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Abstract. In this work we investigate the relations among various security
notions. More precisely, we present a separation result between two variants of
UC security definition: 1-bit specialized simulator UC security and specialized
simulator UC security. This solves an open question from [15] and comes in
contrast with the well known equivalence result between 1-bit UC security and
UC security. We also give a notion of weak security and we show that the induced
weak security under 1-bounded concurrent general composition is equivalent to
1-bit specialized simulator UC security. As a consequence, we obtain that our
notion of weak security and the notion of stand-alone security are not equivalent.
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1 Introduction

Nowadays, more and more cryptographic protocols ran by honest users are part of
complex systems which could potentially harbor just as complex and powerful security
attacks. In order to ensure that none of these attacks become reality, protocol designers
need cryptographic constructions tailored for different security guaranties. In the
last decades, for this purpose many different security notions have been proposed,
varying from stand-alone security [8] to general concurrent composability [15], universal
composability [4] and even the game theoretic notion of strong universal implementation
[12, 11]. One important aspect that helps better understanding these security notions
is studying the relation among them. In this paper we investigate the relation among
various security notions, from specialized simulator UC and 1-bit specialized simulator
UC to stand-alone security and weak stand-alone security.

1.1 Related Work

The initial work [22] on general security definitions highlighted the need for a framework
expressing security requirements in a formal way. The first formal definition of secure
computation was introduced by [8]. The first approaches for formally defining security
notions (e.g., zero-knowledge [10, 9]) have taken into account only the stand-alone model
(i.e., when security of the protocol is considered with respect to its adversary, in isolation
from any other copy of itself or from a different protocol). However, there are simple



protocols, (e.g., the example from[7]) that fulfill stand-alone security, but are no longer
secure under parallel or concurrent composition.

The work that introduces the study of protocol composition (which the authors
call reducibility) is [16]. In [2] a security definition (expressed for the first time as
a comparison with an ideal process) in the stand-alone model is provided and the
corresponding sequential composition theorem. In [3] a general definition of security
for evaluating a probabilistic function on the parties’ inputs is given. It is shown that
security is preserved under a subroutine substitution composition operation, which is
a non-concurent version of universal composition (i.e., only a single instance of the
protocol is active at any point in time). The framework of universally composable
security or UC security [4] allows for specifying the requirements for any cryptographic
task and within this framework protocols are guaranteed to maintain their security
even in the presence of an unbounded number of arbitrary protocol instances that run
concurrently in an adversarially controlled manner.

The notion of specialized simulator UC security (which differs from the notion of
universal composability in that the order of quantifiers is changed) has been introduced
in [15] and it was shown that this is equivalent to general concurrent composability
when the protocol under consideration is composed with one instance of any possible
protocol. Changing the order of quantifiers in the context of security definitions has
been previously used in [6, 12, 11]. A more detailed review about the existing implication
relations among different security notions can be found in section 4.

The topic of reactive functionalities is first addressed by [13]. The incipient work from
[18] and later from [19, 17, 20] is centered around the notion of reactive simulatability
which is similar to the notion of universal composability and has been developed in
parallel with it. The framework addresses for the first time concurrent composition in a
computational setting: it is shown that security is preserved when a single instance of a
subroutine protocol is composed concurrently with the calling protocol. The framework
has been extended in [1] to deal with the case where the number of parties and protocol
instances depends on the security parameter. More about the differences between
reactive simulatability and universal composability notions can be read in the related
work section from [4].

More recently, [12, 11] define the game theoretic notion of universal protocol im-
plementation and they show it is equivalent to a weak variant of stand-alone security,
called precise secure computation. Their work started exploring the relations between
game theoretic notions and cryptographic security definitions.

1.2 Contribution

We have a twofold contribution.

First, we present a separation result between two variants of UC security: 1-bit
specialized simulator UC security and specialized simulator UC security. This solves an
open question from [15] and comes in contrast with the well known equivalence result
between 1-bit UC security and UC security [4].
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Both variants of the UC security notion are obtained from the UC security definition
by changing the order of quantifiers1. Thus, we continue the line of study started
by [6, 15]. In order to obtain the separation, we first show that the 1-bit specialized
simulator UC security is equivalent to a seemingly weaker version of security, namely
weak specialized simulator UC security2.

The proof technique used in our separation result is to employ a cryptographic tool
called time-lock puzzles. Intuitively, a time-lock puzzle can be used for comparing the
computational power of two different polynomially bounded Turing machines. In our case,
we construct a protocol that uses time-lock puzzles and pseudo-random permutations
to compare the computational power of the simulator and the distinguisher.

Second, our notion of weak security3 induces a notion of weak security composed
under concurrent general composition which we show is equivalent to 1-bit specialized
simulator UC security. For this we build upon the proof technique from [15]. Together
with our first result, this implies that weak security and stand-alone security are not
equivalent.

1.3 Organization

This work is structured as follows: In section 2 we give a review of security notions, from
stand-alone security to universal composability and concurrent general composition.
In section 3 we prove our separation result between specialized simulator UC security
and 1-bit specialized simulator UC security. In section 4 we present our equivalence
relation between weak security under 1-bounded concurrent general composition and
1-bit specialized simulator UC security. In section 5 we conclude. In appendix A we
give the full detailed models for UC security and security under general concurrent
composition. In appendix B we present the postponed proofs from section 4.

2 Review of Security Notions

In this work we consider that all parties and adversaries run in polynomial time in the
security parameter denoted by k and not in the length of their input. In this section
we review two models of security under composition: concurrent general composition
and universal composability. Both frameworks require the notion of (computational)
indistinguishability given below.

1 This means that in contrast to the UC security definition, the simulator may depend on the
environment.

2 This notion, additionally to having the simulator depend on the environment, also has the
simulator depend on the distinguisher that compares the views of the environment from the
real and the ideal world.

3 The difference between stand-alone security and weak security is in the order of quantifiers.
For stand-alone security, the simulator is universally quantified over all distinguishers and
input distributions. As detailed in section 2, for our notion of weak security the simulator
depends only on the distinguisher and not on the input distribution. This comes in contrast
with [12], where the simulator for weak security depends on both distinguisher and input
distribution.
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Definition 1 (Computational Indistinguishability). We say that two distribution
ensembles {X(k, z)}k∈N,z∈{0,1}∗ and {Y (k, z)}k∈N,z∈{0,1}∗ are computationally indistin-
guishable and we write X ≡ Y , if for every probabilistic distinguisher D, polynomial in
k there exists a function ε, negligible in k, such that for every z ∈ {0, 1}∗

|(Pr(D(X(k, z)) = 1)− (Pr(D(Y (k, z)) = 1)| < ε(k)

A variant of this definition, which we call indistinguishability with respect to a given

adversary D and we denote by
D≡, is analogous to the definition above, where “for every

probabilistic distinguisher D” is replaced with “for distinguisher D”. Such a definition
will be used in relation with our notion of weak security.

2.1 Universal Composability

The standard method for defining security notions is by comparing a real world protocol
execution to an ideal world process execution. In the real world execution, a protocol
interacts with its adversary and possibly with other parties. In the ideal world execution,
an idealized version of the protocol (called ideal functionality) interacts with an ideal
world adversary (usually called simulator) and possibly with other parties. The ideal
functionality is defined by the security requirements that we want our protocol to fulfill.

On an intuitive level, given an adversary, the purpose of the simulator is to mount
an attack on the ideal functionality such that no (probabilistic polynomial time or PPT)
distinguisher can tell apart the output of the interaction between the ideal functionality
and the simulator and the output of the interaction between the protocol and its
adversary. If for every adversary, a simulator exists such that the two outputs cannot
be told apart by any distinguisher, then our initial protocol is as secure as the ideal
functionality, with respect to what is called the stand-alone model.

Definition 2 (Stand-alone Security). Let ρ be a protocol and F an ideal func-
tionality. We say ρ securely implements F if for every probabilistic polynomial-time
real-model adversary A there exists a probabilistic polynomial-time ideal-model adver-
sary S such that for every protocol input x and every adversary auxiliary input z with
x, z ∈ {0, 1}poly(n), where k is the security parameter:

{IDEALFS (k, x, z)}k∈N ≡ {REALρ,A(k, x, z)}k∈N.

By IDEALFS (k, x, z) we denote the output of F and S after their interaction and
REALρ,A(k, x, z) denotes the output of the parties of ρ and adversary A after their
interaction. If we allow the simulator to depend on the distinguisher, we obtain the
weak stand-alone security notion.

There are examples [7] of protocols secure in the stand-alone model that do not
remain secure even when two of its instances run concurrently. More stringent security
definitions take into account that a protocol interacts not only with its adversary, but
also with other (possibly polynomially many) protocols or with (polynomially many)
copies of itself. This is intuitively captured by the universal composability (UC) security
framework [4]. (Due to lack of space, we give below only high level intuition about the
model and the relevant definitions. A detailed review is included in the appendix.)
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The definition of universal composability follows the paradigm described above,
however it introduces an additional adversarial entity which is called environment. The
environment, usually denoted by Z, is present in both the UC real world and UC ideal
world. The environment represents everything that is external to the current execution
of the real-world protocol or to the ideal functionality. Throughout the execution, both
in the real and in the ideal world, the environment can provide inputs to parties running
ρ or the ideal functionality F respectively, and to the adversary. These inputs can be
a part of the auxiliary input of Z or can be adaptively chosen. Also Z receives all
the output messages of the parties it interacts with and of the adversary. Moreover,
the only interaction between the environment Z and the parties of ρ or F is when
the environment sends the inputs and receives the outputs. Finally, at the end of the
execution, the environment outputs all the messages it received. The environment is
modeled as a PPT machine with auxiliary input. This auxiliary input captures the
intuition that Z may learn some information from previous executions and it may also
use it at any point later.

The main difference between the execution of UC real and UC ideal world, is that
in the latter the ideal functionality cannot be directly accessed by the environment.
Parties involved in the ideal execution give their inputs to the ideal functionality which
computes some outputs and sends back these values. Since the ideal world parties
perform no computation they are called the dummy parties for the ideal functionality.
The ideal F together with its corresponding dummy parties represent an ideal process.

When the protocol execution ends, Z outputs its view of that execution. In the
real world, his view contains messages that Z has received from the adversary A and
outputs of all parties of ρ. This is denoted by EXEC ρ,A,Z(k, z), where k is the security
parameter and z is the auxiliary input to Z. Similarly, in the ideal world execution,
the environment Z outputs its view which contains all the messages received from S
as well as all messages that the dummy parties of F output to Z. This is denoted by
EXECF,S,Z(k, z). We are now ready to define UC security:

Definition 3 (UC Security). Let ρ be a PPT protocol and let F be an ideal func-
tionality. We say that ρ UC emulates F (or ρ is as secure as F with respect to UC
security) if for every PPT adversary A there is a PPT simulator S such that for every
PPT distinguisher Z and for every distribution of auxiliary input z ∈ {0, 1}∗, the two
families of random variables {EXECF,S,Z(k, z)}k∈N and {EXEC ρ,A,Z(k, z)}k∈N are
computationally indistinguishable.

In the following we also use a relaxed version of this definition, where the order of
quantifiers between the environment and the ideal-world simulator is reversed [15].

Definition 4 (Specialized Simulator UC Security). Let ρ be a protocol and F an
ideal functionality. We say that ρ emulates F under specialized simulator UC security if
for every probabilistic polynomial time adversary A and for every environment Z, there
exists a simulator S such that for every input z ∈ {0, 1}∗, we have:

{EXECF,S,Z(k, z)}k∈N ≡ {EXEC ρ,A,Z(k, z)}k∈N.

It had been shown [14] that the two notions defined above are not equivalent. In the
above definition, the output of the environment is considered to be a string of arbitrary
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length. If the only change we make to the above definition is to consider environments
that have a 1-bit output, we obtain the notion of 1 -bit specialized simulator UC security.
It has been an open problem [15] whether considering only environments with one bit
output would produce an equivalent definition. In this work we show this is not the case.
If in the specialized simulator UC definition we let the simulator also depend on the
distinguisher (i.e., the only machine to establish whether the output of the executions
in the real UC world and in the ideal UC world cannot be told apart), then we obtain
the notion of weak specialized simulator UC security. Both specialized simulator UC
variants are defined in full detail in the appendix.

In the revised version of [4] there is an extension of the UC model we reviewed
above. This extension mainly considers that PPT machines run in time polynomial in
both the security parameter and the length of the input. While the extended model
is seemingly more expressive in terms of adversarial attacks, it does not allow for fine
grained separation between security notions (e.g., the separation result from [14] does
not hold in the extended UC model). Another reason for choosing the original model is
that, as it will be detailed in section 4, most of the UC results have been obtained in
this model.

2.2 Weak Security under 1- bounded Concurrent General Composition

Similarly to the above security concepts, the notion of security under concurrent general
composition [15] is defined using the real-ideal world paradigm. (Full details about this
security model are postponed to the appendix.)

In this model, an external and arbitrary protocol π gives inputs to and collects
outputs from an “internal protocol” that can be a real-world protocol or an ideal
functionality. We denote by ρ the real-world protocol interacting with π and by F the
ideal functionality. Protocol π may call multiple instances of the protocol it interacts
with as long as all of them run independently and all its messages may be sent in a
concurrent manner.

The computation in the ideal world is performed among the parties of π and an ideal
functionality F . Protocol π is providing F with inputs and after performing necessary
computations, F sends the results to parties of π. The messages between π and F are
ideally secure, so the ideal adversary (or simulator) can neither read nor change them.4

The ideal-world honest parties follow the instructions of π and output the value
prescribed by π. The corrupted parties output a special corrupted symbol and addition-
ally the adversary may output an arbitrary image of its view. Let z be the auxiliary
input for the ideal-world adversary S and let x̄ = (x1, ..., xm) be the inputs vector for
parties of π. The outcome of the computation of π with F in the ideal world is defined
by the output of all parties of π and S and is denoted by {HYBRIDFπ,S(k, x̄, z)}k∈N.
We choose this notation in order to make it easier to differentiate between the ideal
world in the UC definition and the ideal world in the general concurrent composition
definition. Moreover, this is not unjustified, as in the latter case the messages that occur

4 This comes in contrast with the standard definition of UC ideal protocol execution, where it
is not enforced that the channels between the trusted parties and the rest of the participants
are ideally secure.
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in the ideal world correspond both to communication among real world parties of π
and also between parties of π and the ideal functionality.

The computation in the real world follows the same rules as the computation in the
ideal world, only that this time there is no trusted party. Instead, each party of π has
an ITM that works as the specification of ρ for that party. Thus, all messages that a
party of π sends to the ideal functionality in the ideal world are now written on the
input tape of its designated ITM. These ITMs communicate with each other in the
same manner as specified for the parties of ρ. After the computation is performed, the
results are output by these ITMs to their corresponding parties of π.

The honest real-world parties follow the instructions of π and their corresponding
ITM and in the end they output on their output tape the value prescribed by π. The
corrupted parties output a special corrupted symbol and additionally the real-world
adversary A may output an arbitrary image of its view. The outcome of the computation
of π with ρ in the real world is defined by the output of all parties and A and is denoted
by {REALπρ,A(k, x̄, z)}k∈N.

We are now ready to state the definition of security under concurrent general
composition [15], with the additional flavor of weak security. This means that we allow
the simulator to depend on the distinguisher and additionally, this distinguisher is
the only entity supposed to tell apart the real world execution from the ideal world
execution.

Definition 5 (Weak Security under Concurrent General Composition). Let
ρ be a protocol and F a functionality. Then, ρ computes F under concurrent general
composition with weak security if for every probabilistic polynomial-time protocol π in
the F-hybrid model that utilizes ideals calls to F , for every probabilistic polynomial-time
real-model adversary A for πρ and for every probabilistic polynomial-time distinguisher
D, there exists a probabilistic polynomial-time ideal-model adversary S such that for
every x̄, z ∈ {0, 1}∗:

{HYBRIDFπ,S(k, x̄, z)}k∈N
D≡ {REALπρ,A(k, x̄, z)}k∈N.

If we restrict the protocols π to those that utilize at most ` ideal calls to F , then ρ is
said to compute F under `-bounded concurrent general composition with weak security.

3 Specialized Simulator UC Variants

Our main result in this section shows the separation between the notions of specialized
simulator UC and 1-bit specialized simulator UC. This answers an existing open problem
from [15] and furthermore clarifies the relations among different (weak) security notions.

3.1 On 1-bit Specialized Simulator UC

We start by showing that 1-bit specialized simulator UC (1-bit SSUC) is equivalent to
weak specialized simulator UC (weak SSUC). This will give us a simpler alternative
security notion that we can further work with.
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Lemma 1 (Equivalence between 1-bit SSUC and weak SSUC). A protocol
fulfills the 1-bit specialized simulator UC security if and only if it fulfills the weak
specialized simulator UC security.

Proof. Let protocol ρ and ideal functionality F be such that ρ is as secure as F with
respect to 1-bit specialized simulator UC. We show this implies ρ as secure as F with
respect to weak specialized simulator UC security. Given a triple (A,Z,D∗) consisting
of adversary, environment and distinguisher we have to provide a simulator S such that
for every auxiliary input5 z the following holds:

{EXECF,S,Z(k, z)}k∈N
D∗≡ {EXEC ρ,A,Z(k, z)}k∈N. (1)

Given Z and D∗, we can construct a 1-bit output environment ZD∗ in the following
way: ZD∗ internally runs a copy of Z. When internal Z writes on its output tape, this
is forwarded by ZD∗ to an internal copy of D∗. The output of D∗ becomes the output
of ZD∗ . Due to the hypothesis, there exist S such that for every auxiliary input z and
for every distinguisher D we have:

{EXECF,S,ZD∗ (k, z)}k∈N
D≡ {EXEC ρ,A,ZD∗ (k, z)}k∈N.

In particular:

{EXECF,S,ZD∗ (k, z)}k∈N
Dind≡ {EXEC ρ,A,ZD∗ (k, z)}k∈N,

where Dind is the distinguisher that outputs whatever D∗ outputs. As the simulator S
can be used without modification in an interaction with F and the environment6 Z,
the last relation is equivalent to (1). We conclude that ρ is as secure as F with respect
to weak specialized simulator UC security.

The implication in the opposite direction is proven as follows. Given a pair (A,Z1−bit)
consisting of adversary and 1-bit output environment, we need to construct a simulator
S such that for every auxiliary input z and for every distinguisher D, we have:

{EXECF,S,Z1−bit(k, z)}k∈N
D≡ {EXEC ρ,A,Z1−bit(k, z)}k∈N.

Given a 1-bit output environment Z1−bit, we can uniquely decompose it into an
environment Z (that outputs its entire view) and a distinguisher D∗ (that given the
view of Z outputs what Z1−bit outputs). According to the definition of weak specialized
simulator UC security, for A, Z, D∗ there exists a simulator S such that for every
auxiliary input z we have:

{EXECF,S,Z(k, z)}k∈N
D∗≡ {EXEC ρ,A,Z(k, z)}k∈N.

As D∗ has binary output (i.e., thus finite output), the above equation
implies the two random variables {D∗(EXECF,S,Z(k, z))}k∈N,z∈{0,1}∗ and

5 Here and in the following “for every auxiliary input z” should be read as “for every
distribution of auxiliary input z for Z”.

6 Indeed, by construction ZD∗ does not interact with an adversarial party (i.e., S or A) after
the simulation of internal Z is over.
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{D∗(EXEC ρ,A,Z(k, z))}k∈N,z∈{0,1}∗ are statistically close. Hence, for any com-
putationally bounded distinguisher D and for any auxiliary input z the two
random variables {EXECF,S,Z1−bit(k, z)}k∈N and {EXEC ρ,A,Z1−bit(k, z)}k∈N are
indistinguishable and this concludes the proof.

3.2 Separation Result

Next we separate the notions of weak specialized simulator UC and specialized simulator
UC. For this we use a cryptographic tool called time-lock puzzles, originally introduced
in [21].

Definition 6 (Time-lock puzzles). A PPT algorithm G (problem generator) together
with a PPT algorithm V (solution verifier) represent a time-lock puzzle if the following
holds:
-sufficiently hard puzzles: for every PPT algorithm B and for every e ∈ N, there is some
f ∈ N such that

sup
t≥kf ,|h|≤ke

Pr [(q, a)← G(1k, t) : V(1k, a, B(1k, q, h)) = 1] (2)

is negligible in k.
-sufficiently good solvers: there is some b ∈ N such that for every d ∈ N there is a PPT
algorithm C such that

min
t≤kd

Pr [(q, a)← G(1k, t); c← C(1k, q) : V(1k, a, c) = 1 ∧ |c| ≤ kb] (3)

is overwhelming in k.

Intuitively, a time-lock puzzle is a cryptographic tool used for proving the computa-
tional power of a PPT machine. G(1k, t) generates puzzles of hardness t and V(1k, a, c)
verifies that c is a valid solution as specified by a. The first requirement is that B cannot
solve any puzzle of hardness t, with t ≥ kf , for some f depending on B, with more
than negligible probability. The algorithm B may have an auxiliary input. This ensures
that even puzzles generated using hardness t chosen by B together with a trap-door
like auxiliary information (of polynomial length), do not provide B with more help in
solving the puzzle.

The second requirement is that for any polynomial hardness value there exist an
algorithm that can solve any puzzle of that hardness. It is important that the solution for
any puzzle can be expressed as a string of length bounded above by a fixed polynomial.

As promoted by [21] and later by [14], a candidate family for time-lock puzzles is

presented next. A puzzle of hardness t consists of the task to compute 22t
′

mod n
where t′ := min(t, 2k) and n = p · q is a randomly chosen Blum integer. Thus, G(1k, t) =
((n,min{t, 2k}), (p, q,min{t, 2k})), where n is a k-bit Blum integer with factorization

n = p · q, and V(1k, (p, q, t′), c) = 1 if and only if c ≡ 22t
′

mod p · q. Both solving
the puzzle and verifying the solution can be efficiently done if p and q are known. An
important property that we use in the following is that any such puzzle proposed above
has a unique solution.

We employ time-lock puzzles to obtain the following result:
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Lemma 2 (Weak SSUC Does Not Imply SSUC).
Assume that families of pseudo-random permutations and time-lock puzzles exist.

Then there are protocols that fulfill weak specialized simulator UC security but do not
fulfill specialized simulator UC security.

Proof. Let (π,F) be a pair of protocol and ideal functionality as defined below. The
only input the ideal functionality F requires is the security parameter 1k. Then F sends
a message to the adversary (i.e. ideal simulator S) asking for its computational hardness.
Using the reply value t′ from S (which is truncated by F to maximum k bits), the ideal
functionality invokes Gen(1k, t′)→ (q′, a′) to generate a time-lock puzzle q′ of hardness
t′, whose solution should verify the property a′. The puzzle q′ is sent to S which replies
with v′. Finally, F checks whether v′ verifies the property a′. In case a′ does not hold,
F stops without outputting any message to the environment. Otherwise, for every
value i ∈ {1, . . . , k}, F generates a puzzle qi of hardness ti = 2i. Let j be such that
2j ≤ t′ < 2j+1, so j ∈ {1, . . . , k}. For the puzzle qj , F computes the solution vj . F can
efficiently compute this solution as it knows the additional information aj . Additionally,
F chooses r uniformly at random from {0, 1}k. The output of F to the environment
is the tuple (q1, . . . , qk, gvj+r(0), r), where {gi}i∈{0,1}k with gi : {0, 1}k → {0, 1}k is
a family of pseudo-random permutations. Note that the addition between vj and r
considers both vj and r as values in {0, 1}k and the addition operation is performed
mod 2k. However, for ease of notation from now on we do not add this explicitly in the
equtions.

For each hardness t′, we call P (t′) the distribution of the view of Z when interacting
in the ideal world.

The real world protocol π, is defined similarly to F , the only difference is the final
output: π outputs to Z a tuple (q1, . . . , qk, r1, r2), with r1, r2 randomly chosen from
{0, 1}k. For each hardness t used by the adversary A when interacting with Z, we call
R(t) the distribution of the view of Z when interacting in the real world.

The proof has two steps. First, we show that π is as secure as F with respect to weak
specialized simulator UC security. Let D be a distinguisher of hardness tD (i.e., it can
solve puzzles of hardness less or equal to tD with overwhelming probability but it cannot
solve puzzles of hardness greater than tD with more than negligible probability) and an
adversary A of hardness tA. Let j be the minimum value such that 2j > max(tD, tA).
We only need to require that the simulator S has hardness t′ such that t′ ≥ 2j . This
will make the two distributions R(t′) and P (t) indistinguishable to D.

The intuition is that in the ideal world D would have to solve a puzzle with hardness
larger than tD. So, to D, the solution for such a puzzle looks just like a random value,
which is actually what the protocol π outputs to the environment.

More formally, let (A,Z,D) be a triple of real world adversary, environment and
distinguisher and let 1k be the security parameter. Then, let e be such that the length
of the messages sent by Z to D is bounded above by ke. From (2), there exists fDe such
that:

sup
t≥kfDe ,|h|≤ke

Pr [(q′, a′)← G(1k, t′) : V(1k, a′, D(1k, q′, h)) = 1]

is negligible in k. This intuitively means that D can solve puzzles of hardness larger

than kf
D
e only with negligible probability. Given A, in an analogue way we define kf

A
e .
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With the notation used in the description of π and F , it means that tD = kf
D
e and

tA = kf
A
e .

We construct S such that there exists a negligible function ε and k0 such that for
every k ≥ k0 and for every distribution of auxiliary input z we have:

|(Pr(D(EXECA,π,Z(k, z)) = 1)− (Pr(D(EXECF,S,Z(k, z)) = 1)| < ε(k). (4)

We take k0 such that for every k ≥ k0, it holds that max(tA, tD) < 2k.
For a given tA and tD and for j defined as above, let f ′ be such that 2j ≤ kf ′ ≤ 2k.

Let S be the simulator of hardness kf
′

that as first reply to F sends t′ := kf
′
. According

to (3), for d := f ′ there exists Cf ′ such that

Pr [(q′, a′)← G(1k, kf
′
); v′ ← Cf ′(1

k, q′) : V(1k, a′, v′) = 1 ∧ |v′| ≤ kb]

is overwhelming in k. When F sends a puzzle q′ to S, the simulator invokes Cf ′ for
(1k, q′) and sends to F the output v′ of Cf ′ . Internally, S simulates the adversary A
and emulates the messages that the adversary would receive from Z and π as follows:
When F requires the value of the computational hardness from S, then S acts as π
and requires the computational hardness from simulated A. When S receives t from
A, then it invokes Gen(1k, t), obtaining output (q, a) and forwards to simulated A the
puzzle q. Moreover, any message that internal A wants to send to the environment, S
forwards it to Z. Any message for A coming from Z is immediately forwarded by S to
the internally simulated adversary. This completes the construction of S.

By construction, S solves the puzzle sent by F with overwhelming probability and
hence the output of F to Z is (q1, . . . , qk, gvj+r(0), r) with the same probability. The
view of Z in the real world is (1k, t, q, v, (q1, . . . , qk, r1, r2)) and the view of Z in the
ideal world7 is (1k, t, q, v, (q1, . . . , qk, gvj+r(0), r)).

It remains to be shown that for the family of pseudo-random permutations as
defined above, the distributions R(t) and P (t′) are indistinguishable for D. The first
observation is that for r chosen uniformly at random from {0, 1}k, the sum vj + r is
also uniformly distributed in {0, 1}k. The second observation is that the simulator S
is constructed such that the distinguisher D can solve puzzle qj only with negligible
probability and hence obtain the unique solution vj with the same probability. Putting
these two observations together, we obtain that if D cannot compute the solution vj ,
then due to the pseudo-random permutation assumption, the distribution of gvj+r(0) is
indistinguishable from the distribution of a randomly chosen permutation gi evaluated
in 0. But by definition, this is the uniform distribution on {0, 1}k, so it equals the
distribution of r1. It is now trivial to see that the views of Z in the two worlds are
indistinguishable for D, and this concludes the first part of the proof.

Second, we prove that π is not as secure as F with respect to specialized simulator
UC security. Intuitively, for every hardness tS (polynomial in the security parameter k)
of a simulator machine S, there exists a distinguisher DS such that for every t ≤ tS , DS
7 One may argue of course that the view of Z may or may not contain the values t, q, v,

depending on the adversary A. Also, additionally to the view(s) stated above, the environment
could output the interaction that it has with A besides messages t, q, v. However, for the
analysis of this proof, the views considered above are the worst case scenario that would
allow a distinguisher to tell apart the two worlds.
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can solve puzzles of hardness t. As we will see next, D uses this property to distinguish
with non-negligible probability between the environment’s output distribution in the
real and in the ideal world. The intuition is that DS solves one by one the puzzles in the
output of F and for each solution evaluates the corresponding permutation in the value
0; as each puzzle has a unique solution, the result of this computation with respect to
puzzle qj equals the one before last value in the output of F to Z with overwhelming
probability but equals the one before last value in the output of π only with negligible
probability.

Formally, let A be the real world adversary that can solve puzzles of hardness tA
such that when receiving its input from the environment, it replies to π with tA and the
corresponding correct solution for the puzzle received. Let Z be the environment that
just sends the security parameter to all parties (i.e., including the adversarial parties),
receives their outputs and then outputs as view the messages received from the honest
parties (i.e., protocol π in the real world or F in the ideal world). For every simulator
S, we show that there exists a distinguisher DS and a distribution for the auxiliary
input z such that:

{EXECF,S,Z(k, z)}k∈N
DS
6≡ {EXEC π,A,Z(k, z)}k∈N.

Given S of hardness tS , we choose DS such that it can solve puzzles of hardness at
leas tD = max (tS , tA) with overwhelming probability in k. Such a DS exists according
to (3). Additionally, after receiving the view of Z, DS solves one by one each puzzle qi
included in that view that has associated hardness ti ≤ tD and it obtains each time the
corresponding correct and unique solution vi with overwhelming probability. Then DS
evaluates gvi+r in 0. Lets call m the one before last string in the output of the honest
party (i.e., F or π) to Z8. Next, DS checks if m = gvi+r(0) for any i as defined above.
If this check succeeds once, D outputs 1, otherwise it outputs 0. The output 1 implies
with overwhelming probability that m is a part of the view of Z from the ideal world
and the output 0 implies with overwhelming probability that m is a part of the view of
Z from the real world.

Indeed, if m is part of the view of the real world, then according to the definition of
π, m is a random string in {0, 1}k. For uniformly random r, due to the definition of
pseudo-random permutations, for every i, gvi+r(0) is uniformly distributed in {0, 1}k.
In this case, the probability for m = gvi+r(0) to hold is negligible, which is equivalent to
DS outputting 1 with negligible probability when the view of Z is from the real world.

Similarly, if m is part of the view of Z in the ideal world, then there exists j such
that gvj+r(0) and m are different only with negligible probability. This implies DS
outputs 0 with negligible probability when the view of Z is from the ideal world and
this concludes the proof.

We are now ready to conclude that 1-bit specialized simulator UC security and
specialized simulator UC security are not equivalent notions. By putting together the
results from lemma 1 and from lemma 2 we obtain:

Theorem 1 (1-bit SSUC and SSUC Not Equivalent). Assume time-lock puzzles
and pseudo-random permutations exist. Then there are protocols secure with respect to

8 Due to the definition of Z, the string m is also a part of the output of the environment.
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1-bit specialized simulator UC security which are not secure with respect to specialized
simulator UC security.

4 Equivalence of Security Notions

Fig. 1. Implication Relations among Computational Security Concepts

Weak 
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Implication relations among various security notions with respect to computational
security are depicted in figure 1. The continuous arrows depict the relations that we
prove in this paper, the other relations have been previously known.

In [5] it has been shown that stand-alone security does not imply specialized simulator
UC security. The implication in the opposite direction holds trivially. Similarly, it is
trivial to see that universal composability implies specialized simulator UC security.
In [14] it has been shown that specialized simulator UC security does not imply UC
security. It is also a known fact that specialized simulator UC security is equivalent to
security under 1-bounded concurrent general composition [15].

Our goal in this section is to prove that weak security under 1-bounded concurrent
general composition implies 1-bit specialized simulator UC security. A similar proof
technique has been used in [15], however, as it will be detailed below, our proof requires
more technicalities.

More formally, the result we show is the following:

Theorem 2 (Equivalence between Weak Security under 1-bounded Concur-
rent General Composition and 1-bit Specialized Simulator UC Security).
Let ρ be a protocol and F an ideal functionality. We have that ρ implements F under
1-bounded concurrent general composition with weak security, if and only if ρ securely
computes F under 1-bit specialized simulator UC security.

The corresponding proof can be found in the appendix.
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4.1 On Other Weak Security Notions

We show that the approach taken in theorem 2 is not an overkill. Indeed, there are
protocols that are secure with respect to the weak security definition but they are not
secure anymore in the standard stand-alone model.

Lemma 3 (Weak Security Does Not Imply Stand-alone Security). If time-lock
puzzles and pseudo-random permutations exist, then there are protocols that fulfill the
weak security notion, but do not fulfill the stand-alone security notion.

Proof. From theorem 2, weak security under 1-bounded concurrent general composition
is equivalent to 1-bit specialized simulator UC. As shown in [15], stand-alone security
under 1-bounded concurrent general composition is equivalent to specialized simulator
UC. According to theorem 1, the two UC variants are not equivalent. This implies weak
security and stand-alone security are also not equivalent9.

5 Conclusions

In this work we have shown that two variants of the UC security definition where the
order of quantifiers is reversed, namely 1-bit specialized simulator UC security and
specialized simulator UC security are not equivalent. This comes in contrast to the well
known result that UC security and 1-bit UC security are equivalent. We also show that
weak security under concurrent general composition is equivalent to 1-bit specialized
simulator UC. These results combined imply that weak security and stand-alone security
are not equivalent.

Acknowledgements
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[15] and for insightful discussions.

9 One may wonder if the equivalence result between UC security and specialized simulator UC
security that is known to hold in the extended UC model does not hinder the correctness
of this result. However, this is not the case. On one hand, in the extended UC model,
specialized simulator UC security and UC security are equivalent. Combining this with the
well known result of equivalence between UC security and 1-bit UC security, we obtain
that in the extended UC model, specialized simulator UC security and 1-bit specialized UC
security are equivalent. This equivalence should not look surprising, as it is obtained in a
more ”permissive” adversarial UC model. On the other hand, the results obtained in this
work show that there is at least one composition operation under which weak security and
stand-alone security are not equivalent.
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A Related Security Definitions

We give below a variant for the computational indistinguishability definition.

Definition 7 (Indistinguishability with respect to a Given Distinguisher).
We say that two distribution ensembles {X(k, z)}k∈N,z∈{0,1}∗ and {Y (k, z)}k∈N,z∈{0,1}∗
are computationally indistinguishable with respect to a given probabilistic polynomial

time distinguisher D and we write X
D≡ Y , if there exists a function ε, negligible in k

and k0 such that

|(Pr(D(X(k, z)) = 1)− (Pr(D(Y (k, z)) = 1)| < ε(k),

for every k ≥ k0.

A.1 Review of UC Model

There are examples [7] of protocols secure in the stand-alone model do not remain secure
even when two of its instances run concurrently. More stringent security definitions take
into account that a protocol interacts not only with its adversary, but also with other
(possibly polynomially many) protocols or even (polynomially many) copies of itself.
This is intuitively captured by the universal composability (UC) security framework [4].

In this case, the exterior world with respect to a given protocol is formalized by the
notion of environment. Intuitively, the environment for a protocol contains all the other
protocols, systems or users, together with their own adversaries, that may or may not
interact with the considered protocol. It is important to note that the adversary for the
protocol is not considered to be a part of the environment, but it could be controlled
by the environment.

In order to determine whether a protocol securely implements a given task, first
we define the ideal process for carrying out that task. Intuitively, in an ideal process
for a given task, all parties give their inputs directly to the ideal functionality for that
task which can be regarded as a formal specification of the security requirement of
the task. According the universal composability security definition, a protocol securely
implements a task if any damage that can be caused by an adversary while interacting
with the protocol and the environment, can also be caused by an adversary interacting
with the ideal process for that task and the environment. Intuitively, the entity assessing
the amount of damage is the environment. Since there is no damage we can cause to
the ideal functionality, the protocol considered must also be secure. We say that the
protocol runs in a real-world model and the ideal functionality runs in the ideal-world
model.

Real-world Protocols More formally, let ρ be a cryptographic protocol. The real-
world model for the execution of protocol ρ contains the following interactive Turing
machines (ITMs): an ITM Z called the environment, a set of ITMs representing the
parties running the protocol ρ and an adversary ITM A. We now have a more detailed
look at each of these ITMs.

The environment Z represents everything that is external to the current execution
of ρ and it is modeled as an ITM with auxiliary input. Throughout the course of the
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protocol execution, the environment can provide inputs to parties running ρ and to the
adversary. These inputs can be a part of the auxiliary input of Z or can be adaptively
chosen by the environment. Also Z receives all the outputs that are generated by the
parties and the adversary. The only interaction between the environment Z and the
parties is when the environment sends the inputs and receives the outputs. Finally, at
the end of the execution of ρ, the environment outputs all the messages received.

The adversary can receive inputs from Z at any moment during the protocol
execution and it can send replies to Z at any time. In order to capture any possible
adversarial behaviour, A and Z can communicate freely throughout the course of the
protocol and they can exchange information after any message sent between the parties
and after any output made by a party.

Next, we look at the notion of corruption. By considering a party P corrupted
we mean that from that point on that adversary has access to all the inputs and
communication messages send or received by that party, and for any communication
model, A can decide to alter such messages in any way it wants. Moreover, all the past
incoming or outgoing messages of P are known to A.

In order for A to corrupt a party P , it first informs Z by sending it a corruption
message (corrupt, P ). Thus Z is aware at any given moment about the corruption state
of all parties. Depending on the moment when the adversary A can corrupt a party,
there are two corruption models: static and adaptive. In the static corruption model,
the adversary A is allowed to corrupt parties only in the beginning of the protocol,
before the respective parties receive their inputs from Z. In contrast, if A is allowed to
corrupt a party at any given moment during the protocol execution, then the adversary
is called adaptive. Another way to look at the corruption model is by inspecting whether
the adversary is passive, (i.e., only learns all inputs and communication messages a
corrupted party sends and receives), or if A is active. The latter case implies A is allowed
to modify any input a corrupted party gets and also any communication message sent.

In order to simplify the presentation, we use an equivalent definition for the static
corruption model. As in the standard static case, the moment of corruption is fixed in
the beginning, we can skip sending and receiving the corruption messages. Instead, we
assume the corrupted parties are fixed from the start and the adversary does not have
to choose them. Then, the previous static adversary definition is equivalent to the latter
formulation, which we use in this work.

Besides corrupting parties, the adversary may interfere with the communication
between honest parties. The most basic UC model ensures that all messages are handed
to the adversary and the adversary delivers messages of its choice to all parties. This
model makes no assumption on the communication properties: authenticity, secrecy or
synchrony of the messages delivered. For the more specialised models of authenticated,
secure or synchronous communication, an ideal functionality is added to the basic model
to capture the respective properties.

Authenticated communication assumes the adversary cannot alter content of mes-
sages without being detected. The synchronous communication model captures the
property that messages are all delivered and without delay from the moment they were
generated. The ideally secure communication model assumes the adversary receives all
messages, but it has neither access to the content of communication, nor possibility
to modify any message without breaking authenticity. In this model, the adversarial
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capabilities are limited to either delaying or not delivering some or all messages between
the uncorrupted parties.

When the protocol execution ends, Z outputs its view of that execution. This view
contains messages that Z has received from the adversary A and outputs of all parties.
Formally, EXEC ρ,A,Z(k, z) denote the output of Z in an execution of the protocol ρ
with adversary A and environment Z, where k is the security parameter and z is the
auxiliary input to the environment Z. We denote by EXEC ρ,A,Z the family of random
variables {EXEC ρ,A,Z(k, z)}k∈N.

Ideal Process and Ideal Functionalities In order to formalize the ideal process, we
do not want to define a different model, but we rather need to adapt to the one above.
In the same way as in the real-world, the environment Z is the only ITM that can send
inputs at any moment to the ideal process parties and to the ideal adversary. In the
case of the ideal process, the adversary is called the ideal simulator and is commonly
denoted by S . Moreover, Z receives all the outputs generated by the parties, as well
the possible outputs of S .

The first difference is that in the ideal model there exists a trusted party, the ideal
functionality, that cannot be directly accessed by the environment. This works as follows:
Parties involved in the ideal process give their inputs to the ideal functionality which
computes outputs for each party and sends these values to them. Hence, the role of the
ideal functionality is to receive inputs, perform computations and send results to the
ideal parties. As these parties do not take an active role in the computation and just
send inputs to and receive outputs from the ideal functionality, they are called dummy
parties of the ideal functionality.

The second difference with the real-world model is that messages delivered by the
adversary to dummy parties are ignored. In the ideal protocol the adversary sends
corruption messages directly to the ideal functionality. The ideal functionality then
determines the effect of corrupting a party. A typical response is to let the adversary
know all the inputs received and outputs sent by the party so far.

The environment Z and the simulator S can communicate freely during the execution
of the ideal process. Additionally, the ideal functionality informs the simulator every
time it wants to output a message. If the simulator agrees, then the respective output
is made. This is required by the UC ideal model in order to allow S to simulate the
behavior of a UC real world adversary delaying messages or not sending some or all of
the communication among real-world protocol parties.

Similar to the real-world model, the environment Z outputs its view in the end of the
ideal process execution. The view contains all the messages received from the simulator
as well as all the messages that the dummy parties output to Z. More formally, by
EXECF,S,Z(k, z) we denote the output of Z in an execution of the ideal process with
the trusted party F , simulator S and environment Z, where k is the security parameter
and z is the auxiliary input to the environment Z. We denote by EXECF,S,Z the family
of random variables {EXECF,S,Z(k, z)}k∈N.

Protocol Emulation We now define what it means that a real-world protocol ρ
emulates with respect to UC security another real-world protocol θ. The environment
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Z is the ITM deciding whether the interaction with the protocols and their respective
adversaries can be distinguished.

All the ITMs used in either of the protocol executions for ρ or θ, including the
environment Z, are computationally bounded. Thus, it is sufficient if we formalize the
notion of emulation in terms of computational indistinguishability. The environment Z
will act as a distinguisher for the two protocol executions. Since all the information Z
gains throughout its interaction is contained within the view Z outputs in the end, it is
sufficient to compare the two views. Essentially, protocol ρ emulates protocol θ if for
every adversary A there is an ideal simulator S such that for every environment Z the
views of the two interactions are computationally indistinguishable.

Definition 8 (UC Security). Let ρ and θ be PPT protocols. We say that ρ UC
securely emulates θ if for every PPT adversary A there is a PPT simulator S such
that for every PPT distinguisher Z and for every input distribution of z ∈ {0, 1}∗, the
two families of random variables {EXECF,S,Z(k, z)}k∈N and {EXEC ρ,A,Z(k, z)}k∈N
are computationally indistinguishable.

This general notion of emulation can be adapted to the special case of the ideal process.
We say that a protocol realizes an ideal functionality if it emulates the ideal process for
that functionality.

In the following we also use a relaxed version of this definition, where the order of
quantifiers between the environment and the ideal-world simulator is reversed [15].

Definition 9 (Specialized Simulator UC Security). Let ρ be a protocol and F an
ideal functionality. We say that ρ emulates F under specialized simulator UC security if
for every probabilistic polynomial time adversary A and for every environment Z, there
exists a simulator S such that for every distribution of auxiliary input z ∈ {0, 1}∗, we
have:

{EXECF,S,Z(k, z)}k∈N ≡ {EXEC ρ,A,Z(k, z)}k∈N

In the above definition, the output of the environment is considered to be a string
of arbitrary length. If the only change we make to the above definition is to consider
environments that have a 1-bit output, we obtain the notion of 1 -bit specialized simulator
UC security. It has been an open problem [15] whether considering only environments
with one bit output would produce an equivalent definition. In this work we show this
is not the case.

Definition 10 (1-bit Specialized Simulator UC Security). Let ρ be a protocol
and F an ideal functionality. We say that ρ emulates F under 1-bit specialized simulator
UC security if for every probabilistic polynomial time adversary A and for every 1-bit
output environment Z, there exists a simulator S such that for every input z ∈ {0, 1}∗,
we have:

{EXECF,S,Z(k, z)}k∈N ≡ {EXEC ρ,A,Z(k, z)}k∈N.

If in the specialized simulator UC definition we let the simulator also depend on
the distinguisher who is the only PPT machine to establish whether the output of the
executions in the real UC world and ideal UC world cannot be told apart, then we
obtain the notion of weak specialized simulator UC security.
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Definition 11 (Weak Specialized Simulator UC Security). Let ρ be a protocol
and F an ideal functionality. We say that ρ emulates F under weak specialized sim-
ulator UC security if for every probabilistic polynomial time adversary A, for every
environment Z and for every distinguisher D, there exists a simulator S such that for
every distribution of input z ∈ {0, 1}∗, we have:

{EXECF,S,Z(k, z)}k∈N
D≡ {EXEC ρ,A,Z(k, z)}k∈N.

A.2 Review of Concurrent General Composability Model

Next we review the notions of stand-alone security and security under concurrent general
composability from [15] when additionally the order of quantifiers is reversed. The idea
for having the order of quantifiers reversed emerged in [6] and was further studied in
[12, 11].

Definition 12 (Weak Stand-alone Security). Let ρ be a protocol and F an ideal
functionality. Then, ρ computes F under weak security if for every probabilistic
polynomial-time real-model adversary A and for every probabilistic polynomial-time
distinguisher D there exists a probabilistic polynomial-time ideal-model adversary S
such that for every x̄, z ∈ {0, 1}∗:

{IDEALFS (k, x̄, z)}k∈N
D≡ {REALρ,A(k, x̄, z)}k∈N.

In general, given a security notion there are two approaches to ensure the security
properties of a protocol under composition. One way is to prove that the security
property defined for the stand-alone case is preserved under composition. The other
way is to define the security notion for the protocol directly under composition. The
latter approach has the benefit that it captures the security property without having
the drawback of a possible very strong and thus very restrictive stand-alone definition.
Due to this reason we will focus on the second approach.

The concurrent general composition has been introduced in [15]. In this security
model, a protocol ρ that is being investigated is run concurrently, possibly multiple
times, with an arbitrary protocol π. The protocol π can be any arbitrary protocol and
intuitively, it represents the network activity around ρ. There is another way to look at
this: one can consider protocol π to be the external protocol that gives inputs and reads
the outputs of the internal protocol ρ. As π is arbitrary, it can call multiple instances
of ρ. However, we consider that different instances run independently from one another.
The only correlation between them are the inputs and outputs, in the following way:
the inputs for a certain run of ρ that are provided by π might depend on the previous
inputs and outputs given and collected by π. Also, the messages of π may be sent
concurrently to the execution of ρ. This composition of π with ρ is denoted as in the
original notation by πρ.

As in the case of universal composability, in order to give the definition of security
for ρ under concurrent general composition, we need to compare the execution of ρ with
that of an ideal functionality so we have to define the real and the ideal world.

The computation in the ideal world is performed among the parties of π and a
trusted party, playing the role of ideal functionality F . Thus the messages considered
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in the ideal world are standard messages between parties of π and ideal messages
between π and F . The protocol π is providing F with inputs and after performing
necessary computations, F sends the results to parties of π. The ideal adversary is
called a simulator and as in the UC model, is denoted by S. In addition to having
full control over the parties it corrupts (see also the case of real world adversary), the
simulator controls the scheduling of the messages between the parties of π and if not
otherwise mentioned, it can also arbitrarily read and change messages. An exception is
represented by the messages between π and F : they are ideally secure, so the simulator
can neither read nor change them 10.

During the computation, the honest parties follow the instructions given by π and in
the end they output on their outgoing communication tape whatever value is prescribed
by π. The corrupted parties output a special corrupted symbol and additionally the
adversary may output an arbitrary image of its view. Let z be the auxiliary input
for the ideal-world adversary S and let the inputs vector be x̄ = (x1, ..., xm). Then
the outcome of the computation of π with F in the ideal world (which we may also
call F-hybrid world ) is defined by the output of all parties and S and is denoted by
{HYBRIDFπ,S(k, x̄, z)}k∈N.

The computation in the real world follows the same rules as the computation in
the ideal world, only that this time there is no trusted party. Instead, each party of
π has an ITM that works as the specification of ρ for that party. Thus, all messages
that a party of π sends to the ideal functionality in the ideal world are now written
on the input tape of its designated ITM. These ITMs communicate with each other in
the same manner as specified for the parties of ρ. After the computation is performed,
the results are output by these ITMs and the corresponding parties of π copy them
on their incoming communication tapes. These messages are used by the parties of π
in the same way as the messages output by F in the ideal-world. Similarly as above,
in the real-world the adversary has full control over message delivery. There is one
exception: any uncorrupted party of π can write and read directly to and from the
input and respectively output tape of its designated ITM without any interference from
the adversary 11. Moreover, when we say that a real-world party is corrupted, we mean
that a party of π and its corresponding ITM are corrupted 12.

Similarly to the ideal world, during the computation, the honest parties follow the
instructions of π and their corresponding ITM and in the end they output on their
outgoing communication tape whatever value is prescribed by π. The corrupted parties
output a special corrupted symbol and additionally the real-world adversary A may
output an arbitrary image of its view. Let z be the auxiliary input for A and let the
inputs vector be x̄ = (x1, ..., xm). Then the outcome of the computation of π with
ρ in the real world is defined by the output of all parties and A and is denoted by
{REALπρ,A(k, x̄, z)}k∈N.

10 This comes in contrast with the standard definition of UC ideal protocol execution, where it
is not enforced that the channels between the trusted parties and the rest of the participants
are ideally secure.

11 Actually, the ideal adversary is not even aware of this taking place. This is similar to the
UC communication between the environment and the real-world or ideal-world parties.

12 This is not a restriction as an adversary that corrupts both a party of π and its ITM can
just fully control only one of them and let the other one follow its prescribed protocol.
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Independent of the world where the corruption takes place, the adversary could
be static or adaptive. If the adversary is static, then the parties that are under the
control of the adversary are fixed and do not depend on its auxiliary input or random
tape. This is a restrictive definition of static corruption. However, the definition of
adaptive corruption and the corresponding proof include the proof for a standard static
corruption case. In the case of adaptive corruption, the adversary may decide during the
protocol to arbitrarily corrupt a party, depending on the messages received so far. In
both cases, once the adversary has corrupted a party then it learns all previous inputs
and messages that the party received. From the moment of the corruption further, the
adversary has full control over the messages that the party sends. Moreover, we consider
that the adversary fully controls the message scheduling: he decides if and when to
deliver the messages between output tape of one party (or, more general, machine) to
the input tape of another. As mentioned above, there is one exception: the adversary
does not have any control over the messages that an uncorrupted party sends to its
corresponding ITM.

We are now ready to state the definition of security under concurrent general
composition as in [15]. There are two notions of security under concurrent general
composition: one for unbounded or polynomial calls that π may make to F and the
second one, when π utilizes a fixed number of calls to F .

Definition 13 (Security under Concurrent General Composition). Let ρ be a
protocol and F a functionality. Then, ρ securely computes F under concurrent general
composition if for every probabilistic polynomial-time protocol π in the F-hybrid model
that utilizes ideals calls to F and every probabilistic polynomial-time real-model adversary
A for πρ, there exists a probabilistic polynomial-time hybrid-model adversary S such
that for every x̄, z ∈ {0, 1}∗:

{HYBRIDFπ,S(k, x̄, z)}k∈N ≡ {REALπρ,A(k, x̄, z)}k∈N.

If we restrict the protocols π to those that utilize at most ` ideal calls to F , then ρ is
said to securely compute F under `-bounded concurrent general composition.

We also use a weak version of the security definition from above.

Definition 14 (Weak Security under Concurrent General Composition). Let
ρ be a protocol and F a functionality. Then, ρ computes F under concurrent general
composition with weak security if for every probabilistic polynomial-time protocol π in
the F-hybrid model that utilizes ideals calls to F , for every probabilistic polynomial-time
real-model adversary A for πρ and for every probabilistic polynomial-time distinguisher
D, there exists a probabilistic polynomial-time hybrid-model adversary S such that for
every x̄, z ∈ {0, 1}∗:

{HYBRIDFπ,S(k, x̄, z)}k∈N
D≡ {REALπρ,A(k, x̄, z)}k∈N.

If we restrict the protocols π to those that utilize at most ` ideal calls to F , then ρ is
said to compute F under `-bounded concurrent general composition with weak security.
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B Postponed Proofs

In the following we need one-time information-theoretic message authentication codes
so we include the definition below.

Definition 15 (One-Time Information-Theoretic Message Authentication
Code). A one-time information-theoretic message authentication code is a triple
(Gen,Mac,Verify) where Gen(1n) outputs a key k, Mac(k, x) outputs a tag t (ob-
tained using k) for the message x of length n and Verify(k,m, t) outputs 0 or 1. The
correctness property requires that ∀n,∀k in the range of Gen(1n) and ∀x ∈ {0, 1}n we
have Verify(k, x,Mac(k, x)) = 1.

Moreover, the following security property is fulfilled. For every adversary A such
that

Pr [(x′, t′)← A(x, t)∧x′ 6= x∧Verify(k, x′, t′) = 1 : x← A(1n), k ← Gen(1n), t← Mac(k, x)]

is negligible in n.

Lemma 4 (Equivalence between Weak Security under 1-bounded Concur-
rent General Composition and Weak Specialized Simulator UC Security).
Let ρ be a protocol and F an ideal functionality. Then ρ securely computes F under
1-bounded concurrent general composition with weak security if and only if ρ securely
implements F under weak specialized simulator UC security.

Proof. As expected, the more involved part of the proof is the implication from weak
security under concurrent general composition to specialized simulator 1-bit UC security.
The reverse direction can be shown analogously to the proof existing in the initial
version of [15].

Let R1 , . . . ,Rm be the parties for ρ. Let (A,Z,D) be a triple consisting of UC real
world adversary (possibly adaptive), environment and distinguisher. We need to show
there exists an UC ideal world simulator S such that the views of the environment in
real world and in the ideal world cannot be distinguished by D. The adversary A may
not corrupt any party, in which case A is still capable of scheduling messages in the
network. Additionally, remember that in the UC model the only messages that A has
no control of, even by scheduling, are the input messages that the environment Z writes
directly on the input tapes of the parties and the output messages that Z reads directly
from the parties output tapes.

The intuition behind the proof is as follows: We use the fact that ρ composed with
an instance of any protocol (i.e., even one that has more parties than ρ) is secure13.
We construct a protocol π for m + 2 parties that besides the m parties of ρ has PZ
and PA playing the role of Z and A respectively. In this way, we reduce the proof of
weak specialized simulator UC security of ρ to weak security under concurrent general
composition. As mentioned above, the adaptive adversary A could corrupt everyone or
could corrupt no party and act as a network adversary. Thus, the motivation behind
using the two extra parties in the protocol π is to ensure there is always an honest entity
and also a corrupted entity, same as in the UC world. In order to model the ideally secure

13 The security is of course in the sense of definition 14.

23



channels that the specialized simulator UC (real/ideal) setting ensures by definition
between Z and the parties of ρ, we use one-time pads and one-time authentication
MACs in the concurrent general composition world between PZ and the parties of ρ.

However, it is important to know how long should the keys be. They should suffice
for all necessary encrypted and authenticated communication. Let q be a polynomial
such that for every security parameter n and for every i the value q(n) bounds above
the length of encryption and authentication keys needed between each pair PZ and Pi

with i ∈ {1, . . . ,m}. We postpone until after the description of π why such polynomial
q exists and how it is computed.

Formally, protocol π is described below and it can be used for both the real and the
ideal concurrent general composability worlds.

1. Inputs: Each party Pi with i ∈ {1, . . . ,m} receives a pair (k i
mac , k

i
enc) of keys14.

Party PA receives the empty string λ as input. Party Pm+1 receives an input z and
also the tuples ((k1

mac , k
1
enc), . . . , (km

mac , k
m
enc))15;

2. Outputs: The protocol outputs whatever PZ outputs. The rest of the parties of π
output an empty string λ;

3. Instructions for Pi , with i ∈ {1, . . . ,m}: When Pi receives (input , xi, ti) from
PA, it verifies the correctness of the tag. If verification succeeds, it computes
mi = xi ⊕ k i

enc and sends mi either to its corresponding ITM that emulates Ri of
ρ or to the functionality F . (This depends on whether π is part of the composed
protocol πρ or πF . Remember that independent of the channels model, an adversary
in the concurrent general composability world cannot interfere in any way with
the messages that an uncorrupted party of π wants to send to its associated ITM
for ρ.) If verification fails, then Pi halts. When the ITM emulating Ri or when F
respectively sends the output value yi to Pi , then Pi computes ei = yi ⊕ k i

enc and
vi = MAC (k i

mac , ei) and sends the message (output , ei, vi) to party PZ ;

4. Instructions for PZ : Upon receiving an input value z, it uses it for internally
invoking Z. When internal Z wants to send a message (input ,mi) to party i, then
PZ computes xi = mi ⊕ k i

enc and ti = MAC (k i
mac , xi) and sends (input, xi, ti) to

Pi . When PZ receives a message (output , yi, vi) from party Pi , it first checks the
correctness of the tag vi. If verification succeeds, then PZ computes mi = yi ⊕ k i

enc

and stores mi. Otherwise, it halts. When internal Z wants to read the output tape
of party i, then PZ looks up if there is a message mi stored from party Pi . If so, it
writes mi to corresponding tape of Z, otherwise it just writes λ to Z. Regarding
the communication with its adversary, when PZ receives a message from Z of the
form (Z,A,m), it forwards it to PA. Similarly when PZ receives a message of the
form (A,Z,m) from PA, it forwards it internally to Z.

14 For ease of notation, we use one encryption key and one MAC key per party Pi , as they can
be considered long enough to encrypt and authenticate the entire communication between Pi

and PZ . However, for each different encryption (authentication) that needs to be performed,
a new part of the string k i

enc (and k i
mac , respectively) is used.

15 The input strings to π may have any distribution and the indistinguishability between the
real and the ideal concurrent general composability worlds would still be preserved. However,
for this proof we restrict the inputs to encryption keys (i.e., they are uniformly distributed in
{0, 1}q(k)) and MAC keys (i.e., they are generated with the Gen key generation algorithm).
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5. Instructions for PA: This party has no predefined instructions. PA is needed in order
to provide a means of communication for the adversary of the general concurrent
composition setting which in this model can only send messages through a corrupted
party16.

We now explain how the polynomial q is chosen. Since the communication between
PZ and each of the parties Pi with i ∈ {1, . . . ,m} has to be secure and authenticated,
the length of the secret keys for the one-time pad and and for the one-time MAC
should be long enough. The intuition is that the length of the encryption keys shared
by PZ and Pi is bounded above by the length of the longest string that machine Z can
write plus the longest string that Ri can write. Since both machines are polynomially
bounded and they are fixed before the protocol π is constructed, there exist a polynomial
qi such that qi(n) bounds from above the length of the common encryption keys for
every security parameter n. Moreover, the length of the secret key needed for the
authenticated messages between PZ and Pi is at most as long as the one-time pad secret
keys. Putting the above arguments together we conclude there exists a polynomial q
such that q(n) ≥ max{q1(n), . . . , qm(n)}.

For the protocol π given above we construct an adversary Aπ interacting with the
composed protocol πρ. Intuitively, the task of Aπ is to enable the communication among
Z (invoked by PA), A (invoked by the adversary Aπ) and the ITMs implementing ρ, in
the same way as it happens in the UC real world. In order to make this work and for
reasons explained above, the adversary Aπ corrupts PA. We construct the adversary
Aπ as follows: It internally runs the code of the UC real world adversary A and if A
corrupts a party Ri , then Aπ corrupts the party Pi together with its corresponding
ITM for computing ρ. The intuition is that Aπ instructs the corrupted parties of π
to run the protocol as before, while their corresponding corrupted ITMs follow the
instructions of A. The handling of messages by Aπ is as follows:

1. Input messages (input , xi, ti) sent by PZ are forwarded immediately by Aπ to Pi ;
Output messages (output , ei, vi) sent by Pi are immediately forwarded to PZ .
Moreover, as soon as party Pi is corrupted, its current state and all its previously
received messages are sent to A. The information that Z expects to receive upon
corruption is sent by Aπ to PZ . All messages received from this point on by Pi are
forwarded by Aπ to A.

2. When PZ sends a message (Z,A,m) to party PA, then Aπ forwards it to its internal
run of A as if coming from Z. The messages (A,Z,m) that A wants to send to Z
are forwarded by Aπ to PZ ;

3. All messages that A instructs a corrupted party Ri to send to an uncorrupted party
Rj will be forwarded by Aπ to the corresponding ITM of Pj as if coming from the
corresponding ITM of Pi; However A schedules messages among parties Ri with
i ∈ {1, . . . ,m}, Aπ does the same for the messages between the corresponding ITMs
of parties Pi with i ∈ {1, . . . ,m}.

4. The adversary Aπ has no control over the messages between an uncorrupted Pi and
its corresponding ITM for computing ρ.

16 This is in contrast to the UC model where even if none of the protocol parties is corrupted,
the adversary can interact with the environment Z.
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After having defined the protocol π and the adversary Aπ, we prove that the output
of PZ in the execution of πρ (which we denote by {REALπρ,Aπ (k, z̄)|PZ}k∈N) and the
output of Z in the UC real world are identically distributed. For every z ∈ {0, 1}∗, let
z̄ = (z, k1

enc , k
1
mac , . . . , k

m
enc , k

m
mac), λ, (k1

enc , k
1
mac), . . . , (km

enc , k
m
mac) be the vector where

the first component is the input to PZ , the second component is the input to PA, and
each of the other components is the input to a party Pi , with i ∈ {1, . . . ,m}.

We prove that for every z ∈ {0, 1}∗, for every k i
enc randomly chosen from {0, 1}q(n)

and for every k i
mac generated by Gen(1q(n)) we have:

{EXEC ρ,A,Z(k, z)}k∈N ≡ {REALπρ,Aπ (k, z̄)|PZ}k∈N (5)

which as a special case, of course implies:

{EXEC ρ,A,Z(k, z)}k∈N
D≡ {REALπρ,Aπ (k, z̄)|PZ}k∈N (6)

Our claim is based on the following facts: First, the inputs to parties are provided by
Z in both models, as in the composed protocol πρ the party PZ distributing the inputs is
internally running Z. Thus the input messages in both worlds are identically distributed.
By construction, Aπ follows the instructions of A (i.e., for network scheduling and for
the corrupted messages among the corresponding ITMs for P1 , . . . ,Pm) and it also
provides an internal perfect emulation for the view of A. Once an honest party Pi

receives an input, it immediately writes it on the input tape of its associated ITM
for ρ. This implies that such a party with its ITM follows the same protocol as the
corresponding party of ρ. We can now conclude that the view of Z in the UC real world
for ρ and the view of PA in the composed protocol πρ are identically distributed, so
equation (5) follows.

According to the definition of weak security under 1-bounded general concurrent
composition, we know that for the triple π, Aπ and D, there exists a polynomially
bounded hybrid simulator Sπ such that for every z̄ defined as above we have:

{HYBRIDFπ,Sπ (k, z̄)}k∈N
D≡ {REALπρ,Aπ (k, z̄)}k∈N. (7)

We are now ready to construct a simulator S for the UC ideal world by using Sπ.
We have to observe that in the hybrid world of concurrent general composition and
in the UC real world the messages going over the network are the same. Intuitively,
the new simulator S has to have a scheduling indistinguishable from that of Sπ so the
constructed simulator S internally invokes Sπ. As a short summary of the messages
that have to be defined for S: communication from S to F , communication from S to
Z and network scheduling (between parties of π and F). As S internally runs Sπ, the
constructed adversary has to provide an emulation for the entities that Sπ is interacting
with: the parties of πF 17. Such an emulation of πF consists of defining the input/output
messages of the parties, the messages among P1 , . . . ,Pm ,PA,PZ and the messages from
P1 , . . . ,Pm to F .

17 Observe that it is actually sufficient to simulate the parties of π without the messages sent
by F as they can be forwarded by S from its communication with the ideal functionality.

26



1. Messages sent by F to S are forwarded to the internally emulated Sπ. The messages
that internally emulated Sπ wants to send to F are forwarded by S to F . Similarly,
the messages that internally emulated Sπ sends to the internally simulated PZ are
forwarded by S to Z. The messages that Z sends to S are forwarded internally to
Sπ as coming from PZ .

2. Simulation of PZ : When S receives a message (Z,A,m) from Z, it sends it to the
internally emulated PA as if coming from the emulated PZ . When Sπ instructs
emulated PA (which is a corrupted party) to send a message (A,Z,m) to PZ , the
simulator S forwards the same message to Z.

3. Simulation of PA: As an uncorrupted party, PA does not do anything, just receives
messages from PZ . These messages were actually sent by Z to S. When internal
Sπ wants to corrupt emulated PA (and this is actually the first party of π that Sπ
corrupts), then all that S needs to do is to send Sπ all the messages it received from
Z.

4. In the UC ideal world, when an uncorrupted dummy party Di receives an (input ,mi)
from the environment Z, it immediately forwards the input value to F . When S
receives over the network such a message18, it generates xi randomly in the length of
the received input and a MAC key k i

mac with the corresponding generation algorithm,
computes ti = MAC(k i

mac , xi) and internally sends the message (input , xi, ti) to
Pi as if coming from PZ . When F wants to send an output message (i.e., same
discussion as above) to Di, the simulator S internally randomly generates yi in the
length of the output received over the network, then computes vi = MAC(kimac, yi)
and sends message (output , yi, vi) to Sπ as if coming from the ideal functionality in
πF .
Whenever Sπ corrupts a party Pi , we have one of the following 3 cases:
-For a corrupted party Pi , that Sπ wants to corrupt before a certain input is
sent to it by PZ , the simulator S corrupts the corresponding dummy party Di,
informs Z about it and generates a correct key pair (k i

enc , k
i
mac) for encryption and

authentication and gives them to Sπ19. When input value(s) xi for Di are received
by S over the network20, then S computes yi = xi ⊕ k i

enc and vi = MAC(kimac, yi).
Next, S sends yi, vi to Sπ as coming from PZ . When an output oi is sent by F
to Di, then S computes ci = xi ⊕ k i

enc and ti = MAC(kimac, yi) and sends ci, ti to
simulated Pi as if coming from PZ .
-For a corrupted party Pi , that Sπ corrupts after a certain input is sent to Pi ,
but before the corresponding output is received, first the emulation from the case
of uncorrupted input takes place. Thus, a message (yi, vi) has been already sent
from PZ to Pi . When the corruption takes place, the simulator S corrupts the
corresponding dummy party Di, informs Z about it and generates a correct key
pair (k i

enc , k
i
mac) for encryption and authentication. Then it sends the pair to Sπ,

together with the correct input xi in plain. When an output oi is sent by F to

18 If the channels between the dummy parties and the ideal functionality are ideally secure,
then the value received could also be encrypted, so what is forwarded should not depend on
what is received.

19 This simulates the information that Sπ should learn from the newly corrupted (simulated)
party.

20 As Di is corrupted, they are received from Z unencrypted.
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Di, then S computes ci = xi ⊕ k i
enc and ti = MAC(kimac, yi) and sends ci, ti to

simulated Pi as if coming from PZ .
-For a corrupted party Pi that Sπ corrupts after a certain input is sent to it and after
the corresponding output is received, the simulator S corrupts the corresponding
dummy party Di and informs Z about the corruption21. Then S reads in plain
the input and output values received by Di and, using the simulated encrypted
messages, computes the corresponding encryption keys which are sent to Sπ as Pi

input.
5. The following is valid only for honest parties: When Sπ delivers a message from Pi

to the ideal functionality in πF , then S delivers the same message from Di to F22.
When Sπ delivers an output from Pi to PZ , then S delivers the output from F to
Di23.

In order to conclude the proof we have to show that the output of the executions
in both hybrid composition world and UC ideal world can be distinguished only with
negligible probability. For this we detail the following three steps: a proof that the view
of internally emulated Sπ is identical with πF , a proof that the messages in the two
worlds (hybrid composition and the UC ideal world) are identically distributed and
finally, a proof that the delivery of output messages happens in the same time in both
worlds.

We start by analyzing S internal emulation for Sπ. It is easy to see that by con-
struction Sπ, internally invoked by S, gets and delivers the same messages as Sπ does
in the concurrent general composition world.

Next, we look at the messages sent between entities in both worlds. In the ideal
UC world, the inputs are sent by Z and in the hybrid world with πF , the inputs are
sent by PZ who runs Z. The messages that are sent between PZ (running Z) and PA
(corrupted and controlled by Sπ), are the same as the messages sent in the UC ideal
world between Z and S who runs Sπ. In both worlds, the messages sent by parties to
the ideal functionality are the same: the honest parties just forward their inputs and the
corrupted parties are instructed by Sπ and respectively by S running Sπ. We only need
to show that the delivery of messages is the same in both worlds. Combining this claim
with the proof above, we obtain that the outputs of both worlds are computationally
indistinguishable.

Finally, we compare message delivery in both worlds. It is clear that the messages
between adversary and the environment Z or party PZ running Z are identically
delivered. The same hods for messages between the parties and the ideal functionality.
We treat in more detail the case of inputs and outputs delivery. By definition, in the UC
world, the input messages are written by Z directly on the input tapes of the protocol
parties and for the honest parties, the adversary has no control over this step24. In

21 Note that the simulation done by S for uncorrupted Pi receiving encrypted and authenticated
input and output from PZ already took place.

22 Actually, the simulator Sπ has to make two deliveries (from PZ to Pi and from Pi to the
ideal functionality in πF ), before S does the delivery of message from Di to F .

23 Similarly as above, the simulator Sπ has to make two deliveries (the output of F to Pi and
from Pi to PZ), before S does its delivery from F to Di.

24 However, in the UC ideal world, immediately after receiving inputs, the honest dummy
parties are activated and they write their inputs on the communication tape for the ideal
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the execution of πF , PZ is distributing the inputs to the rest of the parties, but they
are scheduled by Sπ, so we cannot know when they are delivered. However, we ensure
that in both worlds an input of an honest party reaches the ideal functionality in the
same time. Indeed, this holds as an honest dummy party Di once it receives its input,
it immediately sends it to the ideal functionality. As simulator S delivers this message
only after Sπ has delivered the same message to F , we have shown the claim.

Similarly, we show that an output message is delivered to Z and to the party PZ
in the same time. Both entities have basically the same instructions. We assume the
machine environment Z reads all output tapes whenever it is activated. This gives the
most power to the environment to distinguish between the delivery of messages. By
construction, S sends an output of F to an honest dummy party Di only when Sπ sends
the same output to PZ . Once it receives its output, the honest Di immediately writes
this value on its output tape (and this can be read by Z at any time). Analogously, Z,
(which is internally run by PZ), can read at any time the tape with output messages
sent for it. So we have that also the outputs from the ideal functionality are delivered
simultaneously in both worlds. This implies that for every z̄ defined as before we have:

{HYBRIDFπ,Sπ (k, z̄)|PZ}k∈N≡{EXECF,Sπ,Z(k, z)}k∈N (8)

Thus, it holds that:

{HYBRIDFπ,Sπ (k, z̄)|PZ}k∈N
D≡ {EXECF,S,Z(k, z)}k∈N (9)

By combining relations (6),(7) and (9), we can conclude the proof.

We are now able to prove the main result:

Theorem 3 (Equivalence between Weak Security under 1-bounded Concur-
rent General Composition and 1-bit Specialized Simulator UC Security).
Let ρ be a protocol and F an ideal functionality. Then ρ securely computes F under
1-bounded concurrent general composition with weak security if and only if ρ securely
implements F under 1-bit specialized simulator UC security.

Proof. The theorem follows immediately by combining lemma 4 and lemma 1.

functionality. As the simulator is responsible for the delivery of messages, in this way it will
learn that inputs have been sent to the ideal functionality.
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