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Abstract

The onion routing network, Tor, is undoubtedly the most widely employed technology for anony-
mous web access. Although the underlying onion routing (OR) protocol’s multi-pass cryptographic
circuit construction appears satisfactory, a comprehensive formal analysis of its security guarantees is
still lacking. Moreover, in practice the current Tor circuit construction suffers from inefficiency, which
is due to the key exchange protocol that is used for circuit construction. Consequently, significant
efforts have been put towards improving the efficiency of the key exchange in onion routing.

In this paper, we address both these issues. We present the first security definition for OR
protocols with multi-pass circuit construction in the universal composability framework. We then
show that a recently introduced efficient key exchange protocol can be used in the circuit construction
such that the resulting OR protocol provably satisfies our security definition. As a result, we obtain
the first provably secure and practical OR protocol with multi-pass circuit construction.

Contents

1 Introduction 2

2 Background 3
2.1 Onion Routing Circuit Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 One-Way Authenticated Key Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 The UC Framework: An Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Security Definition of OR 5
3.1 System Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Ideal Functionality: OR as a Black Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Secure OR modules 7

5 Construction and Proof 11
5.1 Constructing an OR protocol template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.2 The main proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

6 An Instantiation of Secure OR Modules 16

7 Conclusion and Future Work 18

A Onion Security implies IND-CCA 21

1



1 Introduction

Over the last few years the onion routing network, Tor [21], has emerged as a successful technology for
anonymous web browsing. It is currently serving hundreds of thousands of users across the world, and it
is employing more than two thousand dedicated relays. Its impact is also evident from the media coverage
it has received over the last few years [14]. Despite its success, the existing Tor network still lacks a
rigorous security analysis, as its security properties have neither been formalized cryptographically nor
proven. (See [3,9,19] for the previous attempts and their shortcomings.) In this paper, we define security
for the second-generation onion routing (OR) protocol Tor, and construct a provably secure and practical
OR protocol.

An OR network consists of a set of routers or OR nodes that relay traffic, a large set of users, and
directory servers that provide to the users routing information of the OR nodes. A user constructs a
circuit by choosing a small sequence of (usually three) OR nodes, where the chosen nodes route the user’s
traffic over the path formed. The crucial property of an OR protocol is that no node in a circuit can
determine other circuit nodes than its predecessor and its successor. The user achieves this by sending the
first OR node a message wrapped in multiple layers of symmetric encryption (one layer per node), called
an onion, using symmetric keys agreed upon during an initial circuit construction phase. Consequently,
given a public-key infrastructure (PKI), the cryptographic challenge in onion routing is to agree upon
such symmetric keys.

In the first generation OR circuit construction [22], the challenge of agreeing on a key was met by a
user including the identifier of the next node and a random symmetric session key in each onion layer
that is encrypted with the node’s public key. However, such a single-pass circuit construction cannot
be forward secret: if an adversary corrupts a node and obtains its private key, then the adversary can
decrypt all of the node’s past communication. Although changing the public/private key pairs for all
OR nodes after a predefined interval is a possible solution (eventual forward secrecy), this solution does
not scale to realistic OR networks such as Tor, since at each interval start every user has to download a
new set of public keys for all the nodes.

The scalability issues with single-pass OR networks pursuing forward secrecy have been addressed
by Dingledine, Mathewson and Syverson [7]. They introduced a telescoping approach for the second
generation OR protocol Tor. In this telescoping approach, they employed a multi-pass key agreement
protocol called the Tor authentication protocol (TAP) to negotiate a symmetric session key between a
user and a node. Here, the node’s public key is only used to initiate the construction, and the compromise
of this public key does not invalidate the secrecy of the session keys once the randomness used in the
protocol is erased.

Goldberg [10] presented a security proof for TAP in the random oracle model. The security of TAP,
however, does not automatically imply the security of the Tor circuit construction, since the Tor circuit
construction constitutes a sequential execution of multiple TAP instances. Therefore, the security of the
OR circuit construction has to be analyzed in a composability setting. In this direction, Camenisch and
Lysyanskaya [3] defined an anonymous message transmission protocol in the universal composability (UC)
framework. They motivated their choice of the UC framework for a security definition by its versatility
as well as the lack of other appropriate models that capture protocol compositions. They also went ahead
and presented a construction of a protocol that satisfies their definition. However, Feigenbaum, Johnson
and Syverson [9] observe that the protocol definition presented by Camenisch and Lysyanskaya [3] does
not correspond to the OR methodology. In particular, in the work of Camenisch and Lysyanskaya a
circuit is not constructed before messages are transmitted. Therefore, a rigorous security analysis of an
OR protocol is still missing. We present an OR definition and a provably secure OR construction that
accurately models the OR methodology used in practice.

Our Contributions. We first present a security definition of OR protocols in the UC framework.
We then cryptographically characterize the security of the modules that centrally underlie OR: a one-
way authenticated key exchange (1W-AKE) primitive, and onion forming, wrapping and unwrapping
algorithms. Next, for a given a set of secure OR modules, we present a general construction of a secure
OR protocol. Finally, we present a practical OR protocol using the following OR modules: a 1W-AKE,
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ntor [11]1, and a variant of the onion forming, wrapping, and unwrapping algorithms introduced in the
work of Camenisch and Lysyanskaya [3].

We refine previous work [3] in multiple respects. First and most importantly, we construct an OR
circuit interactively in multiple passes, whereas in the previous work no circuit is constructed, which does
not model the widely used Tor protocol. Their approach, and even single-pass circuit construction in
general, restricts the protocol to eventual forward secrecy, while a multi-pass circuit construction allows
for ensuring forward secrecy immediately after the circuit is closed. Second, the security definition of
Camenisch and Lysyanskaya prohibits the adversary from re-wrapping onions, a constraint for which
the authors do not give a practical motivation. In our construction, we remove this restriction, leading
to more relaxed security requirements. Finally, they assume that the adversary is static, i.e., it has to
specify all corrupt nodes beforehand, while our model guarantees composable security against attackers
that may corrupt long-term keys adaptively.

Outline. The paper is organized as follows: Section 2 provides background information relevant to
onion routing, one-way authenticated key exchange, and the UC framework. In Section 3, we present our
security definition for onion routing. In Section 4, we present a cryptographic definition for secure OR
modules, i.e., for a 1W-AKE primitive, and for onion forming, wrapping, and unwrapping algorithms.
In Section 5, we show that, given a set of secure OR modules, we can construct a secure OR protocol.
Finally, in Section 6, we present an efficient construction for secure OR modules. We conclude and
discuss further interesting directions for future work in Section 7.

2 Background

In this section, we provide background information about onion routing circuit construction, one-way
authenticated key exchange, and the UC framework.

2.1 Onion Routing Circuit Construction

In the original Onion Routing project [12, 13, 22, 24], circuits were constructed in a single pass. A user
chooses a path of OR nodes to a receiver, and creates a forward onion with several layers. Each onion
layer is targeted at one node in the path and is encrypted with that node’s public key. A layer contains
that node’s symmetric session key for the circuit, the next node in the path, and the next layer. Each
node decrypts a layer using its secret key, stores the symmetric key, and forwards the next layer of the
onion along to the next node. Once the last node in the path, i.e., the receiver, gets its symmetric session
key, it responds with a confirmation message encrypted with its session key. Every node in the path
wraps (encrypts) the backward onion using its session key in the reverse order, and the message finally
reaches the user. A circuit that is constructed in this way, i.e., the sequence of established session keys,
is thereafter used for constructing and sending onions via this circuit.

Unfortunately, there is a scalability issue in a single-pass circuit construction when pursuing forward
secrecy: the forward secrecy relies on the public keys being replaced and distributed regularly. There
are attempts to solve this scalability issue. Kate, Zaverucha and Goldberg [17] suggested the use of an
identity-based cryptography (IBC) setting and defined a pairing-based onion routing (PB-OR) protocol.
Catalano, Fiore and Gennaro [5] suggested the use of a certificateless cryptography (CLC) setting [1]
instead and defined two certificateless onion routing protocols (CL-OR and 2-CL-OR). However, both of
these approaches do not yield satisfactory solutions: CL-OR and 2-CL-OR suffer from the same scalability
issues as that of the original OR protocol [16], while PB-OR systems raise issues in implementing a
distributed private-key generator [15].

Another problem with the single-pass approach is that so far it only yields systems that guarantee
eventual forward secrecy, i.e., if the private key is leaked only those past sessions remain secret that
used an expired public key. A desirable property is that all past sessions that are closed remain secret
even if the private key is leaked; such a property is called immediate forward secrecy. It has been shown
to be impossible to obtain immediate forward secrecy with any single-pass construction [18, Sec. 5.1].

1Goldberg, Stebila, and Ustaoglu [11] present an attack on and a fix for the fourth protocol in work of Øverlier and
Syverson [20]; the ntor protocol is the fixed protocol.
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Therefore, in the current Tor protocol, circuits are constructed using a multi-pass approach that is based
on an authenticated key agreement (using a public-key infrastructure). The idea is to use the private
key only for establishing a temporary session key in a key exchange protocol. Together with the private
key additional temporary (random) values are used for establishing the key such that mere knowledge
of the private key does not suffice for reconstructing the session key. These temporary values are erased
immediately after the session key has been computed. In this way it is possible to achieve immediate
forward secrecy in a multi-pass circuit construction.

Although the multi-pass approach incurs an additional overhead, in practical almost all Tor circuits
are constructed for a circuit length of ` = 3. Therefore the multi-pass approach merely causes an
overhead of six additional messages2. Nonetheless, despite the additional overhead, the multi-pass circuit
construction looks to be the preferred choice in practice, due to its improved forward secrecy guarantees.
Consequently, for our provably secure onion routing protocol we consider a multi-pass circuit construction,
using a public-key infrastructure.

2.2 One-Way Authenticated Key Exchange

In a multi-pass circuit construction, a session key is established via a Diffie-Hellman (DH) key exchange.
However, the precise properties required of this protocol were not formalized until recently. Goldberg,
Stebila and Ustaoglu [11] formalized the concept of one-way authenticated key exchange (1W-AKE),
presented an efficient instantiation, and described its utility towards onion routing. We overview their
results here and we refer the readers to [11] for a detailed description.

An authenticated key exchange (AKE) protocol establishes an authenticated and confidential com-
munication channel between two parties. Although AKE protocols in general aim for key secrecy and
mutual authentication, there are many practical scenarios such as onion routing where mutual authen-
tication is undesirable. In such scenarios, two parties establish a private shared session key, but only
one party authenticates to the other. In fact, the unauthenticated party may even want to preserve
its anonymity, e.g., in Tor. In their 1W-AKE protocol, Goldberg et al. formalize this precise primitive.
They show that an authenticated key exchange protocol suggested for Tor — the fourth protocol in [20]
— can be attacked, leading to an adversary determining all of the user’s session keys. They then fixed
the protocol (see Figure 6) and proved that the fixed protocol satisfies the formal properties of 1W-AKE.
In our formal analysis of onion routing, we use their formal definition and their fixed protocol and show
that the resultant OR protocol is UC secure.

2.3 The UC Framework: An Overview

The UC framework is designed to enable a modular analysis of large-scale security protocols. The frame-
work establishes the notion of universal composability that characterizes which protocols remain secure
under arbitrary composition with other protocols, in particular in the presence of several concurrently
running instances of the same protocol. In the UC framework the security goal of a protocol is specified
by a setting in which the protocol is replaced by a trusted machine, called the ideal functionality, to
whom every party has a private channel. Such an ideal functionality locally computes any function that
the real protocol would compute and specifies the information leaked to, and the capabilities of, an at-
tacker. As an example, consider a protocol that establishes a secret channel: an attacker controlling the
network can see the length of the message and prevent the message from reaching its destination. The
ideal functionality for such a secret channel protocol leaks nothing more than the length of the message
to the attacker and gives the attacker no more interaction capabilities than control over the delivery of
messages.

We say that a protocol π UC-realizes an ideal functionality F if for all attackers A there is a simulator
S such that no probabilistic poly-time (ppt) machine can distinguish an interaction with π and A from
an interaction with F and S. The universal composability is achieved by requiring that the distinguisher,
which can be thought of as the environment, is actually allowed to interact with the protocol and the
attacker (or the simulator). This environment has a direct channel to the protocol parties, provides the
parties with protocol inputs, and receives from the parties the designated protocol outputs; e.g., in a
secret channel protocol, the message to be sent. More formally, a protocol π is said to UC-realize an ideal

2The overhead reduces to four additional messages, if we consider the “CREATE FAST” option available in Tor.
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functionality F if for all attackers there is a simulator such that for all environments the interaction with
π and the attacker is indistinguishable from the interaction with F and simulator. All these machines
are probabilistic polynomial-time interactive Turing machines.

We stress that the UC framework does not provide a notion of time; hence, the analysis of timing
attacks (such as traffic analysis) is outside of the scope of this work.

3 Security Definition of OR

We start our discussion by describing the attacker model and the setup assumptions. We then abstract
onion routing as a black box, more precisely as an ideal functionality For in the UC framework.

3.1 System Setting

We consider a fully connected network of n parties P1, . . . , Pn. For simplicity of presentation we consider
all parties to be OR nodes, i.e., relays, that also initiate circuits and send messages. It is also possible
to use our formulation of onion routing for modelling users, i.e., clients that do not relay onions, by
considering parties that only send and respond to messages but not relay onions.

Recall that the UC framework does not provide a notion of time. We model the expiration time of
a circuit by bounding the number of times that a circuit can be used before expiring. This bound is
denoted as circuit ttl .

We assume that the attacker controls the network and can cause long-term keys of protocol parties to
be revealed adaptively. An attacker that controls the network is too strong for most practical purposes
and can simply break the anonymity of an OR protocol by holding back all but one onion and tracing
that one onion though the network. Therefore, it might be more accurate to consider local attackers
that control single nodes but not the entire network. How to model the attacker, however, is orthogonal
to our result, as our ideal functionality also allows such local attacks.

Notation. In the sequel, we often omit the security parameter κ when calling an algorithm A, i.e.,
instead of writing A(1κ, x) (x being some argument) we write A(x). Moreover, we write y ← A(x) for
the result y of a randomized algorithm A on input x. In contrast, we write y := A(x) for the result y of
a (deterministic) algorithm A on input x.

We assume that the message space is fixed for a given security parameter. This message space is
denoted as M(κ).

3.2 Ideal Functionality: OR as a Black Box

We motivate and present an ideal functionality For for onion routing with a multi-pass circuit construc-
tion. We prove in Section 2.1 that this ideal functionality can serve as a black box for an OR protocol,
e.g., in the analysis of anonymity services that use OR protocols.

The ideal functionality For, presented in Figure 1, sends to an attacker the information that is
inherently leaked in an OR protocol: if an onion is sent between two parties, only a fresh handle h is sent
to the attacker. Moreover, For grants the attacker the capabilities that are unpreventable for an attacker
that controls the network: first, the attacker can establish a circuit and send a message m to a party
P . Such an action is abstracted via the command (attacker message,m, P ). We stress that For does not
need to reflect reroutings and circuit establishments initiated by the attacker, because the attacker learns,
loosely speaking, no new information by rerouting onions.3 Second, we have to model that a long-term
key is leaked. This is modelled by a command (reveal longterm keys, P ). Upon such a command, the
attacker impersonates the party P , and all future sessions sid of P are marked as malicious(sid) = true,
since the attacker learns the key. We stress that only future sessions are corrupted; hence, our ideal
functionality captures the notion of immediate forward secrecy of the OR protocol.

The ideal functionality represents a circuit as a sequence (P0, (Pj , sid j)`j=1) of an initiating party
P0, router parties Pj , and corresponding session identifiers sid j . An onion (P0, (Pj , sid j)`j=1,m, i) is
represented as a circuit (P0, (Pj , sid j)`j=1), a message m, and an index i that marks the next receiving

3More formally, the simulator can compute all responses for rerouting or such circuit establishments without requesting
information from For (as shown in the proof of Theorem 1).
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Upon receiving an input setup for party P :
Send setup over the network. Upon the response ok from the network, answer ok to party P .

Upon receiving an input (send,P,m) for party P :
Do nothing if m 6∈ M(κ). Otherwise, if established(P,P) = ∅ and |P| < circuit ttl + 1,
call Extend Circuit(P, ∅,P,m). If established(P,P) 6= ∅, let (P, (P1, sid1), . . . , (P`, sid`)) = C =
established(P,P). If ` > 0 and Used(C) < circuit ttl , call Send Message(C,m, P1). If Used(C′) ≥ circuit ttl ,
set established(P,P) := ∅ and call Extend Circuit(P, ∅,P,m).

Upon receiving an input (respond, sid ,m) for party P :
Do nothing if m 6∈ M(κ). If ⊥ 6= sparties(sid) = (P ′, P ), look the circuit C up that ends with the session
sid , and call Send Onion((C,m, `), P ′, back) (` being the length of the circuit C).
Upon receiving a message (deliver, h, P1, P ) from the network such that ⊥ 6= pending(h):

1. (m is a forward onion) If pending(h) = ((P0, (Pj , sid j)`
j=1),m′, i, Pi) and (Pi, Pi+1) = sparties(sid)

distinguish three cases. Let ` be the length of the circuit C, P := Pi, and sid := sid i.
(i.) If i ≥ ` and m′ = (initiate, sid ′, P2), set pcandidate(P, sid) := sid ′. If the long-term key of

P has been revealed, set malicious(sid ′) := true, draw a fresh handle h, store pending(h) :=
(C,m′, i+ 1, Pi+1), and send (h,m′, sid ′, P, P2) over the network. If P2’s long-term key has been
revealed, send (h,m′, sid ′, P, P2); otherwise, merely send (h, P, P2) over the network.

(ii.) If i ≥ ` and m′ 6= (initiate, sid ′, P2), output (result,m′, sid) to P .
(iii.) If i < ` and (P2, sid

′) the ith element of C, call Send Onion((C,m′, i+ 1), P2, forw).
2. (m is a backward onion) If pending(h) = (P0, (Pj , sid j)`

j=1,m
′, i) and sparties(Pi, sid i) = (Pi, Pi+1),

let P := Pi and sid := sid i and distinguish two cases.
(i.) If i = 0 and predecessor(P, sid) = ⊥ and ⊥ 6= ((P, (P1, sid), . . . , (Pk, sidk)), Pk+1,P,m) =

open AKE(sid) (in case k = 0 take Ψ instead of sid = (Ψ,Ψ′)). If m′ =
(confirm, Pk+1, sidk+1), store established(P, P1, . . . , Pk+1) := ((P1, sid1), . . . , (Pk+1, sidk+1))
and sparties(sidk+1) := (P, Pk+1) and set open AKE(sid) := ⊥. If k + 1 < |P|, call
Extend Circuit(P, (P1, . . . , Pk+1),P,m); otherwise, call Send Message(C, sid ,m, P1).

(ii.) If predecessor(P, sid) = ⊥ and open AKE(sid) = ⊥, output (result,m′) to P .
(iii.) (m has to be relayed) If sid ′ = predecessor(P, sid) and ⊥ 6= sparties(sid ′) = (P2, P ), call

Send Onion(((P2, sid
′), C′,m′), P2, back).

3. (m is the response from a key exchange) If pending(h) = m, m = (confirm, P1, sid), sid = (Ψ′,Ψ) and
sid ′ = pcandidate(Ψ′) 6= ⊥, set predecessor(sid) := sid ′. If ⊥ 6= sparties(sid ′) = (P2, P ), look the
circuit C up that ends with sid ’ and call Send Onion((C,m), P2, back).

4. (m is the initial message from a key exchange) If pending(h) = m, m = (initiate, P, sid), set
sparties(sid , P ) := (P1, P ), and draw a fresh handle h, set m′ := (confirm, P1, sid), pending(h) :=
(m′, sid , P, P1), and send (h, P, P1) over the network if P1’s long-term key has not yet been revealed,
and send (h,m′, P, P1) otherwise.

Figure 1: The ideal functionality For for onion routing

party Pi for which the onion is meant. The ideal functionality For expects two kinds of inputs: either
a send command consisting of a message m to be sent and a route, or a respond command consisting
of a response message m and a session identifier sid , referring to the circuit for the response. Upon
receiving a send command (send,P,m) for party P with a message m and a path P = (P1, . . . , P`),
For checks whether there is a valid established circuit from P over path. If not, For establishes a
new circuit (see subroutine Extend Circuit). Given a circuit (P, (Pj , sid j)`j=1) and a message m, For

constructs an onion (P, (Pj , sid j)`j=1,m, 1) and sends (h, |P|, |m|, P, Pi) to the adversary for a freshly
drawn handle h, which is executed by a call to the subroutine Send Onion. Upon receiving a respond
command (respond,m, sid , P ), For looks up the circuit C that ends with the session sid , and constructs
an onion (C,m, `′) (`′ being the length of the path), and sends a fresh handle of the onion calling the
subroutine Send Onion.

How to process network messages. For expects from the attacker for every network mes-
sage, i.e., for every handle h, the permission to deliver this handle. For a handle delivery permission
(deliver, h, P1, P ) in which the handle h corresponds to a forward onion, we distinguish three cases: In
the first case, the onion has only one layer left and the message signalizes a circuit extension. Then, a
freshly drawn handle and the party identities are sent over the network, i.e., (h, P, P ′) (for a receiving
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Extend Circuit(P, (Pj)k
j=1, (Pj)`

j=1,m): Let ((P1, sid1), . . . , (Pk, sidk)) := established(P,P)
(where k = 0 for P ′ = ∅). Draw a fresh session id sidk+1 and let m′ :=
(initiate, Pk+1, sidk+1). Store (P, established(P,P), (Pk+1, sidk+1),P,m′) in open AKE(sid1). Then,
call Send Message((P, established(P,P),m′), Pk+1).

Send Message((P, (Pj , sid j)k
j=1,m), P ′):

1. If n = 0 (i.e., the circuit is empty), draw a fresh handle h, store pending(h) := ((P, ∅),m, 1, P ′), and
send (h, 0, |m|, P, P ′) over the network.

2. If C 6= ∅, increase Used(C) and call Send Onion((P, (Pj , sid j)k
j=1,m, 1), P ′, forw).

Send Onion((C,m, i), P ′, dir): Draw a fresh handle h, set pending(h) := (C,m, i, P ′). Let C =
(P, (Pj , sid j)`

j=1) and distinguish two cases.
1. If dir = forw, let Q be the longest contiguous malicious sequence beginning from (Pi+1, sid i+1), i.e,

(Pi+1, sid i+1), . . . , (Ps, sids) such that malicious(sid i+1) = · · · = malicious(sids) = true. If Q does
not contain the last party of C, i.e., s < `, let Ps+1 be the first party corresponding to the first honest
session sids+1 (malicious(sids+1 6= true)) after Q, and send either (h, |C|, |m|, P,Q, sids+1, Ps+1) (if
Ps+1 can be impersonated) or (h, |C|, |m|, P,Q, P ′) (if Ps+1 is honest) over the network; otherwise send
(m,Q) over the network.

2. If dir = back, proceed as in the forward onion case except for the difference that the sequence begins
from (Pi−1, sid i−1) and stops with a party Ps−1 corresponding to an honest session sids−1.

Figure 2: Subroutines of For

party P ′). In the second case, the onion has only one layer left and the message is not a circuit extension.
Then, For outputs this message either to the party (if the party is uncorrupted) or to the attacker (if
the party is corrupted). In the third case, the forward onion has more than one layer left. Then, the
onion is relayed by calling the subroutine Send Onion.

For a handle that corresponds to a backward onion, we also distinguish three cases: In the first case,
the receiving party P is the initiator of the circuit and the circuit construction is not yet completed.
Then, For either extends the circuit or, if the circuit construction is completed, sends the message. In the
second case, P is also the initiator of the circuit but the circuit construction has already been completed.
Let m be the message that the onion carried. Then, For outputs m. In the third case, P knows a
predecessor to the session sid of the onion, i.e., P acts as a relay. Then, P looks the corresponding party
P ′ for sid up, forwards the onion by wrapping it with (P ′, sid), and calling the subroutine Send Onion.

If the message is not a handle for an onion but for a session establishment message, For distinguishes
two cases. In the first case, the message is a handle for the response from a key exchange (confirm, P1, sid).
Then, For memorizes that the receiving party P knows that a previously stored candidate session sid ′ is
in some circuit the predecessor of sid (implemented as predecessor(P, sid) := sid ′). Moreover, For also
memorizes that there is a session sid between P and P1 (implemented as sparties(P, sid) := (P, P1)). In
the second case, the message is the initiation of a key exchange (initiate, P, sid). Then, For memorizes that
the sender P1 established a session sid with the receiving party P (i.e., it sets sparties(P, sid) := (P1, P )).

Attacker actions in For. The attacker can send the following two commands.
Upon receiving a message (attacker message,m, P ): Output m to the party P .

Upon receiving a message (reveal longterm keys, P ) from the network: Remember that the long-term

key of P has been revealed. For party P For grants the attacker the opportunity to impersonate P .

4 Secure OR modules

For the sake of reusability, we reduce the security of a UC secure OR protocol to the security of its core
cryptographic primitives (see Section 5). In this section, we present a cryptographic characterization
of these core cryptographic primitives, which we call secure OR modules. We believe that proving the
security of OR modules is significantly less effort than proving the UC security of an entire protocol.
Secure OR modules mainly consist of two parts: First, a one-way authenticated key-exchange primitive
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(1W-AKE), a notion recently introduced by Goldberg, Steblia, and Ustaoglu [11]. Second, onion forming,
unwrapping, and wrapping algorithms that jointly satisfy onion security, a refinement of the notion
introduced by Camenisch and Lysyanskaya [3].

The 1W-AKE establishes a symmetric key between two parties such that the identity of the initiator
cannot be derived from the protocol messages; moreover, given a public-key infrastructure the 1W-AKE
guarantees that the second party cannot be impersonated. Such a 1W-AKE consists of four algorithms
G, Initiate, Respond , and Compute Key . The algorithm G denotes the key generation algorithm for the
long-term public and secret key of a party. Initiate takes as input the public key of the authenticated party
and generates the initial key-exchange message m1. Respond takes as input his secret key and the initial
message m1 and outputs the session key and the response message m2. The algorithm Compute Key
is run on the response m2 and the public key of the authenticated party, i.e., the responder; finally,
Compute Key outputs the key.

The onion forming, unwrapping, and wrapping algorithms are denoted as FormOn, UnwrapOn, and
WrapOn. FormOn(m, (Pi, ki, sid i)`i=1, `

′) forms an onion for the circuit (Pi, ki, sid i)`i=1. The additional
parameter `′ is used for responding to a message. Since we require our construction to hide the length of
the remaining path, the responder node needs to know the length of the path already when constructing
the first layer. We call this `′ the appearing length of the onion. In an honest protocol run, ` equals
`′. This procedure is called by a router that, given a message m and an established circuit k1, . . . , k`,
is going to send m via this established circuit.4 UnwrapOn(O, k) peels one layer of the onion O using
the session key k. This procedure is called by a router that removes a layer from an onion and forwards
the inner layer to the next party in the circuit. Moreover, this procedure also determines the appearing
length of the onion. The last procedure WrapOn(O,P, k, sid) is used in an OR protocol for responding
to an anonymous message without knowing the receiver’s identity. This procedure is called by a router
that either responds to an anonymous message or forwards a response.

Recall that we assume a public-key infrastructure, i.e., every party knows a secret key whose corre-
sponding public key has been distributed, and all public keys have been certified and checked. We denote
by pkP the public key of the party P and by skP its secret key.

One-way authenticated key-exchange. The first property that a 1W-AKE has to satisfy is cor-
rectness: if all parties behave honestly, then the protocol establishes a shared key.

Definition 1 (Correctness of 1W-AKE). Let a public-key infrastructure be given, i.e., for every party
P every party knows a (certified) public key pkP and P itself also knows the corresponding secret key
skP . Let AKE := (Initiate,Respond ,Compute Key) be a tuple of polynomial-time bounded randomized
algorithms. We say that AKE is a correct one-way authenticated key-agreement if the following holds
for all parties A,B:

Pr[ (ake, B,m1,ΨA, state)← Initiate(pkB , B,m),
((ake, B,m2,Ψ′A,ΨB), (k2, ?,

→
v ))

← Respond(skB , B,m1,ΨA),

(k1, B,
→
v
′
) := Compute Key(pkB ,m2, state,ΨB)

: k1 = k2 and
→
v=
→
v
′

] = 1

The 1W-AKE challenger for security. Goldberg, Stebila, and Ustaoglu [11] formalize the security
of a 1W-AKE by defining a challenger that represents all honest parties. The attacker is then allowed
to query this challenger. Loosely speaking, if the attacker is not able to distinguish a fresh session key
from a randomly chosen session key we say that the 1W-AKE is secure.

The challenger answers the following queries of the attacker. Internally, the challenger runs the
algorithms of AKE . All queries are directed to some party P ; we denote this party in a superscript.
If the party is clear from the context, we omit the superscript, e.g., we then write send(m) instead of
sendP (m).

sendP (params, P ′) : Compute (m, state)← Initiate(pkP , P ′, params). Send m to the attacker.

4Recall that we ensure that m is in some message space M(κ).
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sendP (Ψ,msg , P ′) : If akestate(Ψ) = ⊥ and P ′ = P , compute (m, result) ← Respond(skP , P,msg ,Ψ).
Otherwise, if msg = (msg ′, Q) compute (m, result) ← Compute Key(pkQ,msg ′, akestate(Ψ),Ψ).
Then, send m to the attacker.

reveal longterm keysP The challenger returns the long-term key of P to the attacker.

If any verification fails, i.e. one of the algorithms outputs ⊥, then the challenger erases all session-
specific information for that party and aborts the session.

Additionally, the attacker has access to the following oracle in the 1W-AKE security experiment:

test(P,Ψ) : Abort if party P has no key stored for session Ψ or the partner for session Ψ is anonymous

(i.e., P is not the initiator of session Ψ). Otherwise, choose b $← {0, 1}. If b = 1, then return the
session key k; otherwise, if b = 0, return a randomly chosen element from the key space. Only one
call to test is allowed.

We say that a session Ψ at a party i is fresh if for no party involved in that session the long-term key
has been revealed.

Definition 2 (One-way-AKE-security). Let κ be a security parameter and let n ≥ 1. A protocol π is said
to be one-way-AKE-secure if, for all ppt adversaries M , the advantage that M distinguishes a session
key of a one-way-AKE-fresh session from a randomly chosen session key is negligible (in κ).

The 1W-AKE challenger for one-way anonymity. For the definition of one-way anonymity we
introduce a proxy, called the anonymity challenger, that relays all messages from and to the 1W-AKE
challenger except for a challenge party C. The attacker can choose two challenge parties, out of which
the anonymity challenger randomly picks one, say i∗. Then, the anonymity challenger relays all messages
that are sent to C to Pi∗ (via the 1W-AKE challenger).

In the one-way anonymity experiment, the adversary can issue the following queries to the challenger
C. All other queries are simply relayed to the 1W-AKE challenger. The session Ψ∗ denotes the challenge
session. The two queries are for activation and communication during the test session.

startC(i, j, params, P ) : Abort if i = j. Otherwise, set i $← and (Ψ∗,msg)← sendPi∗ (params, P ); return
msg ′. Only one message startC is processed.

sendC(msg) : Relay sendPi∗ (msg) to the 1W-AKE challenger. Upon receiving an answer msg ′, forward
msg ′ to the attacker.

Definition 3 (One-way anonymity). Let κ be a security parameter and let n ≥ 1. A protocol π is said to
be one-way anonymous if, for all ppt adversaries M , the advantage that M wins the following experiment
Expt1w−anonπ,κ,n (M) is negligible (in κ).

1. Initialize parties P1, . . . , Pn.
2. The attacker M interacts with the anonymity challenger, finishing with a message (guess, î).
3. Suppose that M made a StartC(i, j, params, P ) query which chose i∗. If î = i∗, and M ’s query

satisfy the following constraints, then M wins; otherwise M loses.
• No reveal longterm keysP query for Pi and Pj.
• No Send(Ψ∗, ·) query to Pi or Pj.

A set of algorithms AKE is said to be a one-way authenticated key-exchange primitive (short 1W-
AKE) if it satisfies Definitions 1, 2, and 3.

The onion algorithms. We define the properties that a triple (FormOn,UnwrapOn,WrapOn) of
secure onion algorithms has to satisfy: onion correctness and onion security.

Recall that the additional parameter `′ is used for responding to a message. Since we require our
construction to hide the length of the remaining path, the responder needs to give the length of the path.
We call this `′ the appearing length of the onion.

Onion correctness states that every honestly generated forward and backward onion is correctly un-
wrapped and that FormOn can be decomposed into an algorithm FormIn and ` applications of WrapOn.
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Definition 4 (Onion correctness). Recall that M(κ) is the message space for the security parameter κ.
Let (Pi, ki, sid i)`i=1 be a circuit, m ∈ M(κ) be a message, and `′ be the appearing length of the onion,
where ` ≥ `′. Then, we have
• Forward correctness: Compute O ← FormOn((Pi, ki, sid i)`i=1,m, `

′), and for i = 1 to `−1 compute
(Oi+1, Pi, sid i, `′)← UnwrapOn(Oi, ki). Then, we have O` = (m,⊥,⊥).

• Backward correctness: Compute O` ← FormOnion((P`, k`, sid `),m, `′), and for i = ` down
to 2 compute Oi−1 ← WrapOn(Oi, Pi, ki, sid i). Thereafter, compute for i = 1 to ` − 1 again
(Oi+1, Pi, sid i, `′)← UnwrapOn(Oi, ki). Then, we have O` = (m,⊥,⊥).

Moreover, there is an algorithm FormIn such that in the two computations

O ← FormOn((Pi, ki, sid i)`i=1,m, `) and

O0 ← FormIn(`′,m), from i = 1 to `: Oi ←WrapOn(Oi−1, Pi, ki, sid i)

O and O` are equally distributed. Furthermore, FormIn, FormOn, WrapOn, and UnwrapOn are effi-
ciently computable, randomized algorithms.

The definition of onion security closely resembles the IND-CCA definition except for the difference
that the attacker is also allowed to choose the path and the index of the challenge layer.5 Such a strong
definition is necessary for ensuring the secrecy of an onion. Consider a path in which the predecessor
and the successor of the challenge node have been impersonated by the attacker. Then the attacker
can easily query arbitrary onions to be wrapped or unwrapped. We stress that a FormOn oracle is not
necessary, as FormOn can be decomposed into WrapOn and FormIn and FormIn can be computed by
the attacker.

In order to hide the length of the remaining path, we require that the length of the input and the
output of UnwrapOn are the same. The length can, e.g., be preserved by UnwrapOn by adding a
randomly chosen padding of the right length to the onion after peeling off one layer.

Definition 5 (Onion security). Consider an adversary interacting with an onion routing challenger as
follows:

1. Upon setup, the challenger receives from the attacker a router name P and a session id sid and
generates a session key k.

2. The challenger answers (unwrap, O) with a ← UnwrapOn(k,O, P ) and (wrap, O) with a ←
WrapOn(O,P, k, sid).

3. If the adversary inputs `, `′, a message m, two indices j, s, a path (Pi)`i=1 with Ps+1 = P , session
ids (sid i)`i=1 with sids+1 = sid, the challenger checks whether j ∈ [1, `], s ∈ [0, `], and ` ≤ `′,

generates `− 1 session keys ki, for i 6= s+ 1 from the key space, draws b $← {0, 1}, sets ks+1 := k.
If dir = forw:
• If b = 0, let

O′ ← FormOn(m, (Pi, ki, sid i)`i=1, `
′)

For i = 1 to j − 1, compute Oi+1 ← UnwrapOn(Oi) where O1 := O′.

• Otherwise, choose r $←M(κ) ∩ {0, 1}|m| and let

Oj ← FormOn(r, (P ′i , k
′
i, sid ′i)

s+1
i=j ), `′)

If dir = back, send Oj ← FormOn(x, (Pj , kj , sid j), `′) for x = m if b = 0 and x = r for a random
r as above if b = 1. Then, send Oj , (ki)si=j to the attacker.

4. The challenger answers for O 6= Os queries (unwrap, O) with a ← UnwrapOn(k,O, P ) and
(wrap, O) with a←WrapOn(O,P, k, sid).

5. The adversary then produces a guess b′.
We say that a set of onion algorithms satisfy onion security if for all ppt adversaries A the probability

that the attacker outputs a b′ such that b′ = b is 1/2 + µ(κ), where µ is negligible in κ.

5Actually, it can be shown that every set of onion algorithms that satisfy onion security and correctness induces an
IND-CCA secure encryption scheme (see Appendix A).
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We remark that onion security implies a form of non-malleability: the attacker is not able to compute
another ciphertext such that UnwrapOn produces an output of which the challenge message m is the
same as in the challenge onion. In particular, the attacker is not able to alter the appearing length of an
onion.

We say that a tuple of algorithms (AKE ,FormOn,UnwrapOn,WrapOn) are secure OR modules,
if AKE is a one-way anonymous 1W-AKE (Definitions 1, 2, 3) and the onion algorithms FormOn,
UnwrapOn, and WrapOn satisfy correctness (Definition 4) and security (Definition 5).

5 Construction and Proof

The core of an OR protocol is its key-exchange protocol and the onion forming, wrapping, and unwrapping
algorithms; we call these components OR modules. We show how to construct an OR protocol out of
OR modules. More precisely, we construct in Section 5.1 a template for OR protocols, and show in
Section 5.2 that this template, when instantiated with secure OR modules, yields a secure OR protocol
in the UC model (see Theorem 1).

5.1 Constructing an OR protocol template

We present a template for OR protocols that is parametric in the OR modules, i.e., a key-exchange
protocol and onion forming, wrapping, and unwrapping algorithms.

We consider a 1W-AKE primitive since the initiator of a key exchange should remain anonymous.
In this way the relation for a shared key is necessarily directed: the initiator has the role of the sender,
and the responder has the role of the receiver. In order to be able to send a response to an anonymous
sender over the same circuit, each router has to store its predecessor in the circuit.

We assume that every party generated an asymmetric key pair and there is a trusted (i.e., incorrupt-
ible) certification authority (CA) with whom all public keys have been registered. Moreover, we assume
that this CA issues verifiable certificates for these public keys. In the UC framework such an assumption
is typically realized by introducing an online key registration functionality Freg with whom keys can be
registered and from whom registered keys can be retrieved (see Section 5.1). Freg models a CA and the
security of its certificates [4].6

Moreover, we assume an authenticated secure channel functionality Fscs over which all network
messages are sent. In Tor, such a secure channel is realizes by a mutually authenticated TLS connection.

The protocol template Πor in detail. The onion routing protocol template Πor, illustrated in
Figure 3, has an initialization phase and three main states: in the initialization phase, a party sets up
its long-term keys and registers them with Freg. In the first state, the party anonymously sends a new
message over a user-chosen path of the onion routing network, establishing a fresh circuit if necessary.
In the second state, the router responds to the key-exchange protocol. In the third state, the router
forwards an onion.

In the first state, the party P receives a send-input of the following form: a path P and a message
m from the user. If no valid circuit for path P exists yet, the party establishes a circuit over that path
using the 1W-AKE (see Section 4). A circuit C consists of a sequence of triples (P, k, sid): the next party
P in the path, the session key k, and the corresponding session id sid . After the circuit construction, the
router forms an onion by calling the procedure FormOn with the message m and the established circuit
C as input.

In the second state, the party P receives a respond-input of the following form: a session id sid
and a message m. The party P checks whether the session sid belongs to a session of which it knows the
key. If the check succeeds, the party invokes the FormOn procedure with the length of the circuit. We
stress that the length of the circuit can be computed from the length of the onion.

In the third state, the router P receives either an onion O and session id sid (in which P is the receiver)
or a plaintext message. If the message contains an onion, the router checks whether it is a forward or a
backward onion. For checking whether the message is a forward onion, the router checks whether for

6Technically, we consider a multi-session key registration functionality that is only used by the Πor protocol template.
Therefore, only one session identifier would be used in the communication with Freg. For the sake of readability, we omit
the session identifier in the message to Freg.
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Upon receiving an input setup:
Generate an asymmetric key pair (sk , pk) ← G. Send (register, pk , P ) to the functionality Freg. Wait until
Freg answers with a message (registered, pk). Then output ok.

Upon receiving an input (send,P,m):
Do nothing if m 6∈ M(κ). Otherwise, if established(P) = ∅ and |P| < circuit ttl + 1, call
Extend Circuit(∅,P,m). If established(P) = ((P1, k1, sid1), . . . , (Pn, kn, sidn)) = C (for n > 0) and
used(sid1) < circuit ttl , call Send Message(C,m, P1, sid1). If used(sid1) ≥ circuit ttl , set established(P) :=
∅ and call Extend Circuit(∅,P,m).

Upon receiving an input (respond, sid ,m):
Do nothing if m 6∈ M(κ). Otherwise, if skey(sid) = (k, P1, P ) (for some k, P1), let `′ := circuit length(sid)
and compute O ← FormOn((P, k, sid),m, `′) and send (O, sid , P, P1) over a secure channel Fscs.

Upon receiving a message (m, sid , P1, P ) from a secure channel Fscs:
1. (m is a forward onion) If m 6∈ sent and skey(sid) = (k, P1, P ) (for some k, P1), compute (m′, `′) ←

UnwrapOn(m, k) and distinguish the following cases.
(i.) If m′ = (m′′,⊥) and m′′ = (ake, P2, X,Ψ): Set pcandidate(Ψ) := sid . Send (m′, P2) over a

secure channel Fscs.
(ii.) If m′ = (m′′,⊥) and m′′ 6= (ake, P2, X,Ψ): Store circuit length(sid) := `′, and output

(result,m′′, sid) to party P .
(iii.) If m′ = (O′, P2, sid

′), add O′ to sent and send (O′, sid′, P, P2) over a secure channel Fscs.
2. (m is a backward onion) We have a backward onion in the following three cases.

(i.) If predecessor(sid) = ⊥, ⊥ 6= ((P, (P1, k1, sid), . . . , (Pk, kk, sidk)), Pk+1,P,m) =
open AKE(sid) (in case k = 0 take Ψ instead of sid = (Ψ,Ψ′)), increase used(sid), and perform
the following steps:
(a) For i = 1 to k compute (Oi+1, Pi+1, sid i, li) ← UnwrapOn(Oi, ki) where O1 := m. If

li+1 = `′ proceed with the following steps.
(b) If the resulting message mk+1 = (ake, Pk+1, t, sidk+1) (in case k = 0

mk+1 = m) and sidk+1 = (Ψ,Ψ′), compute (kk+1, X, Y, Pk+1) ←
Compute Key(pkPk+1

,mk+1, akestate(Ψ),Ψ′). Then, set akestate(Ψ) := ⊥.

(c) Store established(P1, . . . , Pk+1) := ((P1, k1, sid1), . . . , (Pk+1, k, sidk+1)) and skey(sidk+1) :=
(kk+1, P, Pk+1), and set open AKE(sid) := ⊥.

(d) If k + 1 < |P|, call Extend Circuit((P1, . . . , Pk+1),P,m); otherwise, call
Send Message(C,m, P1, sid1).

(ii.) If predecessor(sid) = ⊥, open AKE(sid) = ⊥, and there is a P such that established(P) =
(Pi, ki, sid i)

n
i=1 and sid1 = sid (for some n), compute for i = 1 to k (Oi+1, Pi, sid i, li+1) ←

UnwrapOn(Oi, ki) where O1 := m. Check whether li+1 = `′, if so increase used(sid), and
output mn.

(iii.) If sid ′ = predecessor(sid) and skey(sid ′) = (k′, P2, P ), compute m′ ← WrapOn(m, (P, k′, sid ′))
and send (m′, sid ′, P, P2) over a secure channel Fscs. If m′ is an onion, add m′ to sent .

3. (m is the response from a key-exchange) If m = (ake, P1, t, sid), sid = (Ψ′,Ψ) and sid ′ =
pcandidate(Ψ′), set predecessor(sid) := sid ′. If skey(sid ′) = (k′, P2, P ), compute m′ ←
FormOn(P, k′, sid ′,m, n) and send (m′, sid ′, P, P2) over a secure channel Fscs.

4. (m is the initial message from a key-exchange) If m = (ake, P,m′) and sid = Ψ, compute

(m′, (k, ?,
→
v )) ← Respond(skP , P,m

′,Ψ). Then, let sid ′ := (Ψ,Ψ′), set skey(sid′) := (k, P1, P ), and
send (m′, sid ′, P, P1) over a secure channel Fscs.

Figure 3: The onion routing protocol template Πor for party P

this session the session key k is known with the router itself being the receiver. If so, the router unwraps
the onion calling the procedure UnwrapOn with the onion O and the key k as input. We distinguish three
cases for the resulting message m. In the first case, the resulting message m is an initiating key-exchange
message, i.e., m = (ake, x, P ′, y). Then, the router sends m over a secure channel Fscs. In the second
case, the resulting message is not an onion and not a initiating key-exchange message. Then, the router
outputs m to party P . In the third case, the resulting message m = (O′, P ′, sid ′) consists of an onion
O′ together with a party P ′ and a session id sid ′. Then, the router sends this triple to party P ′ over a
secure channel Fscs.
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There are three cases in which a message received over Fscs is a backward onion. In the first
case, the party is the circuit initiator and the circuit of the onion still needs to be extended. Then,
Πor confirms the circuit extension and continues extending the circuit. In the second case, the party
is the circuit initiator and the circuit of the onion does not need to be extended. Then, Πor sends the
message (associated with the circuit extension) over the completely established circuit. In the third case,
the party is an intermediate router that forwards the onion. Πor checks whether it knows a predecessor
session sid ′ = predecessor(sid) for which it knows a key (k, P2, P ) = skey(sid ′) (as the receiver). If the
check succeeds, the router wraps the onion using WrapOn with the key k and sends the wrapped onion
to the predecessor P2 in the circuit.

If a response to a key-exchange initiation message m = (ake, P, t,Ψ′,Ψ) received over a secure
channel, the router memorizes that the session sid = (Ψ′,Ψ) is in the current circuit the predecessor of
sid ′. Then, the router looks up for a session sid ′ in (k, P ′, P ) = skey(sid ′) the key k and the predecessor
P ′. Next, the router adds a layer to the response onion calling the procedures WrapOn with the message
m and the triple (P, k, sid ′) as input. The resulting onion O is sent together with the session id sid ′ to
P ′ over a secure channel Fscs.

If an initial key-exchange message m = (ake, P,m′,Ψ) has been received over a secure channel, the
key-exchange response algorithm Respond is invoked, which produces a response message and a session
key. The protocol template stores the session key and sends the response over a secure channel. In any
other case, the router simply does nothing.

Typically, onion routing protocols, such as Tor, have a time limit for each established circuit. We
model such a time limit in the UC framework by only allowing a circuit to transport at most a constant
number of messages, namely circuit ttl many messages. Thereafter, the circuit is discarded and a fresh
circuit is established.

Subroutines of Πor. The protocol template Πor uses two subroutines: Extend Circuit and
Send Message.

Extend Circuit(P ′,P,m): Let (P1, . . . , P`) := P (for some n ∈ N) and
((P1, k1, sid1), . . . , (Ps, ks, sids)) := established(P ′) (where s = 0 for P ′ = ∅). Let
m′ := (new session, ake, Ps+1), and compute ((ake, Ps+1, X,Ψ), state) ← Initiate(pkPs+1

, Pk+1,m
′). Set

akestate(Ψ) := state. If k = 0 let sid1 := Ψ, store (established(P), Ps+1,P,m) in open AKE (sid1).
Then, call Send Message(established(P ′),m′, P1, sid1).

Send Message(C,m, P ′, sid):
Let ((P1, k1, sid1), . . . , (P`, k`, sid `)) := C.

1. If C = ∅, send (m, sid, P, P ′) over a secure channel Fscs.
2. If C 6= ∅, increase used(sid1), let O ← FormOn(C,m, `), add O to sent , and send (O, sid, P, P1)

over a secure channel Fscs.

Revealing the long-term keys. Upon receiving a message (reveal longterm keys, P ) from the net-
work: Send the long-term keys (sk, pk) over the network. Moreover, we assume that as soon as the
long-term key is revealed the attacker is able to terminate the current secure channel session and estab-
lish a new secure channel session (which the attacker can now read). This is modelled by letting parties
whose long-term key has been revealed forward all messages to the attacker. In other words, we let the
attacker impersonate the parties.

5.2 The main proof

We say that a protocol π securely realizes F in the F ′-hybrid model, if each party in the protocol π has
a direct connection to F ′ (see Figure 4). Recall that Freg is the key registration and Fscs is the secure
channel functionality. We prove our result in the Freg, Fscs-hybrid model, i.e., our result holds for any
key registration and secure channel protocol securely realizing Freg, and Fscs, respectively.

Theorem 1. If the protocol template Πor is instantiated with secure OR modules M, then the resulting
protocol Πor(M) securely realizes the ideal functionality For in the Freg,Fscs-hybrid model.

Proof. We have to show that for all ppt attackers A there is a ppt simulator S such that no ppt en-
vironments E can distinguish the interaction with A and Πor from the interaction with S and For.
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Figure 4: Proof overview - Game1 denotes the original setting, and the dotted frames represent the
changed parts in Gamei.

Given a ppt attacker A, we construct a simulator S that internally runs A and simulates the public key
infrastructure, i.e, the functionality Freg. The crucial part in this proof is that the ideal functionality
For provides the simulator with all necessary information for the simulation. We examine a sequence of
seven games, proving their pairwise indistinguishability for the environment E.

Game 1: This is the original setting in which the environment E interacts with the protocol Π1 :=
Πor(M) and the attacker A. Moreover, Πor(M) and A have access to a certification authority Freg and
a secure channel functionality Fscs.

Game 2: The protocol remains the same, i.e., Π2 := Π1. The simulator S2 computes the functionality
Fscs and internally runs the attacker A. All messages that are sent to Fscs are captured by S2, and
all messages from and to the attacker are simply forwarded. Since S2 honestly computes Fscs and the
attacker A, Game1 and Game2 are perfectly indistinguishable for the environment E.

Game 3: The protocol remains the same, i.e., Π3 := Π2. The simulator S3 computes the functionality
Freg. All messages that are sent to Freg are captured by S3. Since S3 honestly computes Freg, Game2

and Game3 are perfectly indistinguishable for the environment E.

Game 4: We modify the session keys that have been established between two parties whose public
keys have not yet been revealed. In Game4, Π4 maintains a shared state; in other word, all parties are
one machine and share some state. Instead of using the established key, for each established key k Π4

stores a randomly chosen value in the shared state. This random value is used as a session key instead
of k. The simulator remains unchanged, i.e., S4 := S3.

Assume that there is a ppt machine that can compute a session key between two uncorrupted parties
with non-negligible probability (in the security parameter κ), given the key-exchange’s transcript of
messages. Then, using a hybrid argument, it can be shown that there is an attacker that breaks the
security of the 1W-AKE, which in turn contradicts the assumption that the OR modules are secure.
Hence, Game3 and Game4 are computationally indistinguishable.

Game 5: In this setting the simulator remains unchanged, i.e., S5 = S4, but the protocol Π5 uses
fake onions instead of real onions. Upon receiving a send or a respond input, the protocol stores an
input message m in the shared state. Then, the protocol remembers for each session whether it is
malicious or not, i.e., whether one of the involved parties revealed its long-term key before the session
has been established. Based on this notion of malicious session, the protocols maintains for every circuit
(Pi, ki, sid i)`i=1 a separation into contiguous subsequences (Pi, sid i)si=j such that sid j−1 and sids+1 are
not malicious sessions7 or s = ` and (sid i)si=j are malicious. These separations are updated upon each
reveal longterm keys command.

Whenever in Π4 a forward onion is sent from P to P ′, i.e., P = Pj−1 and P ′ = Pj , we distinguish
in Π5 two cases for (Pi, sid i)si=j . First, the separation is of the form (Pi, sid i)`i=j , i.e., s = `. Then, the

7sid0 means that the sender did not reveal its long-term key.

14



Upon receiving a a message (reveal longterm keys, P ) directly from the attacker A:
Look the long-term key pair (skP , pkP ) of P up (using the simulated functionality Freg) and output
(skP , pkP ). Then, forward (reveal longterm keys, P ) to For.

Upon receiving a message m for the environment directly from the attacker A:
Forward m to the environment.

Upon receiving a message setup from For:
Generate for each party P the long-term keys and register them in Freg. Then respond ok to For.

Upon receiving an onion handle, i.e., a message m = (h, lc, lm, P1, Q, sid , P2) or m =
(h, lc, lm, P1, Q, P2) from For:
Let Q = (Pi, sid i)si=j . Construct an onion O for the path (Pi, skey(sid i), sid i)si=j containing a
randomly chosen string of length lm. For honest sessions sidu no key exchange is performed and
skey(sidu) constitutes a randomly chosen key. For malicious sessions sidu, the established key is
stored in skey(sidu). If skey(sid i) is undefined, i.e., sid i is a malicious session and the key has not yet
been established, stop. Store the handle h as pending(h) := (O, (Ps, sids)), and send (O,P1, sid j , Pj)
over Fscs to Pj .

Upon receiving an output to an attacker-impersonated party P , i.e., a message (m,Q) from For:
Let Q = (Pi, sid i)si=j . Construct an onion for the path (Pi, skey(sid i), sid i)si=1 containing m, where
skey is defined as above. If skey(sid i) is not known, stop.

Upon receiving an onion (m, sid , P1, P ) from Fscs for party P :
Act as Π. If P is the receiver of a backward onion that carries a response to a key establishment,
run Compute Key , yielding a session id sid ′ and a key k. Then, set skey(sid ′) := k. Recall that
the simulator also checks after a UnwrapOn call whether the resulting circuit length still equals the
stored appearing length lc = `′ (sent by For).

If Π would output a message m to a party P , send (attacker message,m, P ) to For. Otherwise,
look for an h such that pending(h) = (O, (P, sid)) and send (deliver, h, P1, P ) to For.

Upon receiving the initial message from a key-exchange (m, sid , P1, P ) from Fscs for party P :
Run Respond as in Π obtaining a session id sid ′ and a response m′, and store the key in skey(sid ′).
Then, construct an onion response m′.

Figure 5: The final simulator S = S7 that internally runs the attacker A

protocol constructs an onion using keys kj , . . . , k` and the real message, which is stored in the shared
state. Recall that, as in Game4, an honest session key is chosen at random and read from the shared
state.Second, the separation is of the form (Pi, sid i)si=j and sids+1 is not malicious and s+ 1 ≤ `. Then,
the protocol constructs an onion using randomly chosen keys kj , . . . , ks+1 and a randomly chosen message
of the same length as the real message.

Whenever in Π4 a backward onion is sent from P to P ′, i.e., P = Ps+1 and P ′ = Ps, we again
distinguish in Π5 two cases. First, the separation is of the form (Pi, sid i)si=1, i.e., the sessions with all
remaining parties back to the initiator are malicious, i.e., j = 1. Then, we form the layer with (Pi, ki, sid i)
and the real message m, which we read from the shared state. Second, the separation is of the form
(Pi, sid i)ii=j and sid j−1 is honest, i.e., there is at least one session on the remaining way in the circuit
that is not malicious. Then, we form an onion with (Pi, ki, sid i) and a random value r of the same length
as m.

Every randomly chosen string that is used as instead of a real message m in the construction of an
onion, is connected to exactly one message m. In the communication between two honest parties, this
m (stored in the shared state) is output instead of the random string that is contained in the onion.
In particular, if m is a key-establishment message Π5 does not output m but answers according to the
key establishment message, again replacing m with a random string if the circuit does not contain any
honest session.
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We stress that Π5 remembers the appearing length `′ of an onion and checks upon each UnwrapOn
execution whether the computed circuit length equals `′. If the check fails, the respective party stops
(and the control is handed over to the environment).

By a hybrid argument it follows that any attacker distinguishing Game5 from Game4 can be used
for breaking onion security (Definition 5), which contradicts the assumed security of the OR modules.
Hence, Game5 and Game4 are indistinguishable. The ith hybrid is constructed by faking all messages
from the ith honest session on, where i is a global enumeration of all sessions by honest parties.

Game 6: In this setting the simulator remains unchanged, i.e., S6 = S5, but the protocol Π6 in addi-
tion internally runs the ideal functionality For. We stress that every network message (h, length, Pj , C′)
of the ideal functionality corresponds to a separation (Pi, sid i)si=j of some circuit: (i) either C′ =
((Pi, sid i)si=j , Ps+1) or (ii) P ′ = ((Pi, sid i)`i=j ,m) and s = `. Hence, we let Π6 compute the onion
based on the network message (h, length,P ′). As in Game5, in case (i) Π6 computes a fake onion, and in
case (ii) Π6 computes a real onion using m beginning from Pj .

As Π6 uses random keys, it can as well fake the circuit establishment messages except for attacker-
impersonated receivers. But in that case, as in Game5, Π6 sends the real message, since the functionality
provides Π6 with all necessary information. In all other cases, Π6 behaves just like Π5, because the ideal
functionality outputs only then the real messages and session ids when also Π5 would need them.

Game 7: In this setting we replace the protocol with the ideal functionality, i.e., Π7 := For. The
simulator S7 in Game7 additionally computes all network messages exactly as Π6.

The ideal functionality behaves towards the environment exactly as Πor; consequently, it suffices to
show that the network messages are indistinguishable. However, as already Π6 complied with the ideal
functionality concerning the network messages and the simulator is just defined like Π6 concerning the
network messages, Game6 and Game7 are indistinguishable.

We stress that anonymity in a low-latency OR network does not solely depend upon the cryptographic
security. It is rather mostly obtained from factors such as magnitudes and distributions of users and
their destination servers. In the OR literature, considerable effort has been put towards measuring the
anonymity of onion routing [8, 9, 19, 23], regarding the OR network as a black-box. We emphasize that
our UC-secure OR construction provides such a black-box security guarantee.

6 An Instantiation of Secure OR Modules

In this section, we construct secure OR modulesM as defined in Section 4 and conclude, by Theorem 1,
that Πor(M) constitutes a provably secure and practical OR protocol.

The one-way anonymous 1W-AKE. We use the ntor protocol, which has been proposed by Gold-
berg, Stebila, and Ustaoglu [11], and proven to constitute a 1W-AKE. The ntor protocol is presented in
Figure 6. Although their result uses the random oracle model (ROM), random oracles are not an intrinsic
requirement for constructing 1W-AKEs. We decided to use ntor since, to the best of our knowledge, it
currently constitutes the most efficient 1W-AKE.

Lemma 1 (ntor is anonymous and secure [11]). The ntor protocol is a one-way anonymous and secure
one-way authenticated key-exchange protocol in the ROM.

Construction 1: The onion algorithms. Based on the construction from Camenisch and Lysyan-
skaya [3], we propose in Figure 7 a construction for the onion algorithms FormOn, UnwrapOn, and
WrapOn. Let (Gp, Dp, Ep) be a PRP, (Ge, De, Ee) an IND-CCA symmetric encryption scheme, and
let H be a collision-resistant hash function. We require that the message space of the PRP and the
IND-CCA scheme coincide with M(κ). We write {m}k := Ep(m, k) and {c}−1

k := Dp(c, k).

Lemma 2. FormOnI and UnwrapOnI , and WrapOnI from Construction 1 satisfy correctness and
security for onion algorithms.

Proof. The correctness follows by construction. Hence, it remains to show the security. This is shown in
a sequence of games. Game1 is simply the setting from Definition 5 if b = 0.
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Upon Initiate(pkQ, Q, new session, ntor):

1. Generate the ephemeral key pair (x, gx).
2. Set session id ΨP = Hsid(gx).
3. Set state(ΨP ) := (ntor, Q, x, gx).
4. Set m := (ntor,ΨP , Q, g

x).
5. Output (m, state(ΨP )).

Upon Respond(skP , P,X,Ψ):

1. Verify that X ∈ G∗.
2. Generate the ephemeral key pair (x, gx).
3. Set session id ΨP = Hsid(gx).
4. Compute (sk′, sk) = H(Xx, XskP , P,X, gx, ntor).
5. Compute tP = Hmac(sk′, P, gx, X, ntor, server).
6. Set m := (ntor, gx, tP ,ΨP ,Ψ).
7. Set out := (sk, ?,X, gx, P ).
8. Output (m, out).

Upon Compute Key(pkQ, Y, tQ,Ψ
′,Ψ):

1. Check whether state(Ψ′) = (ntor, Q, x, gx) (for some Q and x). If the check fails, abort and output ⊥.
2. Verify that Y ∈ G∗.
3. Compute (k′, k) = H(Y x, pkx

Q, Q, g
x, Y, ntor).

4. Verify tB = Hmac(k′, Q, Y, gx, ntor, server).
5. Output (k,Q, gx, Y,Q).

If any verification fails, the party erases all session-specific information and aborts the session.

Figure 6: The ntor protocol

In Game2, FormOnI is only applied to the circuit (Pi, ki, sid i)`i=j and the message m. By the correctness
of the onion algorithms, Game1 and Game2 are perfectly indistinguishable.

In Game3, FormOnI uses, from layer s on, instead of the PRP Ep and Dp a randomly chosen function,
which encrypts a randomly chosen string of the same length as the input. Similarly WrapOnI uses for
all queries the randomly chosen function. By the pseudorandomness of (Gp, Ep, Dp), Game2 and Game3

are computationally indistinguishable for the attacker, as it does not know the encryption key kps .

In Game4, FormOnI and WrapOnI still use the PRP; however, they additionally now also use the
Fake Encrypt and Fake Decrypt algorithm (from the IND-CCA game8) instead of the IND-CCA secure
encryption scheme Ee. By the IND-CCA property Game3 and Game4 are indistinguishable, since the
attacker does not know the key kes .

In Game5, FormOnI and WrapOnI , which still use the randomly chosen function and Fake Encrypt
from layer ` on, is applied to (r, (P ′i , k

′
i, sid ′i)

s+1
i=j , `

′) instead of (m, (Pi, ki, sid i)`i=1, `
′), where j and s are

chosen by the attacker as in the onion security game. We stress that (P ′i , k
′
i, sid ′i) = (Pi, ki, sid i) for i = 1

to s. Moreover in Fake Encrypt the message is not used at all, and the output of the randomly chosen
function is uniformly distributed, Game3 and Game4 are perfectly indistinguishable.

In Game6, FormOnI and WrapOnI use the PRP Ep and Dp and the IND-CCA encryption scheme Ee
and De again instead of the randomly chosen function and Fake Encrypt . By the pseudorandomness
of Ep and Dp and the IND-CCA property of Ee and De the Game5 and Game6 are computationally
indistinguishable. As we can see, Game6 equals the onion security challenger in the case b = 1. Hence,
the two cases b = 0 and b = 1 are computationally indistinguishable for this construction.

As mentioned earlier, we only need the ROM because the security proof of ntor uses it [11]. Any
other protocol that can be proven to be a 1W-AKE without a RO yields a protocol that can be proven
secure without ROs.

8Actually, it is from the ROR-CCA (real-or-random) game. But Bellare, Desai, Jokipii, and Rogaway showed that
IND-CCA and ROR-CCA are poly-time equivalent [2].
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FormOnI(m, (Pi, ki, sid i)
`
i=1, `

′):

1. Initialization. If ` ≤ `′, let Pi := P` for ` < i ≤ `′ and k`+1 := · · · := k`′ := k`. Let kp
i := Gp(ki) and

ke
i := Ge(ki), where Gp(ki) denotes that Gp uses ki as randomness, and analogously for Ge.

2. Form inner layer. Let Ri := {Pi, sid i}−1

k
p
i

and M (`′) := {m}kp

`′
. Let H`′

i := {. . . {Ri}−1

k
p
i+1

. . . }−1

k
p

`′−1
for

i ∈ [1, `′ − 1]; in particular, we have H`′
`′−1 := R`′−1. Let T`′ := H(M (`′), H

(`′)
`′−1, . . . , H

(`′)
1 ). Finally,

let C`′ ← Ee(k`′ , T`′). Let O`′ := (M (`′), H
(`′)
`′−1, . . . , H

(`′)
1 , C`′).

3. Adding a layer. Given Oi (for i ∈ [2, `′]), we compute Oi−1 as follows: M (i−1) := {M (i)}kp
i−1

, H
(i−1)
j :=

{H(i)
j−1}ki−1 for j ∈ [2, `′], and H

(i−1)
1 := {Pi, sid i, Ci}kp

i−1
. Let Ti−1 = H(M (i−1), H

(i−1)
N−1 , . . . , H

(i−1)
1 ).

Finally, let Ci−1 := De(ke
i−1, Ti−1). The resulting onion is Oi−1 = (M (i−1), H

(i−1)

`′ , . . . , H
(i−1)
1 , Ci−1).

UnwrapOnI((M,H`′ , . . . , H1, C), k):

1. Let kp := Gp(k) and ke := Ge(k).
2. Let T := H(M,H`′ , . . . , H1) and check T = De(ke, C).
3. Compute (P ′, sid ′, C′) := {H1}−1

kp .
4. Choose at random a string r of length | {H`′}k |.
5. Output ((({M}−1

kp , {r}−1
kp , ({H`′}−1

kp )2i=`′ , C
′), P ′, sid ′), `′) (or (m,⊥, bot) in the last layer).

WrapOnI((M,H`′ , . . . , H1, C), P, k, sid):

1. Let kp := Gp(k) and ke := Ge(k).
2. Compute M ′ := {M}kp , H ′j := {Hj−1}kp for 1 < j ≤ `′, and H ′1 = {P, sid , C}kp .
3. Let T ′ = H(M,H`′−1, . . . , H1) and C′ ← Ee(ke, T ).
4. Output (M ′, (H ′i)

1
i=`′ , C

′).
If any of these operations fails, output ⊥.

Figure 7: Construction 1: The onion algorithms

Theorem 2. Let ntor scheme denote the OR modules (ntor,FormOnI ,UnwrapOnI ,WrapOnI) from Fig-
ure 6 and Construction 1. Then, in the ROM the protocol Πor(ntor scheme) using securely realizes the
ideal functionality For in the Freg, Fscs-hybrid model.

Proof. This result directly follows from Lemma 1, Lemma 2, and Theorem 1.

Goldberg and Danezis [6] present in Sphinx an alternative implementation of the onion algorithms
that also satisfies the definition of Camenisch and Lysyanskaya [3]. Their construction can also be easily
adjusted to satisfy our definition, yielding a more efficient construction. Because of space constraints,
however, we do not present the Sphinx construction here.

7 Conclusion and Future Work

We have presented a security definition in the universal composability framework of the multi-pass onion
routing (OR) circuit construction, which is also the approach that is deployed in the existing Tor protocol.
Moreover, we have presented security definitions for the core modules used in an OR protocol: a one-
way authenticated key exchange (1W-AKE) primitive, and onion forming, wrapping and unwrapping
algorithms. Then, we have shown that secure OR modules induce a canonical OR protocol that satisfies
our definition. Finally, we have instantiated our definition with a recently introduced efficient and
provably secure key exchange protocol, thereby establishing the first security proof for a practical OR
protocol with multi-pass circuit construction, such as Tor.

Although our work proposes a provably secure, efficient replacement for the existing OR construc-
tion Tor, users’ anonymity may still be adversely affected if different users use different versions of the
OR protocol. Hence it is an important direction for future work to develop a anonymity-preserving
methodology for updating OR clients.
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draft of the paper.
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Appendix

A Onion Security implies IND-CCA

Given a set of secure onion algorithms (FormOn,UnwrapOn,WrapOn), we construct an IND-CCA secure
symmetric key encryption (G,E,D)scheme as follows:
• G is defined as follows: choose at random a bitstring k from the key space of the onion algorithms.

Then, output k.
• E(k,m): Run O ← FormOn(m, (0q1 , k, 0q2), 1), where q1 is the corresponding length of the party

id and q2 of the session id. Then, output O.
• D(k, c): Run m← UnwrapOn(c, k). Output m.
The decryption routine is deterministic, since the algorithm UnwrapOn is deterministic when applied

to the last layer. We prove the IND-CCA security by showing that any ppt attacker that is able to break
the IND-CCA property of (G,E,D) can be used to break the onion secrecy of the underlying onion
algorithms (FormOn,UnwrapOn,WrapOn).

Given a ppt machine A, i.e., an adversary, against the IND-CCA challenger, we construct an adversary
S against the onion security game such that the success probability of A being non-negligible implies the
success probability of S being non-negligible.

Construction of S. S constitutes both the IND-CCA challenger and the adversary for the onion
security challenger. Hence, S has to implement the encryption oracle Eb(k, ·) and the description oracle
Dd(k, ·) (for a key k). S is constructed as follows:
• Initially, S sends to the onion security challenger a pair (0q1 , 0q2).
• Upon a request c from A to the decryption oracle, S sends a request (unwrap, c) to the

UnwrapOn(·, 0q1 , k) oracle. The response m is forwarded to A.
• Upon a request m from A to the encryption oracle, S computes O ← FormIn(1,m) sends a request

(wrap, O) to the WrapOn(·, 0q1 , k, 0q2) oracle. The response c is forwarded to A.
• Upon two challenge message m1,m2 (such that |m1| = |m2|) from the attacker, S chooses a random

bit b sends the message mb, the path 0q1 , the session id 0q2 , the indices j := 1 and s := 0, and
pathlenghts ` := 1 and `′ := 1 to the onion security challenger. The response O is forwarded to A.

• Upon receiving the final decision bit b∗ of A, S checks whether b∗ = b. If the check succeeds, S
outputs b∗; otherwise, S outputs a random number.

Let bo be the bit that the onion security challenger flipped. If bo = 1, i.e., the message has been
replaced by a random string, S guessed the correct coin with probability 1/2. If bo, i.e., the actual
message mb has been used, and if b∗ = b, then S has the same advantage as A. Since this bo = 0 with
probability 1/2, the advantage of S is greater or equal to than 1/2 times the advantage of A. Hence, if
A breaks the IND-CCA property of (G,E,D) with non-negligible probability, than S breaks the onion
security of (FormOn,WrapOn,UnwrapOn) with non-negligible probability.
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