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Abstract. A new FCSR representation called a diversified representa-
tion is used to replace the Galois one, avoiding the LFSRization attack.
Hence, to build hardware and software oriented diversified FCSRs be-
comes an important problem. In this paper, we show a method of con-
structing a diversified FCSR for hardware implementation with a given
connection integer. The construction is simple and convenient. And the
diversified FCSRs we get are able to meet the hardware criteria.
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1 Introduction

FCSRs was first proposed to generate sequences for cryptographic applications
by Klapper and Goresky in 1994 [14]. According to their nonlinearity, FCSRs
have been suggested as an alternative to LFSRs for avoiding the drawback of
linear structure. The generated sequences of FCSRs are 2-adic sequences. A 2-
adic sequence is associated with a 2-adic integer p/q. The statistical properties
of these sequences have been presented in [9] [10] [14] [15].

FCSRs are usually implemented by hardware and software using the Galois
representation rather than the Fibonacci one [11]. Family of hardware stream
ciphers based on FCSRs–F-FCSRs [1] [2] [3] [4] and family of software stream
ciphers based on FCSRs–X-FCSRs [5] [7] were proposed for stream cipher design.
However, Galois FCSRs were exposed to a very powerful attack [12] [16] by
LFSRization of them.

In [4] [7], a new FCSR representation called a ring or diversified representa-
tion was proposed to respond to the LFSRization attack. This new representation
is based on the transition faction with matrix instead of with Boolean functions.
Other advantages were brought by this new representation if the transition func-
tion is well-chosen. To build hardware oriented FCSRs, the criteria are that the
critical path length must be equal to 1 and the fan-out must be 2. For software
applications, a particular realization suitable for software utilization has been
given. This realization uses a specific circuit which acts essentially on binary



words. In [6], Arnault et al. have generalized diversified FCSRs through partic-
ular automata called 2-adic automata. These automata have been constructed
of inputs and outputs, with the entries of matrices in the set of 2-adic integers.

In this paper, we focus on the hardware stream cipher designed in the form of
a special king of 2-adic automata, called ternary diversified FCSRs. The criteria
to build this automaton were presented in [4] [6]. The criteria could be achieved
by well-chosen of the transition matrix A:
—the matrix must be composed of −1,0 and 1, the over-diagonal must be full
of 1, an−1,0 = 1, and the number of no-zero elements for a given row or a given
column must be at most two;
—the connection integer q = det(I − 2A) must be prime and the order of 2
module q must be |q| − 1 for preserving the output sequences of good statistical
properties.

To get a suitable transition matrix, in [6], the authors have presented an
efficient algorithm. They pick a random matrix in the form of the requirements,
and then test whether the connection integer q = det(I − 2A) meets the stan-
dards. But it is time-consuming because they have to compute and test q every
time. So an open problem has been presented: How can a diversified FCSR be
constructed when a connection integer is specified?

We solve this problem in this paper. The method of our construction is simple
and convenient. It is more efficient than the algorithm above. Theorem 4 and
Theorem 5 in section 3 are our main results, and through the results we also
prove a conjecture in [6]: For each given q of size n, there is a transition matrix
with a critical path of length 1 and fan-out 2. This paper is organized as follows:
In section 2, we recall some properties of 2-adic integers and the concepts of
diversified FCSRs. In section 3, we present our construction. In section 4, we
make a conclusion and point out some deficiencies of our construction.

2 Diversified FCSRs

In this section, we briefly introduce some properties of 2-adic integers and some
notations. Then we present the criteria to build hardware oriented FCSRs.

2.1 2-adic integers and notations

First, we recall some properties of 2-adic numbers. For more details, the readers
could refer to [8].

A 2-adic integer is formally a power series s =
∑∞

i=0 si2
i with si ∈ {0, 1}.

The set of 2-adic integers is a ring denoted by Z2. Addition and multiplication
in Z2 can be performed by reporting the carries to the higher order terms, i.e.,
2n + 2n = 2n+1 for all n ∈ N. s is a positive integer if there exists an integer K
such that sn = 0 for all n ≥ K. Moreover, any odd integer q has an inverse in
Z2 which can be computed by q−1 =

∑∞
n=0 q

′n, where q′ = 1− q.
The following theorems present the relationship between eventually periodic

sequences and 2-adic integers.



Theorem 1. Let s =
∑∞

i=0 si2
i be a 2-adic integers, with si ∈ {0, 1}. Denote

S = (si)i∈N. Then the sequences S is eventually periodic if and only if there
exists two numbers p and q in Z, q odd, such that s = p/q. Moreover, S is
strictly periodic if and only if pq ≤ 0 and |p| ≤ |q|.

Theorem 2. Let s =
∑∞

i=0 si2
i = p/q with si ∈ {0, 1}, pq ≤ 0, |p| ≤ |q|, q

odd and gcd(p, q) = 1. Denote S = (si)i∈N. Then S is strictly periodic and the
period of S is the order of 2 modulo q, i.e., the smallest integer P such that
2P ≡ 1(modq), T ≥ |q| − 1.

Definition 1. An l-sequence is a periodic sequence S = (si)i∈N such that s =∑∞
i=0 si2

i = p/q with si ∈ {0, 1}, pq ≤ 0 and the order of 2 modulo q is |q| − 1.

In this paper, we use the notations proposed in [6].
Given a sequence a = (a(t))t∈N of elements in {0, 1}, we have∑

t≥t0

a(t)2t−t0 = a(t0)2
0 + a(t0 + 1)21 + · · ·

in Z2.
A time dependent vector m in {0, 1}n is denoted at time t by m(t) =

(m0(t), . . . ,mn−1(t)). And we denote

M(t0) =
∑
t≥t0

m(t)2t−t0

in Z2, i.e., M(t0) = (M0(t0), . . . ,Mn−1(t0)), where

Mi(t0) = mi(t0)2
0 +mi(t0 + 1)21 + · · · ,

0 ≤ i ≤ n− 1.
For any matrix T of size n× n, we denote by T ∗ the adjugate of T . That is,

with T = (ti,j)0≤i,j≤n−1 and T ∗ = (t∗i,j)0≤i,j≤n−1, we have

t∗i,j = (−1)i+j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

t0,0 · · · t0,i−1 t0,i+1 · · · t0,n−1

...
...

...
...

...
...

tj−1,0 · · ·
...

... · · · tj−1,n−1

tj+1,0 · · ·
...

... · · · tj+1,n−1

...
...

...
...

...
...

tn−1,0 · · · tn−1,i−1 tn−1,i+1 · · · tn−1,n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
The following property of determinants is important for our construction in

this paper:

Proposition 1. Let A be a matrix over a ring R of size n× n. Let Ei,j be the
matrix with a single 1 in position i, j. Then det(A+ λEi,j) = det(A) + λCofi,j,
where Cofi,j denotes the cofactor i, j of the matrix A.



2.2 Binary and ternary diversified FCSRs

A new FCSR representation was first introduced in [4] for responding to the
attack against the stream ciphers based on Galois FCSRs [12].

Definition 2. A binary diversified FCSR is an automaton composed of a main
shift register of n binary cells m = (m0,m1, . . . ,mn−1), and a carry register of
n integer cells c = (c0, c1, . . . , cn−1). It is updated using the following relations:{

m(t+ 1) = Am(t) + c(t) mod 2
c(t+ 1) = Am(t) + c(t) div 2

where A is a n× n matrix with entries 0 or 1 in Z, called transition matrix.

Binary diversified FCSRs is a special kind of no-input binary 2-adic FSMs
which have been presented in [6]. Moreover, in [6], using subtracter-with-carry to
compute the difference between two 2-adic integers, the authors have proposed
an extension of binary 2-adic FSMs, which allows the entries of the matrices in
{−1, 0, 1}. These automata are called ternary 2-adic FSMs. Here, we only care
about the no-input ones.

Definition 3. A ternary diversified FCSR is the same automaton as the one
defined in Definition 2 except for the entries of the transition matrix A in
{−1, 0, 1}.

Binary diversified FCSRs is a special kind of ternary diversified FCSRs, hence
ternary diversified FCSRs is often called diversified FCSRs for short. There are
some properties of 2-adic FSMs presented in [6], which are also the behaviors of
diversified FCSRs.

Proposition 2. Consider a diversified FCSR composed of main register m and
carry register c. The transition matrix is A. Let M(t0) =

∑∞
i=0 m(i+t0)2

i. Then
we have

M(t0 + 1) = AM(t0) + c(t0)

Theorem 3. The series Mi(t0) observed in each cell of the main register are
2-adic expansion of pi/q with pi ∈ Z and with integer q = det(I−2A). q is called
the connection integer of the automaton.

2.3 Hardware oriented FCSRs and hardware criteria

To build hardware oriented FCSRs, we use diversified FCSRs to replace Galois
FCSRs for avoiding the powerful attack proposed in [12]. The reader can refer
to [4] for more details of hardware oriented FCSRs. Here, we focus on the choice
of the transition matrix A for hardware implementation.

We first consider some of the characteristics of hardware implementation:
Critical path— the critical path length is the maximum number of logic gates
the signal has to pass though. If this number is low, the automaton can be clock



at a higher rate.
Fan-out— the signal of a binary cell should drive a minimal number of gates as
exposed in [13]. Large fan-out makes possible differential power analysis attacks.
Cost— the number of logic gates must be as small as possible to lower consump-
tion and cost of the automaton.

Shorter length of critical, small fan-out and lower cost lead to high clock
frequencies. These data can be computed from the transition matrix A:
— the critical path length is the smallest integer j such that 2j is greater or
equal to the highest Hamming weight of the rows ai;
— the fan-out is the highest Hamming weight of the columns bi;
— the cost is the Hamming weight of A.

The critical path of length 1 and fan-out 2 is the minimum, so the require-
ments of the transition matrix A = (αi,j)0≤i,j≤n−1 of size n× n are as follows:
— the over-diagonal must be full of 1 and αn−1,0 = 1 (to preserve the shifting);
— the number of no-zeros for any given row or a given column must be at most
two (to preserve the critical length 1 and fan-out 2);
— q = det(I − 2A) is prime, and the order of 2 modulo q is |q| − 1 (to preserve
outputting l-sequences).

An algorithm has been given to choose a suitable transition matrix for hard-
ware implementation in [6]. In this algorithm, a matrix A has been constructed
in the form of the requirements, then q = det(I − 2A) is tested whether it is
prime and whether 2 is the primitive root modulo q. If q passes the test, A
is a suitable matrix. However, this algorithm is time-consuming, because every
time q has to be computed and tested whether it is primitive. Hence, at the
end of the paper [6], the authors leave an open problem: How can a diversi-
fied FCSR be constructed when a connection integer is specified? Fortunately,
we find a method to solve this problem. By our method, for a given integer q,
we can immediately construct a suitable A, without any test and complicated
computation. Our construction will be showed in the next section.

3 Construction A with a given q

Given a negative odd integer q, we will construct a matrix A = (αi,j)0≤i,j≤n−1

with entries in {−1, 0, 1} meeting the requirements as follows:
— the over diagonal must be full of 1 and αn−1,0 = 1;
— the number of no-zero elements for a given row or a given column must be at
most two;
— q = det(I − 2A).

Lemma 1. Let

A0 = (ai,j)0≤i,j≤n−1 =


0 1
0 1
. . .

. . .

0 1
1 0

 and A′
0 = (a′i,j)0≤i,j≤n−1 =


0 1
0 1
. . .

. . .

0 1
1 1





be two matrices over Z of size n × n, the over diagonals of A0 and A′
0 are

full of 1, an−1,0 = a′n−1,0 = a′n−1,n−1 = 1, and the other entries are all 0.
Let B0 = (bi,j)0≤i,j≤n−1 = I − 2A0, B′

0 = (b′i,j)0≤i,j≤n−1 = I − 2A′
0. Then

det(B0) = 1 − 2n, det(B′
0) = −1 − 2n, and the adjoint matrices of B0 and B′

0

are

B∗
0 = (b∗i,j)0≤i,j≤n−1 =


1 2 22 · · · 2n−1

2n−1 1 2 · · · 2n−2

...
...

...
. . .

...
2 22 23 · · · 1


where b∗i,j = 2(j−i)modn, for 0 ≤ i, j ≤ n− 1;

B′∗
0 = (b′∗i,j)0≤i,j≤n−1 =


−1 −2 −22 · · · −2n−2 2n−1

2n−1 −1 −2 · · · −2n−3 2n−2

...
...

...
. . .

...
...

22 23 24 · · · −1 2
2 22 23 · · · 2n−1 1


where
b′∗i,j = 2(j−i)modn, for 0 ≤ i ≤ n− 1, 0 ≤ j ≤ n− 2 and i > j;

b′∗i,j = −2(j−i)modn, for 0 ≤ i ≤ n− 1, 0 ≤ j ≤ n− 2 and i ≤ j;

b′∗i,n−1 = 2n−1−i, for 0 ≤ i ≤ n− 1.

Proof. det(B0) and det(B′
0) can be computed directly. B∗

0 and B′∗
0 can be com-

puted with classical inversion algorithms. 2

Our idea is that given a initial matrix A0 or A′
0 defined in Lemma 1, we

replace a 0 of the matrix with an 1 or −1 each time following the requirements
of A mentioned at the beginning of this section, and each time we get a new
matrix Anew. Denote B = I − 2Anew. Det(B) is made to approach to q step
by step, and finally equal to q. By Proposition 1, we can choose a position for
replacing the 0 through observing the adjoint matrix B∗ of B, which seems to
help achieving our goal. However, it is troublesome that we have to compute B∗

in every step, because B∗ is changing every time. Fortunately, we find that some
elements of B∗ are invariant when modifying some entries in the lower triangular
of B.

Lemma 2. Let B0 be the matrix defined in Lemma 1, i.e.,

B0 = (bi,j)0≤i,j≤n−1 =


1 −2

. . .
. . .

. . . −2
−2 1


where bi,i = 1 for 0 ≤ i ≤ n − 1, bi,i+1 = −2 for 0 ≤ i ≤ n − 2, bn−1,0 =
−2, and other entries are all 0. Suppose B∗

0 = (b∗i,j)0≤i,j≤n−1 is the adjoint



matrix of B0. Change some elements bi,j(i > j) of B0, and suppose they are
bi0,j0 , bi1,j1 , . . . , big−1,jg−1 for it > jt (0 ≤ t ≤ g − 1), i0 < i1 < · · · < ig−1

and j0 > j1 > · · · > jg−1. Denote B1 = (ci,j)0≤i,j≤n−1 as the new matrix, where
ci,j = bi,j for i, j ̸= it, jt (0 ≤ t ≤ g−1), and cit,jt (0 ≤ t ≤ g−1) are the changed
elements. Denote B∗

1 = (c∗i,j)0≤i,j≤n−1 as the adjoint matrix of B1. Then

c∗k,l = b∗k,l for k < l, k ≤ i0 and l ≥ j0.

Moreover, if we use B′
0 =


1 −2

. . .
. . .

1 −2
−2 −1

 which is also defined in Lemma

1 to replace B0, the result is still valid.

Proof. Consider b∗k,l (k < l), we have

b∗k,l = (−1)k+ldet(B∗
k,l)

where B∗
k,l is a matrix of size (n− 1)× (n− 1) by deleting the lth row the kth

column of B0, i.e.,

B∗
k,l =



b0,0 · · · b0,k−1 b0,k+1 · · · b0,l b0,l+1 · · · b0,n−1

... · · ·
...

... · · ·
...

... · · ·
...

bk−1,0 · · · bk−1,k−1 bk−1,k+1 · · · bk−1,l bk−1,l+1 · · · bk−1,n−1

bk,0 · · · bk,k−1 bk,k+1 · · · bk,l bk,l+1 · · · bk,n−1

... · · ·
...

... · · ·
...

... · · ·
...

bl−1,0 · · · bl−1,k−1 bl−1,k+1 · · · bl−1,l bl−1,l+1 · · · bl−1,n−1

bl+1,0 · · · bl+1,k−1 bl+1,k+1 · · · bl+1,l bl+1,l+1 · · · bl+1,n−1

... · · ·
...

... · · ·
...

... · · ·
...

bn−1,0 · · · bn−1,k−1 bn−1,k+1 · · · bn−1,l bn−1,l+1 · · · bn−1,n−1



=

D 0
E

∗ F


where

D =

 b0,0 · · · b0,k−1

...
. . .

...
bk−1,0 · · · bk−1,k−1

 =


1 −2

1 −2
0

. . .
. . .

1 −20
1





E =


bk,k+1 bk,k+2 · · · bk,l

bk+1,k+1 bk+1,k+2 · · · bk+1,l

...
... · · ·

...
bl−1,k+1 bl−1,k+2 · · · bl−1,l

 =



−2
−2

0
. . .

. . .* −2



F =

 bl+1,l+1 · · · bl+1,n−1

... · · ·
...

bn−1,l+1 · · · bn−1,n−1

 =


1 −2

1 −2
0

. . .
. . .

1 −20
1


Then, det(B∗

k,l) = det(D)det(E)det(F ) = (−2)l−k, and b∗k,l = (−1)k+l ·
(−2)l−k = 2l−k. We can see that bit,jt (0 ≤ t ≤ g − 1) are all in the posi-
tion ∗ of Bk,l and E, so changing bit,jt can not effect the value of det(B∗

k,l). It

implies that c∗k,l = b∗k,l = 2l−k for k < l, k ≤ i0 and l ≥ j0.

Moreover, if we use B′
0 to replace B0, F

′ =


1 −2

1 −2
0

. . .
. . .

1 −20 −1

 is substituted

for F in the above proof, and other discussions are similar. Therefore, the result
is still valid. 2

Now we can construct A with some special q.

Let q = −2n − qn−12
n−1 − · · · − q12 + 1 be a negative odd integer. In the

following we assume that n ≥ 3 and at least one coefficient among qi(2 ≤ i ≤
n − 1) is 1. It is easy to see that the conclusions of the following theorem are
also true for these exclusive cases by Lemma 1.

Theorem 4. Given a negative odd integer q. Let q = −2n − qn−12
n−1 − · · · −

q12 + 1, where qi = 0 or 1 for 1 ≤ i ≤ n − 1. Let s = (qn−1, qn−2, . . . , q2) be a
vector of size n− 2, and suppose that there is no consecutive 1 in s, i.e.,

s = (0, . . . , 0, qi0 , 0, . . . , 0, qi1 , 0, . . . , 0, . . . , 0, . . . , 0, qik−1
, 0, . . . , 0),

where qij = 1 (0 ≤ j ≤ k − 1, 2 ≤ ij ≤ n − 1) are all the elements equal to 1
in s, ij − ij+1 ≥ 2 for 0 ≤ j ≤ k − 2. Then we can construct a matrix A with
entries in {−1, 0, 1}, meeting the requirements presented at the beginning of this
section. The construction is as follows:
Denote A = (αi,j)0≤i,j≤n−1 of size n× n.

If q1 = 0, set αi,i+1 = 1 for 0 ≤ i ≤ n − 2, αn−1,0 = 1, αij+j−1,j = 1 for
0 ≤ j ≤ k−1 and other elements of A equal to 0, then A meets the requirements.



If q1 = 1, set αi,i+1 = 1 for 0 ≤ i ≤ n − 2, αn−1,0 = αn−1,n−1 = 1,
αij+j−1,j = −1 for 0 ≤ j ≤ k − 1 and other elements of A equal to 0, then A
meets the requirements.

Proof. If q1 = 0, let A0 = (ai,j)0≤i,j≤n−1, B0 = (bi,j)0≤i,j≤n−1 = I − 2A0 and
B∗

0 = (b∗i,j)0≤i,j≤n−1 be the matrices defined in Lemma 1. Then the construction
above is equal to change aij+j−1,j into 1 for 0 ≤ j ≤ k−1, which corresponds to
change bij+j−1,j into −2. It is easy to see that ij+j−1 > j because ij ≥ 2. Since
ij−ij+1 ≥ 2 for 0 ≤ j ≤ k−2, then ij+1+j < ij+j−1 for j = k−2, k−3, . . . 1, 0.
Therefore we have

det(I − 2A) = det(B0)− 2b∗0,i0−1 − 2b∗1,i1+1−1 − · · · − 2bk−1,ik−1+k−1−1

= det(B0)− 2× 2i0−1 − 2× 2i1−1 − · · · − 2× 2ik−1−1

= −2n − 2i0 − 2i1 − · · · − 2ik−1 + 1 = q

by Proposition 1, Lemma 1 and Lemma 2. It is easy to see that every element
changed in this construction is in different rows and columns.

The proof of the case q1 = 1 is similar to the proof above, starting with the
matrix A′

0 defined in Lemma 1 instead of A0. 2

If there exists consecutive 1 in s, the construction in Theorem 4 is invalid.
However, we can dispose s by a fact:

2t+s + 2t+s−1 + · · ·+ 2t = 2t+s+1 − 2t,

where t, s ∈ N. Hence, if there exists consecutive 1 in s, i.e., a string of 0 11 · · · 1︸ ︷︷ ︸
l

0

in s, we can change it into 1 00 · · · 0︸ ︷︷ ︸
l−1

−10.

Two special cases for existing consecutive 1 in s are considered in the following
theorem :

Theorem 5. Given a negative odd integer q. Let q = −2n − qn−12
n−1 − · · · −

q12 + 1, where qi = 0 or 1 for 1 ≤ i ≤ n − 1. Then we can construct a matrix
A with entries in {−1, 0, 1}, meeting the requirements presented at the beginning
of this section. The construction is as follows:

Let s = (qn−1, qn−2, . . . , q2) be a vector of size n−2. From right to left, do the
following by iteration: if there is a string of 1 in s, i.e., 0 11 · · · 1︸ ︷︷ ︸

l

0, change it into

1 00 · · · 0︸ ︷︷ ︸
l−1

−10. At the end of the iteration, we get a new vector s′ = (s′n−1, . . . , s
′
2).

Then we have:

Case 1: there is no consecutive 1 in s′, such as

s′ = (0, . . . , 0, s′i0 , 0, . . . , 0, s
′
i1 , 0, . . . , 0, . . . , 0, . . . , 0, s

′
ik−1

, 0, . . . , 0),



where s′ij (0 ≤ j ≤ k − 1, 2 ≤ ij ≤ n − 1) are all the no-zero elements in s′,
ij − ij+1 ≥ 2 for 0 ≤ j ≤ k − 2. We construct A as in Theorem 4:
Denote A = (αi,j)0≤i,j≤n−1 of size n× n.

If q1 = 0, set αi,i+1 = 1 for 0 ≤ i ≤ n − 2, αn−1,0 = 1, αij+j−1,j = s′ij for
0 ≤ j ≤ k−1 and other elements of A equal to 0, then A meets the requirements.

If q1 = 1, set αi,i+1 = 1 for 0 ≤ i ≤ n − 2, αn−1,0 = αn−1,n−1 = 1,
αij+j−1,j = −s′ij for 0 ≤ j ≤ k − 1 and other elements of A equal to 0, then A
meets the requirements.

Case 2: there is consecutive 1 in the left of s′, i.e.,

s′ = (s′n−1, s
′
n−2, . . . , s

′
l, s

′
l−1, 0, . . . , 0, s

′
i0 , 0, . . . , 0, s

′
i1 , 0, . . . , 0, . . . , 0, . . . , 0, s

′
im−1

, 0, . . . , 0),

where s′n−1 = s′n−2 = · · · = s′l = 1 and s′l−1 = 0(l > 2), s′i (l ≤ i ≤ n−1) and s′ij
(0 ≤ j ≤ m−1) are all the no-zero elements in s. Then let s′′ = (s′′n, s

′′
n−1, . . . , s

′′
2)

be a vector of size n−1, where s′′n = s′′n−1 = · · · = s′′l+1 = 0, s′′l = −1 and s′′i = s′i
for i < l. Denote a matrix A1 = (βi,j)0≤i,j≤n of size (n+ 1)× (n+ 1).

If q1 = 0, set βi,i+1 = 1 for 0 ≤ i ≤ n − 1, βn,0 = 1, βij+j−1,j = s′′ij
for 0 ≤ j ≤ m − 1, and other elements of A1 equal to 0, then A1 meets the
requirements.

If q1 = 1, set βi,i+1 = 1 for 0 ≤ i ≤ n− 1, βn,0 = βn,n = 1, βij+j−1,j = −s′′ij
for 0 ≤ j ≤ m − 1, and other elements of A1 equal to 0, then A1 meets the
requirements.

Proof. The construction is the same as Theorem 4 after s has been changed into
s′ or s′′. Hence we only need to prove that the disposal of s is feasible. Through
the discussion before this theorem, we have

s′n−12
n−1 + s′n−22

n−2 + · · ·+ s′22
2 = qn−12

n−1 + qn−22
n−2 + · · ·+ q22

2.

Then, if q1 = 0, by Theorem 4, we have
case 1:

det(I − 2A) = −2n − s′i02
i0 − s′i12

i1 − · · · − s′ik−1
2ik−1 + 1

= −2n − s′n−12
n−1 − · · · − s′22

2 + 1

= −2n − qn−12
n−1 − · · · − q22

2 − q12 + 1 = q

case 2:

det(I − 2A1) = −2n+1 − s′′i02
i0 − s′′i12

i1 − · · · − s′′im−1
2im−1 + 1

= −2n+1 − s′′n2
n − s′′n−12

n−1 − · · · − s′′22
2 + 1

= −2n+1 + 2l − s′l−12
l−1 − · · · − s′22

2 + 1

= −2n − 2n−1 − · · · − 2l − s′l−12
l−1 − · · · − s′22

2 + 1

= −2n − s′n−12
n−1 − · · · − s′22

2 + 1

= −2n − qn−12
n−1 − · · · − q22

2 − q12 + 1 = q

If q1 = 1, the proof is similar to the computation above. 2



It is a pity that the construction of Theorem 5 can not get a shortest diversi-
fied FCSR with a given q, and in case 2 we even construct a longer one than the
size of q. Maybe there exists a method to construct a shortest diversified FCSR
with a given integer, but we have not found it yet.

Example 1. q = −747
We have −747 = −29 − 27 − 26 − 25 − 23 − 22 + 1, then q1 = 0 and s =

(s8, s7, . . . , s2) = (0111011) = (011110− 1) = (1000− 10− 1).
Let i0 = 8, i1 = 4, i2 = 2, si0 = 1, si1 = −1, si2 = −1. Set A = (αi,j)0≤i,j≤8,

αi,i+1 = 1 for 0 ≤ i ≤ 7, α80 = α70 = 1 and α41 = α32 = −1. We get

A =



0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 −1 0 1 0 0 0 0
0 −1 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0


and det(I − 2A) = −747.

Example 2. q = −937
We have −937 = −29 − 28 − 27 − 25 − 23 − 2 + 1, then q1 = 1 and s =

(s8, s7, . . . , s2) = (1101010). Let s′ = (s′7, . . . , s
′
2) = (00− 101010).

Let i0 = 7, i1 = 5, i2 = 3, s′i0 = −1, si1 = 1, si2 = 1. Set A = (βi,j)0≤i,j≤9,
βi,i+1 = 1 for 0 ≤ i ≤ 8, β90 = β99 = β60 = 1 and β51 = β42 = −1. We get

A =



0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 −1 0 0 1 0 0 0 0
0 −1 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 1


and det(I − 2A) = −937.

4 Conclusions

In this paper, we have given a method of constructing a diversified FCSR for
hardware implementation with a given connection integer q. This construction is
simple, convenient and useful for hardware oriented FCSRs. It is more efficient



than the algorithm presented in [6]. The results of this paper have solved an
open problem and a conjecture came up in [6]. However, this construction can
not get a shortest diversified FCSR with a given integer. Therefore, to find a
method to solve this problem is still open.
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