphic Encryption (FHE) 

Key Generation Algorithm (SHE-KeyGen).  

(1) Choose a random polynomial 
1

0
( ) [ ]n i

ii
u x u x Z x−

=
= ∈∑ , where each entry  is a iu

η -bit integer, and det( ( ( )))p Rot u x=  is an odd integer. 

(2) Apply the XGCD-algorithm over  to obtain [ ]Q x 1

0
( ) [ ]n i

ii
v x v x Z x−

=
= ∈∑  such 

that ( ) ( ) mod ( )nu x v x p f x× = . 

(3) Check that  is a good generating polynomial. Here  is good if the 

Hermite normal form of 

( )u x ( )u x

( ( ))J Rot u x=  has the following form. 
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2

3

1

0 0 0 0
1 0 0 0

mod 0 1 0 0
( )

mod 0 0 1 0

mod 0 0 0 1n

p

p
HNF J

p

p

α
α
α

α −

⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟−

= ⎜ ⎟
−⎜ ⎟

⎜ ⎟
⎜ ⎟⎜ ⎟−⎝ ⎠

%

 

(4) Output the public key ( , )pk p α= , and the secret key ( , ( ))sk p v x= . 

In fact, the SHE of Gentry and Halevi’s scheme are similar as that in [SV10], except that 

 is an arbitrary good generating polynomial and ( )u x p  does not need to be a prime. 

Moreover, here the decryption algorithm only uses modulo operation over integers. 
Same as that of [SV10], Gentry and Halevi [GH11] also introduced the sparse subset sum 
problem to squash the depth of decryption circuit. We omit the concrete details. 

4.2 Cryptanalysis of Gentry-Halevi’s FHE 

For the decryption algorithm in [GH11], recall that the ciphertext vector . 

Hence, 

( ,0,...,0)c c=K

[ ] [ ] [ ] [ ] [ ]0 1 1 0 1 1( ) ( , ,..., ) ( , ,..., )n np p p p
c Rot v c v v v cv cv cv− −× = =K i

p
. On the other 

hand, according to [GH11], we have [ ] [ ]( ) / ( ) / ( ) /c Rot v p a Rot v p a Rot v p× = × = ×K K K , 

where [ ]i  is fractional part, and 12a r b e= +K K iK  with small vector rK  and . 

So, 

1 (1,0,...,0)e =K

[ ]( ) ( ) 2 ( )
p

c Rot v a Rot v r Rot v b v× = × = × +K K K iK . Thus, for any decryptable ciphertext 

, we have an equation c [ ] [ ] [ ]0 1 1( , ,..., ) mod 2np p p
cv cv cv b v− = Ki . 

Therefore, we can use the same method as Section 3 above which evaluates a small multiple 

 of the secret key  such that ( )w x ( )v x ( ) ( ) ( )w x x v xδ= × . When all the entries in 

 are less than ( ( ))a Rot w x×K / 2p , we may recover the message bit in a ciphertext  as 

follows: if 

c

[ ] [ ] [ ]0 1 1( , ,..., ) mod 2np p p
cw cw cw w− = K  then 1b = , otherwise . Thus, 

we also merely need to present an efficient algorithm which finds 

0b =

( ) ( ) ( )w x x v xδ= ×  over 

[ ]x]  with (3 1)/4 /2 1( ) (4 / 3) k n k
kxδ γ βk

− −
∞
≤  by applying same method in Theorem 3.1. 

So, we can recover the message bit in an encrypted ciphertext by using  for the 

parameters , 

16k =

2048n = 380η =  in [GH11]. Furthermore, if we use the sampling reduction 
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algorithm in [Sch03] under their same assumption, we can further attack the scheme for the 

parameters , 8196n = 380η =  in [GH11]. 

Example 4.1 Let , , 

, 

4n = 2 3( ) 127 11 121 12 [127 11 121 12]u x x x x= + + + =

949062553 17*55827209p = = ( ) [3944101  388356 3694147   317303]v x = − − . 

We evaluate 836836133α = , , . It is 

not difficult to verify that the above attack method works. □ 

2 mod 317979309pα = 3 mod 692833054pα =

5. The Smallest Generator of a Principal Ideal Lattice 

In the above cryptanalysis, we merely obtain the message bit in an encrypted ciphertext. In 

this section, we solve the polynomials  in the scheme of [SV10, GH11]. ( ), ( )u x v x

According to KeyGen in [SV10, GH11], α  is selected to be the root of ( ) modnf x p  

which corresponds to the prime ideal [ ] [ ] ( ) [ ]I x p x x xγ α= = + −i] i] i] . Thus, 

 and ( )C x c I− ∈ ( ) ( )C x c q x γ− = i  with ( ) [ ]q x x∈] . We know that  

since . So, we get the following equality 

1 ( ) /v x pγ − =

( ) ( ) mod ( )nu x v x p f x× =

( ) ( ) / ( ) / ( )C x v x p c v x p q x× − × =                              (5-1) 

Although we do not know , we can find an approximate multiple ( )v x ( ) ( ) ( )w x x v xδ= ×  

of  by using Theorem 3.1. Thus, the equation (1) becomes  ( )v x

( ) ( ) / ( ) / ( ) ( )C x w x p c w x p q x xδ× − × = ×                       (5-2) 

Now, if ( ) ( ) / 1/ 2C x w x p
∞

× < , then '( ) ( ) ( )q x q x xδ= ×  can be evaluated by rounding 

the coefficient of . For single , we can not obtain information of ( ) /c w x p− × '( )q x ( )xδ . 

But, each different polynomial  generates different polynomial . Thus, we can 

select at random a list small polynomials , and compute their corresponding values 

( )C x '( )q x

( )iC x

( ) modic C pα= . According to ,  and equation (2), we get a list polynomials 

. Without loss of generality, we assume there is a pair of coprime 

( )iC x ic

' ( ) ( ) ( )i iq x q x x Rδ= × ∈
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polynomials among . Now, we call the standard ideal GCD algorithm to find ( )iq x ( )xδ  

[GS02, Coh93]. 

6. Conclusion and Open Problems 

We have analyzed the security of the schemes in [SV10, GH11]. In fact, we mainly show that 
their schemes are not secure for concrete practical parameter values (such as n=2048, 8192) in 

[SV10, GH11]. Furthermore, for lattice dimension 4,16n = , we have implemented the 

above attack method for their schemes. It is not difficult to verify that our attack works for 
 by using the 2k-block Rankin reduction algorithm in [GHKN06]. For , 

we need to call the random sampling reduction algorithm [Sch03] under the randomness 
assumption (RA) and the geometric series assumption (GSA) or the LLL algorithm according 
to the average-case approximation factor of LLL [NS06]. 

2048n = 8196n =

An interesting open problem in this paper is whether or not our method can be extended to 
solve the smallest generator of an arbitrary principal ideal lattice. Another open problem is to 
construct a new FHE by hiding a principal ideal lattice to resist the lattice reduction attack. 
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