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Abstract. Cloud storage, among other cloud computing services, is becomming more and more preva-
lent in the IT industry. In a secure cloud storage application, a user Alice outsources (backups) her
data file together with some authentication data to a potentially untrusted Cloud Storage Server Bob.
Later, Alice wants to periodically and remotely verify the integrity of her data stored with Bob using
the authentication data, without keeping a local copy of the data file or retrieving back the data file
during the verification. We propose two secure and efficient methods that allow Bob to prove to Alice
that he indeed keeps her data file intactly:
– Our first method is the first provable-secure Proof of Retrievability scheme constructed over integer

domain, and has the same complexity as Shacham and Waters [1].
– Our second method reduces the communication complexity of Shacham and Waters [1] from O(s)

to O(1), where keeping other aspects of complexity unchanged, using our new construction of a
functional encryption scheme.

Keywords: Cloud Storage, Proof of Retrievability, Remote Data Integrity Check, Homomorphic
Authentication Tag, Functional Encryption

1 Introduction

In a cloud storage service, many users (individuals or companies) store (or backup) their data
files on a remote cloud storage server through Internet. These data may or may not be retrieved,
depending on the usrs’ future demand, which is hard to predict in advance in many cases. There
is a chance that some portion of the data is corrupted in the cloud storage server, but the owner
of the data is not aware of it and will be suffered from various loss (e.g. economic loss) due to the
corrupted data. The threat to data itegrity in cloud storage is indeed realistic and several events
about massive loss of Gmail and Hotmail have been reported. It is desired to allow the data owner
to check the integrity of their data stored in cloud storage server remotely, in an efficient and
reliable manner, without simply trusting in the cloud storage server. The separation between the
guarantee of data integrity and trust in the potential dishonest cloud storage server, may conciliate
users who are afraid to adopt cloud computing service due to security concern.

A data owner, say Alice, has many reasons to not trust the messages from the cloud storage
server Bob, which includes but not limited to: (1) Bob has incentive to save his storage and com-
putation cost by exploiting the weakness of the authentication mechanism; (2) Bob may collude
with the business competitor of the Alice and intend to fool Alice with altered data which may
provide the competitor advantage over Alice; (3) Bob may be compromised due to internal at-
tacker (e.g. angry unsatisfied employee) or outside attacker (e.g. third party attacker tempering the
communication channel); (4) Occasional harddisk failure and CPU/RAM malfunction and so on.

The above concerns and efficiency requirment rule out the following straightforward approaches:
(1) The data owner Alice computes and keeps a hash (e.g. SHA256) value of her data file before
outsourcing the data to cloud storage server. Later the data owner can ask the cloud storage server
to compute and send back the hash value. This method is not robust for multilple verifications,



since the potential untrusted cloud storage server could keep the hash value and pass all subsequent
verifications without keeping the user’s data any more, so that cloud storage server can save storage
cost and computation cost. (2) The data owner keeps a local copy of her data after outsourcing.
Then in each verification, the data owner can choose a random key k and asks the cloud storage
server for the MAC value of her data w.r.t. the key k. Data owner Alice can verify the returned MAC
value with her local copy of data. This method requires linear storage w.r.t. the outsourced data on
Alice’s side, and violate or weaken the benefits of cloud storage service. (3) In each verification, Alice
can retrieve the data back, compute a hash value localy, and compare it with the pre-computed hash
value that is kept in Alice’s local storage. This method requires linear communication bandwidth
w.r.t. the data size per verification.

Our Controbution Our contributions can be summarized as below.

– We propose the first secure POR scheme over integer domain:
• We design a new short homomorphic verification tag over integer domain, where the bit-

length of a tag is smaller than the input. We prove that the proposed tag function is a secure
MAC (Message Authentication Code).
• We design a new POR scheme based on the short homomorphic verification tag. The pro-

posed POR scheme is efficient. Precisely, our scheme requires 2 IP packets per vericiation,
constant storage overhead on verifier side and 2% storage overhead on prover side, and the
computation on both sides requires only addition, multiplication and stream cipher opera-
tion.
• We prove that the proposed POR scheme is secure under Riemann hypothesis in standard

model.
– We improve Shacham and Waters [1]’s scheme (the one with private verification) by reducing

the communication complexity from O(s) to O(1):
• We propose a new functional encryption scheme. In our functional encryption scheme w.r.t.

the one-way keyed function family {fρ}, a decryption key kρ w.r.t. function key ρ can be
generated from a secret key. With the decryption key kρ and a ciphertext of a message Msg
as input, the decryption algorithm will output a function value fρ(Msg) = ΩρMsg for some
constant Ω.
• We design a new POR scheme by incorporating the above functional encryption scheme

into Shacham and Waters [1]’s scheme. The new method improves the communication from
O(s) to O(1).
• We prove that the new method is secure under a slightly weak model of POR: If all accept

or reject decisons are completely hidden from the cloud storage server, the new scheme is a
secure POR.

To some extent, our scheme combines advantages of both Shacham and Waters [1] and Ate-
niese et al. [2]. Shacham and Waters [1] is provably secure under the strongest model of Juels [3],
and is efficient in computation where only addition, multiplication and stream cipher operation are
involved. However, Shacham and Waters [1] requires linear (w.r.t. data file size) storage overhead on
Bob’s side. Ateniese et al. [2] requires small storage overhead (precisely a small fraction of the data
file size) in the bright aspect, but expensive exponention 1 with large exponent in computation. Its
security is proved under a weaker PDP model. Our scheme requires only addition, multiplication

1 Note that Ateniese et al. [2] gave an efficient variant scheme E-PDP that avoids expensive exponention operations.
However, this variant scheme E-PDP is broken by Shacham and Waters [1]. The detailed discussion is given in
Section 1.1.



and stream cipher operation are involved, and small storage overhead, and it is proably secure un-
der POR model. Furthermore, all of the three schemes require two IP packets for communication
per verification.

1.1 Related work

Recently, a lot of works [3,2,4,1,5,6,7,8,9,10,11] have devoted to the study of remote data integrity
check. Juels et al. [3] presented a strong security model, Ateniese et al. [2] gave an efficient scheme
which is secure under a weaker PDP model. [4,1,9] proposed efficient methods using some sorts of
homomorphic authentication tag. [6] extends to dynamic setting and [10] exploits public verifiability
and [11] studied the privacy issue in public verification.

It is worthy to point out that, the most efficient variant scheme E-PDP by Ateniese et al. [2]
is suffering the attack by Shacham and Waters [1]. In Ateniese et al. [2], the main construction
requires the prover to compute the product

∏
(i,ai)∈Chal T

ai
i for all tags Ti selected by the challenge

Chal. The authors proposed an efficient variant scheme, named E-PDP, by setting all coefficients
ai in the challenge Chal as 1, so that only multiplication is involved and expensive exponention
is avoided. Shacham and Waters [1] presented an attack on E-PDP, such that the adversary can
answer correctly a non-negligible fraction of queries, but there exists no extractor that can recover
any data block.

2 Formulation

2.1 System Model

We restate the POR [3, 1] model as below, with slight modifications on notations. We adopt the
1-round verify-prove version in Juels [3] for simplicity.

Definition 1 (POR [3, 1]) A Proof Of Retrievability (POR ) scheme consists of four algorithms
(KeyGen, DEnc, Prove, Verify):

– KeyGen(1λ) → (pk, sk): Given security parameter λ, the randomized key generating algorithm
outputs a public-private key pair (pk, sk).

– DEnc(sk,X) → (idX, X̂): Given the private key sk and a data file X, the encoding algorithm
DEnc produces a unique identifier idX and the encoded file X̂.

– Prove(pk, idX, X̂, C) → ψ: Given the public key pk, an identifier idX, an encoded file X̂, and a
challenge query C, the prover algorithm Prove produces a proof ψ.

– Verify(sk, idX, C, ψ) → accept or reject: Given the private key sk, an identifier idX, a chal-
lenge query C, and a proof ψ, the deterministic verifying algorithm Verify will output either
accept or reject.

Completeness. A POR scheme (KeyGen, DEnc, Prove, Verify) is complete, if an honest prover (who
ensures the integrity of his storage and follow the procedure Prove to compute a proof) will always
be accepted by the verifier. More precisely, for any key pair (pk, sk) generated by KeyGen, and any
data file X, any challenge query C, if ψ ← Prove(pk, idX, X̂, C), then Verify(sk, idX, C, ψ) outputs
accept with probability 1, where (idX, X̂)← DEnc(sk,X).



2.2 Security Model

2.2.1 Trust Model and Scope of Topic In a POR system, only the data owner (verifier) is
trusted and the cloud storage server (prover) is treated as untrusted and potentially malicious.

For simplicity, the following topics are out of the scope of this paper (We emphasize that this
is not a limitation of our model):

1. Eavesdrop and tempering: the communication channel between the data owner (verifier) and
cloud storage server (prover) is assumed to be secure, since (1) any adversarial behavior over
the communication channel (e.g. monitoring or tempering the channel) can be performed on the
server side with the same or better effect; (2) we can secure the communication channel using
SSL/TLS; (3) we can prevent the server from being framed by third party adversaries over the
communication channel, by requiring the server to sign his messages.

2. Denial of Service Attack: DOS attack is also out of the scope of this paper. That is because
DOS attack launched by any third party attacker can be dealed with using the exiting DOS
countermeasure in the literature, and DOS attack launched by the cloud storage server cannot
be resolved in technical manner.

3. Frame attack: We can prevent Bob from framed by Alice by requiring each party to sign every
single message that he/she sends out.

2.2.2 POR Security Game We rewrite the POR security game in Juels et al [3] and Shacham et
al. [1] in a standard way. The security game between an PPT adersary A and a PPT challenger C
for a POR scheme E = (KeyGen, DEnc, Prove, Verify) is as below.

Setup: The challenger C runs the key generating algorithm KeyGen to obtain public-private key
pair (pk, sk), and gives pk to the adversary A.

Learning: The adversary A adapatively make queries where each query is one of the following:

– Store query (X): Given a data file X chosen by A, the challenger C responses by running data
encoding algorithm (id, X̂) ← DEnc(sk,X) and sending the encoded data file X̂ together with
its identifier id to A.

– Verification query (id): Given a file identifier id chosen by A, if id is the (partial) output of some
previous store query that A has made, then the challenger C initiates a POR verification with
A w.r.t. the data file X associated to the identifier id in this way:
• C chooses a random challenge Chal;
• A produces a proof ψ w.r.t. the challenge Chal;

Note: adversary A may generate the proof in an arbitrary method rather than applying the
algorithm Prove.
• C verifies the proof ψ by running algorithm Verify(sk, id, Chal, ψ). Denote the output as b.

At the end C gives the decision bit b ∈ {accept, reject}) to A as feedback. Otherwise, if id is not
the (partial) output of any previous store query that A has made, C does nothing.

Commit: Adversary A chooses a file identifier id∗ among all file identifiers she obtains from C
by making store queries in Learning phase, and commit id∗ to C. Let X∗ denote the data file
associated to identifier id∗.



Retreive: The challenger C initiates ζ number of POR verifications with A w.r.t. the data file X∗

specified by the identifier id, where C plays the role of verifier and A plays the role of prover, as in
the Learning phase. At the end of each verification, C provides the decision bits (accept or reject)
to A as feedback. From messages collected in these ζ interactions with A, C extracts a data file X′

using some PPT extractor algorithm. The adversary A wins this game, if and only if X′ 6= X∗.

The adversary A is ε-admissible [1], if the probability that A convinces C to accept in a verification
in the Retreive phase, is at least ε. We denote the above game as GameEA(ζ).

Definition 2 We define the advantage of an adversary A against a POR scheme E as the proba-
bility that A wins the security game for E, that is,

AdvEA(ζ) def= Pr
[
A wins GameEA(ζ)

]
(1)

Definition 3 ( [3, 1]) A POR scheme is (ε, ζ, δ)-sound, if for any PPT ε-admissible adversary
A, the advantage AdvEA(ζ) ≤ δ.

2.2.3 POR Security in no-feedback setting Furthermore, we define an alternative security
game called GameE,no-fb

A , which is identical to GameEA, except that in all verifications in the game, all
of the verifier’s (i.e. that challenger’s) decision bits (accept or reject) are completely hidden from the
prover (i.e. the adversary). Consequently, the adversary’s advantage in the new no-feedback security
game GameE,no-fb

A is denoted as AdvE,no-fb
A . Without the feedback bits, the adaptive adversary’s

power will be weaken, in the sense that adaptive verification queries may not bring adversary
more information, since the adversary may be able to generate challenge by himself with public
information, although he is still benefited from adaptive store queries.

This POR security definition in no-feedback setting is similar to the formulation for veriable
cloud computing [12,13], which allows client to outsource (or delegate) any polynomial time function
to an untrusted cloud computing server by using fully homomorphic encryption [14]. The schemes
proposed in [12,13] are suffering from attacks and not secure, if the decision bits for previous inter-
actions are provided as feedback to the adversary (i.e. the potentially untrusted cloud computing
server). However, in case that the adversary gets feedbacks, whether our second scheme is secure
or not, remains an open problem.

2.2.4 Clarification of Security Model There should be no confusion between the security
formulation and the real world application of a POR scheme. We remark that the security games
GameEA and GameE,no−fb

A , especially the Retreive phase, are only for security formulation, and ap-
plication of a POR scheme does not necesarily follow the description of these games. For example,
in real world application, the data owner will be the one who chooses the data file, instead of the
cloud storage server, and the data owner can retrieve her data file by simply requesting the cloud
storage server to send it back.

The Retreive phase in the security games just ensures that user’s file can be recoved from multiple
verifications with the cloud storage server efficiently (using some PPT extractor algorithm), as long
as the cloud storage server can pass a nonnegligible fraction of challenge queries. Essentially, a secure
POR scheme provides a mechanism, in which the data owner will be guaranteed that here data
file can be efficiently recoved from the server’s storage at the moment of an accepted verification,
without actually downloading the file from the server. Furthermore, this guarantee is based on the
assumption that the cloud storage server is not able to solve some cryptographic hard problems2,
without trusting in the cloud storage server.
2 For information-theoretical secure POR schemes (e.g. [7]), there will be no such assumption.



3 Scheme EPOR-I: Based on Short Short Homomorphic Verification Tag

3.1 Short Homomorphic Verification Tag

Let p be a large prime, α ∈ Z∗p and seed ∈ {0, 1}λ. Let Fseed : {0, 1}∗ → Zp × {0, 1} be a pseu-
dorandom function. Let FLseed : {0, 1}∗ → Zp and FRseed : {0, 1}∗ → {0, 1} be functions such that
Fseed(x) = (FLseed(x), FRseed(x)) for all x in the domain. Let Q ∈ [p, 2p] be an integer. Let key
K = (Q, p, α, s). We define tag function

For x ∈ [0, 2ξλ − 1], TagK(x, i) def=
(
αx+ FLseed(i) mod p

)
+ FRseed(i)× (Q− p) ∈ [0, Q− 1].(2)

It is worthy to point out that, the bit length of a tag (or p) is about 2λ and the bit length of x
( or N) is about ξλ.

Lemma 1 Assume Fseed(·) is a random oracle. Let Q = p(1 + ε) (alternatively, Q = p(2− ε) ) for
some negligible ε. Then the distribution of output of Tag is statistical close to a uniform distribution
over integer interval [0, Q− 1].

Note that all of p,Q and ε are considered as functions of the security parameter λ.

Lemma 2 Assuming that the Riemann hypothesis holds, there exist more than 1
4π

√
Q lnQ primes

in the interval (Q0, Q] where Q0 = Q− 1
2π

√
Q ln2Q and Q0 ≥ 2657.

Theorem 3 Let K = (p,Q, α, s) be the key of Tag, such that Q = 22(λ+ς) and p is a prime chosen
at random from a subset P of interval (Q0, Q] with Q0 = Q − 1

2π

√
Q ln2Q. Assume Fseed(·) is

random oracle. Given value of Q and a set S = {(x,TagK(x)) ∈ [0, 2ξλ − 1] × [0, Q − 1]} of data-
tag pairs, any (computationally unbounded) adversary cannot find p with probability larger than
|SU |(Q/p − 1) + 1/(#Prime), where #Prime denotes the number of primes in the subset P of
interval (Q0, Q].

3.2 Alternative Construction

For x ∈ [0, 2ξλ − 1], TagK(x, i) def= αx+ Fseed(i) mod p (3)

3.3 Efficient POR scheme based on Short HVT

We present our scheme as below and call it EPOR-I.

KeyGen(1λ) → (pk, sk)

Generate the tag key K = (Q, p, α, seed), such that Q = 22(λ+ς), p is a prime chosen at random
from (Q0, Q] with Q0 = Q− 1

2π

√
Q ln2Q, α is chosen from Z∗p and seed is chosen at random from

{0, 1}λ. Let Fseed : {0, 1}∗ → Zp×{0, 1}, seed ∈ {0, 1}λ, be a pseudorandom function. Let FLseed :
{0, 1}∗ → Zp and FRseed : {0, 1}∗ → {0, 1} be functions such that Fseed(x) = (FLseed(x), FRseed(x))
for all x in the domain. Make pk := Q public public, and keep sk := (p, α, seed) secret.



DEnc(sk,X) → (id, {(xi, ti)}i∈[n])

Given a file X, first apply the error correcting code to obtain X′; then split X′ into n blocks and
each block has exactly3 ξλ bits: X′ := (x1, x2, . . . , xn) where each xi ∈ [0, 2ξλ − 1], 1 ≤ i ≤ n.
Choose a unique identifier4 id in the domain {0, 1}2λ. Generate an authentication tag ti for each
block xi as below

ti := TagK(xi, i) =
(
αxi + FLseed(id, i) mod p

)
+ FRseed(id, i)× (Q− p) ∈ [0, Q− 1]. (4)

Send the identifier id, data blocks (x1, x2, . . . , xn) together with their tags (t1, t2, . . . , tn) to the
server.

Prove(pk, id, {(xi, ti)}, C) → (ψ1, ψ2)

The prover receives challenge query C = {(i, βi) : i ∈ [1, n], βi ∈ [1, 2λ]} from the verifier. He
computes (ψ1, ψ2) as below and sends them to the verifier as response:

ψ1 :=
∑

(i,βi)∈C
βixi; (5)

ψ2 :=
∑

(i,βi)∈C
βiti. (6)

Note: Equation (5) and Equation (6) are computed over integer domain.

Verify(sk, id, C, ψ1, ψ2) → accept or reject

The verifier recieves from the prover a response (ψ1, ψ2) for the challenge query C = {(i, βi) :
i ∈ [n], βi ∈ [1, 2λ]}, and outputs accept if the following equation hold:

ψ2 − (Q− p)
∑

(i,βi)∈C
FRseed(id, i)βi

?= αψ1 +
∑

(i,βi)∈C
βiF

L
seed(id, i) mod p (7)

Otherwise, the verifier outputs reject.

Theorem 4 The proposed scheme EPOR-Int is a secure POR scheme.

The proof is similar to Shacham and Waters [1]: the Part II and Part III proof are identical;
the difference between Part I protocol is handled by Theorem 3.

Remark

– The challenge C = {(i, βi) : i ∈ [n], βi ∈ [1, 2λ]} can be represented compactly by two λ bits
random seeds using a pseudorandom function.

3.4 Alternative Construction

We can change the tag function to the alternative construction in (3) and obtain an alternative
POR scheme.



Table 1: Asymptotic Performance: All schemes have O(λ) bits private key. A challenge contains w
index-coefficient pairs.

Scheme Communication (Bits) Communication (IP Packets) Storage Overhead Computation (Prover) Computation (Verifier)

EPOR-I (ξ + 5)λ+ 2 logw ((ξ + 5)λ+ 2 logw)/MTU FileSize/ξ 2w mul+ 2w add + w PRF w mul+ w add + w PRF

3.5 Performance Analysis

3.6 Parameter Selection

For 80 bits security, we set λ = 80 and ς = 40. The bit length of a tag value will be 2(λ+ ς) = 240.
Assume the Maxmum Transimision Unit (MTU) is 1500 Bytes. We set N = 21460×8. The bit length
of a data block will be 1460× 8− 100 = 11580. The ratio of tag to data is 240/11580 ≈ 2%. If we
allow 4 IP packets per verification, we can squeeze the storage overhead further to 1%.

4 Scheme EPOR-II

In this section, we construct a new functional encryption scheme, and apply it into Water and
Brents [1] (private) scheme in order to reduce communication.

4.1 Functional encryption: Definition

A functional encryption [15, 16] scheme w.r.t. a keyed function fρ(·) consists of four algorithms
(f Setup, f Enc, f KeyGen, f Dec):

– f Setup(1λ)→ (pk, sk): The probabilistic setup algorithm takes as input the security parameter
λ, and outputs a pair of public-private key (pk, sk).

– f Enc(sk,Msg) → CT: The encryption scheme takes as input a private key sk and a plaintext
Msg, and outputs a ciphertext CT.

– f KeyGen(sk, ρ)→ kρ: The key generating algorithm takes a secret key sk and a function key ρ
as input, and outputs a decryption key kρ.

– f Dec(pk, kρ,CT) → fρ(Msg): The decryption algorithm takes a public key pk, a decryption
key kρ, and a ciphertext CT as input, and outputs a decrypted value, which is supposed to be
fρ(Msg) if CT is the ciphertext of Msg.

4.2 Functional encryption: Construction

We construct a functional encryption scheme, denoted as FE, w.r.t. the function

fρ(Msg) def= Ω(ρ+ς)Msg ∈ G̃ where Ω ∈ G̃ and ς ∈ Zp are some constants.

3 The only possible exception is that the bit-length of the last block xn is less than ξλ.
4 For example, the data owner Alice can choose a random nonce and set the identifier as the hash value of concate-

nation of Alice’s account name, registed in the cloud storage server, and the nonce.



KeyGen(1κ)

Choose a bilinear map (p,G, G̃, e), where p is λ bits prime, both G and G̃ are cyclic multiplicative
group of order p, and e : G×G→ G̃ is a bilinear map. Choose a random generator g of group G,
a random α

$←− Zp and set g1 = gα. Choose at random g2, g3, h
$←− G from G. Choose τ, ς $←− Z∗p

at random. The public key is pk := (g, g1 = gα, g2, g3, h,Ω = e(g1, g2)), and the private key is
sk := (pk, gα2 , τ, ς). For convinience, we implicitly treat bilinear map (p,G, G̃, e) as part of pk.
Output (pk, sk).

f Enc(sk,Msg)

To encrypt a message Msg ∈ Z∗p, find s ∈ Z∗p such that Msg = −sτ mod p, and generate the
ciphertext CT as below

CT := (ΩςMsg, gs, gs3) ∈ G̃×G×G.

Output CT.

f KeyGen(sk, ρ)

Given a function key ρ ∈ Z∗p, choose r $←− Z∗p at random, and compute the decryption key kρ as
below

kρ := (K0,K1) = (gα·ρτ2 · gr3, gr).

Output kρ.

f Dec(pk, kρ,CT)

To decrypt a ciphertext CT, parse CT as (A,B,C) ∈ G̃ × G × G, and compute the decrypted
value as below

A · e(K1, C)
e(B,K0)

= A · e(gr, gs3)
e(gs, gα·ρτ2 · gr3)

= A ·Ω−sτρ = ΩMsg·(ρ+ς)

Output ΩMsg·(ρ+ς).

4.3 The Construction Based on Functional Encryption scheme FE

KeyGen(1λ) → (pk, sk)

Run the key generating algorithm KeyGen(1λ) of FE and obtain bilinear map (p,G, G̃, e) and
public-private key (fpk, fsk). Choose a PRF key seed at random from the key space of the PRF

{Fseed} and s random numbers α1, . . . , αs
$←− Zp. For each j, 1 ≤ j ≤ s, encrypt αj using the

functional encryption scheme FE to obtain a ciphertext CTj as below:

CTj := f Enc(fsk, αj).

The public key is pk := (fpk, p, {CTj : 1 ≤ j ≤ s}) and the private key is sk := (fsk, seed, α1, . . . , αs).



DEnc(sk,X) → (id, X̂)

Given the file X, first apply the error correcting code to obtain X′; then split X′ into n blocks
(for some n) such that each block consists of s elements from Zp: {xij ∈ Zp}1≤i≤n

1≤j≤s
. Choose a

unique identifier id from domain {0, 1}2λ. Now, for each i, 1 ≤ i ≤ n, compute an authentication
tag ti as below

ti := Fseed(id, i) +
s∑
j=1

αjxi,j mod p.

The processed file X̂ of data file X consists of {xi,j}, 1 ≤ i ≤ n, 1 ≤ j ≤ s, together with
authentication tags {ti}, 1 ≤ i ≤ n.

Prove(pk, id, X̂, (kρ, C)) → (ψ, σ)

The challenge is (kρ, C), where kρ is a FE decryption key and C is an `-element set {(i, νi)},
with i’s distinct, each i ∈ [1, n], and each νi ∈ B. Compute

µj :=
∑

(i,νi)∈C
νixi,j mod p for 1 ≤ j ≤ s, (8)

σ :=
∑

(i,νi)∈C
νiti mod p. (9)

Decrypt ciphertexts CTj ’s using decryption key kρ to obtain

Hj := f Dec(kρ,CTj), 1 ≤ j ≤ s. Note: Hj is supposed to be g(ρ+ς)αj .

Compute ψ :=
∏s
j=1H

µj
j . Output (ψ, σ).

Verify(sk, id, (ρ,C), (ψ, σ)) → accept or reject

Parse C as an `-element set {(i, νi)}, with i’s distinct, each i ∈ [1, n], and each νi ∈ B. If the
following equation holds, then output accept; otherwise, output reject.

gσ
?= ψ(ρ+ς)−1 mod p g

∑
(i,νi)∈Q

νiFseed(id,i) mod p

Remark. We remark that, in scheme EPOR-II, the challenge query in a verification appears in two
different forms from the view of verifier and prover.

– To the verifier, the challenge query is (ρ, C = {(i, νi)}), where ρ is a random nonce chosen by
the verifier, and C is a set of index-coefficient pairs chosen at random by the verifier. The secret
random nonce ρ is required to execute the algorithm Verify in scheme EPOR-II.

– To the prover, the challenge query is (kρ, C = {(i, νi)}), where kρ is the decryption key w.r.t.
ρ generated by the verifier using the functional encryption scheme, and C is a set of index-
coefficient pairs chosen at random by the verifier.

4.4 Two Unsecure Alternative Schemes

In order to explain the importance of the role of our functional encryption scheme FE in the design
of scheme EPOR-II, we introduce two alternative schemes and show that both alternative schemes
are unsecure.



4.4.1 Scheme with Constant ρ This alternative scheme is the same as our scheme EPOR-II
as above, except that the value ρ is a constant. Consequently, the functional ecnryption is not
necessary and this alternative scheme can be simplified further.

However, the constant value of ρ will render the alternative scheme unsecure and vulnerable
to an attack: The adversary A obtains values of Hj = g(ρ+ς)αj , 1 ≤ j ≤ s from the setup or
previous verifications. For each (i, j) ∈ [1, n] × [1, s], A computes yi,j := H

xi,j
j . A keeps all yi,j ’s

and removes all of xi,j ’s from his stoarge. For any challenge query with C = {(i, νi)}, A computes
ψ :=

∏s
j=1

∏
(i,νi)∈C y

νi
i,j and σ :=

∑
(i,νi)∈C νiti. It is straightforward to verify that the proof (ψ, σ)

indeed passes the verification of Verify with certainty. However, there is no efficient algorithm to
recover data xi,j from yi,j =

(
g(ρ+ς)αj

)xi,j
, assuming the discrete log problem is hard.

4.4.2 Scheme with Simple Application of Bilinear Map The second alternative scheme
is the same as our scheme EPOR-II, except that functional encryption scheme FE is replaced by
a simple application of bilinear map. More precisely, the modified scheme works in this way: in
the setup phase, the cloud storage server obtains values of {gαj , 1 ≤ j ≤ s}, from the data owner.
During a verification, the data owner playing the role of verifier, chooses a random nonce ρ and
sends gρ together with C = {(i, νi)} to the cloud storage server. The server playing the role of
prover, is supposed to compute a proof (ψ, σ) as below

ψ :=
s∏
j=1

e(gαj , gρ)µj , where µj is the same as in Equation (8) (10)

σ :=
∑

(i,νi)∈C
νiti mod p. (11)

Note that Equation (11) is identical to Equation 9 in scheme EPOR-II.
However, this alternative is also suffering from attacks: The adversary A, playing the role of

prover, can compute yi,j := (gαj )xi,j for (i, j) ∈ [1, n] × [1, s], and replace each xi,j with yi,j . In
a verification, A receives gρ and C = {(i, νi)} from the verifier (i.e. the data owner). Then the
adversary computes ψ as below

ψ :=
s∏
j=1

e(
∏

(i,νi)∈C
yνii,j , gρ) (12)

and computes σ as in Equation (11). It is straightforward to check that the proof (ψ, σ) generated
by the adversary A indeed passes the verification of the second alterntive scheme described above.
But no efficient algorithm can recover data xi,j from yi,j = (gαj )xi,j , assuming the discrete log
problem is hard.

5 Extension

Our schemes allow the data owner to generate a new set of tag values w.r.t. a new key by interacting
with the cloud storage server without retrieving back the data. This online refresh on tags allows
the data owner to duplicate another copy of data to another cloud storage server.

RefreshTag Here we present the procedure to generate a set of fresh tags online for our first
scheme.



The data owner Alice keeps a status variable η, which is initialized to 0. If η is zero, run the key
generating scheme to produce a new private key K′. Download tags {ti : i ∈ [η+ 1, η+∆]} from
the Server Bob. Verify the correctness of downloaded tags: Send challenge C = {(i, βi) : i ∈
[η+ 1, η+∆], βi ∈ [1, 2λ]} to server, and get response (ψ1, ψ2). If (ψ1, ψ2) passes the verification
in Verify and the following equality hold, then Alice believes the downloaded tags are correct.

ψ2
?=

∑
(i,βi)∈C

βiti.

For each i ∈ [η + 1, η +∆], compute new tag t′i

t′i := TagK(xi, i) = α′α−1(ti − Fseed(i)) + Fs′(i) mod p.

Upload new tags {t′i : i ∈ [η + 1, η + ∆]} to the Server Bob and update the state variable
η := η +∆. If η > N , reset η as zero and discard private key K and keep only the new private
key K′.

6 Conclusion

We proposed two new efficient and secure POR schemes using different techniques. Our first scheme
is the first secure POR scheme over integer domain, and our second scheme is the most efficient
POR scheme and relys on our new functional encrypton scheme. We believe that our construction
of functional encryption scheme may have independent interests.
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A Shacham and Waters’ Proof Framework

Shacham and Waters [1] provided a modular proof framework for their proposed POR schemes.
Informally, the proof framework consists of three parts as below:

– Systems unforgeability: If a proof generated by an adversarial prover is valid (i.e. the proof is
accepted by the verifier), then the proof has to be correct (i.e. the proof is the same as the one
generated by an honest prover w.r.t. the same challenge), except a negligible probability; this
part is proved using cryptographic techniques.

– Extractability: Given an adversarial prover that can provide correct proofs for a non-negligible
fraction of challenge queries, an extractor can collect sufficient number of correct proofs for
different queries and recover a large fraction of data file; this part is proved using combinatiorial
techniques.

– Retrievability: Using ECC decoding algorithm (e.g. Reed-Solomon codes), the original data file
can be recovered from a small portion of correct data; this part is proved using coding-theoretical
techniques.

Interestingly, the full proofs for all schemes proposed by Shacham and Waters [1] only differ in
the first part, and share the second and third parts. Furthermore, we find that proofs for our two
schemes inherit this property, i.e. our proofs also share the second and the third parts proof with
Shacham and Waters [1].

Next, we quote the results for part two and part three proof in Shacham and Waters [1] as
below.

A.1 Theorem for Part-Two Proof

Theorem 5 (Shacham and Waters [1], Theorem 4.3) Let ARetrive denote the adversary A in
the Retrieve phase of the security game GameEA, and F be the n-block file chosen by A in the
Commit phase. Suppose ARetrive on file F is well-behaved: i.e. any valid proof generated by ARetrive

has to be correct (with probability 1), and is ε-admissible: i.e. convingcingly answers an ε fraction
of verification queries. Let ω := 1/#B + (ρn)`/(n − ` + 1)`. Then, provided that ε − ω is positive
and nonnegligible, it is possible to recover a ρ fraction of the encoded file blocks in O(n/(ε − ω))
interactions with ARetrive and in O(n2s+ (n+ εn3)/(ε− ω)) time overall.

Here, B denotes the domain of the coefficients in a verification challenge query and #B denotes
the size of B.

A.2 Theorem for Part-Three Proof

Theorem 6 (Shacham and Waters [1], Theorem 4.8) Given a ρ fraction of the n blocks of
an encoded file F ∗, it is possible to recover the entire original file F with all but negligible probability.

http://eprint.iacr.org/2010/543
http://eprint.iacr.org/


B Our Tag function is Secure

Lemma 1 Assume Fseed(·) is a random oracle. Let Q = p(1 + ε) (alternatively, Q = p(2− ε) ) for
some negligible ε. Then the distribution of output of Tag is statistical close to a uniform distribution
over integer interval [0, Q− 1].

Note that all of p,Q and ε are considered as functions of the security parameter λ.

Proof. Let Tp denote the random variable generated by Tag with key on any input. Under assump-
tion that Fseed(·) is random oracles, we have

∀x ∈ [0, 2ξλ − 1],Pr[Tp = a] =


1
2p (a ∈ [0, Q− p− 1]);
1
p (a ∈ [Q− p, p− 1]);
1
2p (a ∈ [p,Q− 1]).

(13)

Denote with UQ a uniform random variable over integer domain [0, Q − 1]. The statistical
difference between UQ and Tp (for any x in the domain) is as below

SD(UQ, Tp) : =
1
2

∑
a∈[0,Q−1]

|Pr[UQ = a]− Pr[Tp = a]| (14)

=
1
2

(Q− p)(2p−Q)
pQ

(15)

Part I: Q = p(1 + ε).
Substituting Q = p(1 + ε) into equation (15), we have the statistical difference

SD(UQ, Tp) =
ε− ε2

1 + ε
≈ ε, (16)

which is negligible.

Part II: Q = p(2− ε).
Alternatively, substituting Q = p(2− ε) into equation (15), we have the statistical difference

SD(UQ, Tp) =
ε− ε2

2(2− ε)
≈ ε

4
, (17)

which is negligible, since ε is negligible.
ut

Lemma 2 Assuming that the Riemann hypothesis holds, there exist more than 1
4π

√
Q lnQ primes

in the interval (Q0, Q] where Q0 = Q− 1
2π

√
Q ln2Q and Q0 ≥ 2657.

Proof. Let π(x) denote the number of primes less than or equal to x. Then the number of primes
in the interval (Q0, Q] is π(Q)− π(Q0).

Lowell Schoenfeld [17] proved that, assuming the Riemann hypothesis,

∀x ≥ 2657, |π(x)− li(x)| <
√
x lnx
8π

, (18)

where li(x) is the logarithmic integral function:

li(x) =
∫ x

0

dt

ln t
(t 6= 1) (19)



Applying Lowell Schoenfeld’s inequality (18) on x = Q and x = Q0, we have

|(π(Q)− li(Q))− (π(Q0)− li(Q0))| ≤ |(π(Q)− li(Q))|+ |(π(Q0)− li(Q0))| (20)

<

√
Q lnQ
8π

+
√
Q0 lnQ0

8π
(21)

<

√
Q lnQ
4π

. (22)

Now we bound the difference li(Q)− li(Q0):

li(Q)− li(Q0) =
∫ Q

Q0

dt

ln t
>

∫ Q

Q0

dt

lnQ
=
Q−Q0

lnQ
. (23)

By combining Equation (22) and Equation (23), we conclude that the number of primes in
(Q0, Q] is

π(Q)− π(Q0) > li(Q)− li(Q0)−
√
Q lnQ
4π

(24)

=
Q−Q0

lnQ
−
√
Q lnQ
4π

(25)

=
√
Q lnQ
4π

( By substituting Q0 = Q− 1
2π

√
Q ln2Q). (26)

Theorem 3 Let K = (p,Q, α, s) be the key of Tag, such that Q = 22(λ+ς) and p is a prime chosen
at random from a subset P of interval (Q0, Q] with Q0 = Q − 1

2π

√
Q ln2Q. Assume Fseed(·) is

random oracle. Given value of Q and a set S = {(x,TagK(x)) ∈ [0, 2ξλ − 1] × [0, Q − 1]} of data-
tag pairs, any (computationally unbounded) adversary cannot find p with probability larger than
|SU |(Q/p − 1) + 1/(#Prime), where #Prime denotes the number of primes in the subset P of
interval (Q0, Q].

Proof. Without knowing the secret key K, a tag value TagK(x)) is independent on the input x.
Let random variable Sp denote the resulting set S conditional on prime p and random variabl

SU denote the resulting set S conditional on that the output of Tag is truely uniformly random over
[0, Q− 1]. Let random variable X represent the input x. By applying Fact 2.3 of Sahai et al. [18],
we have

SD(SU , Sp) < |SU | × SD((X,UQ), (X,Tp)) ≤ |SU | × SD(UQ, Tp) ≈ ε|SU |.
Let X denote the random variable generated in this way: Choose a prime P from interval (Q0, Q]

at random and then sampleX from Sp. We show an upper bound for the maximum likelihood ML(p).
Let P be the set of primes in (Q0, Q]. The best strategy: Given any X = a, output the prime pa
that maximize Pr[X = a|Sp] among all primes in (Q0, Q].

ML(p) =
∑
a

Pr[X = a]Pr[P = pa|X = a] (27)

=
∑
a

Pr[X = a, P = pa] (28)

=
∑
a

Pr[P = pa]Pr[X = a|P = pa] (29)

=
1
|P|

∑
a

Pr[X = a|P = pa] (30)

≤ 1
|P|
× 1
Q0
×Q ( Since Pr[X = a|Sp] ≤

1
Q0

for all p) (31)

ut



C Our Functional Encryption Scheme FE

D Scheme EPOR-I is Secure

Here we provide the part one proof for our Scheme I. Informally, our part one proof shows: The
proof to a changle query in Scheme I is unforgeable, in the sense that no PPT adversary can find
a valid but not correct proof with nonnegligible probability.

Lemma 7 For any PPT adversary A, the probability that A can output a proof (ψ′1, ψ
′
2) such that

the Verify algorithm accepts (ψ′1, ψ
′
2) and (ψ′1, ψ

′
2) is different from the correct proof generated by

the algorithm Prove upon the same data file and the same challenge query, is negligible.
More precisely, let ARetrive denote the adversary A in the Retrieve phase of the security game

GameEA, (pk, sk) be the key pair generated by the challenger in the setup phase of game GameEA, id
be the identifier chosen by adversary A in the Commit phase of game GameEA, X be the data file
associated to id and (id, X̂) be the output that A obtains from the challenger upon store query (X).
For any PPT adversary A,

AdvE,forge
A (λ) = Pr


C

$←−
(
[1, n]× [1, 2λ]

)`
;

(ψ1, ψ2)← Prove(pk, id, X̂, C);
(ψ′1, ψ

′
2)← ARetrive(pk, id, C) :

Verify(sk, id, C, ψ′1, ψ
′
2) = accept ∧ (ψ′1, ψ

′
2) 6= (ψ1, ψ2)

 ≤ negl(λ).

(32)
The probability is over all random coins and the choice of the challenge query.

Proof.
Game 1. The first game is just the one specified in Lemma 7, i.e. a modified version of security
game GameEA, such that the adversary A wins if and only if A outputs a valid but incorrect POR
proof for a randomly chosen challenge query. We have AdvE,forge

A = Pr[A wins Game 1].
Game 2. The second game is the same as Game 1, except that in the scheme E , the PRF function
Fseed(·) is evaluated in the following way:

– The challenger keeps a table to store all previous encounted (v, Fseed(v)) pairs.
– Given an input v, the challenger lookups the table for v, if there exists an entry (v, u), then

return u. Otherwise, choose a ranom u from the range of Fseed, insert (v, Fseed(v) := u) into the
table and return u.

Game 3 The third game is the same as Game 2, except that adversary A wins if and only if
Verify(sk, id, C, ψ′1, ψ

′
2) = accept and (ψ′1, ψ

′
2) 6= (ψ1, ψ2) mod p. Note the additional modulo p

operation.
Game 4 The fourth game is the same as Game 3, except that adversary A wins if and only if
Verify(sk, id, C, ψ′1, ψ

′
2) = accept and (ψ′1, ψ

′
2) 6= (ψ1, ψ2) and (ψ′1, ψ

′
2) = (ψ1, ψ2) mod p. If A wins

Game 4, then she can find a non-zero multipler (ψ1 − ψ′1 or ψ2 − ψ′2) of the secret prime p.
It is straightforward that

Pr[A wins Game 2] = Pr[A wins Game 3] + Pr[A wins Game 4].

Claim D.01 If there is a difference in the adversary’s success probability between Game 1 and
Game 2, then we can use the adversary to break the security of the PRF.

Claim D.02 If adversary A wins Game 3 with non-negligible probability, then A can break the
Theorem 4.1 of of [1], i.e. the unforgeability of the first scheme (Scheme with Private Verification).

Claim D.03 If adversary A wins Game 4 with non-negligible probability, then A breaks Theo-
rem 3.



E Semi-Functional Encryption Scheme

Enc(sk,M)

Given a message M ∈ G̃, choose a random coin s
$←− Zp and produce a ciphertext CT as below

CT := (A,B,C) = (M · e(t, g)s, gs, gs3) ∈ G̃×G×G.

KeyGen(sk, ρ)

Given a function key ρ, choose a random coin r
$←− Zp and generate the decryption key kρ as

below
kρ := (K0,K1) = (gr3 · t, gr)

Dec(kρ,CT)

Parse the ciphertext CT as (A,B,C) ∈ G̃×G×G. Compute and ouput

A · e(K1, C)
e(B,K0)

= A · e(gr, gs3)
e(gs, gr3 · t)

=
A

e(g, t)s
= M

Lemma 8 Ciphertexts produced by f Enc and Enc can (with proper input) be indistinguishable and
have the same decrypted value.

F Scheme EPOR-II is Secure in the no-feedback setting

Game 1. The original game in the no-feedback model.
Game 2. Same as Game 1, except that adversary does not make verification queries, but still
makes store queries.
Game 3. Same as Game 2, except that the functional encryption is replaced with the alternative
encryption.
Game 4. Same as Game 3, except that the alternative encrption scheme is replaced with plaintexts,
i.e. the verifier sends (gρα1 , . . . , gραs) in cleartext to the prover in a verification.

Our proof sketch is described as below, where ≈negl means the difference between the left and
right hand sides are negligible.

AdvGame 1
A = AdvGame 2

A ≈negl AdvGame 3
A ≤ AdvGame 4

A .

Adversary wins Game 4 with negligible probability, under diffie-hellman assumption.
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