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Abstract. We derive a new method of computing the composition step in Cantor’s algorithm for group
operations on Jacobians of hyperelliptic curves. Our technique is inspired by the geometric description of
the group law and applies to hyperelliptic curves of arbitrary genus. While Cantor’s general composition
involves arithmetic in the polynomial ring Fq[x], the algorithm we propose solves a linear system over
the base field which can be written down directly from the Mumford coordinates of the group elements.
One advantage to our approach is that we get explicit formulas for composition without unrolling the
loop in Cantor’s algorithm which includes steps operating on polynomials in Fq[x] such as the Chinese
Remainder Theorem. We give more efficient formulas for group operations in both affine and projective
coordinates for cryptographic systems based on Jacobians of genus 2 hyperelliptic curves in general form.
We also examine several other consequences of using the geometric picture of Jacobian arithmetic for
various genera.
Keywords: Hyperelliptic curves, group law, Jacobian arithmetic, genus 2.

1 Introduction

The field of curve-based cryptography has flourished for the last quarter century after Koblitz [27] and
Miller [40] independently proposed the use of elliptic curves in public-key cryptosystems in the mid
1980’s. Compared with traditional group structures like F

∗
p, elliptic curve cryptography (ECC) offers

the powerful advantage of achieving the same level of conjectured security with a much smaller elliptic
curve group. In 1989, Koblitz [28] generalized this idea by proposing Jacobians of hyperelliptic curves
of arbitrary genus as a way to construct Abelian groups suitable for cryptography. Roughly speaking,
hyperelliptic curves of genus g can achieve groups of the same size and security as elliptic curves,
whilst being defined over finite fields with g times fewer bits4. At the same time however, increasing
the genus of a hyperelliptic curve significantly increases the computational cost of performing a group
operation in the corresponding Jacobian group. Thus, the question that remains of great interest to
the public-key cryptography community is, under which circumstances elliptic curves are preferable,
and vice versa. At the present time, elliptic curves carry on standing as the front-runner in most
practical scenarios, but whilst both ECC and hyperelliptic curve cryptography (HECC) continue to
enjoy a wide range of improvements, this question remains open in general. For a nice overview of
the progress in this race and of the state-of-the-art in both cases, the reader is referred to the talks
by Bernstein [3], and by Lange [35].

For group operations on general Weierstrass elliptic curves, the simple geometric “chord-and-
tangent” description easily translates into efficient explicit formulas. A geometric interpretation of
the group law is not a prerequisite for efficient formulas; an example in genus 1 is the extremely
efficient formulas for Edwards curves [5, 24], which were developed a while before the geometric de-
scription of the group law was presented [1]. Even in this case though, whilst not directly enhancing
the speed of ECC specific computations, the geometric depiction in [1] was utilized to produce more
efficient formulas in the context of pairing-based cryptography (PBC). Indeed, pairing computations
greatly benefit from a well-balanced synergy between fast group operations and a simple geometric

⋆ This author acknowledges funding from the Australian-American Fulbright Commission, the Gregory Schwartz
Enrichment Grant, the Queensland Government Smart State Ph.D. Fellowship, and an Australian Postgraduate
Award.

4 The security argument becomes more complicated once venturing beyond genus 4, where Gaudry’s attack [16]
overtakes the Pollard Rho method [44].
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description of the group law. For instance, whilst there are several elliptic curve models that have
superseded Weierstrass models in the context of ECC operations [4], Weierstrass curves (accompa-
nied by the simple chord-and-tangent description) still give rise to the fastest formulas for pairing
computations [9]. In any case, if a geometric depiction of a group law is available and can be utilized,
it is likely to at least enhance the efficiency of the associated computations in some contexts.

Cantor [7] was the first to give a concrete algorithm for performing computations in Jacobian
groups of hyperelliptic curves over fields of odd characteristic. Shortly after, Koblitz [28] modified
this algorithm to apply to fields of any characteristic. Cantor’s algorithm makes use of the polyno-
mial representation of group elements proposed by Mumford [42], and consists of two stages: (i) the
composition stage, based on Gauss’s classical composition of binary quadratic forms, which generally
outputs an unreduced divisor, and (ii) the reduction stage, which transforms the unreduced divisor
into the unique reduced divisor that is equivalent to the sum, whose existence is guaranteed by the
Riemann-Roch theorem [29]. Cantor’s algorithm has since been substantially optimized in work ini-
tiated by Harley [21], who was the first to obtain practical explicit formulas in genus 2, and extended
by Lange [30, 34], who, among several others [39, 47, 41, 46], generalized and significantly improved
Harley’s original approach. Essentially, all of these improvements involve making the polynomial
arithmetic implied by Cantor’s algorithm explicit in the underlying field, and finding specialized
shortcuts dedicated to each of the separate cases of input (see [31, §4]).

In this paper we propose a robust description of a geometrically inspired algorithm for group law
computations on Jacobians of hyperelliptic curves of any genus. The equivalence of the geometric
group law and Cantor’s algorithm was proven by Lauter [36] in the case of genus 2, but since then
there has been almost no reported improvements in explicit formulas that benefit from this depiction.
The notable exception being the work of Leitenberger [38], who used Gröbner basis reduction to show
that in the addition of two unique divisors on the Jacobian of a genus 2 curve, one can obtain explicit
formulas to compute the required geometric function directly from the Mumford coordinates without
(unrolling) polynomial arithmetic. Leitenberger’s idea of obtaining the necessary geometric functions
in a simple and elementary way is central to the theme of this paper, although we note that the
affine addition formulas that result from our description (which do not rely on any Gröbner basis
reduction) are significantly faster than the direct translation of those given in [38].

We claim that our technique is a natural analogue of the chord-and-tangent description for general
elliptic curves. We show that this geometric description facilitates group law computations that avoid
operations such as the CRT altogether; our composition technique requires only elementary linear
algebra. Interpreting the group operations geometrically, we find the interpolating polynomials for
the composition step directly by writing down a linear system in the ground field to be solved in terms
of the Mumford coordinates of the divisors. Moreover, the composition algorithm for arbitrary genus
proposed in this work is immediately explicit in terms of arithmetic in Fq, in contrast to Cantor’s
composition which operates in the polynomial ring Fq[x], the optimization of which calls for ad-hoc
attention in each genus to unravel the Fq[x] operations into explicit formulas in Fq.

To illustrate the value of our approach, we show that, for group operations on Jacobians of gen-
eral genus 2 curves over large prime fields, the (affine and projective) formulas that result from this
description are more efficient than their predecessors. Also, when applying this geometric interpre-
tation back to the case of genus 1, we are able to rigorously recover several of the tricks previously
explored for merging simultaneous group operations to optimize elliptic curve computations.

The rest of this paper is organized as follows. We briefly touch on some more related work, before
moving to Section 2 where we give a short background on hyperelliptic curves and the Mumford
representation of Jacobian elements. Section 3 discusses the geometry of Jacobian arithmetic on hy-
perelliptic curves, and shows how we can use simple linear algebra to compute the required geometric
functions from the Mumford coordinates. Section 4 is dedicated to illustrating how this technique
results in fast explicit formulas in genus 2, whilst Section 5 generalizes the algorithm for all g ≥ 2. As
we hope this work will influence further progress in higher genus arithmetic, in Section 6 we highlight
some further implications of adopting this geometric approach, before concluding in Section 7. To
avoid unnecessarily interrupting the discussion with technical details, we have moved the explicit
formulas and more detailed algorithms to the appendices.

Related work. There are several high-level papers (e.g. [25, 22]) which discuss general methods for
computing in Jacobians of arbitrary algebraic curves. Since we have focused on general hyperelliptic
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curves, our comparison in genus 2 does not include the record-holding work by Gaudry [18], which
exploits the Kummer surface associated with curves of a special form to achieve the current outright
fastest genus 2 arithmetic for those curve models. Gaudry and Harley’s second exposition [19] further
describes the results in [21]. Finally, we do not draw comparisons with any work on real models of
hyperelliptic curves, which usually result in slightly slower formulas than imaginary hyperelliptic
curves, but we note that both Galbraith et al. [15] and Erickson et al. [12] achieve very competitive
formulas for group law computations on real models of genus 2 hyperelliptic curves.

2 Background

We give some brief background on hyperelliptic curves and the Mumford representation of points in
the Jacobian. For a more in depth discussion, the reader is referred to [2, §4] and [14, §11]. Over the
field K, we use Cg to denote the general (“imaginary quadratic”) hyperelliptic curve of genus g given
by

Cg : y2 + h(x)y = f(x), h(x), f(x) ∈ K[x], deg(f) = 2g + 1, deg(h) ≤ g, f monic, (1)

with the added stipulation that no point (x, y) ∈ K simultaneously sends both partial derivatives
2y + h(x) and f ′(x) − h′(x)y to zero [2, §14.1]. As long as char(K) 6= 2g + 1, we can isomorphically
transform Cg into Ĉg, given as Ĉg : y2 + h(x)y = x2g+1 + f̂2g−1x

2g−1 + ... + f̂1x + f̂0, so that the
coefficient of x2g is zero [2, §14.13]. In the case of odd characteristic fields, it is standard to also
annihilate the presence of h(x) completely under a suitable transformation, in order to obtain a
simpler model (we will make use of this in §4). We abuse notation and use Cg from hereon to refer
to the simplified version of the curve equation in each context. Although the proofs in §3 apply to
any K, it better places the intention of the discussion to henceforth regard K as a finite field Fq.

We work in the Jacobian group Jac(Cg) of Cg, where the elements are equivalence classes of
degree zero divisors on Cg. Divisors are formal sums of points on the curve, and degree of a divisor
is the sum of the multiplicities of points in the support of the divisor. Two divisors are equivalent
if their difference is a principle divisor, i.e. equal to the divisor of zeros and poles of a function. It
follows from the Riemann-Roch Theorem that for hyperelliptic curves, each class D has a unique
reduced representative of the form

ρ(D) = (P1) + (P2) + ... + (Pr) − r(P∞),

such that r ≤ g, Pi 6= −Pj for i 6= j, no Pi satisfying Pi = −Pi appears more than once, and
with P∞ being the point at infinity on Cg. We drop the ρ from hereon and, unless stated otherwise,
assume divisor equations involve reduced divisors. When referring to the non-trivial elements in the
reduced divisor D, we mean all P ∈ supp(D) where P 6= P∞, i.e. the elements corresponding to
the effective part of D. For each of the r non-trivial elements appearing in D, write Pi = (xi, yi).
Mumford proposed a convenient way to represent such divisors as D = (u(x), v(x)), where u(x)
is a monic polynomial with deg(u(x)) ≤ g satisfying u(xi) = 0, and v(x) (which is not monic in
general) with deg(v(x)) < deg(u(x)) is such that v(xi) = yi, for 1 ≤ i ≤ r. In this way we have a
one-to-one correspondence between reduced divisors and their so-called Mumford representation [42].
We use ⊕ (resp. ⊖) to distinguish group additions (resp. subtractions) between Jacobian elements
from “additions” in formal divisor sums. We use D̄ to denote the divisor obtained by taking the
hyperelliptic involution of each of the non-trivial elements in the support of D.

When developing formulas for implementing genus g arithmetic, we are largely concerned with
the frequent case that arises where both (not necessarily unique) reduced divisors D = (u(x), v(x))
and D′ = (u′(x), v′(x)) in the sum D⊕D′ are such that deg(u(x)) = deg(u′(x)) = g. This means that
D = E − g(P∞) and D′ = E′ − g(P∞), with both E and E′ being effective divisors of degree g, and
from hereon we interchangeably refer to such divisors as full degree or degree g divisors. In Section
5.2 we discuss how to handle the special case when a divisor of degree less than g is encountered.

3 Computations in the Mumford function field

The purpose of this section is to show how to compute the geometric group law in Mumford coordi-
nates. Since the Jacobian of a hyperelliptic curve is the group of degree zero divisors modulo principal
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divisors, the group operation is formal addition modulo the equivalence relation. Thus two divisors
D and D′ can be added by finding a function whose divisor contains the support of both D and D′,
and then the sum is equivalent to the negative of the complement of that support. Such a function
ℓ(x) can be obtained by interpolating the points in the support of the two divisors. The complement
of the support of D and D′ in the support of div(ℓ) consists of the other points of intersection of
ℓ with the curve. In general those individual points may not be defined over the ground field for
the curve. We are thus led to work with Mumford coordinates for divisors on hyperelliptic curves,
since the polynomials in Mumford coordinates are defined over the base field and allow us to avoid
extracting individual roots and working with points defined over extension fields.

For example, consider adding two general genus 3 divisors D,D′ ∈ Jac(C3/Fq), with respective
supports supp(D) = {P1, P2, P3} ∪ {P∞} and supp(D′) = {P ′1, P

′
2, P

′
3} ∪ {P∞}, as in Figure 1. After

computing the quintic function ℓ(x, y) =
∑5

i=0 ℓix
i that interpolates the six non-trivial points in

the composition phase, computing the x-coordinates of the remaining (four) points of intersection
explicitly would require solving

ℓ2
5 ·

3
∏

i=1

(x − xi) ·

3
∏

i=1

(x − x′i)

4
∏

i=1

(x − x̄i) =
(

5
∑

i=0

ℓix
i
)2

− f(x)

for x̄1,x̄2,x̄3 and x̄4, which would necessitate multiple root extractions. On the other hand, the exact

division
∏4

i=1(x − x̄i) =
(

(
∑5

i=0 ℓix
i
)2

− f(x)
)

/
(

ℓ2
5 ·

∏3
i=1(x − xi) ·

∏3
i=1(x− x′i)

)

can be computed

very efficiently (and entirely over Fq) by equating coefficients of x.

•
P1

•P2
•P3

•
P ′1

•
P ′2

•
P ′3•P̃1

•
P̃2

•
P̃3

•
P̃4

Fig. 1. The composition stage of a general addition on
the Jacobian of a genus 3 curve C3 over the reals R:
the 6 points in the combined supports of D and D′

are interpolated by a quintic polynomial which inter-
sects C in 4 more places to form the unreduced divisor
D̃ = P̃1 + P̃2 + P̃3 + P̃4.

•
P̃1

•
P̃2

•
P̃3

•P̃4

•P ′′1

•P
′′
2

•P ′′3

Fig. 2. The reduction stage: a (vertically) magnified view
of the cubic function which interpolates the points in the
support of D̃ and intersects C3 in three more places to
form D̄′′ = (P ′′1 + P ′′2 + P ′′3 ) ∼ D̃, the reduced equivalent
of D̃.

Whilst the Mumford representation is absolutely necessary for efficient reduction, the price we
seemingly pay in following the geometric description lies in the composition phase. In any case, finding
the interpolating function y = ℓ(x) would be conceptually trivial if we knew the (x, y) coordinates
of the points involved, but computing the function directly from the Mumford coordinates appears
to be more difficult. In what follows we detail how this can be achieved in general, using only linear
algebra over the base field. The meanings of the three propositions in this section are perhaps best
illustrated through the examples that follow each of them.

Proposition 1. On the Jacobian of a genus g hyperelliptic curve, the dense set of divisor classes with
reduced representatives of full degree g can be described exactly as the intersection of g hypersurfaces
of dimension (at most) 2g.
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Proof. Let D =
(

u(x), v(x)
)

=
(

xg +
∑g−1

i=0 uix
i ,

∑g−1
i=0 vix

i
)

∈ Jac(Cg(K)) be an arbitrary degree
g divisor class representative with supp(D) = {(x1, y1), ..., (xg , yg)} ∪ {P∞}, so that u(xi) = 0 and

v(xi) = yi for 1 ≤ i ≤ g. Let Ψ(x) =
∑g−1

i=0 Ψix
i be the polynomial obtained by substituting

y = v(x) into the equation for Cg and reducing modulo the ideal generated by u(x). Clearly, Ψ(xi) ≡
0 mod 〈u(x)〉 for each of the g non-trivial elements in supp(D), but since deg(Ψ(x)) ≤ g−1, it follows
that each of its g coefficients Ψi must be identically zero, implying that every element D ∈ Jac(Cg)
of full degree g lies in the intersection of the g hypersurfaces Ψi = Ψi(u0, ..., ug−1, v0, ..., vg−1) = 0.
On the other hand, each unique 2g-tuple in K which satisfies Ψi = 0 for 1 ≤ i ≤ g defines a unique
full degree representative D ∈ Jac(Cg(K)) (cf. [14, ex 11.3.7]). ⊓⊔

Definition 2 (Mumford ideals). We call the g ideals 〈Ψi〉 arising from the g hypersurfaces Ψi = 0
in Proposition 1 the Mumford ideals.

Definition 3 (Mumford function fields). The function fields of Cg and Cg ×Cg are respectively
identified with the quotient fields of

K[u0, ..., ug−1, v0, ..., vg−1]

〈Ψ0, ..., Ψg−1〉
and

K[u0, ..., ug−1, v0, ..., vg−1, u
′
0, ..., u

′
g−1, v

′
0, ..., v

′
g−1]

〈Ψ0, ..., Ψg−1, Ψ
′
0, ..., Ψ

′
g−1〉

,

which we call the Mumford function fields and denote by KMum(Cg) and KMum(Cg×Cg) respectively.
We abbreviate and use Ψi, Ψ

′
i to differentiate between Ψi = Ψi(u0, ..., ug−1, v0, ..., vg−1) and Ψ ′i =

Ψi(u
′
0, ..., u

′
g−1, v

′
0, ..., v

′
g−1) when working in KMum(Cg × Cg).

Example 4. Consider the genus 2 hyperelliptic curve defined by C : y2 = (x5 + 2x3 − 7x2 + 5x + 1)
over F37. A general degree two divisor D ∈ Jac(C) takes the form D = (x2 + u1x + u0, v1x + v0).
Substituting y = v1x + v0 into C and reducing modulo 〈x2 + u1x + u0〉 gives

(v1x + v0)
2 − (x5 + 2x3 − 7x2 + 5x + 1) ≡ Ψ1x + Ψ0 ≡ 0 mod 〈x2 + u1x + u0〉

where

Ψ1(u1, u0, v1, v0) = 3u0u1
2 − u1

4 − u0
2 + 2 v0v1 − v1

2u1 + 2 (u0 − u1
2) − 7u1 − 5,

Ψ0(u1, u0, v1, v0) = v0
2 − v1

2u0 + 2u0
2u1 − u1

3u0 − 2u1u0 − 7u0 − 1.

The number of tuples (u0, u1, v0, v1) ∈ F37 lying in the intersection of Ψ0 = Ψ1 = 0 is 1373, which is the
number of degree 2 divisors on Jac(C). There are 39 other divisors on Jac(C) with degrees less than 2,
each of which is isomorphic to a point on the curve, so that #Jac(C) = 1373+#C = 1412. Formulas
for performing full degree divisor additions are derived inside the Mumford function field KMum(C ×
C) = Quot(K[u0, u1, v0, v1, u

′
0, u
′
1, v
′
0, v
′
1]/〈Ψ0, Ψ1, Ψ

′
0, Ψ

′
1〉), whilst formulas for full degree divisor dou-

blings are derived inside the Mumford function field KMum(C) = Quot(K[u0, u1, v0, v1]/〈Ψ0, Ψ1〉).

Performing the efficient composition of two divisors amounts to finding the least degree polynomial
function that interpolates the union of their (assumed disjoint) non-trivial supports. The following
two propositions show that in the general addition and doubling of divisors, finding the interpolating
functions in the Mumford function fields can be accomplished by solving linear systems.

Proposition 5 (General divisor addition). Let D and D′ be reduced divisors of degree g on
Jac(Cg) such that supp(D) = {(x1, y1), ..., (xg , yg)}∪{P∞}, supp(D′) = {(x′1, y

′
1), ..., (x

′
g , y
′
g)}∪{P∞}

and xi 6= x′j for all 1 ≤ i, j ≤ g. An interpolating function ℓ on Cg with divisor div(ℓ) such that
(supp(D) ∪ supp(D′)) ⊆ supp(div(ℓ)) can be determined by a linear system of dimension 2g inside
the Mumford function field KMum(Cg × Cg).

Proof. Let D =
(

u(x), v(x)
)

=
(

xg +
∑g−1

i=0 uix
i ,

∑g−1
i=0 vix

i
)

and D′ =
(

u′(x), v′(x)
)

=
(

xg +
∑g−1

i=0 u′ix
i ,

∑g−1
i=0 v′ix

i
)

. Let the polynomial y = ℓ(x) =
∑2g−1

i=0 ℓix
i be the desired function that

interpolates the 2g non-trivial elements in supp(D) ∪ supp(D′), i.e. yi = ℓ(xi) and y′i = ℓ(x′i) for
1 ≤ i ≤ g. Focussing firstly on D, it follows that v(x) − ℓ(x) = 0 for x ∈ {xi}1≤i≤g. As in the
proof of Proposition 1, we reduce modulo the ideal generated by u(x) giving Ω(x) = v(x) − ℓ(x) ≡
∑g−1

i=0 Ωix
i ≡ 0 mod 〈xg +

∑g−1
i=0 uix

i〉. Since deg(Ω(x)) ≤ g − 1 and Ω(xi) = 0 for 1 ≤ i ≤ g, it
follows that the g coefficients Ωi = Ωi(u0, ..., ug−1, v0, ..., vg−1, ℓ0, ..., ℓ2g−1) must be all identically
zero. Each gives rise to an equation that relates the 2g coefficients of ℓ(x) linearly. Defining Ω′(x)
from D′ identically and reducing modulo u′(x) gives another g linear equations in the 2g coefficients
of ℓ(x). ⊓⊔
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Example 6. Consider the genus 3 hyperelliptic curve defined by C : y2 = x7 + 1 over F71, and take
D =

(

u(x), v(x)
)

,D′ =
(

u′(x), v′(x)
)

∈ Jac(C) as

D =
(

x3 + 6x2 + 41x + 33, 29x2 + 22x + 47
)

,D′ =
(

x3 + 18x2 + 15x + 37, 49x2 + 46x + 59
)

.

We compute the polynomial ℓ(x) =
∑5

i=0 ℓix
i that interpolates the six non-trivial elements in

supp(D) ∪ supp(D′) using ℓ(x) − v(x) ≡ 0 mod 〈u(x)〉 and ℓ(x) − v′(x) ≡ 0 mod 〈u′(x)〉, to obtain
Ωi and Ω′i for 0 ≤ i ≤ 2. For D and D′, we respectively have that

0 ≡
5

∑

i=0

ℓix
i − (29x2 + 22x + 47) ≡ Ω2x

2 + Ω1x + Ω0 mod 〈x3 + 6x2 + 41x + 33〉,

0 ≡

5
∑

i=0

ℓix
i − (49x2 + 46x + 59) ≡ Ω′2x

2 + Ω′1x + Ω′0 mod 〈x3 + 18x2 + 15x + 37〉,

with

Ω2 = ℓ2 + 65ℓ3 + 66ℓ4 + 30ℓ5 − 29; Ω1 = ℓ1 + 30ℓ3 + 48ℓ5 − 22; Ω0 = ℓ0 + 38ℓ3 + 56ℓ4 + 23ℓ5 − 47;

Ω′2 = ℓ2 + 53ℓ3 + 25ℓ4 + 67ℓ5 − 49;Ω′1 = ℓ1 + 56ℓ3 + 20ℓ4 + 7ℓ5 − 46;Ω′0 = ℓ0 + 34ℓ3 + 27ℓ4 + 69ℓ5 − 59.

Solving Ω0≤i≤2, Ω
′
0≤i≤2 = 0 simultaneously for ℓ0, ..., ℓ5 gives ℓ(x) = 21x5+x4+36x3+46x2+64x+57.

Proposition 7 (General divisor doubling). Let D be a divisor of degree g representing a class on
Jac(Cg) with supp(D) = {P1, ..., Pg} ∪ {P∞}. A function ℓ on Cg such that each non-trivial element
in supp(D) occurs with multiplicity two in div(ℓ) can be determined by a linear system of dimension
2g inside the Mumford function field KMum(Cg).

Proof. Let D =
(

u(x), v(x)
)

=
(

xg +
∑g−1

i=0 uix
i ,

∑g−1
i=0 vix

i
)

and write Pi = (xi, yi) for 1 ≤ i ≤ g.

Let the polynomial y = ℓ(x) =
∑2g−1

i=0 ℓix
i be the desired function that interpolates the g non-trivial

elements of supp(D), and also whose derivative ℓ′(x) is equal to dy/dx on Cg(x, y) at each such

element. Namely, ℓ(x) =
∑2g−1

i=0 ℓix
i is such that ℓ(xi) = yi and dℓ

dx(xi) = dy
dx(xi) on C for 1 ≤ i ≤ g.

This time the first g equations come from the direct interpolation as before, whilst the second g
equations come from the general expression for the equated derivates, taking dℓ

dx(xi) = dy
dx(xi) on Cg

as

g−1
∑

i=1

iℓix
i−1 =

(2g + 1)x2g +
∑2g−1

i=1 ifix
i−1 + (

∑g
i=0 ihix

i−1) · y

2y +
∑g

i=0 hixi

for each xi with 1 ≤ i ≤ g. Again, it is easy to see that substituting y = v(x) and reducing modulo
the ideal generated by u(x) will produce a polynomial Ω′(x) with degree less than or equal to g − 1.
Since Ω′(x) has g roots, Ω′i = 0 for 0 ≤ i ≤ g − 1, giving rise to the second g equations which
importantly relate the coefficients of ℓ(x) linearly. ⊓⊔

Example 8. Consider the genus 3 hyperelliptic curve defined by C : y2 = x7 + 5x + 1 over F257, and
take D ∈ Jac(C) as D = (u(x), v(x)) = (x3 + 57x2 + 26x + 80, 176x2 + 162x + 202). We compute the
polynomial ℓ(x) =

∑5
i=0 ℓix

i that interpolates the three non-trivial points in supp(D), and also has
the same derivative as C at these points. For the interpolation only, we obtain Ω0, Ω1, Ω2 (collected
below) identically as in Example 6. For Ω′0, Ω

′
1, Ω

′
2, equating dy/dx on C with ℓ′(x) gives

7x6 + 5

2y
≡ 5ℓ5x

4 + 4ℓ4x
3 + 3ℓ3x

2 + 2ℓ2x + ℓ1 mod 〈x3 + 57x2 + 26x + 80〉,

which, after substituting y = 176x2 + 162x + 202, rearranges to give 0 ≡ Ω′2x
2 + Ω′1x + Ω′0, where

Ω2 = 118ℓ4 + 256ℓ2 + 57ℓ3 + 96ℓ5; Ω′2 = 76ℓ5 + 2541ℓ4 + 254ℓ3 + 166;

Ω1 = 140ℓ4 + 256ℓ1 + 26ℓ3 + 82ℓ5; Ω′1 = 209 + 255ℓ2 + 104ℓ4 + 186ℓ5;

Ω0 = 256ℓ0 + 80ℓ3 + 69ℓ5 + 66ℓ4; Ω′0 = 73ℓ5 + 63ℓ4 + 256ℓ1 + 31.

Solving Ω0≤i≤2, Ω
′
0≤i≤2 = 0 simultaneously for ℓ0, ..., ℓ5 gives ℓ(x) = 84x5+213x3+78x2+252x+165.

This section showed that divisor composition on hyperelliptic curves can be achieved via linear
operations in the Mumford function fields.
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4 Generating explicit formulas in genus 2

This section applies the results of the previous section to develop explicit formulas for geometric
group law computations involving full degree divisors on Jacobians of genus 2 hyperelliptic curves.
Assuming an underlying field of large prime characteristic, such genus 2 hyperelliptic curves C ′/Fq

can always be isomorphically transformed into C2/Fq given by C2 : y2 = x5 + f3x
3 + f2x

2 + f1x+ f0,
where C2

∼= C ′ (see §2). The Mumford representation of a general degree two divisor D ∈ Jac(C2)
is given as D = (x2 + u1x + u0, v1x + v0). From Proposition 1, we compute the g = 2 hypersurfaces
whose intersection is the set of all such divisors on Jac(C2) as follows. Substituting y = v1x+ v0 into
the equation for C2 and reducing modulo the ideal 〈x2 + u1x + u0〉 gives the polynomial Ψ(x) as

Ψ(x) ≡ Ψ1x + Ψ0 ≡ (v1x + v0)
2 − (x5 + f3x

3 + f2x
2 + f1x + f0) mod 〈x2 + u1x + u0〉,

where

Ψ0 = v0
2 − f0 + f2u0 − v1

2u0 + 2u0
2u1 − u1f3u0 − u1

3u0,

Ψ1 = 2 v0v1 − f1 − v1
2u1 + f2u1 − f3(u1

2 − u0) + 3u0u1
2 − u1

4 − u0
2. (2)

We will derive doubling formulas inside KMum(C2) = Quot(K[u0, u1, v0, v1]/〈Ψ0, Ψ1〉) and addition
formulas inside KMum(C2 × C2) = Quot(K[u0, u1, v0, v1, u

′
0, u
′
1, v
′
0, v
′
1]/〈Ψ0, Ψ1, Ψ

′
0, Ψ

′
1〉). In §4.2 par-

ticularly, we will see how the ideal 〈Ψ0, Ψ1〉 is useful in simplifying the formulas that arise.

•P ′1
•
P ′2

•
P1

•P2 •

•P ′′1

•

•
P ′′2

Fig. 3. The group law (general addition) on the Jacobian
of the genus 2 curve C2 over the reals R, for (P1 + P2)⊕
(P ′1 + P ′2) = P ′′1 + P ′′2 .

•
P1

•
P2

•
•

P ′′1

•

•
P ′′2

Fig. 4. A general point doubling on the Jacobian of a
genus 2 curve C2 over the reals R, for [2](P1 + P2) =
P ′′1 + P ′′2 .

4.1 General divisor addition in genus 2

Let D = (x2 + u1x + u0, v1x + v0),D
′ = (x2 + u′1x + u′0, v

′
1x + v′0) ∈ Jac(C2) be two (full degree)

divisors with supp(D) = {P1, P2} ∪ {P∞} and supp(D′) = {P ′1, P
′
2} ∪ {P∞}, such that no Pi has

the same x coordinate as P ′j for 1 ≤ i, j ≤ 2. Let D′′ = (x2 + u′′1x + u′′0 , v
′′
1x + v′′0 ) = D ⊕ D′. The

composition step in the addition of D and D′ involves building the linear system that solves for the
cubic polynomial y = ℓ(x) =

∑3
i=0 ℓix

i which interpolates P1, P2, P
′
1, P

′
2. Following Proposition 5, we

have

0 ≡ Ω1x + Ω0 ≡ ℓ3x
3 + ℓ2x

2 + ℓ1x + ℓ0 − (v1x + v0) mod〈x2 + u1x + u0〉,

≡ (ℓ3(u1
2 − u0) − ℓ2u1 + ℓ1 − v1)x + (ℓ3u1u0 − ℓ2u0 + ℓ0 − v0) mod〈x2 + u1x + u0〉, (3)
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which provides two equations (Ω1 = 0 and Ω0 = 0) relating the four coefficients of the interpolating
polynomial linearly. Identically, interpolating the support of D′ produces two more linear equations
which allow us to solve for the four ℓi as









1 0 −u0 u1u0

0 1 −u1 u2
1 − u0

1 0 −u′0 u′1u
′
0

0 1 −u′1 u′ 21 − u′0









·









ℓ0

ℓ1

ℓ2

ℓ3









=









v0

v1

v′0
v′1









.

Observe that the respective subtraction of rows 1 and 2 from rows 3 and 4 gives rise to a smaller
system that can be solved for ℓ2 and ℓ3, as

(

u0 − u′0 u′1u
′
0 − u1u0

u1 − u′1 (u′ 21 − u′0) − (u2
1 − u0)

)

·

(

ℓ2

ℓ3

)

=

(

v′0 − v0

v′1 − v1

)

. (4)

Remark 9. We will see in section 5.1 that for all g ≥ 2, the linear system that arises in the computa-
tion of ℓ(x) can always be trivially reduced to be of dimension g, but for now it is useful to observe
that once we solve the dimension g = 2 matrix system for ℓi with i ≥ g, calculating the remaining ℓi

where i < g is computationally straightforward.

The next step is to determine the remaining intersection points of y = ℓ(x) on C2. Since y = ℓ(x)
is cubic, its substitution into C2 will give a degree six equation in x. Four of the roots will correspond
to the four non-trivial points in supp(D)∪ supp(D′), whilst the remaining two will correspond to the
two x coordinates of the non-trivial elements in supp(D̄′′), which are the same as the x coordinates
in supp(D′′) (see the intersection points in Figure 3). Let the Mumford representation of D̄′′ be
D̄′′ = (x2 + u1

′′x + u0
′′,−v′′1x − v′′0 ); we then have

(x2 + u1x + u0) · (x
2 + u′1x + u′0) · (x

2 + u1
′′x + u0

′′) =
(ℓ0 + ℓ1x + ℓ2x

2 + ℓ3x
3)2 − f(x)

ℓ2
3

.

Equating coefficients is an efficient way to compute the exact division required above to solve for
u′′(x). For example, equating coefficients of x5 and x4 above respectively gives

u1
′′ = −u1 − u′1 −

1 − 2ℓ2ℓ3

ℓ2
3

; u0
′′ = −(u0 + u′0 + u1u

′
1 + (u1 + u′1)u1

′′) +
2ℓ1ℓ3 + ℓ2

2

ℓ2
3

. (5)

It remains to compute v′′1 and v′′0 . Namely, we wish to compute the linear function that interpolates
the points in supp(D′′). Observe that reducing ℓ(x) modulo 〈x2+u′′1x+u′′0〉 gives the linear polynomial
−v′′1x + −v′′0 which interpolates the points in supp(D̄′′), i.e. those points which are the involutions
of the points in supp(D′′). Thus, the computation of v′′1 and v′′0 amounts to negating the result of
ℓ(x) mod 〈x2 + u′′1x + u′′0〉. From equation (3) then, it follows that

v′′1 = −(ℓ3(u
′′
1
2
− u′′0) − ℓ2u

′′
1 + ℓ1), v′′0 = −(ℓ3u

′′
1u
′′
0 − ℓ2u

′′
0 + ℓ0). (6)

We summarize the process of computing a general addition D′′ = D ⊕ D′ on Jac(C2), as follows.
Composition involves constructing and solving the linear system in (4) for ℓ2 and ℓ3 before computing
ℓ0 and ℓ1 via (3), whilst reduction involves computing u′′1 and u′′0 from (5) before computing v′′1 and
v′′0 via (6). The explicit formulas for these computations are in Table 1, where I, M and S represent
the costs of an Fq inversion, multiplication and squaring respectively. We postpone comparisons with
other works until after the doubling discussion.

Remark 10. The formulas for computing v′′0 and v′′1 in (6) include operations involving u′′21 and u′′1u
′′
0 .

Since those quantities are also needed in the first step of the addition formulas (see the first line
of Table 1) for any subsequent additions involving the divisor D′′, it makes sense to carry those
quantities along as extra coordinates to exploit these overlapping computations. It turns out that an
analogous overlap arises in geometric group operations for all g ≥ 2, but for now we remark that both
additions and doublings on genus 2 curves will benefit from extending the generic affine coordinate
system to include two extra coordinates u2

1 and u1u0.
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Input: D = (u1, u0, v1, v0, U1 = u2
1, U0 = u1u0), Operations

D′ = (u′1, u′0, v′1, v′0, U ′1 = u′21 , U ′0 = u′1u′0). in Fq

σ1 ← u1 + u′1, ∆0 ← v0 − v′0, ∆1 ← v1 − v′1, M1 ← U1 − u0 − U ′1 + u′0, M2 ← U ′0 − U0,

M3 ← u1 − u′1, M4 ← u′0 − u0, t1 ← (M2 −∆0) · (∆1 −M1), t2 ← (−∆0 −M2) · (∆1 + M1), 2M

t3 ← (−∆0 + M4) · (∆1 −M3), t4 ← (−∆0 −M4) · (∆1 + M3), r1 ← t1 − t2 r2 ← t4 − t3, 2M

r3 ← t3 + t4 − t1 − t2 − 2(M2 −M4) · (M1 + M3), ℓ2 ← r1/2, ℓ3 ← −r2/2, d← r3/2, 1M

A← 1/(d · ℓ3), B ← d · A, C ← d · B, D← ℓ2 ·B, E ← ℓ23 ·A, CC ← C2, I + 5M + 2S

u′′1 ← 2D − CC − σ1, u′′0 ← D2 + C · (v1 + v′1)− ((u′′1 − CC) · σ1 + (U1 + U ′1))/2, 2M + 1S

U ′′1 ← u′′21 , U ′′0 ← u′′1 · u
′′
0 , v′′1 ← D · (u1 − u′′1 ) + U ′′1 − u′′0 − U1 + u0, 2M + 1S

v′′0 ← D · (u0 − u′′0 ) + U ′′0 − U0, v′′1 ← E · v′′1 + v1 v′′0 ← E · v′′0 + v0. 3M

Output: D′′ = ρ(D ⊕D′) = (u′′1 , u′′0 , v′′1 , v′′0 , U ′′1 = u′′21 , U ′′0 = u′′1u′′0 ). Total I + 17M + 4S

Table 1. Explicit formulas for a general addition D′′ = D⊕D′ involving two degree 2 divisors on Jac(C2). A MAGMA script is
provided in Appendix C.

4.2 General divisor doubling in genus 2

Let D = (x2+u1x+u0, v1x+v0) ∈ Jac(C2) be a (full degree) divisor with supp(D) = {P1, P2}∪{P∞}.
To compute [2]D = D ⊕ D, we seek the cubic polynomial ℓ(x) =

∑3
i=0 ℓix

i that has zeroes of order
two at both P1 = (x1, y1) and P2 = (x2, y2). We can immediately make use of the equations arising
out of the interpolation of supp(D) in (3) to obtain the first two equations.

An alternative approach to obtaining the second set of g equations can give rise to simpler
linear relations. Instead of employing the expressions for the derivatives, the alternative technique
involves reducing Cg by 〈u(x)2〉 to ensure the zeros are of multiplicity two, and using the associated
Mumford ideals to linearize the equations. In the case of genus 2, we found it advantageous to use this
alternative approach, rather than the method employing derivatives that is illustrated in Example 8.

We start by setting y = ℓ(x) into C2 and reducing modulo the ideal 〈(x2 + u1x + u0)
2〉, which

gives

Ω(x) = Ω0 + Ω1x + Ω2x
2 + Ω3x

3 ≡ (ℓ0 + ℓ1x + ℓ2x
2 + ℓ3x

3)2 − f(x) mod 〈(x2 + u1x + u0)
2〉

where

Ω0 = ℓ2
3(2u

3
0 − 3u2

1u
2
0) + 4ℓ3ℓ2u1u

2
0 − 2ℓ3ℓ1u

2
0 + ℓ2

0 − ℓ2
2u

2
0 − 2u1u

2
0 − f0,

Ω1 = 6ℓ2
3(u1u

2
0 − u3

1u0) + 2ℓ3ℓ2(4u
2
1u0 − u2

0) + 2ℓ1ℓ0 − 4ℓ3ℓ1u0u1 − 2ℓ2
2u0u1 − 4u2

1u0 + u2
0 − f1,

Ω2 = 3ℓ2
3(u

2
0 − u4

1) + ℓ2
1 − ℓ2

2(u
2
1 + 2u0) − 2u0u1 − 2u3

1 + 4ℓ3ℓ2(u
3
1 + u0u1) − 2ℓ3ℓ1(2u0 + u2

1)

+ 2ℓ2ℓ0 − f2,

Ω3 = 2ℓ2
3(3u1u0 − 2u3

1) + 2ℓ2ℓ1 + 2ℓ3ℓ2(3u
2
1 − 2u0) − 2ℓ2

2u1 − 4ℓ3ℓ1u1 + 2ℓ3ℓ0 − 3u2
1 + 2u0 − f3.

It follows that Ωi = 0 for 0 ≤ i ≤ 3. Although we now have four more equations relating the un-
known ℓi coefficients, these equations are currently nonlinear. We linearize by substituting the linear
equations taken from (3) above, and reducing the results modulo the Mumford ideals given in (2),
noting that this linearity is instinctively guaranteed from (the derivative expression in) Proposition
7. We use the two linear equations Ω̃2, Ω̃3 resulting from Ω2, Ω3, given as

Ω̃2 = 4ℓ1v1 + 2ℓ2(v0 − 2v1u1) − 6ℓ3u0v1 − 2u0u1 − 2u3
1 − 3v2

1 − f2,

Ω̃3 = 2v1ℓ2 + ℓ3(2v0 − 4u1v1) + 2u0 − 3u2
1 − f3,

which combine with the linear interpolating equations (in (3)) to give rise to the linear system









−1 0 u0 −u1u0

0 −1 u1 −u2
1 + u0

0 4v1 −2v1u1 + 2v0 −6u0v1

0 0 2v1 −4v1u1 + 2v0









·









ℓ0

ℓ1

ℓ2

ℓ3









=









−v0

−v1

f2 + 2u1u0 + 2u3
1 + 3v2

1

f3 − 2u0 + 3u2
1









.
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As was the case with the divisor addition in the previous section, we can first solve a smaller system
for ℓ2 and ℓ3, by adding the appropriate multiple of the second row to the third row above, to give

(

2v1u1 + 2v0 −2u0v1 − 4v1u
2
1

2v1 −4v1u1 + 2v0

)

·

(

ℓ2

ℓ3

)

=

(

f2 + 2u1u0 + 2u3
1 − v2

1

f3 − 2u0 + 3u2
1

)

.

After solving the above system for ℓ2 and ℓ3, the process of obtaining D′′ = [2]D = (x2 + u′′1x +
u′′0, v

′′
1x + v′′0 ) is identical to the case of addition in the previous section, giving rise to the analogous

explicit formulas in Table 2.

Input: D = (u1, u0, v1, v0, U1 = u2
1, U0 = u1u0), with constants f2, f3 Operations

vv ← v2
1 , vu← (v1 + u1)2 − vv − U1, M1 ← 2v0 − 2vu, M2 ← 2v1 · (u0 + 2U1), 1M + 2S

M3 ← −2v1, M4 ← vu + 2v0, z1 ← f2 + 2U1 · u1 + 2U0 − vv, z2 ← f3 − 2u0 + 3U1, 1M

t1 ← (M2 − z1) · (z2 −M1), t2 ← (−z1 −M2) · (z2 + M1), t3 ← (M4 − z1) · (z2 −M3), 3M

t4 ← (−z1 −M4) · (z2 + M3), r1 ← t1 − t2, r2 ← t4 − t3, 1M

r3 ← t3 + t4 − t1 − t2 − 2(M2 −M4) · (M1 + M3), ℓ2 ← r1/2, ℓ3 ← −r2/2, d← r3/2, 1M

A← 1/(d · ℓ3), B ← d ·A, C ← d ·B, D← ℓ2 · B, E ← ℓ23 · A, I + 5M + 1S

u′′1 ← 2D − C2 − 2u1, u′′0 ← (D − u1)2 + 2C · (v1 + C · u1), U ′′1 ← u′′21 , U ′′0 ← u′′1 · u
′′
0 , 3M + 3S

v′′1 ← D · (u1 − u′′1 ) + U ′′1 − U1 − u′′0 + u0, v′′0 ← D · (u0 − u′′0 ) + U ′′0 − U0, 2M

v′′1 ← E · v′′1 + v1, v′′0 ← E · v′′0 + v0. 2M

Output: D′′ = ρ([2]D) = (u′′1 , u′′0 , v′′1 , v′′0 , U ′′1 = u′′21 , U ′′0 = u′′1u′′0 ). Total I + 19M + 6S

Table 2. Explicit formulas for a general doubling D′′ = [2]D of a degree 2 divisor on Jac(C2). A MAGMA script is provided in
Appendix C.

4.3 Comparisons of formulas in genus 2

Table 3 draws comparisons between our affine formulas above and the affine formulas presented in
previous work.

Fq inversions Previous work General Jacobian doubling General Jacobian addition

Fq muls (M) Fq sqrs (S) Fq muls (M) Fq sqrs (S)
Harley [21, 19] 30 - 24 3

2I Lange [30] 24 6 24 3
Matsuo et al. [39] 27 - 25 -

Takahashi [47] 29 - 25 -
Miyamoto et al. [41] 27 - 26 -

1I Lange [34] 22 5 22 3
This work 19 6 17 4

Table 3. Comparisons between geometric affine explicit formulas for genus 2 curves over prime fields and previous
formulas using CRT based composition. The analogous projective comparison is made in Table 6.

Note that carrying the two extra affine coordinates between consecutive point operations does
not affect the key sizes or length of transmissions in a protocol. In the rare scenario where space
might be restricted on a constrained device that only supports temporary storage of 4 coordinates
throughout the computations, contracting back to the 4 standard affine coordinates only costs one
extra field operation in both addition and doubling; carrying the coordinate u2

1 only allows us to
trade a multiplication for a field squaring, which is often preferred in implementations. In this case
the operation counts become I+19M+3S for divisor addition and I+21M+5S for divisor doubling.

In some implementations where inversions are very expensive, it may be advantageous to adopt
projective formulas which avoid inversions altogether. We give the projective versions of the formulas
in Appendix B. Our projective formulas compute scalar multiples faster than all previous projective
formulas for general genus 2 curves. We also note that our homogeneous projective formulas require
only 5 coordinates in total, which is the heuristic minimum for projective implementations in genus
2.

Finally, we comment that, unlike the case of elliptic curves where point doublings are generally
much faster than additions, affine genus 2 operations reveal divisor additions to be the significantly
cheaper operation. In cases where an addition would usually follow a doubling to compute [2]D⊕D′,
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it is likely to be computationally favorable to instead compute (D ⊕ D′) ⊕ D, provided temporary
storage of the additional intermediate divisor is not problematic.

5 The general description

This section presents the geometric algorithm for composition for arbitrary g. The general method
for reduction has essentially remained the same in all related publications following Cantor’s original
paper (at least in the case of low genera), but we give a geometric interpretation of the number of
reduction rounds required in Section 5.3 below.

5.1 Geometric composition for g ≥ 2

We generalize the composition described for genus 2 in sections 4.1 and 4.2 to hyperelliptic curves of
arbitrary genus. Importantly, there are two aspects of this general description to highlight.

(i) In contrast to Cantor’s general description of composition which involves polynomial arithmetic,
this general description is immediately explicit in terms of Fq arithmetic.

(ii) When computing the interpolating function from the Mumford coordinates, the linear sys-
tem that arises has an exploitable structure, just like the special linear system arising from
interpolating points on the curve can be exploited. In addition, note that the linear system
resulting from Mumford coordinates is of dimension g, whilst the linear system resulting from
interpolating points is of dimension 2g.

Namely, to expand on the second point, when interpolating the 2g points (xi, yi) and (x′i, y
′
i) for

1 ≤ i ≤ g in the supports of D and D′ (even if their coordinates were defined over the base field),
computing the degree 2g−1 polynomial that interpolates these points involves solving a linear system
of the well-known Vandermonde form, given as

















1 x1 x2
1 . . . x2g−1

1
...

...
...

. . .
...

1 xg x2
g . . . x2g−1

g

1 x′1 x′21 . . . x′2g−1
1

..

.
..
.

..

.
. . .

..

.

1 x′g x′2g . . . x′2g−1
g

















·















ℓ0
..
.

ℓg−1

ℓg

...
ℓ2g−1















=















y1

...
yg

y′1
..
.

y′g















.

The special form of the system may be much cheaper to solve than a general linear system of the same
size. In the case of the Mumford function fields KMum(Cg) and KMum(Cg ×Cg), the resulting linear
systems may also be solvable faster than in the general case, especially in the context of applications
where precomputations are feasible. Although the function ℓ(x) =

∑2g−1
i=0 ℓix

i has 2g coefficients, the
only linear system to be solved in all cases is actually of dimension g: after solving this system for
ℓi≥g, the remaining ℓi<g can be computed in a straightforward way. Henceforth we use M · x = z to
denote the associated linear system of dimension g, and we focus our discussion on how to exploit
the structure of M.

In the case of a general divisor addition, M is computed as M = U − U′, where U and U′ are
described by D and D′ respectively. In fact, as for the system derived from coordinates of points
above, the matrix M is completely dependent on u(x) and u′(x), whilst the vector z depends entirely
on v(x) and v′(x). Algorithm 1 details how to build U (resp. U′), where the first column of U is
initialized as the Mumford coordinates {ui}1≤i<g of D, and the remaining g2−g entries are computed
by proceeding across the columns and taking Ui,j = ui−1 · Ug,j−1 + Ui−1,j−1. This relationship is
obtained by a careful generalization of the process that computed (4) from (3) in the case of genus
2.

Depending on the genus, we remark that Algorithm 1 will most likely not be the fastest way to
compute M. Instead, we propose that a faster routine is likely to be achieved by using Algorithm 1
to determine the algebraic expression for each of the elements in M, and tailoring optimized formulas
to generate its entries, in the same way that the previous section did for genus 2.

In addition, we note that the special form of M suggests other possible ways to compute x which
bypass the complete computation of M (and/or the expensive inverse). This follows from observing
that both U and U′ can actually be written as a sum of g matrices that are computed as outer
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Algorithm 1 Geometric composition (addition) of two unique divisors. A MAGMA script is provided
in Appendix E.
Input: D = {ui, vi}0≤i≤g−1, D′ = {u′i, v

′
i}0≤i≤g−1.

Output: ℓ(x) =
P2g−1

i=0 ℓix
i such that supp(D) ∪ supp(D′) ⊂ supp(div(ℓ)).

1: U,U′,M← {0}g×g ∈ F
g×g
q , z← {0}g ∈ F

g
q .

2: for i from 1 to g do

3: Ug+1−i,1 ← −ug−i ; U′g+1−i,1 ← −u′g−i

4: end for

5: for j from 2 to g do

6: U1,j ← Ug,j−1 ·U1,1 ; U′1,j ← U′g,j−1 ·U
′
1,1.

7: for i from 2 to g do

8: Ui,j ← Ug,j−1 ·Ui,1 + Ui−1,j−1 ; U′i,j ← U′g,j−1 ·U
′
i,1 + U′i−1,j−1.

9: end for

10: end for

11: M← U−U′.
12: for i from 1 to g do

13: zi ← vi−1 − v′i−1

14: end for

15: Solve M · x = z

16: Compute x̃ = U · x
17: for i from 1 to g do

18: x̃i ← vg−i − x̃i

19: end for

20: return ℓ(x) (from x̃ = {ℓ0, ..., ℓg−1} and x = {ℓg , ..., ℓ2g−1})

products; let c = (c1, .., cg), c̃ = (c̃1, ..., c̃g) ∈ F
g
q be two vectors that are derived solely from the g

Mumford coordinates belonging to D, then

U =









c1c̃1 c1c̃2 . . . c1c̃g

c2c̃1 c2c̃2 . . . c2c̃g

... . . .
. . .

...
cg−1c̃1 cg−1c̃2 . . . cg−1c̃g

cg c̃1 cg c̃2 . . . cg c̃g









+









0 0 . . . 0
0 c1c̃1 . . . c1c̃g−1

... . . .
. . .

...
0 cg−2c̃2 . . . cg−2c̃g−1

0 cg−1c̃2 . . . cg−1c̃g−1









+ . . . +









0 . . . 0 0
0 . . . 0 0
... . . .

. . .
...

0 . . . 0 0
0 . . . 0 c1c̃1









.

Example 11. Assume a general genus 3 curve and let the Mumford representations of the divisors D
and D′ be as usual. The matrix U is given as

(

−u0 u2u0 −u2
2u0 + u1u0

−u1 u2u1 − u0 −u2
2u1 + u2

1 + u2u0

−u2 u2
2 − u1 −u3

2 + 2u2u1 − u0

)

=

(

−u0 u2u0 (−u2
2 + u1)u0

−u1 u2u1 (−u2
2 + u1)u1

−u2 u2
2 (−u2

2 + u1)u2

)

+

(

0 0 0
0 −u0 u2u0

0 −u1 u2u1

)

+

(

0 0 0
0 0 0
0 0 −u0

)

,

and U′ is given identically. In this case c = (u0, u1, u2)
T and c̃ = (−1, u2,−u2

2 + u1)
T . Setting

M = U − U′ and z = (v0 − v′0, v1 − v′1, v2 − v′2)
T , we find the g = 3 coefficients ℓ3, ℓ4 and ℓ5 of

the quintic ℓ(x) =
∑5

i=0 ℓix
i that interpolates the 6 non-trivial elements in supp(D) ∪ supp(D′) by

solving M · x = z for x = (ℓ3, ℓ4, ℓ5)
T . The remaining coefficients are found via a straightforward

matrix multiplication as x̃ = (ℓ0, ℓ1, ℓ2)
T = U · x.

The immediate observation in general is that cc̃T is the only outer product that requires com-
putation in order to determine U entirely. Next, we recall the formula for updating matrix inverses
due to Sherman and Morrison [45] as

(A + uvT )−1 =

(

A−1 −
A−1uvTA−1

1 + vT A−1u

)

.

We suggest an approach that applies this formula as follows. In the context of HECC, consider the
scalar multiplication of the divisor D, where each addition occurring in a standard double-and-add
routine will involve D itself, and some other multiple D′ of D. Thus, each M that arises will share
the same contribution from D, namely U in M = U−U′. Relabel U′ = −U′ and observe that if the
inverse of U is precomputed and stored for the entire scalar routine, then repeated application of

the Sherman-Morrison formula can allow M−1 = (U+U′)−1 =
(

U+
∑g

i=1 c′ic̃
′T
i

)−1
to be computed

at each addition stage by Algorithm 2.
In this fashion the inverse of M is computed using a series of matrix-vector multiplications and

vector-vector inner/outer products, where we note that because of the increasing number of zero
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Algorithm 2 Computing M−1 with repeated application of the Sherman-Morrison formula

Input: U−1 (precomputed), and U′.

Output: Minv = M−1.

1: Minv ← U−1.
2: for i from 1 to g do

3: Minv ← (Minv − (Minvc
′
ic̃
′T
i Minv)/(1 + c̃′Ti Minvc

′
i)).

4: end for

5: return Minv.

entries in ci and c̃i as i approaches g, the complexity of these operations decreases in each iteration
(refer back to Example 11). For higher genus implementations, such an approach could significantly
reduce the computational cost of finding the solution to the Fq matrix system using generic methods.

We round up this discussion by noting that the matrix structure arising in divisor doublings is
analogous and has the same potential to be optimized; the algorithm is in Appendix A. The reason
for the longer description in the case of doublings is that the right hand side vector z is slightly
more complicated than in the case of addition: as is the case with general Weierstrass elliptic curves,
additions tend to be independent of the curve constants whilst doublings do not. We reiterate that,
for low genus implementations at least, Algorithm 3 is intended to obtain the algebraic expressions
for each element in M; as was the case with genus 2, a faster computational route to determining the
composition function will probably arise from genus specific attention that derives tailored explicit
formulas. Besides, the general consequence of Remark 10 is that many (if not all) of the values
constituting U will have already been computed in the previous point operation, and can therefore
be temporarily stored and reused.

5.2 Handling special cases

The geometric description of divisor composition naturally encompasses the special cases where
either (or both) of the divisors have degree less than g. In fact, Proposition 1 trivially generalizes
to describe the set of degree divisors on Jac(Cg) whose effective parts have degree d ≤ g, and can
therefore be used to obtain the Mumford ideals associated with special input divisors5. This will
often result in fewer rounds of reduction and a simpler linear system. For example, whilst the general
addition of two full degree divisors in genus 3 requires an additional round of reduction after the
first points of intersection are found (see Figure 1 and Figure 2), it is easy to see that any group
operation on a genus 3 curve involving a divisor of degree less than 3 will give rise to a reduced
divisor immediately. Clearly the explicit formulas arising in these special cases will always be much
faster, in agreement with all prior expositions (cf. [2, §14]). In higher genus implementations that do
not explicitly account for all special cases of inputs, Katagi et al. [26] noted that it can still be very
advantageous to explicitly implement and optimize one of the special cases.

5.3 Geometric reduction

Gaudry’s chapter [17] gives an overview of different algorithms (and complexities) for the reduction
phase. Our experiments lead us to believe that the usual method of reduction is still the most
preferable for small g. In genus 2 we saw that point additions and doublings do not require more
than one round of reduction, i.e. the initial interpolating function intersects C2 in at most two more
places (refer to Figure 3), immediately giving rise to the reduced divisor that is the sum. In genus
g ≥ 3 however, this is generally not the case. Namely, the initial interpolating function intersects Cg

in more than g places, giving rise to an unreduced divisor that requires further reduction. We restate
Cantor’s complexity argument concerning the number of rounds of reduction ([7, §4]) in a geometric
way in the following proposition.

Proposition 12. In the addition of any two reduced divisor classes on the Jacobian of a genus g
hyperelliptic curve, the number of rounds of further reduction required to form the reduced divisor is
at most ⌊g−1

2 ⌋, with equality occurring in the general case.

5 Perhaps the most general consequence of Proposition 1 is using it to describe (or enumerate) the entire Jacobian by
summing over all d, as #Jac(Cg) = #Cg +

Pg
d=2 nd, where nd is the number of 2d-tuples lying in the intersection

of the d associated hypersurfaces.



14 C. Costello and K. Lauter

Proof. For completeness note that addition on elliptic curves in Weierstrass form needs no reduction,
so take g ≥ 2. The composition polynomial y = ℓ(x) with the 2g prescribed zeros (including multiplic-
ities) has degree 2g−1. Substituting y = ℓ(x) into Cg : y2 +h(x)y = f(x) gives an equation of degree
max{2g+1, 3g−1, 2(2g−1)} = 2(2g−1) in x, for which there are at most 2(2g−1)−2g = 2g−2 new
roots. Let nt be the maximum number of new roots after t rounds of reduction, so that n0 = 2g − 2.
While nt > g, reduction is not complete, so continue by interpolating the nt new points with a
polynomial of degree nt − 1, producing at most 2(nt − 1) − nt = nt − 2 new roots. It follows that
nt = 2g − 2t − 2, and since t, g ∈ Z, the result follows. ⊓⊔

6 Further implications and potential

This section is intended to further illustrate the potential of adopting a geometric approach to
performing arithmetic in Jacobians. It is our hope that the suggestions in this section encourage
future investigations and improvements.

We start by commenting that our algorithm can naturally be generalized to much more than
standard divisor additions and doublings. Namely, given any set of divisors D1, ...,Dn ∈ Cg and any
corresponding set of scalars r1, ..., rn ∈ Z, we can theoretically compute D =

∑n
i=1[ri]Di at once, by

first prescribing a function that, for each 1 ≤ i ≤ n, has a zero of order ri at each of the non-trivial
points in the support of Di. Note that if ri 6∈ Z

+, then prescribing a zero of order ri at some point
P is equivalent to prescribing a pole of order −ri ∈ Z

+ at P instead. We first return to genus 1
to show that this technique can be used to recover several results that were previously obtained by
alternatively merging or overlapping consecutive elliptic curve computations (cf. [11, 8]).

Simultaneous operations on elliptic curves. In the case of genus 1, the Mumford representation
of reduced divisors is trivial, i.e. if P = (x1, y1), the Mumford representation of the associated divisor
is DP = (x − x1, y1), and the associated Mumford ideal is (isomorphic to) the curve itself. However,
we can again explore using the Mumford representation as an alternative to derivatives in order to
generate the required linear systems arising from prescribing multiplicities of greater than one. In
addition, when unreduced divisors in genus 1 are encountered, the Mumford representation becomes
non-trivial and very necessary for efficient computations.

•
P

•
P ′

•

•
[2]P + P ′

Fig. 5. Computing [2]P +P ′ by pre-
scribing a parabola which intersects
E at P, P ′ with multiplicities two
and one respectively.

•
P

•

•
[3]P

Fig. 6. Tripling the point P ∈ E by
prescribing a parabola which inter-
sects E at P with multiplicity three.

•
P •P̂1

•P̂2

Fig. 7. Quadrupling the point P ∈
E by prescribing a cubic which in-
tersects E at P with multiplicity
four.

To double-and-add or point triple on an elliptic curve, we can prescribe a parabola ℓ(x) =
ℓ2x

2 + ℓ1x + ℓ0 ∈ Fq(E) with appropriate multiplicities in advance, as an alternative to Eisenträger
et al.’s technique of merging two consecutive chords into a parabola [11]. Depending on the specifics
of an implementation, computing the parabola in this fashion offers the same potential advantage
as that presented by Ciet et al. [8]; we avoid any intermediate computations and bypass computing
P +P ′ or [2]P along the way. When tripling the point P = (xP , yP ) ∈ E, the parabola is determined
from the three equalities ℓ(x)2 ≡ x3 + f1x + f0 mod 〈(x − u0)

i〉 for 1 ≤ i ≤ 3, from which we take
one of the coefficients that is identically zero in each of the three cases. As one example, we found
projective formulas which compute triplings on curves of the form y2 = x3 + f0 and cost 3M + 10S
(see Appendix C). These are the second fastest tripling formulas reported across all curve models
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[4], being only slightly slower (unless S < 0.75M) than the formulas for tripling-oriented curves
introduced by Doche et al. [10] which require 6M + 6S.

We can quadruple the point P by prescribing a cubic function ℓ(x) = ℓ3x
3 + ℓ2x

2 + ℓ1x + ℓ0

which intersects E at P with multiplicity four (see Figure 7). This time however, the cubic is zero
on E in two other places, resulting in an unreduced divisor DP̂ = P̂1 + P̂2, which we can represent
in Mumford coordinates as DP̂ = (û(x), v̂(x)) (as if it were a reduced divisor in genus 2). Our
experiments agree with prior evidence that it is unlikely that point quadruplings will outperform
consecutive doublings in the preferred projective cases, although we believe that one application
which could benefit from this description is pairing computations, where interpolating functions are
necessary in the computations. To reduce DP̂ , we need the line y = ℓ̂(x) joining P̂1 with P̂2, which

can be computed via ℓ̂(x) ≡ ℓ(x) mod 〈û(x)〉. The update to the pairing function requires both ℓ(x)
and ℓ̂(x), as fupd = ℓ(x)/ℓ̂(x). We claim that it may be attractive to compute a quadrupling in
this fashion and only update the pairing function once, rather than two doublings which update the
pairing functions twice, particularly in implementations where inversions don’t compare so badly
against multiplications [37]. It is also worth pointing out that in a quadruple-and-add computation,
the unreduced divisor DP̂ need not be reduced before adding an additional point P ′. Rather, it could

be advantageous to immediately interpolate P̂1, P̂2 and P ′ with a parabola instead.

Simultaneous operations in higher genus Jacobians. Increasing the prescribed multiplicity of
a divisor not only increases the degree of the associated interpolating function (and hence the linear
system), but also generally increases the number of rounds of reduction required after composition.
In the case of genus 1, we can get away with prescribing an extra zero (double-and-add or point
tripling) without having to encounter any further reduction, but for genus g ≥ 2, this will not be the
case in general. For example, even when attempting to simultaneously compute [2]D + D′ for two
general divisors D,D′ ∈ Jac(C2), the degree of the interpolating polynomial becomes 5, instead of
3, and the dimension of the linear system that arises can only be trivially reduced from 6 to 4. Our
preliminary experiments seem to suggest that unless the linear system can be reduced further, it is
likely that computing [2]D+D′ simultaneously using our technique won’t be as fast as computing two
consecutive straightforward operations. However, as in the previous paragraph, we argue that such
a trade-off may again become favorable in pairing computations where computing the higher-degree
interpolating function would save a costly function update.

Explicit formulas in genus 3 and 4. Developing explicit formulas for hyperelliptic curves of genus
3 and 4 has also received some attention [48, 50, 20]. It will be interesting to see if the composition
technique herein can further improve these results. In light of Remark 10 and the general description
in Section 5, the new entries in the matrix M will often have been already computed in the previous
point operation, suggesting an obvious extension of the coordinates if the storage space permits it.
Therefore the complexity of our proposed composition essentially boils down to the complexity of
solving the dimension g linear system in Fq, and so it would also be interesting to determine for which
(practically useful) genera one can find tailor-made methods of solving the special linear system that
arises, as we discussed briefly in Section 5.1.

Characteristic two, special cases, and more coordinates. Although the proofs in Section
3 were for arbitrary hyperelliptic curves over general fields, Section 4 simplified the exposition by
focusing only on finite fields of large prime characteristic. Of course, it is possible that the description
herein can be tweaked to also improve explicit formulas in the cases of special characteristic two curves
(see [2, §14.5]). In addition, it is possible that the geometric derivation of explicit formulas for special
cases of inputs will enhance implementations which make use of these (refer to Section 5.2). Finally,
we only employed straightforward homogeneous coordinates to obtain the projectified versions of our
formulas. As was the case with the previous formulas based on Cantor’s composition, it is possible
that extending the projective coordinate system will give rise to even faster formulas.

7 Conclusion

This paper presents a new method of divisor composition for hyperelliptic curves. The method is
based on using simple linear algebra to derive the required geometric functions directly from the
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Mumford coordinates of Jacobian elements. In contrast to Cantor’s composition which operates in
the polynomial ring Fq[x], the algorithm we propose is immediately explicit in terms of Fq operations.
We showed that this achieves the current fastest general group law formulas in genus 2, and pointed
out several other potential improvements that could arise from this exposition.
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A General composition of a divisor with itself (doubling)

For an arbitrary full-degree divisor D on any hyperelliptic curve of genus g, Algorithm 3 computes a
function ℓ(x) which intersects Cg with multiplicity 2 at each of the non-trivial elements in supp(D).
This description can be used to derive fast explicit formulas for higher genus implementations. A
MAGMA version of the algorithm is given in Table 14 of Appendix E.

Algorithm 3 Geometric composition (doubling) of a unique divisor with itself

Input: D = {ui, vi}0≤i≤g−1 and curve coefficients f0, f1, ..., f2g−1.

Output: ℓ(x) =
P2g−1

i=0 ℓix
i such that each non-trivial element in supp(D) occurs with multiplicity two in div(ℓ) .

1: U,M← {0}g×g ∈ F
g×g
q , v← {0}g−1 ∈ F

g−1
q , z← {0}g ∈ F

g
q

2: for i from 1 to g do

3: Ug+1−i,1 ← −ug−i

4: end for

5: for j from 2 to g do

6: U1,j ← Ug,j−1 ·U1,1.
7: for i from 2 to g do

8: Ui,j ← Ug,j−1 ·Ui,1 + Ui−1,j−1.
9: end for

10: end for

11: uextra ← Ug,1 ·Ug,g + Ug−1,g.
12: for i from 1 to g do

13: Mg+1−i,1 ← vg−i

14: end for

15: for j from 2 to g do

16: Mi,j ←Mi,j + Ug,j−1 ·Mi,1 + Mg,j−1 ·Ui,1 + Mi−1,j−1.
17: end for

18: for i from 1 to g − 1 do

19: zg+1−i ← zg+1−i + 2 ·Ug,1 ·Ug+1−i,1 + Ug−i,1 + Ug,i+1 + f2g−i.
20: for j from 1 to i do

21: zg−i ← zg−i + f2g−1−i+j · Ug,j .
22: vi ← vi −Mg+1−j,1 ·Mg−i+j,1.
23: end for

24: end for

25: z1 ← z1 + 2 ·Ug,1 ·U1,1 + fg .
26: zg−1 ← zg−1 + v1.
27: for i from 3 to g do

28: for j from 2 to i− 1 do

29: zg+1−i ← zg+1−i + vi−j ·Ug,j−1.
30: end for

31: zg+1−i ← zg+1−i + vi−1.
32: end for

33: z1,1 ← z1,1 + uextra.
34: for i from 1 to g do

35: zi ← zi/2.
36: end for

37: Solve M · x = z

38: Compute x̃ = −U · x
39: for i from 1 to g do

40: x̃i ← vg−i + x̃i

41: end for

42: return ℓ(x) (from x̃ = {ℓ0, ..., ℓg−1} and x = {ℓg , ..., ℓ2g−1})
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B Homogeneous projective formulas in genus 2

Input: D = (U1, U0, V1, V0, Z), D′ = (U′

1
, U′

0
, V ′

1
, V ′

0
, Z′), Operations

ZZ ← Z1 · Z2, U1Z ← U1 · Z2, U1Z′ ← U′

1
· Z1, U1ZS ← U1Z2, U1ZS′ ← U1Z′2 , 3M + 2S

U0Z ← U0 · Z2, U0Z′ ← U′

0
· Z1, V 1Z ← V1 · Z2, V 1Z′ ← V ′

1
· Z1, 4M

M1 ← U1ZS − U1ZS′ + ZZ · (U0dZ − U0Z), M2 ← U1Z′ · U0Z′ − U1Z · U0Z; 3M

M3 ← U1Z − U1Z′, M4 ← U0Z′ − U0Z, z1 ← V 0 · Z2 − V 0′ · Z1, z2 ← V 1Z − V 1Z′, 2M

t1← (M2 − z1) · (z2 −M1), t2← (−z1 −M2) · (z2 + M1), 2M

t3 ← (−z1 + M4) · (z2 −M3), t4 ← (−z1 −M4) · (z2 + M3), r1 ← t1 − t2, r2 ← t4 − t3, 2M

r3 ← t3 + t4 − t1 − t2 − 2 · (M2 −M4) · (M1 + M3), b2 ← r1/2, b3 ← −r2/2, d← r3/2, 1M

A← d2, B ← b3 · ZZ, C ← b2 · B, D ← d · B, E ← b3 · B, F ← U1Z · E, G← ZZ · E, 6M + 1S

H ← U0Z ·G, J ← D ·G, K ← Z2 · J, U′′

1
← 2 · C − A− E · (U1Z + U1Z′), 4M

U′′

0
← b2

2
· ZZ + D · (V 1Z + V 1Z′)− ((U′′

1
− A) · (U1Z + U1Z′) + E · (U1ZS + U1ZS′))/2, 4M + 1S

V ′′

1
← U′′

1
· (U′′

1
− C) + F · (C − F ) + E · (H − U′′

0
), 3M

V ′′

0
← H · (C − F ) + U′′

0
· (U′′

1
− C), V ′′

1
← V ′′

1
· ZZ + K · V1, V ′′

0
← V ′′

0
+ K · V0, 5M

U′′

1
← U′′

1
·D · ZZ, U′′

0
← U′′

0
·D, Z′′ ← ZZ · J. 4M

Output: D′′ = ρ(D ⊕D′) = (U′′

1
, U′′

0
, V ′′

1
, V ′′

0
, Z′′). Total 43M + 4S

Table 4. Explicit formulas for a general doubling D′′ = D ⊕D′ involving two degree 2 divisors on Jac(C2) in homogeneous projective coordinates.
A MAGMA script is provided in Appendix D.

Input: D = (U1, U0, V1, V0, Z), curve constants f2, f3 Operations

UU ← U1 · U0, U1S ← U2

1
, ZS ← Z2, V 0Z ← V 0 · Z, U0Z ← U0 · Z, V1S ← V 12, 3M + 3S

UV ← (V1 + U1)2 − V1S − U1S , M1 ← 2 · V 0Z − 2 · UV, M2 ← 2 · V 1 · (U0Z + 2 · U1S), 1M + 1S

M3 ← −2 · V1, M4 ← UV + 2 · V 0Z, z1 ← Z · (f2 · ZS − V1S ) + 2 · U1 · (U1S + U0Z), 2M

z2 ← f3 · ZS − 2 · U0Z + 3 · U1S, t1 ← (M2 − z1) · (z2 −M1), t2 ← (−z1 −M2) · (z2 + M1), 2M

t3 ← (−z1 + M4) · (z2 −M3), t4 ← (−z1 −M4) · (z2 + M3), r1 ← t1 − t2, r2 ← t4 − t3, 2M

r3 ← t3 + t4 − t1 − t2 − 2 · (M2 −M4) · (M1 + M3), b2 ← r1/2, b3 ← −r2/2, d← r3/2, 1M

A← b2
2
, B ← b2

3
, C ← ((b2 + b3)2 − A− B)/2, D ← B · Z, E ← B · U1, 2M + 3S

F ← d2, G← F · Z, H ← ((d + b3)2 − F − B)/2, J ← H · Z, K ← V1 · J, L← U0Z · B, 4M + 2S

U′′

1
← 2 · C − 2 · E −G, U′′

0
← A + U1 · (E − 2 · C + 2 ·G) + 2 ·K, 1M

V ′′

1
← (C − E − U′′

1
) · (E − U′′

1
) + B · (L− U′′

0
), V ′′

0
← L · (C − E) + (U′′

1
− C) · U′′

0
. 4M

V ′′

1
← V ′′

1
· Z + K ·D, V ′′

0
← V ′′

0
+ V 0Z ·H ·D, M ← J · Z, U′′

1
← U′′

1
·M, U′′

0
← U′′

0
· J, 7M

Z′′ ← M ·D. 1M

Output: D′′ = ρ([2]D) = (U′′

1
, U′′

0
, V ′′

1
, V ′′

0
, Z′′). Total 30M + 9S

Table 5. Explicit formulas for a general doubling D′′ = [2]D of a degree 2 divisor on Jac(C2) in homogeneous projective coordinates. A MAGMA
script is provided in Appendix D.

Previous work # Coordinates Doubling Mixed add Addition

needed M S M S M S

Wollinger and Kovtun [49] 5 39 6 39 4 46 4
Lange [32, 34] 5 38 6 40 3 47 4
Fan et al. [13] 5 39 6 38 3 - -
Fan et al. [13] 8 35 7 36 5 - -

Lange [33, 34] 8 34 7 36 5 47 7
This work 5 30 9 36 5 43 4

Table 6. Comparisons between geometric homogeneous projective formulas for genus 2 curves over prime fields and previous
formulas for genus 2 arithmetic.

The original wave of papers presenting inversion-free explicit formulas projectified in the generic
fashion, i.e. employing homogeneous projective coordinates which introduce one extra coordinate to
act as the denominator and avoid the inversion. Lange [33] was the first to extend the coordinate
system and improve on the earlier operation counts. The work by Fan et al. [13] came much later
but their formulas were constructed specifically to incur no overhead when being transferred into
the context of pairings. We present the straightforward homogeneous projective version of our affine
formulas above, which are faster than their predecessors, and also carry the heuristic minimum
number of coordinates. MAGMA scripts are given in Appendix D.

Lastly, the formulas in Table 1, Table 2, Table 4 and Table 5 all required the solution to a linear
system of dimension 2. This would ordinarily require 6 Fq multiplications, but we applied Hisil’s trick
[23, eq. 3.8] to instead perform these computations using 5 Fq multiplications.
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C Magma scripts for affine genus 2 formulas (and projective genus 1 tripling)

function AffADD(u1, u0, v1, v0, u1s, u01, u1d, u0d, v1d, v0d, u1ds, u01d);

uS:=u1+u1d; v0D:=v0-v0d; v1D:=v1-v1d; M1:=u1s-u0-u1ds+u0d; M2:=u01d-u01;

M3:=u1-u1d; M4:=u0d-u0; t1:=(M2-v0D)*(v1D-M1); t2:=(-v0D-M2)*(v1D+M1); //2M

t3:=(-v0D+M4)*(v1D-M3); t4:=(-v0D-M4)*(v1D+M3); //2M

r1:=t1-t2; r2:=t4-t3; r3:=t3+t4-t1-t2-2*(M2-M4)*(M1+M3); //1M

l2:=r1/2; l3:=-r2/2; d:=r3/2; A :=1/(d*l3); B :=d*A; C :=d*B; D :=l2*B; //I + 4M

E :=l3^2 *A; Cs :=C^2; u1dd := 2*D-Cs-uS; //1M + 2S

u0dd := D^2 + C*(v1+v1d) -((u1dd-Cs)*uS+(u1s+u1ds))/2; //2M + 1S

uu1dd :=u1dd^2; uu0dd:=u1dd*u0dd; v1dd := D*(u1-u1dd)+ uu1dd-u0dd-u1s+u0; //2M + 1S

v0dd := D*(u0-u0dd) + uu0dd - u01; v1dd := E*v1dd + v1; v0dd := E*v0dd + v0; //3M

Jac![x^2+u1dd*x+u0dd,v1dd*x+v0dd]; //Check

return u1dd,u0dd,v1dd,v0dd,uu1dd,uu0dd; //Total

end function; //I + 17M + 4S

Table 7. MAGMA code for a general (affine) addition D′′ = D + D′ of two degree 2 divisors on Jac(C2).

function AffDBL(u1, u0, v1, v0, uu1, uu0, f2, f3);

vv:=v1^2 ; valpha:=(v1+u1)^2-vv-uu1; M1:=2*v0-2*valpha; M2:=2*v1*(u0+2*uu1); //1M + 2S

M3:=-2*v1; M4:=valpha+2*v0; z1:=f2+2*uu1*u1+2*uu0-vv; //1M

z2:=f3-2*u0+3*uu1; t1:=(M2-z1)*(z2-M1); t2:=(-z1-M2)*(z2+M1); //2M

t3:=(-z1+M4)*(z2-M3); t4:=(-z1-M4)*(z2+M3); r1:=t1-t2; r2:=t4-t3; //2M

r3:=t3+t4-t1-t2-2*(M2-M4)*(M1+M3); l2:=r1/2; l3:=-r2/2; d:=r3/2; A :=1/(d*l3); //I + 2M

B :=d*A; C :=d*B; D :=l2*B; E :=l3^2 *A; u1dd := 2*D-C^2 -2*u1; //4M + 2S

u0dd := (D-u1)^2 + 2*C*(v1 +C*u1); uu1dd:=u1dd^2 ; uu0dd:=u1dd*u0dd; //3M + 2S

v1dd := D*(u1-u1dd)+uu1dd-uu1-u0dd+u0; v0dd := D*(u0-u0dd)+(uu0dd-uu0); //2M

v1dd := E*v1dd + v1; v0dd := E*v0dd + v0; //2M

Jac![x^2+u1dd*x+u0dd,v1dd*x+v0dd]; //Check

return u1dd,u0dd,v1dd,v0dd,uu1dd,uu0dd; //Total

end function; //I + 19M + 6S

Table 8. MAGMA code for a general (affine) doubling D′′ = [2]D of a degree 2 divisor on D ∈ Jac(C2).

function ProjTRP(X, Y, Z, f0);

Y2:=Y^2; Z2:=f0*Z^2; Y4:=Y2^2; Z4:=Z2^2; Y8:=Y4^2; Z8:=Z4^2; //6S

Y2Z2:=((Y2+Z2)^2-Y4-Z4)/2; Y2Z22:=Y2Z2^2; Y4Y2Z2:=((Y4+Y2Z2)^2-Y2Z22-Y8); //3S

Y2Z2Z4:=((Y2Z2+Z4)^2-Y2Z22-Z8); Y4Y2Z2:=4*Y4Y2Z2; Y2Z22:=18*Y2Z22; Z8:=27*Z8; //1S

Z3:=27*Z*(Y8+Y4Y2Z2+Y2Z22-Z8); Z8:=3*Z8; Y2Z2Z4:=36*Y2Z2Z4; //1M

X3:=3*X*(Y8-3*(4*Y4Y2Z2+Y2Z22-3*Y2Z2Z4+Z8)); Y3:=Y*(Y8+27*(Y4Y2Z2-5*Y2Z22+2*Y2Z2Z4-Z8)); //2M

return X3,Y3,Z3; //Total

end function; //3M + 10S

Table 9. MAGMA code for a general (projective) tripling P ′′ = [3]P of a point P ∈ E/Fq : y2 = x3 + a0.
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D Magma scripts for projective genus 2 formulas

function ProjADD(U1, U0, V1, V0, Z, U1d, U0d, V1d, V0d, Zd);

ZZ:=Z*Zd; U1Z:=U1*Zd; U1dZ:=U1d*Z; U1ZS:=U1Z^2; U1dZS:=U1dZ^2; U0Z:=U0*Zd; U0dZ:=U0d*Z; //5M + 2S

V1Z:=V1*Zd; V1dZ:=V1d*Z; M1:=U1ZS-U1dZS+ZZ*(U0dZ-U0Z); M2:=U1dZ*U0dZ-U1Z*U0Z; //5M

M3:=U1Z-U1dZ; M4:=U0dZ-U0Z; z1:=V0*Zd-V0d*Z; z2:=V1Z-V1dZ; t1:=(M2-z1)*(z2-M1); //3M

t2:=(-z1-M2)*(z2+M1); t3:=(-z1+M4)*(z2-M3); t4:=(-z1-M4)*(z2+M3); r1:=t1-t2; r2:=t4-t3; //3M

r3:=t3+t4-t1-t2-2*(M2-M4)*(M1+M3); b2:=r1/2; b3:=-r2/2; d:=r3/2; A:=d^2; B:=b3*ZZ; //2M + 1S

C:=b2*B; D:=d*B; E:=b3*B; F:=U1Z*E; G:=ZZ*E; H:=U0Z*G; J:=D*G; K:=Zd*J; //8M

U1dd := 2*C-A-E*(U1Z+U1dZ); //1M

U0dd := b2^2*ZZ + D*(V1Z+V1dZ) -((U1dd-A)*(U1Z+U1dZ)+E*(U1ZS+U1dZS))/2; //4M + 1S

V1dd := U1dd*(U1dd-C) + F*(C-F) +E*(H-U0dd); V0dd :=H*(C- F) + U0dd*(U1dd -C); //5M

V1dd := V1dd*ZZ + K*V1; V0dd := V0dd + K*V0; U1dd:=U1dd*D*ZZ; U0dd:=U0dd*D; Zdd:=ZZ*J; //7M

return U1dd,U0dd,V1dd,V0dd,Zdd; //Total

end function; //43M + 4S

Table 10. MAGMA code for a general addition D′′ = D ⊕D′ of two degree 2 divisors on Jac(C2) in projective coordinates.

function ProjDBL(U1, U0, V1, V0, Z, f2, f3);

UU:=U1*U0; U1S:=U1^2; ZS:=Z^2; V0Z:=V0*Z; U0Z:=U0*Z; V1S:=V1^2; UV:=(V1+U1)^2-V1S-U1S; //3M + 4S

M1:=2*V0Z-2*UV; M2:=2*V1*(U0Z+2*U1S); M3:=-2*V1; M4:=UV+2*V0Z; //1M

z1:=Z*(f2*ZS-V1S)+2*U1*(U1S+U0Z); z2:=f3*ZS-2*U0Z+3*U1S; //2M

t1:=(M2-z1)*(z2-M1); t2:=(-z1-M2)*(z2+M1); t3:=(-z1+M4)*(z2-M3); t4:=(-z1-M4)*(z2+M3); //4M

r1:=t1-t2; r2:=t4-t3; r3:=t3+t4-t1-t2-2*(M2-M4)*(M1+M3); b2:=r1/2; b3:=-r2/2; d:=r3/2; //1M

A:=b2^2; B:=b3^2; C:=((b2+b3)^2-A-B)/2; D:=B*Z; E:=B*U1; F:=d^2; G:=F*Z; //3M + 4S

H:=((d+b3)^2-F-B)/2; J:=H*Z; K:=V1*J; L:=U0Z*B; U1dd := 2*C-2*E-G; //3M + 1S

U0dd := A+U1*(E-2*C +2*G) + 2*K; V1dd := (C-E-U1dd)*(E-U1dd)+B*(L -U0dd); //3M

V0dd := L*(C-E) +(U1dd-C)*U0dd; V1dd := V1dd*Z + K*D; V0dd := V0dd + V0Z*H*D; //6M

M:=J*Z; U1dd:=U1dd*M; U0dd:=U0dd*J; Zdd:=M*D; //4M

return U1dd,U0dd,V1dd,V0dd,Zdd; //Total

end function; //30M + 9S

Table 11. MAGMA code for a general doubling D′′ = [2]D of a degree 2 divisor on Jac(C2) in projective coordinates.

function ProjMIXED(U1, U0, V1, V0, Z, u1, u0, v1, v0);

u1Z:=u1*Z; U1S:=U1^2; u1ZS:=u1Z^2; u0Z:=u0*Z; M1:=u1ZS-U1S+Z*(U0-u0Z); //3M + 2S

M2:=U1*U0-u1Z*u0Z; M3:=u1Z-U1; M4:=U0-u0Z; v1Z:=v1*Z; z1:=v0*Z-V0; z2:=v1Z-V1; //4M

t1:=(M2-z1)*(z2-M1); t2:=(-z1-M2)*(z2+M1); t3:=(-z1+M4)*(z2-M3); t4:=(-z1-M4)*(z2+M3); //4M

r1:=t1-t2; r2:=t4-t3; r3:=t3+t4-t1-t2-2*(M2-M4)*(M1+M3); b2:=r1/2; b3:=-r2/2; d:=r3/2; //1M

A:=d^2; B:=b3*Z; C:=d*B; D:=b2*B; E:=b3*B; F:=E*u1Z; G:=B^2; H:=u0Z*G; J:=C*G; //7M + 2S

Zdd:=Z*J; U1dd:= 2*D-A-E*(u1Z+U1); //2M

U0dd := b2^2*Z + C*(v1Z+V1) -((U1dd-A)*(u1Z+U1)+E*(u1ZS+U1S))/2; //4M + 1S

V1dd := F*(D-F) +U1dd*(U1dd-D) +E*(H-U0dd); V0dd := H*(D - F) + (U1dd-D)*U0dd ; //5M

V1dd := Z*V1dd + Zdd*v1; V0dd := V0dd + Zdd*v0; U1dd:=U1dd*Z*C; U0dd:=U0dd*C; //6M

return U1dd,U0dd,V1dd,V0dd,Zdd; //Total

end function; //36M + 5S

Table 12. MAGMA code for a mixed addition D′′ = D + D′ of two degree 2 divisors on Jac(C2), where D is in projective
coordinates and D′ is in affine coordinates.
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E Magma scripts for arbitrary genus composition

clear; q:=NextPrime(2^30); g:=6; /* Input prime characteristic and genus */
Fq:=GF(q); Poly<x>:=PolynomialRing(Fq);

coeffs:=[];

for i:=1 to 2*g do coeffs:=Append(coeffs,Random(0,q)); end for;

f:=x^(2*g+1); /* Create Random Hyperelliptic Curve */
for i:=1 to 2*g do

f+:=coeffs[i]*x^(i-1);

end for;

C:=HyperellipticCurve(f); g:=Genus(C); Jac:=Jacobian(C); Inf:=PointsAtInfinity(C)[1];

PointsVec1:=[]; PointsVec2:=[]; /* Create full degree divisors */
for i:=1 to g do

PointsVec1:=Append(PointsVec1,Random(C)); PointsVec2:=Append(PointsVec2,Random(C));

end for;

J1:=Jac![[PointsVec1[i]: i in [1..g]],[Inf: i in [1..g]]];

J2:=Jac![[PointsVec2[i]: i in [1..g]],[Inf: i in [1..g]]];

MumfordTuple1:=[]; MumfordTuple2:=[]; /* Put 2g Mumford coordinates into lists */
for i:=1 to g do

MumfordTuple1:=Append(MumfordTuple1, Coefficients(J1[1])[g+1-i]);

MumfordTuple2:=Append(MumfordTuple2, Coefficients(J2[1])[g+1-i]);

end for;

for i:=1 to g do

MumfordTuple1:=Append(MumfordTuple1, Coefficients(J1[2])[g+1-i]);

MumfordTuple2:=Append(MumfordTuple2, Coefficients(J2[2])[g+1-i]);

end for;

U1:=ZeroMatrix(Fq,g,g); U2:=ZeroMatrix(Fq,g,g);

for i:=1 to g do

U1[g+1-i,1]:=-MumfordTuple1[i]; U2[g+1-i,1]:=-MumfordTuple2[i];

end for;

for j:=2 to g do

U1[1,j]:=U1[g,j-1]*U1[1,1]; U2[1,j]:=U2[g,j-1]*U2[1,1];

for i:=2 to g do

U1[i,j]:=U1[i,j]+U1[g,j-1]*U1[i,1]+U1[i-1,j-1];

U2[i,j]:=U2[i,j]+U2[g,j-1]*U2[i,1]+U2[i-1,j-1];

end for;

end for;

M:=U1-U2; z:=[]; /* Construct right hand side vector z */
for i:=1 to g do

z:=Append(z,MumfordTuple1[2*g+1-i]-MumfordTuple2[2*g+1-i]);

end for; /* Magmas solve needs transposes */
M:=Transpose(M);z:=Vector(Fq,z); sols:=Solution(M,z); solVec:=ZeroMatrix(Fq,g,1);

for i:=1 to g do /* Solve linear system for li (i > g − 1) */
solVec[i,1]:=sols[i];

end for;

solVec2:=U1*solVec; /* Get remaining li */
for i:=1 to g do

solVec2[g+1-i][1]:= MumfordTuple1[g+i]-solVec2[g+1-i][1];

end for;

Y:=Poly!0;

for i:=1 to g do

Y+:=solVec2[i][1]*x^(i-1); Y+:=solVec[i][1]*x^(g+i-1);

end for;

IsDivisibleBy(Y^2-f,J1[1]*J2[1]); /* Construct polynomial and check intersection */

Table 13. Script for composition between two unique divisors (Algorithm 1) on arbitrary genus curves.

Once the characteristic q and the genus g have been specified, the algorithms above and below
generate an arbitrary imaginary hyperelliptic curve over Fq of genus g, and respectively perform the
geometric composition between two unique divisors (addition) and a divisor and itself (doubling).
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clear; q:=NextPrime(2^30); g:=6; /* Input prime characteristic and genus */
Fq:=GF(q); Poly<x>:=PolynomialRing(Fq);

coeffs:=[];

for i:=1 to 2*g do

coeffs:=Append(coeffs,Random(0,q));

end for;

f:=x^(2*g+1); /* Create Random Hyperelliptic Curve */
for i:=1 to 2*g do

f+:=coeffs[i]*x^(i-1);

end for;

C:=HyperellipticCurve(f); g:=Genus(C); Jac:=Jacobian(C); Inf:=PointsAtInfinity(C)[1];

PointsVec:=[]; /* Create full degree divisor */
for i:=1 to g do

PointsVec:=Append(PointsVec,Random(C));

end for;

J1:=Jac![[PointsVec[i]: i in [1..g]],[Inf: i in [1..g]]];

MumfordTuple:=[]; /* Put 2g Mumford coordinates into list */
for i:=1 to g do

MumfordTuple:=Append(MumfordTuple, Coefficients(J1[1])[g+1-i]);

end for;

for i:=1 to g do

MumfordTuple:=Append(MumfordTuple, Coefficients(J1[2])[g+1-i]);

end for; /* Initialize */
U:=ZeroMatrix(Fq,g,g); M:=ZeroMatrix(Fq,g,g); v:=ZeroMatrix(Fq,g-1,1); z:=ZeroMatrix(Fq,g,1);

for i:=1 to g do

U[g+1-i,1]:=-MumfordTuple[i];

end for; /* Form U (same as addition) */
for j:=2 to g do

U[1,j]:=U[g,j-1]*U[1,1];

for i:=2 to g do

U[i,j]:=U[g,j-1]*U[i,1]; U[i,j]+:=U[i-1,j-1];

end for;

end for;

uExtra:=U[g,1]*U[g,g]+U[g-1,g]; /* Extra element required for M */
for i:=1 to g do

M[g+1-i,1]:=MumfordTuple[i+g];

end for; /* Construct matrix M */
for j:=2 to g do

M[1,j]:=M[1,j]+U[g,j-1]*M[1,1]+M[g,j-1]*U[1,1];

for i:=2 to g do

M[i,j]:=M[i,j]+U[g,j-1]*M[i,1]+M[i-1,j-1]+M[g,j-1]*U[i,1];

end for;

end for;

for i:=1 to g-1 do /* Construct right hand side vector z */
z[g+1-i,1]+:=2*U[g,1]*U[g+1-i,1] + U[g-i,1]+U[g,i+1] + coeffs[2*g+1-i];

for j:=1 to i do

z[g-i,1]+:=coeffs[2*g-i+j]*U[g,j]; v[i,1]+:=-M[g+1-j,1]*M[g-i+j,1];

end for;

end for;

z[1,1]+:=2*U[g,1]*U[1,1] + coeffs[g+1]; z[g-1,1]+:=v[1,1];

for i:=3 to g do

for j:=2 to i-1 do

z[g+1-i,1]+:=v[i-j,1]*U[g,j-1];

end for;

z[g+1-i,1]+:=v[i-1,1];

end for;

z[1,1]+:=uExtra;

for i:=1 to g do

z[i,1]/:=2;

end for;

M:=Transpose(M); z:=Vector(Fq,Transpose(z)); /* Magmas solve needs transposes */
sols:=Solution(M,z); solVec:=ZeroMatrix(Fq,g,1); /* Solve linear system for bi (i > g − 1) */
for i:=1 to g do

solVec[i,1]:=sols[i];

end for;

solVec2:=-U*solVec; /* Get remaining bi */
for i:=1 to g do

solVec2[i,1]:=MumfordTuple[2*g+1-i]+solVec2[i,1];

end for;

Y:=Poly!0;

for i:=1 to g do

Y+:=solVec2[i][1]*x^(i-1); Y+:=solVec[i][1]*x^(g+i-1);

end for;

IsDivisibleBy(Y^2-f,J1[1]^2); /* Construct polynomial and check intersection */

Table 14. Script for geometric composition (Algorithm 3) between a divisor and itself on arbitrary genus curves.


