
Efficient Fully Homomorphic Encryption from (Standard) LWE

Zvika Brakerski∗ Vinod Vaikuntanathan†

Abstract

We present a fully homomorphic encryption scheme that is based solely on the (standard)
learning with errors (LWE) assumption. Applying known results on LWE, the security of our
scheme is based on the worst-case hardness of short vector problems on arbitrary lattices. Ad-
ditionally, relying on LWE makes our scheme very natural to understand (and implement).

Our construction improves on previous works in two aspects:

1. We show that “somewhat homomorphic” encryption can be based on LWE, using a new re-
linearization technique. In contrast, all previous schemes relied on complexity assumptions
related to ideals in various rings.

2. We deviate from the “squashing paradigm” used in all previous works. We introduce a new
dimension reduction technique, which shortens the ciphertexts and reduces the decryption
complexity of our scheme, without introducing additional assumptions. In contrast, all
previous works required an additional, very strong assumption (namely, the sparse subset
sum assumption).

Our scheme has very short ciphertexts and we therefore use it to construct an asymptotically-
efficient LWE-based single-server private information retrieval (PIR) protocol. The communi-
cation complexity of our protocol (in the public-key model) is k · polylog k + log |DB| bits per
single-bit query, which is better than any known scheme (here, k is a security parameter).

∗Weizmann Institute of Science. Email: zvika.brakerski@weizmann.ac.il.
†University of Toronto. Email: vinodv@cs.toronto.edu.

1 Introduction

Fully-homomorphic encryption is one of the most sought after goals – a holy grail – of modern
cryptography. In a nutshell, a fully homomorphic encryption scheme is an encryption scheme that
allows evaluation of arbitrarily complex programs on encrypted data. The problem was suggested
by Rivest, Adleman and Dertouzos [RAD78] back in 1978, yet the first plausible candidate came
thirty years later with Gentry’s breakthrough work in 2009 [Gen09b, Gen10] (although, there has
been partial progress in the meanwhile [GM82, Pai99, BGN05, IP07]).

Gentry’s work was phenomenal in that it showed us a first glimpse of the holy grail, when many
cryptographers believed it didn’t exist! However, his solution involved a slew of new and relatively
untested cryptographic assumptions. If these assumptions turn out to be false (god forbid), then
we are back in square one, and the appearance of the holy grail would indeed have been a mirage.
Our work aims to put fully homomorphic encryption on a firm theoretical footing, by basing it on
standard, well-studied cryptographic assumptions.

First, the main building block in Gentry’s construction (a so-called “somewhat” homomorphic
encryption scheme) was based on the (worst-case, quantum) hardness of problems in ideal lattices. 1

Although lattices have become standard fare in cryptography and lattice problems have been rel-
atively well-studied, ideal lattices are a special breed that we know relatively little about. Ideals
are a natural mathematical object to build fully homomorphic encryption in that they natively
support both addition and multiplication (whereas lattices are closed under addition only). In fact,
all subsequent constructions of fully homomorphic encryption [SV10, DGHV10, BV11] relied on
ideals in various rings in an explicit way. Our first contribution is the construction of a “somewhat”
homomorphic encryption scheme whose security relies solely on the (worst-case, classical) hardness
of standard problems in arbitrary (not necessarily ideal) lattices.

Secondly, in order to achieve full homomorphism, Gentry had to go through a so-called “squash-
ing step” which forced him to make an additional very strong hardness assumption – namely, the
hardness of the (average-case) sparse subset-sum problem. As if by a strange law of nature, all the
subsequent solutions encountered the same difficulty as Gentry did in going from a “somewhat”
to a fully homomorphic encryption, and they all countered this difficulty by relying on the same
sparse subset-sum assumption. This additional assumption was considered to be the main caveat
of Gentry’s solution and removing it has been, perhaps, the main open problem in the design of
fully homomorphic encryption schemes. Our second contribution is to remove the necessity of this
additional assumption.

Thus, in a nutshell, we construct a fully homomorphic encryption scheme whose security is
based solely on the classical hardness of solving standard lattice problems in the worst-case, thus
placing the holy grail of fully homomorphic encryption firmly within reach.2 As icing on the cake,
we will see further along in the paper that our solution is quite efficient, and holds the promise of
a practical fully homomorphic encryption scheme.

To achieve our goals, we deviate from two paradigms that ruled the design of (a handful of)
candidate fully homomorphic encryption schemes [Gen09b, SV10, DGHV10, BV11]:

1. We introduce the re-linearization technique, and show how to use it to obtain a somewhat
homomorphic encryption that does not require hardness assumptions on ideals.

1Roughly speaking, ideal lattices correspond to a geometric embedding of an ideal in a number field.
2Strictly speaking, under only the LWE assumption, our scheme can evaluate polynomial-size circuits with a-priori

bounded (but arbitrary) depth. A fully homomorphic encryption scheme independent of the circuit depth can be
obtained by making an additional “circular security” assumption. See Section 4.3.

1

2. We present a dimension reduction technique, that turns our somewhat homomorphic scheme
into a fully homomorphic one, without the need for the artificial squashing step and the sparse
subset-sum assumption.

Let us explain these techniques in more detail.

1.1 Re-Linearization: Somewhat Homomorphic Encryption without Ideals

The starting point of Gentry’s construction is a “somewhat” homomorphic encryption scheme.
For a class of circuits C, a C-somewhat homomorphic scheme is one that allows evaluation of any
circuit in the class C. The simple, yet striking, observation in Gentry’s work is that if a (slightly
augmented) decryption circuit for a C-somewhat homomorphic scheme resides in C, then the scheme
can be converted (or “bootstrapped”) into a fully homomorphic encryption scheme.

It turns out that encryption schemes that can evaluate a non-trivial number of addition and
multiplication operations3 are already quite hard to come by (even without requiring that that
they are bootstrappable).4 Gentry’s solution to this was based on the algebraic notion of ideals in
rings. In a very high level, the message is considered to be a ring element, and the ciphertext is
the message masked with some “noise”. The novelty of this idea is that the noise itself belonged
to an ideal I. Thus, the ciphertext is of the form m + xI (for some x in the ring). Observe right
off the bat that the scheme is born additively homomorphic; in fact, that will be the case with
all the schemes we consider in this paper. The ideal I has two main properties: first, a random
element in the ideal is assumed to “mask” the message; and second, it is possible to generate a
secret trapdoor that “annihilates” the ideal, i.e., implementing the transformation m + xI → m.
The first property guarantees security, while the second enables multiplying ciphertexts. Letting
c1 and c2 be encryptions of m1 and m2 respectively,

c1c2 = (m1 + xI)(m2 + yI) = m1m2 + (m1y +m2x+ xyI)I = m1m2 + zI

When decrypting, the ideal is annihilated and the product m1m2 survives. Thus, c1c2 is indeed an
encryption of m1m2, as required. This nifty solution required, as per the first property, a hardness
assumption on ideals in certain rings. Gentry’s original work relied on hardness assumptions on
ideal lattices, while van Dijk, Gentry, Halevi and Vaikuntanathan [DGHV10] presented a different
instantiation that considered ideals over the integers.

Our somewhat homomorphic scheme is based on the hardness of the “learning with errors”
(LWE) problem, first presented by Regev [Reg05]. The LWE assumption states that if s ∈ Zn

q is an
n dimensional “secret” vector, any polynomial number of “noisy” random linear combinations of
the coefficients of s are computationally indistinguishable from uniformly random elements in Zq.
Mathematically, {

ai, ⟨ai, s⟩+ ei
}poly(n)

i=1

c≈
{
ai, ui

}poly(n)

i=1
,

where ai ∈ Zn
q and ui ∈ Zq are uniformly random, and the “noise” ei is sampled from a noise distri-

bution that outputs numbers much smaller than q (an example is a discrete Gaussian distribution
over Zq with small standard deviation).

3All known scheme, including ours, treat evaluated functions as arithmetic circuits. Hence we use the terminology
of “addition and multiplication” gates. The conversion to the boolean model (AND, OR, NOT gates) is immediate.

4We must mention here that we are interested only in compact fully homomorphic encryption schemes, namely
ones where the ciphertexts do not grow in size with each homomorphic operation. If we do allow such growth in size,
a number of solutions are possible. See, e.g., [SYY99, GHV10a, MGH10].

2

The LWE assumption does not refer to ideals, and indeed, the LWE problem is at least as hard
as finding short vectors in any lattice, as follows from the worst-case to average-case reductions of
Regev [Reg05] and Peikert [Pei09]. As mentioned earlier, we have a much better understanding of
the complexity of lattice problems (thanks to [LLL82, Ajt98, Mic00] and many others), compared
to the corresponding problems on ideal lattices. In particular, despite considerable effort, the best
known algorithms to solve the LWE problem run in time nearly exponential in the dimension n.5 The
LWE assumption also turns out to be particularly amenable to the construction of simple, efficient
and highly expressive cryptographic schemes (e.g., [Reg05, GPV08, AGV09, ACPS09, CHKP10,
ABB10] and many others). Our construction of a fully homomorphic encryption scheme from LWE
is perhaps an even stronger testament to its power and elegance.

Constructing a (secret-key) encryption scheme whose security is based on the LWE assumption
is rather straightforward. To encrypt a bit m ∈ {0, 1} using secret key s ∈ Zn

q , we choose a random
vector a ∈ Zn

q and a “noise” e and output the ciphertext

c = (a, b = ⟨a, s⟩+ 2e+m) ∈ Zn
q × Zq

The key observation in decryption is that the two “masks” – namely, the secret mask ⟨a, s⟩ and
the “even mask” 2e – do not interfere with each other.6 That is, one can decrypt this ciphertext
by annihilating the two masks, one after the other: The decryption algorithm first re-computes
the mask ⟨a, s⟩ and subtracts it from b, resulting in 2e +m (mod q). Since e ≪ q, then 2e +m
(mod q) = 2e+m. Removing the even mask is now easy – simply compute 2e+m modulo 2.7

As we will see below, the scheme is naturally additive homomorphic, yet multiplication presents
a thorny problem. In fact, a recent work of Gentry, Halevi and Vaikuntanathan [GHV10b] showed
that (a slight variant of) this scheme supports just a single homomorphic multiplication, but at the
expense of a huge blowup to the ciphertext which made additional advance impossible.

To better understand the homomorphic properties of this scheme, let us shift our focus away
from the encryption algorithm, on to the decryption algorithm. Given a ciphertext (a, b), consider
the symbolic linear equation

fa,b(x) = b− ⟨a,x⟩ (mod q) = b−
n∑

i=1

a[i] · x[i] ∈ Zq

where x = (x[1], . . . ,x[n]) denotes the variables, and (a, b) forms the public coefficients of the linear
equation. Clearly, decryption of the ciphertext (a, b) is nothing but evaluating this function on the
secret key s (and then taking the result modulo 2).

Homomorphic addition and multiplication can now be described in terms of this function f .
Adding two ciphertexts corresponds to the addition of two linear functions, which is again another
linear function. In particular, f(a+a′,b+b′)(x) = fa,b(x)+f(a′,b′)(x) is the linear function correspond-
ing to the “homomorphically added” ciphertext (a + a′, b + b′). Similarly, multiplying two such

5The nearly exponential time is for a large enough error (i.e., one that is a 1/poly(n) fraction of the modulus q).
For smaller errors, as we will encounter in our scheme, there are better – but not significantly better – algorithms.

In particular, if the error is a 1/2n
ϵ

fraction of the modulus q, the best known algorithm runs in time approx. 2n
1−ϵ

.
6We remark that using 2e instead of e as in the original formulation of LWE is allowed so long as q is odd (since

in that case 2 is a unit in Zq).
7Although the simplified presentation of Gentry’s scheme above seems to deal with just one mask (the “secret

mask”), in reality, the additional “even mask” existed in the schemes of [Gen09b, DGHV10] as well. Roughly speaking,
they needed this to ensure semantic security, as we do.

3

ciphertexts corresponds to a symbolic multiplication of these linear equations

f(a,b)(x) · f(a′,b)(x) = (b−
∑

a[i]x[i]) · (b′ −
∑

a′[i]x[i])

= h0 +
∑

hi · x[i] +
∑

hi,j · x[i]x[j] ,

which results in a degree-2 polynomial in the variables x = (x[1], . . . ,x[n]), with coefficients hi,j
that can be computed from (a, b) and (a′, b′) by opening parenthesis of the expression above.
Decryption, as before, involves evaluating this quadratic expression on the secret key s (and then
reducing modulo 2). We now run into a serious problem – the decryption algorithm has to know
all the coefficients of this quadratic polynomial, which means that that size of the ciphertext just
went up from n+ 1 elements to (roughly) n2/2.

This is where our re-linearization technique comes into play. Re-linearization is a way to reduce
the size of the ciphertext back down to n + 1. The main idea is the following: imagine that we
publish the encryptions of all the linear and quadratic terms in the secret key s, namely all the
numbers s[i] as well as s[i]s[j], under a new secret key t. Thus, these ciphertexts (for the quadratic
terms) look like (ai,j , bi,j) where

bi,j = ⟨ai,j , t⟩+ 2ei,j + s[i] · s[j] ≈ ⟨ai,j , t⟩+ s[i] · s[j] .

Now, the sum h0 +
∑
hi · s[i] +

∑
hi,j · s[i]s[j] can be written (approximately) as

h0 +
∑

hi(bi − ⟨ai, t⟩) +
∑
i,j

hi,j · (bi,j − ⟨ai,j , t⟩) ,

which, lo and behold, is a linear function in t! The bottom-line is that multiplying the two linear
functions f(a,b) and f(a′,b′) and then re-linearizing the resulting expression results in a linear function
(with n+1 coefficients), whose evaluation on the new secret key t results in the product of the two
original messages (upon reducing modulo 2). The resulting ciphertext is simply the coefficients of
this linear function, of which there are at most n+ 1. This ciphertext will decrypt to m ·m′ using
the secret key t.

In this semi-formal description, we ignored an important detail which has to do with the fact
that the coefficients hi,j are potentially large. Thus, even though (bi,j − ⟨ai,j , t⟩) ≈ s[i]s[j], it may
be the case that hi,j · (bi,j − ⟨ai,j , t⟩) ̸≈ hi,j · s[i]s[j]. This is handled by considering the binary

representation of hi,j , namely hi,j =
∑⌊log q⌋

τ=0 2τ · hi,j,τ . If, for each value of τ , we had a pair
(ai,j,τ , bi,j,τ) such that

bi,j,τ = ⟨ai,j,τ , t⟩+ 2ei,j,τ + 2τs[i] · s[j] ≈ ⟨ai,j,τ , t⟩+ 2τs[i] · s[j] ,

then indeed

hi,j · s[i]s[j] =
⌊log q⌋∑
τ=0

hi,j,τ2
τs[i]s[j] ≈

⌊log q⌋∑
τ=0

hi,j,τ (bi,j,τ − ⟨ai,j,τ , t⟩) ,

since hi,j,τ ∈ {0, 1}. This increases the number of pairs we need to post by a factor of (⌊log q⌋+1),
which is polynomial.

This process allows us to do one multiplication without increasing the size of the ciphertext,
and obtain an encryption of the product under a new secret key. But why stop at two keys s and
t? Posting a “chain” of D secret keys (together with encryptions of quadratic terms of one secret

4

key using the next secret key) allows us to perform up to D multiplications without blowing up the
ciphertext size. It is possible to achieve D = nϵ for an arbitrary constant ϵ < 1 under reasonable
assumptions, but beyond that, the growth of the error in the ciphertext kicks in, and destroys the
ciphertext. Handling this requires us to use the machinery of bootstrapping, which we explain in
the next section.

In conclusion, the above technique allows us to remove the need for “ideal assumptions” and
obtain somewhat homomorphic encryption from LWE. We refer the reader to Section 3 for the full
presentation and formal analysis.

1.2 Dimension Reduction: Fully Homomorphic Encryption Without Squashing

As explained above, the “bootstrapping” method for achieving full homomorphism requires a C-
somewhat homomorphic scheme whose decryption circuit resides in C. All prior somewhat homo-
morphic schemes fell short in this category and failed to achieve this requirement in a natural way.
Thus Gentry, followed by all other previous schemes, resorted to “squashing”: a method for reduc-
ing the decryption complexity at the expense of making an additional and fairly strong assumption,
namely the sparse subset sum assumption. We refrain from elaborating on this prior solution as it
has no direct relation to this work.

We “upgrade” our somewhat homomorphic scheme, explained in Section 1.1, into a scheme that
enjoys the same amount of homomorphism but has smaller decryption circuit. All of this, without
making stronger assumptions!

Our starting point is the somewhat homomorphic scheme from Section 1.1. Recall that a
ciphertext in that scheme is of the form (a, b = ⟨a, s⟩+ 2e+m) ∈ Zn

q × Zq, and decryption is done
by computing (b − ⟨a, s⟩ mod q) (mod 2). One can verify that this computation, presented as a
polynomial in the bits of s, has degree at least max(n, log q), which is more than the maximal degree
D that our scheme can homomorphically evaluate. The bottom line is that decryption complexity
is governed by (n, log q) which are too big for our homomorphism capabilities.

Our dimension reduction idea enbales us to take a ciphertext with parameters (n, log q) as above,
and convert it into a ciphertext of the same message, but with parameters (k, log p) which are much
smaller than (n, log q). To give a hint as to the magnitude of improvement, we typically set k to
be of size security parameter and p = poly(k). We can then set n = kc for essentially any constant
c, and q = 2n

ϵ
. We will thus be able to homomorphically evaluate functions of degree roughly

D = nϵ = kc·ϵ and we can choose c to be large enough so that this is sufficient to evaluate the
(k, log p) decryption circuit.

To understand dimension reduction technically, we go back to re-linearization. We showed
above that, posting proper public parameters, one can convert a ciphertext (a, b = ⟨a, s⟩+2e+m),
that corresponds to a secret key s, into a ciphertext (a′, b′ = ⟨a′, t⟩ + 2e′ +m) that corresponds
to a secret key t.8 The crucial observation is that s and t need not have the same dimension n.
Specifically, if we chose t to be of dimension k, the procedure still works. This brings us down from
(n, log q) to (k, log q), which is a big step but still not sufficient.

Having the above observation in mind, we wonder if we can take t to have not only low dimension
but also small modulus p, thus completing the transition from (n, log q) to (k, log p). This is indeed
possible using some additional ideas, where the underlying intuition is that Zp can “approximate”

8In the previous section, we applied re-linearization to a quadratic function of s, while here we apply it to the
ciphertext (a, b) that corresponds to a linear functions of s. This only makes things easier.

5

Zq by simple scaling, up to a small error.
The public parameters for the transition from s to t will be (ai,τ , bi,τ) ∈ Zk

p × Zp, where

bi,τ = ⟨ai,τ , t⟩+ e+

⌊
p

q
· 2τ · s[i]

⌉
.9

Namely, we scale 2τ · s[i] ∈ Zq into an element in Zp by multiplying by p/q and rounding. The
rounding incurs an additional error of magnitude at most 1/2. It follows that

2τ · s[i] ≈ q

p
· (bi,τ − ⟨ai,τ , t⟩) ,

which enables converting a linear equation in s into a linear equation in t. The result of dimension
reduction, therefore, is a ciphertext (â, b̂) ∈ Zk

p × Zp such that b̂ − ⟨â, t⟩ = m + 2ê. For security,
we need to assume the hardness of LWE with parameters k, p. We can show that in the parameter
range we use, this assumption is as hard as the one used for the somewhat homomorphic scheme.10

In conclusion, dimension reduction allows us to achieve a bootstrappable scheme, based on
the LWE assumption alone. We refer the reader to Section 4 for the full presentation and formal
analysis.

As a nice byproduct of this technique, the ciphertexts of the resulting fully homomorphic scheme
become very short! They now consist of (k+1) log p = O(k log k) bits. This is a desirable property
which is also helpful in achieving efficient private information retrieval protocols (see below).

1.3 Other Results and Applications

Near-Optimal Private Information Retrieval. In (single-server) private information retrieval
(PIR) protocols, a very large database is maintained by a sender (the sender is also sometimes called
the server, or the database). A receiver wishes to obtain a specific entry in the database, without
revealing any information about the entry to the server. Typically, we consider databases that
are exponential in the security parameter and hence we wish that the receiver’s running time and
communication complexity are polylogarithmic in the size of the database N (at least logN bits
are required to specify an entry in the database). The first polylogarithmic candidate protocol was
presented by Cachin, Micali and Stadler [CMS99] and additional polylograithmic protocols were
introduced by Lipmaa [Lip05] and by Gentry and Razman [GR05]. Of which, the latter achieves
the best communication complexity of O(log3−o(1)(N)).11 The latter two protocols achieve constant
amortized communication complexity when retrieving large consecutive blocks of data. See a survey
in [OS07] for more details on these schemes.

9A subtle technical point refers to the use of an error term e, instead of 2e as we did for re-linearization. The
reason is roughly that q

p
· 2 is non-integer. Therfore we “divide by 2” before performing the dimension-reduction and

“multiply back” by 2 after.
10For the informed reader we mention that while k, p are smaller than n, q and therefore seem to imply lesser

security, we are able to use much higher relative noise in our k, p scheme since it needs not support homomorphism.
Hence the two assumptions are of roughly the same hardness.

11It is hard to compare the performance of different PIR protocols due to the multitude of parameters. To make
things easier to grasp, we compare the protocols on equal grounds: We assume that the database size and the
adversary’s running time are exponential in the security parameter and assume the maximal possible hardness of
the underlying assumption against known attacks. We also assume that each query retrieves a single bit. We will
explicitly mention special properties of individual protocols that are not captured by this comparison.

6

Fully homomorphic, or even somewhat homomorphic, encryption is known to imply polyloga-
rithmic PIR protocols. Most trivially, the receiver can encrypt the index it wants to query, and the
database will use that to homomorphically evaluate the database access function, thus retrieving
an encryption of the answer and sending it to the receiver. The total communication complex-
ity of this protocol is the sum of lengths of the public key, encryption of the index and output
ciphertext. However, the public key is sent only once, it is independent of the database and the
query, and it can be used for many queries. Therefore it is customary to analyze such schemes
in the public key model where sending the public key does not count towards the communication
complexity. Gentry [Gen09a] proposes to use his somewhat homomorphic scheme towards this end,
which requires O(log3N) bit communication.12 We show how, using our somewhat homomorphic
scheme, in addition to new ideas, we can bring down communication complexity to a near optimal
logN · polyloglogN (one cannot do better than logN). Details follow.

A major obstacle in the naive use of somewhat homomorphic encryption for PIR is that homo-
morphism is obtained with respect to the boolean representation of the evaluated function. There-
fore, the receiver needs to encrypt the index to the database in a bit-by-bit manner. The query is
then composed of logN ciphertexts, which necessitate at least log2N bits of communication. As
a first improvement, we notice that the index needs not be encrypted under the somewhat homo-
morphic scheme. Rather, we can encrypt using any symmetric encryption scheme. The database
will receive, an encrypted symmetric key (under the homomorphic scheme), which will enable it to
convert symmetric ciphertexts into homomorphic ciphertexts without additional communication.
The encrypted secret key can be sent as a part of the public key as it is independent of the query.
This, of course, requires that our somewhat homomorphic scheme can homomorphically evaluate
the decryption circuit of the symmetric scheme. Fully homomorphic schemes will certainly be ade-
quate for this purpose, but known somewhat homomorphic schemes are also sufficient (depending
on the symmetric scheme to be used). Using the most communication efficient symmetric scheme,
we bring down the query complexity to O(logN). As for the sender’s response, our dimension
reduction technique guarantees very short ciphertexts. This translates into logN · polyloglogN
bits per ciphertext, thus our performance. We remark that in terms of retrieving large blocks of
consecutive data, one can slightly reduce the overhead to O(logN) bits of communication for every
bit of retrieved data. We leave it as an open problem to bring the amortized communication down
to a constant. See Section 5 for the full details.

Prior to this work, it was not at all known how to achieve even polylogarithmic PIR under
the LWE assumption. We stress that even if the size of the public key does count towards the
communication complexity, our protocol still has polylogarithmic communication.

(Limited) Identity Based Fully Homomorphic Encryption. Our methods can also be used
to obtain a limited variant of fully homomorphic identity based encryption where encrypting mes-
sages for a user requires only his identity and (global) public parameters, but performing homomor-
phic operations on this ciphertext requires additional (user-specific) “homomorphism parameters”.
These parameters can be computed using the (individual) secret key. Such a scheme, albeit limited,
may still be useful since security is guaranteed so long as the initial encryption was done with the
public parameters, even if the homomorphism parameters are fake. Therefore users can encrypt
using the public parameters and be assured that even if they are using improper homomorphism
parameters (e.g., ones generated by an impersonator), security is still preserved.

12Gentry does not provide a detailed analysis of this scheme, the above is based on our analysis of its performance.

7

A crucial observation is that a scheme with such property can be obtained generically by
combining any fully homomorphic encryption scheme with any identity based encryption scheme.
However, we feel that our specific constructions is more natural and has added value over the
generic approach as we describe next.

In this work, we apply re-linearization and dimension reduction to LWE-based encryption scheme
a la Regev [Reg05]. However, the same ideas can be applied to the dual scheme due to Gentry,
Peikert and Vaikuntanathan [GPV08]. This results in a slightly less efficient scheme, but one that
can be made identity based in the aforementioned sense. This can be done by using one of the
many known constructions of IBE from LWE [GPV08, CHKP10, ABB10]. In all of them, the
ciphertext can be interpreted as a linear function whose decryption is the evaluation on the secret
key. Therefore, all we need for homomorphism is to post additional re-linearization and dimension
reduction parameters which can be computed from the individual secret key.

The analysis is identical to that of the original schemes and we do not repeat it in this work.

1.4 Other Related Work

Aside from Gentry’s scheme (and a variant thereof by Smart and Vercauteren [SV10] and an
optimization by Stehle and Steinfeld [SS10]), there are two other fully homomorphic encryption
schemes [DGHV10, BV11]. The innovation in both these schemes is the construction of a new
somewhat homomorphic encryption scheme. Both these works then invoke Gentry’s squashing and
bootstrapping transformation to convert it to a fully homomorphic scheme, and thus the security
of both these schemes relies on the sparse subset-sum assumption. The first of these schemes is due
to van Dijk, Gentry, Halevi and Vaikuntanathan [DGHV10]. Their scheme works over the integers
and relies on a new assumption which, roughly speaking, states that finding the greatest common
divisor of many “noisy” multiples of a number is computationally hard. They cannot, however,
reduce their assumption to worst-case hardness. The second is a recent work of Brakerski and
Vaikuntanathan [BV11], who construct a somewhat homomorphic encryption scheme based on the
ring LWE problem [LPR10] whose security can be reduced to the worst-case hardness of problems
on ideal lattices.

The efficiency of implementing Gentry’s scheme also gained much attention. Smart and Ver-
cauteren [SV10], as well as Gentry and Halevi [GH11b] conduct a study on reducing the complexity
of implementing the scheme.

In a recent independent work, Gentry and Halevy [GH11a] showed how the sparse subset sum
assumption can be replaced by either a (decision) Diffie-Hellman assumption or an ideal lattice
assumption, by representing the decryption circuit as an arithmetic circuit with only one level of
(high fan-in) multiplications.

1.5 Paper Organization

Some preliminaries and notation are described in Section 2. In Section 3, we present our new
re-linearization technique and obtain an LWE-based somewhat homomorphic encryption scheme
with long ciphertext and (relatively) high decryption complexity. Then, in Section 4, we present
our dimension reduction technique and show how to modify the scheme to significantly reduce
the ciphertext sizes and decryption complexity, which implies fully homomorphic encryption. In
Section 5 we describe our private information retrieval (PIR) protocol.

8

2 Preliminaries

Notations. Let D denote a distribution over some finite set S. Then, x
$← D is used to denote

the fact that x is chosen from the distribution D. When we say x
$← S, we simply mean that x is

chosen from the uniform distribution over S.
In this work, we utilize “noise” distributions over integers. The only property of these distribu-

tions we use is their magnitude. Hence, we define B-bounded distributions which are ones where
the magnitude is bounded with high probability. A definition follows.

Definition 2.1 (B-bounded distributions). A distribution ensemble {χn}n∈N, supported over the
integers, is called B-bounded if

Pr
e

$←χn

[|e| > B] ≤ 2−Ω(n) .

We denote scalars in plain (e.g. x) and vectors in bold lowercase (e.g. v), and matrices in bold
uppercase (e.g. A). The ℓi norm of a vector is denoted by ∥v∥i. Inner product is denoted by ⟨v,u⟩,
recall that ⟨v,u⟩ = vT · u. Let v be an n dimensional vector. For all i = 1, . . . , n, the ith element
in v is denoted v[i]. We use the convention that v[0] , 1.

We use the following variant of the leftover hash lemma [ILL89].

Lemma 2.1 (matrix-vector leftover hash lemma). Let κ ∈ N, n ∈ N, q ∈ N, and m ≥ n log q+2κ.

Let A
$← Zm×n

q be a uniformly random matrix, let r
$← {0, 1}m and let y

$← Zn
q . Then,

∆
(
(A,AT r), (A,y)

)
≤ 2−κ

where ∆(A,B) denotes the statistical distance between the distributions A and B.

2.1 Learning With Errors (LWE)

The LWE problem was introduced by Regev [Reg05] as a generalization of “learning parity with
noise”. For positive integers n and q ≥ 2, a vector s ∈ Zn

q , and a probability distribution χ on Zq,
let As,χ be the distribution obtained by choosing a vector a ∈ Zn

q uniformly at random and a noise
term e← χ, and outputting (a, ⟨a, s⟩+ e) ∈ Zn

q × Zq. A formal definition follows.

Definition 2.2 (LWE). For an integer q = q(n) and an error distribution χ = χ(n) over Zq, the
learning with errors problem LWEn,m,q,χ is defined as follows: Given m independent samples from
As,χ (for some s ∈ Zn

q), output s with noticeable probability.
The (average-case) decision variant of the LWE problem, denoted DLWEn,m,q,χ, is to distinguish

(with non-negligible advantage) m samples chosen according to As,χ (for uniformly random s ∈R
Zn
q), from m samples chosen according to the uniform distribution over Zn

q × Zq. We denote by
DLWEn,q,χ the variant where the adversary gets oracle access to As,χ, and is not a-priori bounded
in the number of samples.

For cryptographic applications we are primarily interested in the average case decision problem

DLWE, where s
$← Zn

q . There are known quantum [Reg05] and classical [Pei09] reductions between
DLWEn,m,q,χ and approximating short vector problems in lattices. Specifically, these reductions take
χ to be (discretized versions of) the Gaussian distribution, which is B-bounded for an appropriate
B. Since the exact distribution χ does not matter for our results, we state a corollary of the results
of [Reg05, Pei09] in terms of the bound on the distribution.

9

Corollary 2.2 ([Reg05, Pei09]). Let q = q(n) ∈ N, and σ = σ(n) ∈ R+ be such that σ > 2
√
n.

Then there exists an efficiently sampleable (σ ·
√
n)-bounded distribution χ such that if there is an

efficient algorithm that solves the (average-case) DLWEn,q,χ problem. Then:

• There is a quantum algorithm that solves SIVP
Õ(nσ/q)

and gapSVP
Õ(nσ/q)

on any n-dimensional

lattice, and runs in time poly(n, q) [Reg05].

• There is a classical algorithm that solves the ζ-to-γ decisional shortest vector problem gapSVPζ,γ,

where γ = Õ(n · q/σ), and ζ = Õ(q
√
n), on any n-dimensional lattice, and runs in time

poly(n, q) [Pei09].

We note that the best known algorithms for these problems run in time nearly exponential
in the dimension n [AKS01, MV10]. More generally, the best algorithms that approximate these

problems to within a factor of 2k run in time 2Õ(n/k).

2.2 Bootstrappable Encryption Schemes, and the Bootstrapping Theorem

In this section we formally define the notion of a bootstrappable encryption scheme and present
the bootstrapping theorem which implies that a bootstrappable scheme can be converted into a
fully homomorphic one.

Definition 2.3 (bootstrappable encryption scheme). Let E = (Gen,Enc,Dec,Eval) be a homo-
morphic encryption scheme that can evaluate a class of circuits C. Let fadd and fmult be the the
augmented decryption functions of the scheme defined as

f c1,c2add (s) = Decs(c1) XOR Decs(c2) and f c1,c2mult (s) = Decs(c1) AND Decs(c2) .

Then E is bootstrappable if {
f c1,c2add , f c1,c2mult

}
c1,c2
⊆ C .

Namely, if the scheme can homomorphically evaluate fadd and fmult.

We describe two variants of Gentry’s bootstrapping theorem. The first will imply a scheme that
is homomorphic w.r.t. depth d circuits, for all d, but requires no additional assumption; where the
second makes an additional (weak) circular security assumption, but guarantees a scheme that does
not need an upper bound on the depth of the circuits to be evaluated. The first variant follows.

Theorem 2.3 ([Gen09b, Gen09a]). Let E be a bootstrappable scheme. Then, for any polynomial d
(in the security parameter), there is a fully homomorphic encryption scheme that can evaluate any
Boolean function of polynomial-size and depth at most d.

For the second variant, we need to define circular security.

Definition 2.4 (weak circular security). A public key encryption scheme (Gen,Enc,Dec) is weakly
circular secure if it is semantically secure even for an adversary with auxiliary information con-
taining encryptions of all secret key bits: {Enc(pk, sk[i])}i.

We can now state the second theorem.

Theorem 2.4 ([Gen09b, Gen09a]). Let E be a bootstrappable scheme that is also weakly circu-
lar secure. Then there is a fully homomorphic encryption scheme that can evaluate any Boolean
function of polynomial-size.

10

3 Somewhat Homomorphic Encryption via Re-Linearization

In this section, we present an LWE-based somewhat homomorphic encryption scheme using our
re-linearization technique. We present the scheme in Section 3.1, and its analysis in Section 3.2
and Section 3.3. Finally, we instantiate the parameters, and analyze the efficiency of the scheme in
Section 3.4.

3.1 The Scheme

We present a somewhat homomorphic public-key encryption scheme whose message space is GF(2).13

Let κ ∈ N be the security parameter. The scheme is parameterized by a “dimension” n ∈ N, a
positive integer m ∈ N, an odd modulus q ∈ N and a “noise” distribution χ over Zq, all of which
are inherited from the LWE assumption we use. An additional parameter of the scheme is a number
D ∈ N that represents the maximum degree of the polynomial that the scheme can homomorphically
evaluate.

During the exposition of the scheme, we invite the reader to keep the following range of pa-
rameters in mind: the dimension n is polynomial in the security parameter κ, m ≥ 2n log q is a
polynomial in n, the modulus q = 2n

ϵ
(where ϵ ∈ (0, 1) is some constant) is sub-exponential in n,

χ is some noise distribution that produces small samples (say, of magnitude at most n) in Zq, and
the maximum degree D = nϵ

′
for some ϵ′ < ϵ.

• SH.Keygen(1κ): For key generation, sample D+1 vectors s0, . . . , sD
$← Zn

q , and compute, for all
d ∈ [D], 0 ≤ i ≤ j ≤ n, and τ ∈ {0, . . . , ⌊log q⌋}, the value

ψd,i,j,τ :=

(
ad,i,j,τ , bd,i,j,τ :=⟨ad,i,j,τ , sd⟩+ 2 · ed,i,j,τ + 2τ · sd−1[i] · sd−1[j]

)
∈ Zn

q × Zq , (1)

where ad,i,j,τ
$← Zn

q , ed,i,j,τ
$← χ. We define Ψ , {ψd,i,j,τ}d,i,j,τ to be the set of all these values.14

We would like to invite the reader’s attention to an important detail in this description. Recall
that for any vector s ∈ Zn

q , we denote its n components by s[1], . . . , s[n], and additionally, we

let s[0] , 1 purely for notational convenience. The effect of this notational wizardry is that Ψ
contains the “encryptions” of not just the quadratic terms s[i] · s[j], but also all the linear terms
s[i] by themselves! We also wish to remark that for any 0 ≤ i ≤ j ≤ n, one can compute an
“encryption” of α·s[i]·s[j] for any scalar α ∈ Zq, simply by writing α in its binary representation,
and taking the appropriate linear combination of the “encryptions” of 2τ · s[i] · s[j].

The key-generation algorithm proceeds to choose a uniformly random matrix A
$← Zm×n

q and a

vector e
$← χm, and compute b:=As0 + 2e.

The secret key sk = sD, and the public key pk = ((A,b),Ψ). We remark that the public key
contains two parts with distinct purposes: while the pair (A,b) is used to encrypt messages,
the value Ψ is used exclusively for the purpose of performing homomorphic operations.

13It is quite straightforward to generalize the scheme to work over a message space GF(t), where t is relatively
prime to q. Since we mostly care about the binary case, we choose not to present this generalization.

14A knowledgeable reader may notice that the above is very similar to encryptions of 2τ · sd−1[i] · sd−1[j] via an
LWE-based scheme. We note, though, that these “ciphertexts” may not correctly decrypt to 2τ · sd−1[i] · sd−1[j], due
to an overlap of the messages and the noise.

11

• SH.Enc(pk, µ): Recall that pk = ((A,b),Ψ). To encrypt a message µ ∈ GF(2), we use only the

(A,b) component to encrypt (just like in Regev’s scheme): namely, sample a vector r
$← {0, 1}m

and set
v:=AT r and w:=bT r+ µ .

We output the ciphertext c:=((v, w), 0).15

• SH.Eval(⋆, c, c′) where ⋆ ∈ {+,×}: We show how to homomorphically add and multiply two
ciphertexts. This can then be used to evaluate arithmetic circuits over GF(2). We will later
show in the analysis that the evaluated ciphertext is decryptable as long as the number of
homomorphic operations performed is bounded.

While we provide a full analysis for the correctness of our scheme in Section 3.2, we wish to
provide some intuition as we present the homomorphic operations. Towards this goal, we put
forward the invariant that a ciphertext c = ((v, w), d) that decrypts to a message µ, will always
be such that w − ⟨v, sd⟩ = µ + 2 · e (mod q), where e is “small”. Needless to say, this allows
decryption upon reducing further modulo 2.

Let c = ((v, w), d) and c′ = ((v′, w′), d). Note that we assume that the value of d is the same
for both operands, which is without loss of generality as we will see below.

− Addition. To add c and c′ as above, output

cadd = ((vadd, wadd), d):=((v + v′, w + w′), d) .

Informally, one can see that

wadd−⟨vadd, sd⟩ = (w−⟨v, sd⟩)+ (w′−⟨v′, sd⟩) = (µ+2e)+ (µ′+2e′) = (µ+µ′)+2(e+ e′) ,

and if the noise is not too big, taking the above modulo 2 will give µ+µ′ as the result (where
addition is over GF(2)).

− Multiplication. To multiply c, c′ as above, we first consider the following n-variate symbolic
polynomial, evaluated over a symbolic n-dimensional variable x:

p(x) = p(w,v),(w′,v′)(x) , (w − ⟨v,x⟩) · (w′ − ⟨v′,x⟩) .

This is a quadratic polynomial that one can symbolically open the parenthesis and express
as

p(x) =
∑

0≤i≤j≤n
hi,j · x[i] · x[j] ,

where hi,j ∈ Zq.
16 Let hi,j,τ ∈ {0, 1} be the τ th bit in the binary representation of hi,j .

Namely hi,j =
∑⌊log q⌋

τ=0 hi,j,τ · 2τ . Then the above can be re-written as

p(x) =
∑

0≤i≤j≤n
τ∈{0,...,⌊log q⌋}

hi,j,τ · 2τ · x[i] · x[j] .

15This ciphertext is a “label-0” ciphertext as indicated by the last element of c. The significance of the “label” will
become clear when we describe the homomorphic evaluation algorithms.

16We once again remind the reader that because of the notational trick of setting x[0] , 1, this expression captures
the constant term in the product, as well as all the linear terms, thus homogenizing the polynomial p(x).

12

The homomorphic multiplication algorithm will set

vmult:=
∑

0≤i≤j≤n
τ∈{0,...,⌊log q⌋}

hi,j,τ · ad+1,i,j,τ ,

and
wmult =

∑
0≤i≤j≤n

τ∈{0,...,⌊log q⌋}

hi,j,τ · bd+1,i,j,τ .

where ψd+1,i,j,τ = (ad+1,i,j,τ , bd+1,i,j,τ) comes from the public parameters Ψ. The final output
ciphertext will be

cmult:=((vmult, wmult), d+ 1) .

To see the rationale behind this procedure, we note that

wmult − ⟨vmult, ·sd+1⟩ =
∑

0≤i≤j≤n
τ∈{0,...,⌊log q⌋}

hi,j,τ · (bd+1,i,j,τ − ⟨ad+1,i,j,τ , sd+1⟩)

=
∑

0≤i≤j≤n
τ∈{0,...,⌊log q⌋}

hi,j,τ · 2τ · sd[i] · sd[j] + 2 · hi,j,τ · ed+1,i,j,τ

= p(sd) +
∑

0≤i≤j≤n
τ∈{0,...,⌊log q⌋}

2 · hi,j,τ · ed+1,i,j,τ

= (w − ⟨v, ·sd⟩) · (w′ − ⟨v′, sd⟩) +
∑

0≤i≤j≤n
τ∈{0,...,⌊log q⌋}

2 · hi,j,τ · ed+1,i,j,τ

= (µ+ 2e)(µ′ + 2e′) +
∑

0≤i≤j≤n
τ∈{0,...,⌊log q⌋}

2 · hi,j,τ · ed+1,i,j,τ

= µµ′ + 2

µe′ + µ′e+ 2ee′ +
∑

0≤i≤j≤n
τ∈{0,...,⌊log q⌋}

hi,j,τ · ed+1,i,j,τ

 , (2)

which, taken modulo 2, gives µµ′ (mod 2), if the noise term within the parenthesis is not too
large. See Lemma 3.1 for a precise analysis of the noise-term.

Note that neither addition nor multiplication increases the number of elements in the ciphertext
(which remains in Zn

q × Zq × {0, . . . , D} throughout). Homomorphic addition keeps the “label”
of the ciphertext the same (at d) whereas homomorphic multiplication increases it by one (from
d to d+ 1).

A remark on using these operations to evaluate a Boolean circuit is in order. Assume that the
circuit is composed of addition (XOR) and multiplication (AND) gates. Given the encryptions
of the input bits of the circuit (at level 0), we evaluate the circuit level by level. At each
level ℓ, we take ciphertexts of the form ((v, w), ℓ − 1) (namely, label-(ℓ − 1) ciphertexts) and
transform them into ciphertexts of the form ((v, w), ℓ) (namely, label-ℓ ciphertexts), using the

13

homomorphic addition and multiplication routines above. This enables us to evaluate circuits of
depth at most D. Moreover, it is easy to see that if a certain level of the circuit consists only of
addition gates, then the ciphertext label stays the same. Thus, we can actually use the scheme
to evaluate circuits of multiplicative depth at most D. Of course, this is only an upper-bound, and
in particular, there may be circuits of multiplicative depth D that the scheme cannot evaluate,
due to the rapid growth of the error. See Section 3.2 for a precise analysis.

• SH.Dec(sD, c): When decrypting a ciphertext c, we assume w.l.o.g that c = ((v, w), D) (other-
wise, one can perform “blank” homomorphic operations to increase the value of d). To decrypt,
compute

µ , (w − ⟨v, sD⟩ (mod q)) (mod 2) (3)

As a preliminary explanation, we note that the ciphertext of a message m ∈ GF (2) produced
by the encryption algorithm is of the form

((v , AT r, w , bT r+ µ), 0)

where r
$← {0, 1}m. Rewriting this, we see that

w = bT r+ µ = (As0 + 2e)T r+ µ = sT0 (A
T r) + 2eT r+ µ = ⟨v, s0⟩+ 2e+ µ (4)

where e , eT r has small magnitude since the entries of both the vectors e and r are small. Per-
forming a number of homomorphic operations on this ciphertext brings it to the form ((v, w), D),
where w = ⟨v, sD⟩+ 2e+ µ, where the “error” e has small magnitude. 17

Now, the decryption algorithm computes

w − ⟨v, sD⟩ (mod q) = 2e+ µ (mod q) = 2e+ µ (5)

where the last equality holds if |e| < q/4− 1. In other words, if e is small enough, then reducing
2e + µ modulo q has no effect on it. In this case, the decryption outputs 2e + µ (mod 2) = µ,
which is the correct message. See the precise analysis below.

3.2 Correctness Analysis

We first show that the scheme is correct and capable of evaluating polynomials of total degree
up to D, under some conditions on the parameters (see Lemma 3.1 below). The security of the
scheme follows in a straightforward way from the learning with errors (LWE) assumption. Finally,
we instantiate the parameters required for both correctness and security, and put them together in
Theorem 3.4.

We first define the notion of a B-bounded error distribution over the integers: a distribution χ
is called B-bounded if the absolute value of a sample from the distribution is at most B with all
but an exponentially small probability (in the security parameter κ).

17Without loss of generality, if the label in the ciphertext is less than D, then we can perform “blank” homomorphic
operations to bring it to D while increasing the error by only a modest amount.

14

Lemma 3.1 (Correctness). Let n = n(κ), q = q(κ) and D = D(κ) be as above. Assume that the
error distribution χ is B-bounded for some B = B(κ). The scheme correctly evaluates a polynomial
g = g(x1, . . . , xℓ) ∈ Z2[x1, . . . , xℓ] in ℓ variables with total degree at most D if

∥g∥1 ·D ·B4D−1 · (34n3 log q)2D < q/4− 1 (6)

where ∥g∥1 denotes the ℓ1-norm of the coefficient vector of g.

Proof. We first examine conditions under which a ciphertext decrypts correctly. Let c = ((v, w), d)
be an encryption of the message µ, where w = ⟨v, sd⟩+ 2e+ µ (mod q), and let

η(c) := 2e+ µ

denote the “noise” in c. Applying “blank homomorphic operations” to bring the label up from d to
D adds an additional noise of at most (D−d) ·n log q ·B ≤ DBn log q. Now, applying the rationale
following Equation 5 above, we see that the decryption succeeds if

η(c) +DBn log q < q/4− 1 (7)

Homomorphic operations generally increase the noise η(c). To determine how many homo-
morphic operations we can support, we first analyze how much the homomorphic addition and
multiplication operations increase the error in a ciphertext. Let c = ((v, w), d) and c′ = ((v′, w′), d)
be encryptions of messages µ and µ′, and let η = η(c) and η′ = η(c′) denote the errors in c and c′,
respectively. Then:

• Addition. Assuming that η, η′ ≤ E, we show that ηadd:=η(cadd) ≤ 2E.

The noise in cadd:=((vadd, wadd), d) can be written as

ηadd = (wadd − ⟨vadd, sd⟩) = (w − ⟨v, sd⟩) + (w′ − ⟨v′, sd⟩) = η + η′

Thus, |ηadd| ≤ |η|+ |η′| ≤ 2E.

This can be easily generalized to computing arbitrary linear combinations on encrypted in-
puts. In particular, given ℓ ciphertexts c1, . . . , cℓ, where η(ci) ≤ E for all i, computing
homomorphically a linear combination with coefficients g = (g1, . . . , gℓ) increases the error to
at most

ℓ∑
i=1

|gi| · E , ∥g∥1 · E (8)

where ∥g∥1 denotes the L1 norm of the vector g.

• Multiplication. Assuming that η, η′ ≤ E, we show that ηmult:=η(cmult) ≤ 11E2B · n2 log q.
The noise in cmult can be written as follows (as in Equation 2):

ηmult:=η(cmult) = µµ′ + 2

(
µe′ + µ′e+ 2ee′ +

∑
0≤i≤j≤n

τ∈{0,...,⌊log q⌋}

hi,j,τ · ed+1,i,j,τ

)

15

where hi,j,τ ∈ {0, 1} and |ed+1,i,j,τ | ≤ B. Thus,

|ηmult| ≤ 1 + 2(|e|+ |e′|+ 2|ee′|+ n2 · log q · |ed+1,i,j,τ |)
≤ 1 + 2(2E + 2E2 + n2 · log q ·B)

≤ 9E2 + 2n2 log q ·B ≤ 11E2Bn2 log q

This can be easily generalized to computing a product of at most D encrypted inputs. In
particular, given D ciphertexts c1, . . . , cD, where η(ci) ≤ E for all i, computing the product
homomorphically increases the error to at most

E2⌈logD⌉ · (11Bn2 log q)2⌈logD⌉−1 ≤ E2D · (11Bn2 log q)2D−1 (9)

We point out that this is a fairly loose bound, which can be improved by a more careful
analysis.

We now turn to analyzing the evaluation of a polynomial g(x1, . . . , xℓ) ∈ Z2[x1, . . . , xℓ] of degree
at most D, given ℓ encryptions ci ← Enc(pk, µi). We compute c∗ ← Eval(g, c1, . . . , cℓ) as follows:
first, we compute an encryption of all the monomials of g, and then we take their linear combination
using the coefficients of the monomials.

Now, by Equation 4, the error in a fresh ciphertext ci produced by the encryption algorithm is
2eT r+ µ, where |e[i]| ≤ B and r[i] ∈ {0, 1}. Thus,

|η(ci)| ≤ 2n ·B + 1 ≤ 3nB

Applying equations 8 and 9, we get that the resulting error (after homomorphically evaluating
a polynomial g as above) is

|η(c∗)| ≤ ∥g∥1 ·B4D−1 · (33n3 log q)2D

As observed above, the ciphertext c∗ decrypts correctly to g(µ1, . . . , µℓ) if

|η(c∗)|+DBn log q ≤ ∥g∥1 ·D ·B4D−1 · (34n3 log q)2D < q/4− 1 .

Since ∥g∥1 ≤
(
ℓ
D

)
≤ ℓD for any degree-D, ℓ-variate polynomial g with 0-1 coefficients, the

following corollary is immediate:

Corollary 3.2. The conclusion of Lemma 3.1 holds if we replace Condition 6 by

D · ℓD ·B4D−1 · (34n3 log q)2D < q/4− 1 . (10)

A Remark on a Generalization of the Correctness Proof. As such, the correctness proof
above holds only when evaluating a multi-variate polynomial of bounded degree. There are times
when we wish to evaluate general Boolean circuits (composed of, say, XOR and AND gates) whose
representation as a multi-variate polynomial has exponentially many terms. Consider the function
g(x1, . . . , xℓ) = (x1 + x2)(x3 + x4) . . . (xℓ−1 + xℓ) which, written down as a sum of monomials has
2ℓ/2 terms, but is efficiently representable in the form of a Boolean circuit. Thus, the homomorphic
evaluation algorithm has no choice but to evaluate the Boolean circuit directly. The correctness
proof can be extended to this case as well, using the notion of the norm of a circuit, as defined by
Barak [Bar11]. We omit this generalization from the paper.

16

3.3 Security Analysis

We now turn to showing the security of the scheme under the (decisional) LWE assumption.

Lemma 3.3 (Security). Let n = n(κ), q = q(κ), D = D(κ), and χ = χ(κ) be as above. The scheme
is semantically secure under the DLWEn,q,χ assumption. In particular, if the DLWEn,q,χ problem is
(t, ϵ)-hard, then the scheme is (t− poly(κ), ϵ · poly(κ))-semantically secure.

Proof. The somewhat homomorphic scheme is exactly Regev’s encryption scheme (except for a
slight difference in the way the public key is computed) with the main difference being the inclusion
of the public parameters Ψ. Our proof first shows that these public parameters can be replaced
indistinguishably by uniformly random elements, and then invokes an argument similar to the
security proof of Regev’s encryption scheme.

More precisely, we show IND-CPA security by a series of experiments (or hybrids). Let A be
an adversary that runs in time t and has an advantage of ϵ in the CPA-security game. We consider
the following series of hybrids.

• Hybrid HD+1: This is the identical to the IND-CPA game, where the adversary gets a
public key pk , ((A,b),Ψ) computed using the SH.Keygen algorithm, and the encryption of
a message µ0 or µ1 computed by the SH.Enc algorithm. By definition,

AdvHD+1
[A] ,

∣∣Pr[A(pk, SH.Enc(pk,m0) = 1]− Pr[A(pk, SH.Enc(pk,m1) = 1]
∣∣ = ϵ .

• Hybrid Hℓ, for ℓ ∈ [1 . . . D]: Hybrid Hℓ is identical to Hℓ+1 except that we change each
of the components ψℓ,i,j,τ for all i, j ∈ [0 . . . n] and τ ∈ [0, . . . , ⌊log q⌋]. Instead of computing
ψℓ,i,j,τ correctly as (aℓ,i,j,τ , ⟨aℓ,i,j,τ , sℓ⟩ + 2eℓ,i,j,τ + 2τ · sℓ−1[i] · sℓ−1[j]) ∈ Zn

q × Zq, we sample
ψℓ,i,j,τ uniformly at random from Zn

q × Zq.

We claim that there exists an adversary B that solves the DLWE problem that runs in time
t+ poly(κ) and whose advantage is

DLWEAdv[B] =
∣∣AdvHℓ

[A]−AdvHℓ+1
[A]

∣∣ .
Note that in the hybrid H1, the component Ψ in the public key consists of uniformly random
elements in the appropriate domains. Thus, the view of the adversary in H1 looks precisely
like its view in the Regev encryption scheme.

• Hybrid H0: Hybrid H0 is identical to H1 except that the vector b in the public key is chosen
uniformly at random from Zm

q , rather than being computed as A · s0 + 2e. By the decisional
LWE assumption, hybridsH0 andH1 are indistinguishable. Namely, there exists an adversary
B that solves the DLWE problem that runs in time t+ poly(κ) and whose advantage is

DLWEAdv[B] = |AdvH1 [A]−AdvH0 [A]| .

The adversary B gets as input a pair (A,y) where y is either an LWE instance of the form
y = A · s + e, or it is uniformly random. The adversary B construct the public key as
(A,b:=2 · y (mod q)) and runs the experiment with this public key. On the one hand, y is
in fact an LWE instance, then b = 2 · y = A · (2s) + 2e = As′ + 2e (mod q), where s′ is a

17

uniformly distributed element of Zn
q . In this case, the experiment is identical to H1. On the

other hand, if y is uniformly random, then so is b = 2y, and the experiment is identical to
H0. Thus, the advantage of B in the LWE distinguishing game is the same as the advantage
of A in distinguishing between the hybrids H0 and H1.

• Hybrid Hrand: Hybrid Hrand is identical to H0 except that the ciphertext is chosen uniformly
at random from Zn

q × Zq, rather than being computed as (AT · r,bT · r+ µb).

We now claim that
|AdvH0 [A]−AdvHrand

[A]| ≤ 2−κ .

This is true essentially because of Leftover hash lemma (Lemma 2.1), since m > n log q + κ.

Note that in Hrand, all the elements of both the public key and the ciphertext are uniformly random
and independent of the message. Thus,

AdvHrand
[A] = 0

Putting these together, we get that the adversary B solves the DLWE problem with advantage
at least

DLWEAdv[B] ≥ (ϵ− 2−κ)/D .

which finishes the proof.

3.4 Instantiating the Parameters

Putting together the parameters of Lemma 3.1 and 3.3, we have:

Theorem 3.4. For every ϵ ∈ (0, 1) and C1 ∈ N, there is a constant C ∈ N such that the following
holds. Setting the parameters n ≥ κ, m = n log q + 2κ, q = 2n

ϵ
, and χ to be any n-bounded,

efficiently sampleable, distribution, the scheme is secure under the DLWEn,2nϵ ,χ assumption, and is

capable of evaluating multi-variate polynomials on nC1 variables of degree

D ≤ C · nϵ/ log n

Proof. Setting C = 2/(C1 +10+ 2 log 34+ 2ϵ), we claim that the scheme can evaluate polynomials
of degree D = C · nϵ/ log n. Substituting this value of D into Equation 10 in Corollary 3.2, and
setting B = n, we get

D · ℓD ·B4D−1 · (34n3 log q)2D = D · nC1D · n4D−1 · (34n3+ϵ)2D

= n(C1+10+2ϵ)D · 34
2D ·D
n

≤ n(C1+10+2ϵ)D · 342D (since D ≤ n)
≤ n(C1+10+2 log 34+2ϵ)D (since n ≥ 2)

≤ n
nϵ

logn
·C·(C1+10+2 log 34+2ϵ)

(substituting for D)

≤ 22n
ϵ

(substituting for C)

< q/4− 1

Since this choice ofD satisfies Condition 10 in Corollary 3.2, our scheme can evaluate nC1-variate
polynomials of degree at most C · nϵ/ log n.

18

Basing the Security on Worst-case Hardness. Using known connections between the (deci-
sional) LWE assumption and the worst-case hardness of standard problems on lattices (see Corol-
lary 2.2), we can base the security of our scheme on the worst-case hardness of lattice problems.
In particular, invoking Regev’s worst-case to average-case reduction [Reg05], the scheme is se-
cure for the parameters in Theorem 3.4, assuming that the shortest independent vector problem
(SIVP) or the gap shortest vector problem, gapSVP is hard to approximate to within a factor of
Õ(n · q/σ) = Õ(

√
n · 2nϵ

) by quantum algorithms running in time poly(n, q). Thus, the larger the
degree of the polynomials that our scheme supports, the stronger the complexity assumption we
need to make.

We can also invoke the classical worst-case to average-case reduction of Peikert [Pei09], basing
the security of our scheme on the classical worst-case hardness of the ζ-to-γ decisional shortest
vector problem gapSVPζ,γ (defined in [Pei09]), where γ = Õ(n · q/σ) = Õ(

√
n · 2nϵ

), and ζ =

Õ(q
√
n) = Õ(

√
n · 2nϵ

). Peikert also has a classical reduction from more standard lattice problems
such as gapSVP, but his reduction from gapSVP requires the modulus q to be exponential in n.
Unfortunately, such a large choice of q seems incompatible with the multiplicative homomorphic
properties of our scheme.

Efficiency of the Scheme. The keys and the ciphertext in the scheme are the same as in Regev’s
public-key encryption scheme [Reg05], except for three differences that impact its efficiency: first,
the modulus q is sub-exponential in n, whereas in Regev’s scheme, q is a small polynomial in n.
Secondly, the scheme relies on the LWE assumption with a sub-exponentially small ratio between
the error and the modulus. This in turn necessitates choosing a large security parameter κ and
dimension n.18 Finally, the public key contains the “homomorphism parameters” that contribute
considerably to its size.

In short, the public key has O(mn log q)+O(n2 log q ·D ·n log q) = O(n2 log2 q)+O(n3+ϵ log2 q)
bits. The secret key has O(n log q) bits, and so does the ciphertext that encrypts a bit. Even
though the ciphertext seems long, the dimension reduction technique in the next section enables
compressing it into a rather compact O(κ log κ) bits (where κ is the security parameter). The
encryption and decryption operations involve computing simple linear combinations over Zq and
are quite efficient as well.

4 Fully Homomorphic Encryption via Dimension Reduction

In this section we “upgrade” the scheme of Section 3 to have very short ciphertexts, and low
decryption complexity. We do this by reducing the dimension and the modulus of the LWE instance
underlying the ciphertext. We present our bootstrappable scheme in Section 4.1, and analyze it in
Section 4.2.

4.1 A Bootstrappable Scheme

Our bootstrappable scheme builds upon the somewhat homomorphic scheme of Section 3. Our
scheme allows to apply one function only (of bounded complexity) on a given ciphertext, result-
ing in a ciphertext that is decryptable but not “homomorphable” — we cannot apply additional

18All known somewhat homomorphic encryption schemes suffer from these limitations as well.

19

homomorphic operations to it. Using the terminology of [GHV10a], our scheme is “1-hop some-
what homomorphic”. It is a straightforward observation that 1-hop somewhat homomorphism is
sufficient for bootstraping into a fully homomorphic scheme, so long as the scheme can evaluate (a
little more than) its own decryption circuit.

Our bootstrappable scheme is parameterized by (n,m, q, χ,D), which are parameters for the
somewhat homomorphic scheme, and in addition by parameters (k, p, χ̂) which are the “reduced”
parameters. n, q ∈ N are referred to as the “long” dimension and modulus respectively, while k, p
are the “short” dimension and modulus. χ, χ̂ are the long and short noise distributions, over Zq,Zp,
respectively. The parameter m ∈ N is used towards public key generation. The maximal degree for
an evaluated function is D ∈ N.

While we discuss parameter values below, we encourage the reader to consider the following
settings as a running example: k = κ, n = k3, q ≈ 2

√
n, D = n1/2−ϵ > k1.4, p = O(Dn2 log q) =

poly(k), m = O(n log q).

• BTS.Keygen(1κ): The key generation process starts by running SH.Keygen(1κ) to obtain the
secret key sD and public key ((A,b),Ψ) of the somewhat homomorphic scheme. Recall that
sD ∈ Zn

q , (A,b) ∈ Zm×n
q × Zm

q , and Ψ ∈ (Zn
q × Zq)

(n+1)2·⌈log q⌉·D.

We proceed by sampling the “short” secret key ŝ
$← Zk

p and computing additional homomor-

phism parameters: For all i ∈ [n], τ ∈ {0, . . . , ⌊log q⌋} we sample âi,τ
$← Zk

p, êi,τ
$← χ̂, and

compute

b̂i,τ :=⟨âi,τ , ŝ⟩+ êi,τ +

⌊
p

q
·
(
2τ · sD[i]

)⌉
(mod p) .

We then set ψ̂i,τ :=
(
âi,τ , b̂i,τ

)
∈ Zk

p × Zp, and

Ψ̂:={ψ̂i,τ}i∈[n],τ∈{0,...,⌊log q⌋} .

Finally, we output the secret key sk = ŝ and public key pk = ((A,b),Ψ, Ψ̂). As in the
somewhat homomorphic scheme, (A,b) are required to encrypt, while Ψ, Ψ̂ are used for
homomorphism.

• BTS.Enc(pk, µ): Encryption is essentially identical to the encryption algorithm of our some-
what homomorphic scheme. Recall that pk = ((A,b),Ψ, Ψ̂). To encrypt a message µ ∈
GF(2), we use only the (A,b). We sample a vector r

$← {0, 1}m and set

v:=AT · r ; w:=bT · r+ µ .

We output the ciphertext c:=((v, w), 0).

We remark that despite our “promise” for a fully homomorphic scheme with short ciphertexts,
the encryption algorithm generates fairly long ciphertexts in Zn

q ×Zq ×{0, . . . , D}. However,
after the dimension reduction operation described next, the ciphertexts of the resulting fully
homomorphic scheme will be in Zk

p × Zp and thus much shorter.

20

• BTS.Eval(f, c1, . . . , cℓ), where f : {0, 1}ℓ → {0, 1} is a degree-D boolean circuit and c1, . . . , cℓ
are legal ciphertexts, is performed as follows.

We evaluate the function f gate by gate, using the procedures SH.Eval(+, ·, ·), SH.Eval(×, ·, ·),
from our somewhat homomorphic scheme. This process concludes in a ciphertext c =
((v, w), D) ∈ (Zn

q × Zq)× {D}.
The next step is reducing the dimension of c to obtain a ciphertext that is decryptable using
ŝ. We consider the following function from Zn into the rationals modulo p

ϕ(x) , ϕv,w(x) ,
p

q
·
(
q + 1

2
· (w − ⟨v,x⟩)

)
(mod p) .

Rearranging, one can find h0, . . . , hn ∈ Zq such that

ϕ(x) =

n∑
i=0

hi · (
p

q
· x[i]) (mod p) ,

Let hi,τ be the τ th bit of hi, for all τ ∈ {0, . . . , ⌊log q⌋}. Then

ϕ(x) =

n∑
i=0

⌊log q⌋∑
τ=0

hi,τ · (
p

q
· 2τ · x[i]) .

Using the parameters in Ψ̂, we create a new ciphertext ĉ = (v̂, ŵ) ∈ Zk
p × Zp by setting

v̂ :=

n∑
i=0

⌊log q⌋∑
τ=0

hi,τ · âi,τ (mod p) ∈ Zk
p

ŵ :=

n∑
i=0

⌊log q⌋∑
τ=0

hi,τ · b̂i,τ (mod p) ∈ Zp .

The output of BTS.Eval is the new ciphertext ĉ.

To see the rationale behind this procedure, note that

ŵ − ⟨v̂, ŝ⟩ =
n∑

i=0

⌊log q⌋∑
τ=0

hi,τ ·
(
b̂i,τ − ⟨âi,τ , ŝ⟩

)
(mod p)

=

n∑
i=0

⌊log q⌋∑
τ=0

hi,τ

(
êi,τ +

⌊
p

q
·
(
2τ · sD[i]

)⌉)
(mod p)

= ϕ(sD) +

n∑
i=0

⌊log q⌋∑
τ=0

hi,τ (êi,τ + ω̂i,τ)︸ ︷︷ ︸
, δ1

(mod p) , (11)

where we define

ω̂i,τ ,
⌊
p

q
·
(
2τ · sD[i]

)⌉
− p

q
·
(
2τ · sD[i]

)
,

21

and notice that |ω̂i,τ | ≤ 1/2. Since hi,τ ∈ {0, 1} and êi,τ is small, δ1 (defined in equation 11)
is “small” as well.

Now, letting w = ⟨v, sD⟩ + 2e + µ (mod q), we wish to examine ϕ(sD) , ϕ(v,w)(sD) more
closely, as follows.

ϕ(sD) ,
p

q
·
(
q + 1

2
· (w − ⟨v, sD⟩)

)
(mod p)

=
p

q
·
(
q + 1

2
· (2e+ µ+Mq)

)
(mod p) (where M ∈ Z)

=
p

q
·
(
q + 1

2
µ+ e+M ′q

)
(mod p) (where M ′ ∈ Z)

=
p

q
· q + 1

2
µ+ e (mod p)

=
p+ 1

2
· µ+ (

p

q
− 1) · µ

2
+ e︸ ︷︷ ︸

,δ2

(mod p)

=
p+ 1

2
· µ+ δ2 (12)

and notice that if p ≤ q (as is the case in our setting), |δ2| ≤ p
q |e|+

1
2 .

Putting together Equations 11 and 12, we see that

ŵ − ⟨v̂, ŝ⟩ = p+ 1

2
· µ+ (δ1 + δ2) ≈

p+ 1

2
· µ . (13)

In other words, ŵ − ⟨v̂, ŝ⟩ is either very close to 0 or very close to (p + 1)/2, depending on
whether the encrypted bit is 0 or 1, respectively.

Finally, we remark that the ciphertext ĉ has bit-length (k + 1) log p.

• BTS.Dec(ŝ, ĉ): Assume w.l.o.g that ĉ = (v̂, ŵ) ∈ Zk
p × Zp (if the ciphertext looks like a

“somewhat homomorphic” ciphertext, one can perform “blank” homomorphic operations to
convert it to this form). To decrypt, compute

µ:= (2 · (ŵ − ⟨v̂, ŝ⟩) mod p) (mod 2) .

Roughly speaking, the decryption algorithm is correct because, by Equation 13, 2 · (ŵ −
⟨v̂, ŝ⟩) mod p = 2(δ1 + δ2) + µ mod p. This gives us the message µ upon reducing modulo 2
if the error δ1 + δ2 is a “small” integer.

It is important to notice that, while not immediate from its definition, δ1+δ2 is indeed always
an integer. To see this, note that it can be represented as a difference between integers:

δ1 + δ2 = (ŵ − ⟨v̂, ŝ⟩)− p+ 1

2
· µ .

This implies that 2(δ1 + δ2) is an even integer and is eliminated by reducing modulo 2.

22

4.2 Analysis of the Scheme

Lemma 4.1 (Correctness). Let n = n(κ), k = k(κ), q = q(κ), p = p(κ) and D = D(κ) be as
above. Assume that the error distributions χ and χ̂ are both B- and B̂-bounded respectively, for
some B = B(κ) and B̂ = B̂(κ). The scheme correctly evaluates a polynomial g = g(x1, . . . , xℓ) ∈
Z2[x1, . . . , xℓ] with total degree at most D if

p

q
·
(
∥g∥1 ·D ·B4D−1 · (34n3 log q)2D

)
+ 8 · B̂ · n log q < p/8− 2 (14)

where ∥g∥1 denotes the ℓ1-norm of the coefficient vector of g.

Proof. To start with, similar to Lemma 3.1 and using Equation 13, we can see that decryption
succeeds if 2(δ1 + δ2) + µ < p/4− 1. It then suffices to bound δ1 and δ2 separately.

Keeping in mind that hi,τ ∈ {0, 1} and |ω̂i,τ | ≤ 1/2, we see that

|δ1| =

∣∣∣∣∣∣
n∑

i=0

⌊log q⌋∑
τ=0

hi,τ (êi,τ + ω̂i,τ)

∣∣∣∣∣∣
≤ (n+ 1)(⌊log q⌋+ 1) ·max(|êi,τ |+ 1/2)

≤ 8B̂n log q .

Since µ ∈ {0, 1} and q ≥ p,

|δ2| ,
∣∣∣∣e · pq +

µ

2
·
(
p

q
− 1

)∣∣∣∣ ≤ |e| · pq + 1

Now, the error e comes from the somewhat homomorphic ciphertext. By Lemma 3.1, we know
that upon evaluating a multivariate polynomial g of degree at most D, we have

|e| ≤ ∥g∥1 ·D ·B4D−1 · (34n3 log q)2D

Putting all this together gives us the statement of the lemma.

Semantic security of the scheme follows from DLWE using an argument very similar to Lemma 3.3.
In particular, the main difference between the somewhat homomorphic scheme and the bootstrap-
pable scheme of this section is the additional public parameters Ψ̂ which, informally speaking,
constitute an encryption of sD ∈ Zn

q using the secret key ŝ ∈ Zk
p. By the decisional LWE as-

sumption DLWEk,p,χ̂, these additional encryptions are indistinguishable from uniformly random
elements. From then on, semantic security is guaranteed under the DLWEn,q,χ assumption by
Lemma 3.3 (since the public key doesn’t contain additional information compared to the somewhat
homomorphic scheme). In particular, we have:

Lemma 4.2 (Security). Let n = n(κ), k = k(κ), q = q(κ), p = p(κ) and D = D(κ) be as above. The
scheme is semantically secure under the DLWEn,q,χ and the DLWEk,p,χ̂ assumptions. In particular,
if both the DLWEn,q,χ and the DLWEk,p,χ̂ problems are (τ, ϵ)-hard, then the scheme is (τ−poly(κ), ϵ ·
poly(κ))-semantically secure.

23

4.3 Fully Homomorphic Encryption

In this section, we show that the scheme is bootstrappable (namely, the scheme is capable of
evaluating its own decryption circuit, plus some). Invoking the bootstrapping theorem of Gen-
try [Gen09b, Gen09a], our bootstrappable scheme can be turned into a fully homomorphic encryp-
tion scheme.

Theorem 4.3. For every ϵ ∈ (0, 1), there is a constant C ∈ N such that the following holds. Setting
the parameters k ≥ κ, n ≥ kC , m = n log q + 2κ, q = 2n

ϵ
, p ≥ 128 · kn log q, and χ (resp. χ̂) to be

any n-bounded (resp. k-bounded), efficiently sampleable, distribution, the scheme is secure under
the DLWEn,q,χ and the DLWEk,p,χ̂ assumptions, and is a bootstrappable encryption scheme.

Thus, applying Theorems 2.3, 2.4, we get the following corollary.

Corollary 4.4. For every polynomial function d (in the security parameter), there exists an
DLWEn,q,χ,DLWEk,p,χ̂ based fully homomorphic encryption scheme that can evaluate any Boolean
function of polynomial-size and depth at most d.

Furthermore, if the scheme from Theorem 4.3 is weakly circular secure, as per Definition 2.4,
then there exists fully homomorphic encryption scheme that can evaluate any Boolean function of
polynomial-size.

We note that while we cannot prove the circular security of our scheme, it is not known of any
semantically secure scheme that is not weakly circular secure. Specifically, we are not aware of any
improvements in the known attacks on LWE if encryptions of the bits of the secret key are given.
Thus, at the state of our current knowledge, weak circular security of our scheme is plausible.

Proof of Theorem 4.3. By an analysis exactly analogous to the proof of Theorem 3.4, we can see
that the scheme is correct, and supports evaluation of polynomials of degree at most C1 · nϵ/ log n
for some constant C1 > 0. Security follows directly from Lemma 4.2.

To see bootstrappability, we use Lemma 4.5 which states that the decryption circuit for the
scheme can be implemented as a circuit with depth C2 · log k and degree at most poly(k) = kC2 for
some constant C2 > 0. To show that the scheme is bootstrappable, we need to set the constant
C in the theorem statement so that the scheme can evaluate the augmented decryption circuit
Cc1,c2(s) = BTS.Decs(c1) ⋆ BTS.Decs(c2), where ⋆ ∈ {+,×}. The augmented decryption circuits
have degree at most k2C2 .

Now, setting C = (2C2 + 1)/ϵ and n = kC , the scheme is bootstrappable since

nϵ/ log n = (k(2C2+1)/ϵ)ϵ/ log k = k2C2+1/ log k ≥ k2C2

By Theorem 2.3, for every d ∈ N, we can construct a fully homomorphic encryption scheme that
can evaluate any Boolean function of polynomial-size and depth at most d.

The following lemma about the decryption complexity of our scheme is elementary.

Lemma 4.5. Let k ∈ N, p = poly(k) and let fp : Zp × Zk
p × Zk

p → Zp be the function that maps

(ŵ, v̂, ŝ) 7→ (ŵ − ⟨v̂, ŝ⟩) (mod p) .

Then, there is a constant C > 0 such that fp can be implemented by a Boolean circuit with AND
and XOR gates with depth C · log k and degree poly(k) = kC .

24

Optimizing the Decryption Complexity. It is possible to optimize the constant C in the
statement of Lemma 4.5, and thus Theorem 4.3, resulting in a smaller value of the “large dimension”
n. We omit a detailed analysis of this optimization, and only mention that it is possible to achieve
C = 2.

Judiciously Choosing the Parameters. The security of our scheme relies on the LWE as-
sumption with two settings of parameters – the “long” parameter setting (n, q, χ) and the “short”
parameter setting (k, p, χ̂). We show how to trade-off the parameters judiciously to get optimal
security against the best known attacks. For the parameters k, n, p, q, χ and χ̂ in Theorem 4.3,
the best known algorithm to solve the LWEk,p,χ̂ problem runs in time 2Õ(k), whereas the solver for

LWEn,q,χ problem runs in time 2Õ(n1−ϵ).19 The best trade-off between the two assumptions is ob-
tained when these two running times are equal which, in turn, gives us security against adversaries
that run in time 2Õ(k). This happens when n1−ϵ ≈ k, i.e., when ϵ = 1 − (1/C) where recall that
C = 2C2+1

ϵ is the constant from Theorem 4.3. Solving for ϵ, we get ϵ = 1− 1
2C2+2 .

Efficiency. The public key for the scheme (including the public parameters) is roughly the same
size as the somewhat homomorphic scheme, plus O(n2 log2 q) bits for the “dimension reduction
parameters”. The secret key and the ciphertext are both considerably shorter. The secret key has
k log p ≈ κ log κ bits, and the ciphertext has (k+1) log p ≈ κ log κ bits as well. Since the ciphertext
and the secret key are both very short, the decryption algorithm is quite fast. The encryption as we
described needs to output longer “homomorphable ciphertexts” and has to run in time poly(n, log q).
However, it is easy to see that an encryption scheme that outputs shorter ciphertexts in dimension
k modulo p suffices since such a ciphertext can be “bootstrapped up” into a homomorphable
ciphertext. Thus, all ciphertexts in our scheme are short, having (k + 1) log p = O(κ log κ) bits.

5 LWE-Based Private Information Retrieval

In this section, we present a single-server private information retrieval (PIR) protocol with nearly
optimal communication complexity. First, we present the definitions of PIR in Section 5.1. Then,
in Section 5.2, we show a generic construction from somewhat homomorphic encryption. Finally,
in Section 5.3, we instantiate the generic construction using our own scheme from Section 4 and
analyze its parameters.

5.1 Definitions of Single Server PIR

We define single server private information retrieval in the public-key setting. In this setting, there
is a public key associated with the receiver (who holds the respective secret key). This public key is
independent of the query and of the database, and can be generated and sent (or posted) before the
interaction begins, and be used many times. Thus, the size of the public key is not counted towards
communication complexity of the scheme. We formalize this by an efficient setup procedure that
runs before the protocol starts and generate this public key.

19Roughly speaking, solving LWE with an error-to-modulus ratio 2−k can be done in time 2Õ(n/k) time, and no
significantly better algorithm is known.

25

Letting κ be the security parameter and let N ∈ N be the database size, a PIR proto-
col in the public-key setting is defined by a tuple of polynomial-time computable algorithms
(PIR.Setup,PIR.Query,PIR.Response,PIR.Decode) as follows:

0. Setup. The protocol begins in an off-line setup phase that does not depend on the index to
be queried or on the contents of the database.

The receiver runs the setup algorithm

(params, setupstate)←PIR.Setup(1κ) .

It thus obtains a public set of parameters params (the public key) that is sent to the sender,
and a secret state setupstate that is kept private.

Once the setup phase is complete, the receiver and sender can run the remainder of the
protocol an unbounded number of times.

1. Query. When the receiver wishes to receive the ith element in the database DB[i], it runs

(query, qstate)←PIR.Query(1κ, setupstate, i) .

The query message query is then sent to the sender and qstate is a query-specific secret
information that is kept private.

2. Answer. The sender has access to a database DB ∈ {0, 1}N . Upon receiving the query
message query from the receiver, it runs the “answering” algorithm

resp←PIR.Response(1κ, DB, params, query) .

The response resp is then sent back to the receiver.

3. Decode. Upon receiving resp, the receiver decodes the response by running

x←PIR.Decode(1κ, setupstate, qstate, resp) .

The output x ∈ {0, 1} is the output of the protocol.

We note that while in general a multi-round interactive protocol is required for each database
query, the protocols we present are of the simple form of a query message followed by a response
message. Hence, we chose to present the simple syntax above.

The communication complexity of the protocol is defined to be |query| + |resp|. Namely, the
number of bits being exchanged to transfer a single database element (excluding the setup phase).
We sometime analyze the query length and the response length separately.

Correctness and security are defined as follows.

• Correctness. For all κ ∈ N, DB ∈ {0, 1}∗ where N , |DB|, and i ∈ [N], it holds that

Pr[PIR.Decode(1κ, setupstate, qstate, resp) ̸= DB[i]] = negl(κ) ,

where (params, setupstate)←PIR.Setup(1κ), (query, qstate)←PIR.Query(1κ, setupstate, i) and
resp←PIR.Response(1κ, DB, params, query).

26

• (τ, ϵ)-Privacy. For all κ ∈ N, N ∈ N and for any adversary A running in time τ = τκ,N it
holds that

max
i=(i1,...,iτ),

j=(j1,...,jτ)∈[N]τ

∣∣Pr[A(params, i, queryi) = 1]− Pr[A(params, j, queryj) = 1]
∣∣ ≤ ϵ (= ϵκ,N

)
,

where (params, setupstate)←PIR.Setup(1κ), (queryiℓ , qstateiℓ)←PIR.Query(1κ, setupstate, iℓ)
and (queryjℓ , qstatejℓ)←PIR.Query(1κ, setupstate, jℓ), for all ℓ ∈ [τ].

We note that the definition of privacy above differs from the one usually found in literature. The
standard definition refers to vectors i, j of dimension 1. That is, only allow the adversary to see one
query to the database. A hybrid argument can show that with proper degradation in parameters,
this guarantees some security also for the case of many queries. However in the public-key setting,
where the same public key is used for all queries, this hybrid argument no longer works. Thus,
we must require that the adversary is allowed to view many query strings.20 In fact, one could
consider even stronger attacks in the public-key setting, which is outside the scope of this work

The definition of privacy deserves some further discussion. We note that we did not define the
ranges of parameters for (τ, ϵ) for which the protocol is considered “private”. Indeed there are
several meaningful ways to define what it means for a protocol to be private. Let us discuss two
options and provide corresponding definitions.

i. The first approach is to argue that the resources of the adversary are similar to those of an
honest server (we can think of an adversary as a “server gone bad”). Thus, in this approach the
adversary can run in polynomial time in N,κ and must still not succeed with non-negligible
probability in N,κ. We say that a scheme is (i)-private if it is (p(κ,N), 1/p(κ,N))-private
for any polynomial p(·, ·).

ii. The second approach argues that the security parameter is the “real” measure for privacy.
Thus the protocol needs to be exponentially secure in the security parameter. Thus a scheme
is (ii)-private if it is (2Ω(κ), 2−Ω(κ))-private.

5.2 PIR via Somewhat Homomorphic and Symmetric Encryption

In this section we describe a generic PIR protocol that uses a somewhat homomorphic encryption
and symmetric encryption as building blocks. This protocol has the useful property that the
somewhat homomorphic scheme is not used to encrypt the index to the database. Rather, we use
the symmetric scheme to encrypt the index, and have the server homomorphically decrypt it during
query evaluation.

Our PIR protocol relies on two building blocks – a semantically secure symmetric encryp-
tion scheme Esym = (SYM.Keygen, SYM.Enc, SYM.Dec), and a somewhat homomorphic encryption
scheme Esh = (SH.Keygen, SH.Enc, SH.Dec, SH.Eval). The level of somewhat homomorphism re-
quired for the protocol depends on the symmetric scheme being used (in particular, the decryption
complexity of the symmetric scheme). We recall that our scheme from Section 4 can be instantiated

20We feel that our definition captures the essence of an attack on a PIR protocol more than the standard one-time
definition, even in the usual setting. As we mention above, converting between the definitions incurs a linear blowup
in the adversary’s advantage so a (τ, ϵ)-private scheme according to the old definition is only (τ, τϵ)-private according
to ours.

27

as a somewhat homomorphic scheme with respect to functions computable by any polynomial-size
circuit without relying on any circular security assumptions. However, a clever selection of the sym-
metric scheme to be used can make our methodology applicable also for schemes that are somewhat
homomorphic up to an absolute bound (such as a single instance of the scheme from Section 4 –
without bootstrapping).

We present the functions (PIR.Setup,PIR.Query,PIR.Response,PIR.Decode) of our protocol (as
defined in Section 5.1).

• PIR.Setup(1κ): In the setup procedure, we generate a symmetric key symsk←SYM.Keygen(1κ)
and a key pair for the somewhat homomorphic scheme (shsk, shpk)←SH.Keygen(1κ).

The symmetric key is then encrypted using the homomorphic public key to create a ciphertext

csymsk←SH.Encshpk(symsk) .

The setup procedure then outputs the public parameters

params:=(shpk, csymsk) ,

and the secret state
setupstate:=(shsk, symsk) .

• PIR.Query(1κ, setupstate, i): To generate a query string, we just encrypt i using the symmetric
scheme. Recall that setupstate = (shsk, symsk), then

query←SYM.Encsymsk(i) .

In our scheme, no additional information needs to be saved per query: qstate:=ϕ.

• PIR.Response(1κ, DB, params, query): Upon receiving a query, a response is computed as fol-
lows. Recall that params = (shpk, csymsk) and consider the function h defined as follows:

h(x) , DB[SYM.Decx(query)] ,

namely the function h uses its input as a symmetric key to decrypt the query, and then uses
the plaintext to index the database and retrieve the appropriate value. Note that h(symsk) =
DB[i], where i is the index embedded in query.

While PIR.Response does not know symsk, it does know csymsk and thus can homomorphically
evaluate h(symsk) and set

resp←SH.Evalshpk(h, csymsk) .

Note that resp should correspond to a decryptable ciphertext of DB[i].

• PIR.Decode(1κ, setupstate, qstate, resp): We recall that setupstate = (shsk, symsk) and that
qstate is null. To decode the answer to the query, we decrypt the ciphertext associated with
resp, outputting

b←SH.Decshsk(resp) .

Correctness and privacy are easily reduced to those of the underlying primitives in the following
lemmas.

28

Lemma 5.1 (correctness). If our symmetric scheme Esym, and our somewhat homomorphic scheme
Esh are correct and if the somewhat homomorphic scheme can evaluate the function h defined above,
then our PIR protocol is correct.

The proof in this case is immediate from the syntax of the protocol.

Lemma 5.2 (privacy). If our somewhat homomorphic scheme is (τ · poly(κ), ϵ1)-CPA secure and
our symmetric scheme is (τ +poly(κ), ϵ2)-CPA secure, then our PIR protocol is (τ, ϵ1+ ϵ2)-private.

Proof. We prove this by a series of hybrids (or experiments). Let A be an adversary that runs in
time τ against the privacy of our protocol and has advantage ϵ. We consider the behavior of A in
a number of hybrids H0,H1,H2 as defined below. We let AdvHi [A] denote the advantage of A in
hybrid Hi.

• Hybrid H0. This is identical to the original privacy game of the scheme. By definition

AdvH0 [A] = ϵ .

• Hybrid H1. We now change the game so that instead of computing csymsk←SH.Encshpk(symsk)
in PIR.Setup, we will set csymsk←SH.Encshpk(0).

There exists an adversary B for the CPA-security of the somewhat homomorphic scheme that
runs in time τ · poly(κ) and whose advantage is

CPAAdv[B] = |AdvH0 [A]−AdvH1 [A]| .

It follows that
|AdvH0 [A]−AdvH1 [A]| ≤ ϵ1 .

• Hybrid H2. We now change the game so that instead of setting query←SYM.Encsymsk(i) in
PIR.Query, we will set query←SYM.Encsymsk(0).

There exists an adversary C for the CPA-security of the symmetric scheme that runs in time
τ + poly(κ) and whose advantage is

CPAAdv[C] = |AdvH1 [A]−AdvH2 [A]| .

It follows that
|AdvH1 [A]−AdvH2 [A]| ≤ ϵ2 .

However, in H2, the view of the adversary is independent of the queried indices. Therefore

AdvH2 [A] = 0 .

It follows that ϵ ≤ ϵ1 + ϵ2 as required.

Lastly, let us analyze the communication complexity of our protocol. It follows by definition
that the query size is the length of an encryption of {0, 1}⌈logN⌉ bits using our symmetric scheme,
and the response is the encryption of a single bit using our somewhat homomorphic scheme.

29

5.3 Instantiating the Components: The PIR Protocol

We show how to implement the primitives required in Section 5.2 in a number of different ways.
The first idea is to use an optimized, symmetric-key LWE-based encryption as the symmetric

encryption scheme in the PIR protocol. Specifically, using the same parameters k, p as in our
our bootstrappable scheme, we get a scheme whose decryption is almost identical to that of our
bootstrappable scheme. In particular, we apply an optimization of [PVW08, ACPS09] to get
ciphertexts of length O(logN) + O(k log k) to encrypt logN bits of the index. Roughly speaking,
the optimization is based on two observations: first, rather than encrypting a single bit using an
element of Zp, we can “pack in” O(log p) bits, if we set the error in the LWE instances to be
correspondingly smaller (but still a 1/poly(k) fraction of p). Secondly, observe that in a symmetric
ciphertext (v, w) ∈ Zn

p × Zp, most of the space is consumed by the vector v. The observation of
[PVW08, ACPS09] is that v can be re-used to encrypt multiple messages using different secret keys
s1, . . . , sℓ. Using these optimizations, the resulting PIR protocol has query length of O(k log k +
logN) bits and response length O(k log k) for k = poly(κ).

Since the decryption of the symmetric scheme has the same degree as that of our own scheme,
hence poly(k), we can use our bootstrappable scheme “out of the box”, with an appropriately
chosen n, to evaluate the database function h.

For the best currently known attacks on LWE (see [MR09, LP11, RS10]), this protocol is
(2Ω(k/polylogk), 2−Ω(k/polylogk))-private. Thus, going back to our definitions in Section 5.1, and setting
k = κ · polylog(κ), we get a (ii)-private PIR scheme with a total communication complexity of
O(logN) + O(κ · polylog(κ)); and a (i)-private scheme with communication complexity logN ·
polyloglog(N) by setting κ = logN · polyloglog(N) = ω(logN).

A second instantiation aims to bring the (ii)-private communication complexity down to logN+
κ · polylog(κ). This can be done in a number of different ways, for example, by instantiating the
symmetric encryption scheme above with an optimal symmetric encryption scheme with ciphertexts
of length logN + κ · polylog(κ). Such a scheme can be based on a pseudo-random function (PRF)
constructed from LWE by applying the GGM transformation [GGM86].

In this case, we do not have a polynomial upper bound on the degree of h (since the degree of
evaluating the PRF depends on the actual implementation). However, for any specific PRF, we
can bootstrap our scheme as in Corollary 4.4 to support the required circuit depth.

Finally, let us note that the parameters produced in the setup phase of our protocol are of
length poly(κ). Thus our protocol can be trivially modified to work in a setting without setup,
with communication complexity logN + poly(κ) (under the (ii)-private notion) and polylog(N)
(under the (i)-private notion).

References

[ABB10] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (h)ibe in the standard
model. In Gilbert [Gil10], pages 553–572.

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic
primitives and circular-secure encryption based on hard learning problems. In Shai
Halevi, editor, CRYPTO, volume 5677 of Lecture Notes in Computer Science, pages
595–618. Springer, 2009.

30

[AGV09] Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan. Simultaneous hardcore bits
and cryptography against memory attacks. In Omer Reingold, editor, TCC, volume
5444 of Lecture Notes in Computer Science, pages 474–495. Springer, 2009.

[Ajt98] Miklós Ajtai. The shortest vector problem in 2 is p-hard for randomized reductions
(extended abstract). In STOC, pages 10–19, 1998.

[AKS01] Miklós Ajtai, Ravi Kumar, and D. Sivakumar. A sieve algorithm for the shortest lattice
vector problem. In STOC, pages 601–610, 2001.

[Bar11] Boaz Barak, 2011. Personal Communication.

[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on cipher-
texts. In Theory of Cryptography - TCC’05, volume 3378 of Lecture Notes in Computer
Science, pages 325–341. Springer, 2005.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from
ring-LWE and security for key dependent messages. In CRYPTO, 2011. To appear.

[CHKP10] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to
delegate a lattice basis. In Gilbert [Gil10], pages 523–552.

[CMS99] Christian Cachin, Silvio Micali, and Markus Stadler. Computationally private informa-
tion retrieval with polylogarithmic communication. In EUROCRYPT, pages 402–414,
1999.

[DGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homo-
morphic encryption over the integers. In Gilbert [Gil10], pages 24–43. Full Version in
http://eprint.iacr.org/2009/616.pdf.

[Gen09a] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford Univer-
sity, 2009. crypto.stanford.edu/craig.

[Gen09b] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Mitzenmacher
[Mit09], pages 169–178.

[Gen10] Craig Gentry. Toward basing fully homomorphic encryption on worst-case hardness. In
Rabin [Rab10], pages 116–137.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random func-
tions. J. ACM, 33(4):792–807, 1986.

[GH11a] Craig Gentry and Shai Halevi. Fully homomorphic encryption without squashing using
depth-3 arithmetic circuits. Cryptology ePrint Archive, Report 2011/279, 2011. http:
//eprint.iacr.org/.

[GH11b] Craig Gentry and Shai Halevi. Implementing gentry’s fully-homomorphic encryption
scheme. In Kenneth G. Paterson, editor, EUROCRYPT, volume 6632 of Lecture Notes
in Computer Science, pages 129–148. Springer, 2011.

31

[GHV10a] Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. i-hop homomorphic encryption
and rerandomizable yao circuits. In Rabin [Rab10], pages 155–172.

[GHV10b] Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. A simple bgn-type cryptosystem
from lwe. In Gilbert [Gil10], pages 506–522.

[Gil10] Henri Gilbert, editor. Advances in Cryptology - EUROCRYPT 2010, 29th Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
French Riviera, May 30 - June 3, 2010. Proceedings, volume 6110 of Lecture Notes in
Computer Science. Springer, 2010.

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to play mental
poker keeping secret all partial information. In STOC, pages 365–377. ACM, 1982.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In Cynthia Dwork, editor, STOC, pages 197–206.
ACM, 2008.

[GR05] Craig Gentry and Zulfikar Ramzan. Single-database private information retrieval with
constant communication rate. In Lúıs Caires, Giuseppe F. Italiano, Lúıs Monteiro,
Catuscia Palamidessi, and Moti Yung, editors, ICALP, volume 3580 of Lecture Notes
in Computer Science, pages 803–815. Springer, 2005.

[ILL89] Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random generation
from one-way functions (extended abstracts). In STOC, pages 12–24. ACM, 1989.

[IP07] Yuval Ishai and Anat Paskin. Evaluating branching programs on encrypted data. In
Salil P. Vadhan, editor, TCC, volume 4392 of Lecture Notes in Computer Science, pages
575–594. Springer, 2007.

[Lip05] Helger Lipmaa. An oblivious transfer protocol with log-squared communication. In
Jianying Zhou, Javier Lopez, Robert H. Deng, and Feng Bao, editors, ISC, volume
3650 of Lecture Notes in Computer Science, pages 314–328. Springer, 2005.

[LLL82] A. K. Lenstra, H. W. Lenstra, and L. Lovsz. Factoring polynomials with rational
coefficients. Mathematische Annalen, 261:515–534, 1982. 10.1007/BF01457454.

[LP11] Richard Lindner and Chris Peikert. Better key sizes (and attacks) for lwe-based encryp-
tion. In Aggelos Kiayias, editor, CT-RSA, volume 6558 of Lecture Notes in Computer
Science, pages 319–339. Springer, 2011.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning
with errors over rings. In Gilbert [Gil10], pages 1–23. Draft of full version was provided
by the authors.

[MGH10] Carlos Aguilar Melchor, Philippe Gaborit, and Javier Herranz. Additively homomorphic
encryption with d-operand multiplications. In Rabin [Rab10], pages 138–154.

[Mic00] Daniele Micciancio. The shortest vector in a lattice is hard to approximate to within
some constant. SIAM J. Comput., 30(6):2008–2035, 2000.

32

[Mic10] Daniele Micciancio. A first glimpse of cryptography’s holy grail. Commun. ACM,
53:96–96, March 2010.

[Mit09] Michael Mitzenmacher, editor. Proceedings of the 41st Annual ACM Symposium on
Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009.
ACM, 2009.

[MR09] Daniele Micciancio and Oded Regev. Lattice-based cryptography. In Post-Quantum
Cryptography. Springer, 2009.

[MV10] Daniele Micciancio and Panagiotis Voulgaris. A deterministic single exponential time
algorithm for most lattice problems based on voronoi cell computations. In Leonard J.
Schulman, editor, STOC, pages 351–358. ACM, 2010.

[OS07] Rafail Ostrovsky and William E. Skeith III. A survey of single-database private in-
formation retrieval: Techniques and applications. In Tatsuaki Okamoto and Xiaoyun
Wang, editors, Public Key Cryptography, volume 4450 of Lecture Notes in Computer
Science, pages 393–411. Springer, 2007.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In EUROCRYPT, pages 223–238, 1999.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In Mitzenmacher [Mit09], pages 333–342.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient
and composable oblivious transfer. In David Wagner, editor, CRYPTO, volume 5157
of Lecture Notes in Computer Science, pages 554–571. Springer, 2008.

[Rab10] Tal Rabin, editor. Advances in Cryptology - CRYPTO 2010, 30th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 15-19, 2010. Proceedings, volume 6223
of Lecture Notes in Computer Science. Springer, 2010.

[RAD78] R. Rivest, L. Adleman, and M. Dertouzos. On data banks and privacy homomorphisms.
In Foundations of Secure Computation, pages 169–177. Academic Press, 1978.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
In Harold N. Gabow and Ronald Fagin, editors, STOC, pages 84–93. ACM, 2005.

[RS10] Markus Rckert and Michael Schneider. Estimating the security of lattice-based cryp-
tosystems. Cryptology ePrint Archive, Report 2010/137, 2010. http://eprint.iacr.
org/.

[SS10] Damien Stehlé and Ron Steinfeld. Faster fully homomorphic encryption. In Masayuki
Abe, editor, ASIACRYPT, volume 6477 of Lecture Notes in Computer Science, pages
377–394. Springer, 2010.

[SV10] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic encryption with relatively
small key and ciphertext sizes. In Phong Q. Nguyen and David Pointcheval, editors,
Public Key Cryptography, volume 6056 of Lecture Notes in Computer Science, pages
420–443. Springer, 2010.

33

[SYY99] Tomas Sander, Adam Young, and Moti Yung. Non-interactive cryptocomputing for

nc1. In FOCS, pages 554–567, 1999.

34

