
HBN: An HB-like protocol secure against Man-in-the-Middle Attacks

Carl Bosley∗ Kristiyan Haralambiev † Antonio Nicolosi ‡

June 28, 2011

Abstract

We construct a simple authentication protocol whose security is based solely on the problem of Learning
Parity with Noise (LPN) that is secure against Man-in-the-Middle attacks. Our protocol is suitable for RFID
devices, whose limited circuit size and power constraints rule out the use of more heavyweight operations such
as modular exponentiation. The protocol is extremely simple: both parties compute a noisy bilinear function of
their inputs. The proof, however, is quite technical, and we believe that some of our technical tools may be of
independent interest.

1 Introduction

Motivation. Many cryptographic tasks originate from the necessity to reproduce in cyber space security
properties that exist in the physical world. Examples in point include digital signatures (non-repudiation) or
public-key encryption (drop-boxes). Among the basic cryptographic goals, authentication has the potential to
straddle the physical and cyber world, and enable authentication cryptographically strong authentication of
physical things.

For moderately powerful devices like smartphones, or even battery-operated sensors, existing authentica-
tion protocols often suffice. Computationally weak devices such as RFID devices and batteryless contactless
smartcards, however, require more lightweight, dedicated solutions.

RFID devices are quickly becoming popular in many applications. They are used throughout the supply
chain for inventory management. RFID can be used to replace physical keys for access control. Banking and
financial institutions have also started to embrace them for account management. Mass transit authorities in
several metropolitan areas have taken to used them to replace tokens; similarly, RFID-mediated access to toll
roads is the norm all over the world.

RFID devices can do all this, silently. Unfortunately, this silence leaves them vulnerable to stealth queries
from malicious entities. This introduces an array of security risks, including unauthorized access, fraudulent
account usage, as well as privacy risks, such as stealth tracking.

Learning parity with noise. The LPN problem was introduced in the machine learning community by
Angluin and Laird [AL87]. It soon became notorious for having no efficient noise-tolerant algorithm. It was
proven by Kearns [Kea93] that the class of noisy parity concepts (LPN) is not learn-able within the statistical
query model. Work on LPN-based protocols began with the HB protocol of Hopper and Blum [HB01], which
was later proven to be secure against Passive attacks assuming the hardness of LPN.

HB-type protocols. The original motivation for the HB protocol was to enable unaided human authentica-
tion: the goal was for the protocol to be simple enough to be carried out without the help of a computational
device. Subsequent work has found that the key sizes and error rates required to ensure security may be too

∗Dept. of Computer Science, Stevens Institute. bosley@cs.stevens.edu.
†Dept. of Computer Science, New York University. haralambiev@cs.nyu.edu.
‡Dept. of Computer Science, Stevens Institute. nicolosi@cs.stevens.edu

1

large for humans to employ with ease comparable to, say, password-based authentication. Nevertheless, as noted
by Juels and Weis [JW05], HB-type protocols are lightweight enough to be potentially applicable in the RFID
setting. Indeed, constraints on power consumption and circuit size (1,000–4,000 transistors) for RFID devices
makes it problematic to deploy conventional cryptographic algorithms like AES or modular exponentiation on
these devices; HB-type protocols, on the other hand, have very simple circuit representations. For example, the
interaction between the prover, or tag T , and the verifier, or reader R, in the HB protocol consists of two mes-
sages: first, R sends a random challenge a ∈ Fn2 . Next, T samples e ∈ F2 according to the Bernoulli distribution
Berε (i.e. Pr[e = 1] = ε). T sends z = a>x + e to R, where x ∈ Fn2 is a key shared between T and R. R accepts
if z = a>x. The basic protocol has soundness 1

2 and completeness 1− ε, but this can be improved via sequential
or parallel composition (cf. Section 2.3).

In [JW05], Juels and Weis also introduced HB+, which was shown to be secure in a slightly stronger security
model (known as Active security) than the original HB protocol. Gilbert, Robshaw, and Seurin ([GRS05]) showed
that HB+ is vulnerable to a man-in-the-middle attack. A number of variants of HB+ were proposed to remedy
this defect, including HB++ [BCD06], HB∗ [DK08], HB-MP [MP07], HB-MP’ [LMM08], and Trusted-HB [BC08].
However, all of these were proven insecure. Gilbert, Robshaw, and Seurin ([GRS08a]) extended their attack
on HB+ to break HB++, HB∗, HB-MP, HB-MP’, and Frumkin and Shamir [FS09] showed that Trusted-HB is
insecure.

Gilbert, Robshaw, and Seurin [GRS08b] introduced HB#, which was secure against the same attack that
succeeded against HB+. However, Oaufi et al [OOV08] presented an Man-in-the-Middle attack on HB#.

Katz, Shin, and Smith [KSS10] provided the first proof of security for HB and HB+ for any error rate ε < 1/2,
via black box reductions. However, for HB+ the reduction used rewinding, so that it achieved active security

√
ε

assuming LPN is hard for noise rate ε.
Pietrzak then introduced Subspace LWE [Pie10], a more flexible formulation of LPN that is nevertheless

equivalent to LPN. In a major advance, Kiltz et al. [KPC+11] built on Subspace LWE [Pie10] to construct
a two-round Active-secure protocol, as well as two secure MACs, which imply two-round Man-in-the-Middle-
secure protocols. However, both Man-in-the-Middle-secure constructions require the use of an (almost) Pairwise
Independent Permutation on approximately O(n2) bits. Furthermore, the first MAC’s security reduction is loose,
achieving security

√
ε, while the second construction is much more complicated and requires a longer key.

1.1 Our Contribution

Our protocol, like the original HB protocol, is extremely simple: instead of computing a noisy linear function
a>x + e, the parties compute a noisy bilinear function a>Xb + e of their joint inputs a,b. As described in
Section 3, this can be done in either 2 or 3 rounds.

However, the Man-in-the-Middle security proof is quite technically involved, particularly in the understanding
of the noise distributions. We develop some technical tools, including the LHN (Learning Halfspaces with Noise)
problem, which we believe will be of independent interest.

1.2 Outline

We describe LPN, HB and HB+, and the Passive, Active, and Man-in-the-Middle security models in Section 2.
In Section 3, we describe the HBN protocol family. In order to analyze the security of HBN, we first need to
develop new tools for precisely manipulating error distributions, including the LHN (Learning Halfspaces with
Noise) problem, which we present in Section 4. Finally, in Section 5, we prove that HBN is secure against
Man-in-the-Middle attacks.

2 Preliminaries

2.1 Notation

We write x
$← X to denote the process of assigning a value sampled from the distribution X to the variable x.

If S is a finite set, we write s
$← S to denote assignment to s of a value sampled from the uniform distribution

on S. Vice versa, we will abuse set-notation to identify a distribution X with its support; for example, we write
x ∈ X to denote that x is in the support of X. If A is a probabilistic algorithm, we let A(x) denote the output

2

distribution of A on input x, and write y
$← A(x) to denote the process of running algorithm A on input x and

assigning its output to y. We write:

Pr[x1
$← X1, x2

$← X2(x1), . . . , xn
$← Xn(x1, . . . , xn−1) : φ(x1, . . . , xn)]

to denote the probability that the predicate φ(x1, . . . , xn) is true, when for all i ∈ {1, . . . , n}, xi is drawn from
distribution Xi, possibly depending on the values drawn for x1, . . . , xi−1. When n = 1, x̂ ∈ X1, and φ(x1) is of

the form “x1 = x̂1”, we use the shorthand Pr[x̂1
$← X] to denote Pr[x1

$← X1 : x1 = x̂1]. For two probability

distributions X1, X2, we write X1 ≡ X2 if and only if ∀x̂ ∈ X1 ∪X2,Pr[x̂
$← X1] = Pr[x̂

$← X2].
Let Fq represent the finite field with q elements. We denote the uniform distribution over Fn2 by Un×n, and the

Bernoulli distribution with bias ε by Berε. (Recall that Berε is the distribution over F2 with Pr[1
$← Berε] = ε,

Pr[0
$← Berε] = 1− ε.) We use the binary operator ⊕: F2×F2 → F2 to represent finite field addition, and we let

b = 1⊕ b be the complement of b.
We denote column vectors by lower-case bold letters such as x, and matrices by upper-case bold letters such

as X. We denote the transpose of X by X>. For a matrix A ∈ Fm×n2 , rank(A) denotes the rank of A. ker(A) =
{x : Ax = 0} denotes the kernel of X, the set of all vectors orthogonal to A, and Im(A) = {y : ∃x s.t. Ax = y}
denotes the image of A, the set of all linear combinations of columns of A.

We will often consider column vectors x,y ∈ F`2 as matrices in F`×1
2 . Considering x,y as matrices allows us

to extend operations on matrices to vectors. For example, we can form the outer product xy>∈ F`×`2 , and form
the kernel ker(x). The dot product of two column vectors x,y can be written as the matrix multiplication x>y.
For a vector x, we denote the scalar i-th element of x by xi. 0n denotes the all-zero column vector of length n.

e(i,`) ∈ F`2 denotes the i-th vector of the canonical basis, for which e
(i)
i = 1, and e

(i)
j = 0 for j 6= i. In practice,

when the dimension can be determined from context, we drop it, letting e(i) = e(i,`). For a vector x, let |x|
denote the number of nonzero entries of x. We use [n] to denote the set {1, 2, . . . , n}.

We denote an arbitrary polynomial function of n by poly(n). We write f = negl to mean that f is negligible
as a function of n, that is, f = o(n−c) for any constant c > 0.

2.2 Learning Parity with Noise (LPN)

Roughly speaking, the problem of Learning Parity with Noise amounts to distinguishing two distributions over
Fn2 × F2: the uniform distribution and the LPN distribution. For a random secret vector x ∈ Fn2 , the LPN
distribution is in turn defined in terms of its sampling algorithm LPNx

ε , shown in Algorithm 2.2. Algorithm

LPNx
ε is initialized with a uniform secret vector x

$← Fn2 . Thereafter, whenever an LPN sample is requested, the

algorithm chooses random a
$← Fn2 and e

$← Berε and outputs (a, b), where b = a>x⊕ e. For ε = 1
2 , LPN becomes

the uniform distribution.

1: function LPNx
ε

2: a
$← Fn2

3: e
$← Berε

4: b = a>x + e
5: return (a, b)

Algorithm 1: LPN

We will use the decisional version of the LPN hardness assumption, which is defined using an indistinguisha-
bility game. It has been shown [KSS10] that hardness of the decisional version is equivalent (up to polynomial
factors) to hardness of recovering the entire key. The decisional variant of LPN is hard if it is difficult to distin-
guish between an oracle with distribution LPNx

ε versus an oracle with a random distribution Un×U1, which (by
Corollary 8) can be represented as LPNx

1/2. More formally, the advantage of an algorithm A against LPN for a
given (ε, n) is defined using a game in which the adversary attempts to guess which oracle was selected:

Definition 1. The decisional LPN assumption states that for all efficient adversaries A, AdvLPNA (ε, n) ≤ εLPN =

3

negl, where AdvLPNA (ε, n) is defined as

AdvLPNA (ε, n) =

∣∣∣∣∣∣∣∣∣Pr

x

$← Fn2 , b
$← F2,

Ob =

{
LPNx

1/2 if b = 0

LPNx
ε , if b = 1

,

b̃
$← AOb(1n)

: b̃ = b

− 1

2

∣∣∣∣∣∣∣∣∣ (1)

2.3 HB and HB+ protocols

The HB, HB+ protocols consist of k = poly(n) iterations of what is known as a “basic authentication step”. The
protocols are executed by two parties: the tag T , who wishes to authenticate, and the reader R, who verifies the
tag. 1 The key for HB is a vector x of length n, where n is the security parameter. For HB+, the key consists
of two vectors x,y of length n. For i ∈ [k], a(i),b(i) ∈ Fn2 are column vectors used in the execution. In HB, as
shown in Figure 1, a tag T and a reader R share a random secret key x ∈ Fn2 . In the i-th round authentication

step, the reader sends a random challenge a(i) ∈ Fn2 to the tag, and the tag replies with zi = a(i)>x⊕ ei, where

ei
$← Berε. HB+ adds a second secret y and a third round, as shown in Figure 2.

T R

ei
$← Berε

a(i)

←−−−− a(i) $← Fn
2

zi = a(i)>x⊕ ei
zi

−−−−→ wi = a(i)>x

verify(z,w) = |z⊕w|
?
≤ k · uHB(ε)

Figure 1: HB

In both HB and HB+, at the end of k rounds, R checks to see what fraction of answers zi were correct. If
more than k · u(ε) are correct, for u(ε) some function of ε, then verify(z,w) returns true, and the reader accepts.
Otherwise, the reader rejects. k and u(ε) should be set high enough to allow the honest tag to authenticate
w.h.p., but low enough that a malicious third party should not be able to authenticate by randomly guessing.
In particular, as noted in [KSS10], for both HB and HB+, u(ε) = (1 + δ)ε suffices to achieve completeness error
negligible in the security parameter, for any positive constant δ.

T R

a(i) $← Fn
2

b(i)

←−−−− b(i) $← Fn
2

ei
$← Berε

a(i)

−−−−→ wi = a(i)>x⊕ b(i)>y

zi = a(i)>x⊕ b(i)>y ⊕ ei
zi

−−−−→

verify(z,w) = |z⊕w|
?
≤ k · uHB+(ε)

Figure 2: HB+

2.4 Security Models

In this subsection we present several natural security models that have been used for authentication and for HB-
type protocols in particular. The more general models are Passive, Active, and Man-in-the-Middle. Additionally,

1T is also known as the prover P, and R as the verifier V.

4

several works have used an intermediate model, GRS-MIM, which is stronger than Active yet weaker than the
full Man-in-the-Middle model.

Passive Model: In Phase I, the attacker can only observe the interactions between T and R.

Active Model: In Phase I, as shown in Figure 3, the tag interacts with the attacker, who is free to choose
non-random a. However, b remains randomly chosen. Note that the attacker does not have access to a reader,
and thus is unaware of the results of the reader’s verification step.

T A
b(i)

−−−−→
a(i)

←−−−−
zi

−−−−→
(a) Three Rounds

T A
a(i)

←−−−−
b(i), zi
−−−−→

(b) Two Rounds

Figure 3: Active

Man-in-the-Middle Model: In Phase I, the attacker may eavesdrop on and modify any message, as shown
in Figure 4. Additionally, the attacker learns the decisions made by the reader’s verification step.

T A R
b(i)

−−−−→
b′(i)

−−−−→
a′(i)

←−−−−
a(i)

←−−−−
zi

−−−−→
z′i

−−−−→ wi = . . .

verify(z,w) = |z⊕w|
?
≤ k · u(ε)

(a) Three Rounds

T A R
a′(i)

←−−−−
a(i)

←−−−−

b(i), zi
−−−−→

b′(i), z′i
−−−−→ wi = . . .

verify(z,w) = |z⊕w|
?
≤ k · u(ε)

(b) Two Rounds

Figure 4: Man-in-the-Middle

GRS-MIM Model: The GRS-MIM model of Gilbert, Robshaw, and Seurin [GRS08b] is a variant of the
Man-in-the-Middle model, in which the adversary is not allowed to modify zi. That is, ∀i, zi = z′i. GRS-MIM
includes the attack on HB+, so that HB+ is not secure in the GRS-MIM model. The restriction zi = z′i is
unrealistic in practice, but GRS-MIM was used by a number of recent works in an attempt to improve on HB+,
due to the difficulty of proving security in the full Man-in-the-Middle model. However, GRS-MIM-security does
not imply Man-in-the-Middle-security, and indeed, GRS-MIM-secure protocols have been successfully attacked in
the full model [OOV08].

Phase II. In all three models, the goal of the attacker A is to authenticate successfully to the reader R in k
rounds of Phase II, as shown in Figure 5. A is successful iff verify(z) returns true and b∗ 6= 0 in all k rounds.

5

A R
b∗(i)

−−−−→
a∗(i)

←−−−−
z∗i

−−−−→ w∗i = . . .

verify(z,w) = |z⊕w|
?
≤ k · u(ε)

(a) Three Rounds

A R
a∗(i)

←−−−−

b∗(i), z∗

−−−−→ w∗i = . . .

verify(z,w) = |z⊕w|
?
≤ k · u(ε)

(b) Two Rounds

Figure 5: Phase II (All Models)

3 New protocols

We describe the HBN family of “New HB” protocols. There are 2-round and 3-round variants. While HB is linear,
our protocols are bilinear. Our secret key will be a matrix X ∈ Fn×n2 . As before, a(i),b(i) ∈ Fn2 are column
vectors used in the execution. The protocol consists of the key generation step KeyGen and the authentication
step Auth.

KeyGen. KeyGen(1n) produces a matrix X ∈ Fn×n2 .

• For the non-symmetric bilinear protocol, KeyGenHBN(1n) returns a uniformly random matrix X
$← Fn×n2 ,

• For the symmetric version, KeyGen.SymmHBN(1n) returns a random symmetric matrix X = X>. X can be

computed, for example, by setting Xi,j = Xj,i
$← F2 for all (i, j) such that 0 ≤ i ≤ j < n. Alternatively,

KeyGen.SymmHBN(1n) can set X′
$← KeyGenHBN(1n), and return X′X′

>
.

Auth. HBN can be run in serial or in parallel. We describe the serial version first, and then modify the notation
for the parallel version. The tag T X

ε = (Tb(),TzX(·, ·, ·)) authenticates to the reader RX
ε = (Ra(),RwX(·, ·, ·)) by

performing k rounds of the protocol, as shown in Figure 6. Let Ra() = Tb() = ab(), and Rw(·, ·, ·) = Tz(·, ·, ·) =
wz(·, ·, ·), as shown in Algorithm 2.

In each of k rounds, which can be executed in serial or in parallel, Tε(X) draws (b(i), fi)
$← Tb() and sends b(i)

to RX
ε . Meanwhile, R draws (a(i), ei)

$← Ra() and sends the challenge a(i) to Tε(X). Finally, Tε(X) computes
zi = TzX(a(i),b(i), fi) and sends to RX

ε . Rε(X) computes wi = RwX(a(i),b(i), fi). At the end of k rounds,
R computes |z ⊕ w| and to determine what fraction of responses were correct. R also tests to ensure that
∀i ∈ [k],b(i) 6= 0n. If all b(i) are nonzero and more than k · uHBN(ε) = k(1 + δ)(ε ⊕ ε) for some completeness
parameter δ, the reader accepts. 2

In the two-round version of HBN, R sends a(i) in the first round, and T sends b(i) and zi in the second round.
In the three-round version, T sends b(i) first, then receives a(i) from R, and finally sends zi to R.

Parallel version. We can use matrix notation to simplify working with HBN in parallel, as shown in Figure 7
and Algorithm 3. Let A,B ∈ Fn×k2 be matrices for which ∀i ∈ [k],Ae(i) = a(i),Be(i) = b(i). That is, the columns
of A,B respectively are the vectors a(i),b(i) respectively. Then in the two-round version, for example, R sends

the challenge A
$← Fn×k2 . T replies with B

$← Fn×k2 and z = diag(A>XB) ⊕ e, where e
$← Bernε . R computes

w = diag(A>XB)⊕ f , where f
$← Bernε , and accepts iff ∀i ∈ [k],Be(i) 6= 0n and |z⊕w| ≤ uHBN(ε).

2δ also governs the soundness of the protocol, which will be discussed in Section 5.5.

6

T R

(a(i), ei)
$← ab()

b(i)

−−−−→ (b(i), fi)
$← ab()

zi = wzX(a(i),b(i), ei)
a(i)

←−−−− wi = wzX(a(i),b(i), fi)
zi

−−−−→

verify(z,w) = |z⊕w|
?
≤ k · uHBN(ε) ∧ ∀i,b(i) 6= 0n

(a) Three Rounds

T R

(a(i), ei)
$← ab()

a(i)

←−−−− (b(i), fi)
$← ab()

zi = wzX(a(i),b(i), ei)
b(i),zi
−−−−→ wi = wzX(a(i),b(i), fi)

verify(z,w) = |z⊕w|
?
≤ k · uHBN(ε) ∧ ∀i,b(i) 6= 0n

(b) Two Rounds

Figure 6: Protocols (Serial notation)

T R

(A, e)
$← ab(k)

B
−−−−→ (B, f)

$← ab(k)

z = wzX(A,B, e)
A

←−−−− w = wzX(A,B, f)
z

−−−−→

verify(z,w) = |z⊕w|
?
≤ k · uHBN(ε) ∧ ∀i,Be(i) 6= 0n

(a) Three Rounds

T R

(A, e)
$← ab(k)

A
←−−−− (B, f)

$← ab(k)

z = wzX(A,B, e)
B,z

−−−−→ w = wzX(A,B, f)

verify(z,w) = |z⊕w|
?
≤ k · uHBN(ε) ∧ ∀i,Be(i) 6= 0n

(b) Two Rounds

Figure 7: Protocols (Parallel notation)

1: function wzX(a,b, e)
2: return a>Xb⊕ e

3: function ab()

4: return (a, e)
$← (Un,Berε)

Algorithm 2: Algorithms for HBN (Serial notation)

1: function wzX(A,B, e)
2: return diag(A>XB)⊕ e

3: function ab(k)

4: return (A, e)
$← (Un×k,Ber

k
ε)

Algorithm 3: Algorithms for HBN (Parallel notation)

4 Learning Halfspaces with Noise (LHN)

Outline. In this section, we present a new conceptual tool in for analyzing HB-like protocol, the LHN (Learning
Halfspaces with Noise) problem, as shown in Algorithm 4.3. The security of LHN is equivalent to that of LPN.
First, in Section 4.1, we introduce a new (to our knowledge) compact notation for precisely working with sums
of random variables over F2, in order to simplify working with LPN and LHN. Next, in Section 4.2, we establish
several fundamental properties of LPN. We work with LHN itself in Section 4.3.

LHN. LHNx
ρ,ε uses LPNx

ε to produce a biased halfspace distribution: a is chosen randomly subject to the

condition that a>x is distributed according to Berρ⊕Berε. We also introduce the LHNx
ρ,ε function, an alternative

method of generating the LHN distribution which first chooses a and then b, and prove that the two distributions
are equivalent.

7

4.1 Working with probability distributions of additive variables over F2

We will need to analyze sums of noise distributions. Our task will be made easier by the use of a compact and
flexible notation describing our distributions. At the most basic level, we need to understand the sum of two
different Bernoulli distributions, Berε⊕Berρ. Intuitively, noise is additive, and bounded above by ε+ρ. However,
it is also possible for errors to cancel. Indeed,

Pr[1← Berε ⊕ Berρ] = Pr[1← Berε ∧ 0← Berρ] + Pr[0← Berε ∧ 1← Berρ]

= ε(1− ρ) + ρ(1− ε) = ε+ ρ− 2ρε (2)

We would like to define an operator that adds these distributions, in the same sense that ⊕ is the additive
operator over F2. We can describe each distribution X by a single scalar, εX = Pr[X = 1], with εX an element
of the closed interval [0, 1]. So, given ⊕ : F2 × F2 → F2, we define an induced operator ⊕∗ : [0, 1]× [0, 1]→ [0, 1]
which adds distributions:

Berρ⊕∗ε = Berρ ⊕ Berε

It follows from Equation 2 that for all ρ, ε ∈ [0, 1], ⊕∗ must satisfy ρ ⊕∗ ε = ε + ρ − 2ρε. This is sufficient to
uniquely define the operator. ⊕∗ acts similarly to the familiar binary operator ⊕: it is associative, commutative,
and obeys the equalities 0 ⊕∗ x = x and 1 ⊕∗ x = 1 − x for all x ∈ [0, 1]. For this reason, we drop the ∗ and
simply refer to our operator as ⊕. We also observe that we can extend the complement operator to all of [0, 1],
so that for all ε ∈ [0, 1], ε = 1⊕ ε. In summary, we have defined ⊕, · so that

∀ε ∈ [0, 1], ε
.
= 1⊕ ε = 1− ε

∀ρ, ε ∈ [0, 1], ρ⊕ ε .
= ερ+ ερ = (1− ε)ρ+ (1− ρ)ε = ρ+ ε− 2ρε

Other useful facts about ⊕ over [0, 1] that we will use in the following are:

Fact 2. ∀ε ∈ [0, 1], 1
2 ⊕ ε = 1

2 .

Fact 3. ∀b̂ ∈ F2,Pr[e
$← Berε : e = b̂] = b̂⊕ ε =

{
ε if b̂ = 1

1− ε if b̂ = 0
.

The presence of the complement operator is due to the convention of parameterizing the Bernoulli distribution
by Pr[Berε = 1] = ε. If Pr[Berε = 0] was used instead, we would obtain the simpler expression b̂ ⊕ ε. For this

reason, we have chosen to complement the error term ε rather than the desired bit b̂.

Fact 4. Let ε⊕n =

n︷ ︸︸ ︷
ε⊕ ε⊕ . . .⊕ ε. Then ε⊕n = 1−(1−2ε)n

2 .

Fact 4 tells us that noise behaves multiplicatively rather than additively. The reason it appears additive
for small noise rates corresponds to the approximation exp(x) ≈ 1 + x for small x. More precisely, the scaled
distance from 1

2 behaves multiplicatively:

Fact 5. For all δ, τ ∈ [0, 1], 1
2 (1− δ)⊕ 1

2 (1− τ) = 1
2 (1− δτ).

4.2 Learning Parity with Noise (LPN)

Next we establish a characterization of the LPN distribution in Lemma 6 and examine its consequences.

Lemma 6. ∀(â, b̂) ∈ Fn2 × F2,Pr[(â, b̂)← LPNx
ε] = (â>x⊕ b̂⊕ ε)2−n =

{
ε2−n if â>x 6= b̂

(1− ε)2−n if â>x = b̂
.

Proof. Since a, e are chosen independently, we have:

Pr[(â, b̂)← LPNx
ε] = Pr[(a, b)← LPNx

ε : a = â] · Pr[e← Berε : e = â>x⊕ b̂]

= Pr[â
$← Fn2] · Pr[e← Berε : e = â>x⊕ b̂]

= 2−n(â>x⊕ b̂⊕ ε) (3)

Equation 3 follows from Fact 3.

8

Summing over all â ∈ Fn2 yields the following corollary:

Corollary 7. ∀x 6= 0n, Pr[(a, b)← LPNx
ε : b = 0] = 1

2 .

Setting ε = 1
2 in Lemma 6 and using Fact 2 yields the following corollary:

Corollary 8. Pr[(â, b̂)← LPNx
1/2] = 2−n−1. Equivalently, LPNx

1/2 ≡ Un × U1.

Finally, given any LPN distribution for any fixed key x, we can produce an LPN distribution with a random
key z and the same ε:

Corollary 9. Let y
$← Fn2 and let z = x⊕y. Then for (a, b)

$← LPNx
ε , the following distributions are equivalent:

LPNx
ε ⊕ (0n,a>y) ≡ LPNz

ε.

Proof.

Pr[(â, b̂)← LPNx
ε ⊕ (0n, â>y)] = Pr[(â, b̂⊕ â>y)← LPNx

ε]

= 2−n(â>x⊕ â>y ⊕ b̂⊕ ε)

= Pr[(â, b̂)← LPNx⊕y
ε]

Corollary 9 says that we can “duplicate” an LPN distribution in some sense: we can use some of its samples
as is, from the original distribution, and at the same time use the remaining samples as if they came from an
entirely different LPN distribution with the same ε. Furthermore, if x is uniformly random, then so is z.

4.3 Learning Halfspaces with Noise (LHN)

Next, we introduce LHN and LHN . In Lemma 13 we prove their equivalence and find a formula for their
distribution. Finally, we establish a connection between hardness of LHNx

ρ,ε and LPNx
ε .

1: function LHNx
ρ,ε

2: return LHNρ(LPN
x
ε)

3: function LHNρ(Samp)
4: i = 0
5: b̃

$← Berρ
6: repeat

7: (a(i), bi)
$← Samp

8: i← i+ 1
9: until bi = b̃

10: return (a(i), bi)

11: function ∆ρ,ε(b̂|b)

12: return
(b̂⊕ ρ)(b⊕ b̂⊕ ε)

b⊕ ρ⊕ ε

13: function LHNx
ρ,ε

14: (a, b)
$← LHNx

ε⊕ρ,0
15: δ = ∆ρ,ε(1|a>x)

16: b̃
$← Berδ . Pr[b̃ = b̂] = ∆ρ,ε(b̂|a>x)

17: return (a, b̃)

Algorithm 4: LHN

The algorithm LHNx
ρ,ε, shown in Algorithm 4.3, is constructed from the oracle LPNx

ε . LHNx
ρ,ε first uses its

own randomness to draw b̃
$← Berρ. Next, for i ≥ 0 it repeatedly obtains (a(i), bi)

$← LPNx
ε . The algorithm waits

until bi = b̃, and then outputs (a(i), bi). LHNx
ρ,ε is an alternative method which first chooses (a, b)

$← LHNε⊕ρ,0,

discards b, and then samples b̃. Both algorithms run in expected polynomial time. Note that ∆ε,ε(0|1) =
∆ε,ε(1|1) = 1

2 . This implies Ber∆ε,ε(b,1) = Ber 1
2

= U1, which will make LHNε,ε useful in the security proof of

HBN.

Outline. For (a, b) ← LHNx
ρ,ε, we characterize the distribution of a in Lemma 10. The special case ε = 1

2

is covered in Corollary 14. We prove in Corollary 11 that (a, b)
$← LHNρ,ε yields the same distribution for a.

Having proven that the distributions of the first n output bits are the same, in Lemma 13 we prove that the full
distributions of (a, b) are also equivalent.

9

Lemma 10. For x 6= 0, (a, b)
$← LHNx

ρ,ε produces the following distribution of a:

Pr[(a, b)
$← LHNx

ρ,ε : â = a] = (â>x⊕ ρ⊕ ε)2−n+1 =

{
2−n+1(ρ⊕ ε), if â>x = 0

2−n+1(ρ⊕ ε), if â>x = 1

Proof of Lemma 10. The algorithm LHNx
ρ,ε progresses through a series of rounds, starting with round 0, until

b̃i = bi. In each round, LHNρ,ε samples (a(i), bi)
$← LPNx

ε . To model its distribution, we define a series of events.

Let R be the event that b̃ = 0. Let S(i) be the event that the algorithm terminates by returning (a(i), bi) in

round i, for i ≥ 0. Finally, let T
(i)

(â,b̂)
be the event that (â, b̂)

$← LPNx
ε in round i. It follows that

Pr[(a, b)
$← LHNx

ρ,ε : a = â] =

∞∑
i=0

Pr[S(i)]
∏
j<i

Pr[¬S(j)]

(Pr[R] · Pr[T
(i)
(â,0)] + Pr[¬R] · Pr[T

(i)
(â,1)]

)
(4)

=

∞∑
i=0

(
1

2

)i+1 (
(1− ρ) Pr[T

(i)
(â,0)] + ρPr[T

(i)
(â,1)]

)
(5)

= (1− ρ) Pr[T
(0)
(â,0)] + ρPr[T

(0)
(â,1)] (6)

=

{
((1− ρ)(1− ε) + ρε)2−n+1 if â>x = 0

((1− ρ)ε+ ρ(1− ε))2−n+1 if â>x = 1
(7)

=

{
(ρ⊕ ε)2−n+1 if â>x = 0

(ρ⊕ ε)2−n+1 if â>x = 1

= (â>x⊕ ρ⊕ ε)2−n+1

Equation 4 follows from summing over all i ≥ 0 and all bits b̂ ∈ F2 the probability that LHNx
ρ,ε terminates in

round i with output (â, b̂). Equation 5 follows from Corollary 7 and Pr[R] = 1− ρ. Equation 6 follows from the

geometric series formula and from Pr[T
(i)

(â,b̂)
] = Pr[T

(0)

(â,b̂)
]. Equation 7 follows from Lemma 6.

Since LHNρ,ε calls LHNρ⊕ε,0, we obtain the following corollary of Lemma 10.

Corollary 11. ∀â,Pr[(a, b)
$← LHNx

ρ,ε : a = â] = Pr[(a, b)
$← LHNx

ρ,ε : a = â].

Proof. Since LHNx
ρ,ε obtains a from LHNx

ρ⊕ε,0, it follows that

Pr[(a, b)
$← LHNx

ρ,ε : a = â] = Pr[(a, b)
$← LHNx

ρ⊕ε,0 : a = â]

= (â>x⊕ ρ⊕ ε⊕ 0)2−n+1

= (â>x⊕ ρ⊕ ε⊕ 1)2−n+1 (8)

= (â>x⊕ ρ⊕ ε)2−n+1 (9)

= Pr[(a, b)
$← LHNx

ρ,ε : a = â]

Equation 8 and Equation 9 follow from x = 1⊕ x.

Lemma 12. ∀b̂, Pr[(â, b̂)← LHNx
ρ,ε] = Pr[b̂← Berρ] · Pr[(â, b̂)← LHNx

b̂,ε
].

Proof. Note that Equation 6 expresses Pr[(â, b̂)
$← LHNx

ρ,ε : a = â] as the sum of two terms, each of which

expresses the probability that (â, b̂)← LPNx
ε for some b̂. We rewrite Equation 6, indexing over b̂, obtaining

Pr[(â, b̂)
$← LHNx

ρ,ε] = (b̂⊕ ρ) Pr[T
(0)

(â,b̂)
] + (b̂⊕ ρ) Pr[T

(0)

(â,b̂)
]

= (b̂⊕ ρ) Pr[T
(0)

(â,b̂)
] (10)

= Pr[b̂← Berρ] · Pr[(â, b̂)← LHNx
b̂,ε

] (11)

10

Equation 10 follows from Pr[(â, b̂) ← LHNx
b̂,ε

= Pr[b̂]
$← LPNx

b̂
= 0 for b̂ ∈ F2. Equation 11 follows from

Lemma 10.

Finally, we show the full equivalence of LHN and LHN .

Lemma 13. LHNx
ρ,ε ≡ LHNx

ρ,ε. In particular, ∀(â, b̂),

Pr[(â, b̂)← LHNx
ρ,ε] = Pr[(â, b̂)← LHNx

ρ,ε] = (b̂⊕ ρ)(b̂⊕ â>x⊕ ε)2−n+1.

Proof of Lemma 13. For LHNx
ρ,ε, recall the definition of ∆ρ,ε(b̂|b) from Algorithm 4.3. It follows that

Pr[(â, b̂)
$← LHNρ,ε] = ∆ρ,ε(b̂|â>x) · Pr[(a, b)

$← LHNρ,ε : a = â] (12)

= ∆ρ,ε(b̂|â>x) · (â>x⊕ ρ⊕ ε)2−n+1 (13)

=

(
(b̂⊕ ρ)(b̂⊕ â>x⊕ ε)

â>x⊕ ρ⊕ ε

)
· (â>x⊕ ρ⊕ ε)2−n+1 (14)

= (b̂⊕ ρ)(b̂⊕ â>x⊕ ε)2−n+1.

= Pr[b̂← Berρ] · Pr[(a, b)← LHNx
b̂,ε

] (15)

= Pr[(â, b̂)← LHNx
ρ,ε] (16)

Equation 12 follows from the definition of LHNρ,ε in Algorithm 4.3. Equation 13 follows from Lemma 10.
Equation 14 follows from the definition of ∆ρ,ε in Algorithm 4.3. Equation 15 follows from Fact 2 and Lemma 10.
Equation 16 follows from Lemma 12.

Since ∀x, x⊕ 1
2 = 1

2 , we obtain the following corollary.

Corollary 14. For x 6= 0, Pr[(â, b̂)
$← LHNx

ρ, 12
] = (b⊕ ρ)2−n.

Hardness of LHN. Hardness of LHN can be defined using an indistinguishability game. More formally, the
advantage of an algorithm A is defined using a game in which the adversary attempts to guess whether the oracle
is LHNx

ρ,ε or Un × Berε, which is equivalent, by Corollary 14, to LHNx
ρ, 12

.

AdvLHNA (ρ, ε, n) =

∣∣∣∣∣∣∣∣∣Pr

x

$← KG, b
$← F2,

Ob =

{
LHNx

ρ, 12
if b = 0

LHNx
ρ,ε, if b = 1

,

b̂
$← AOb()

: b̂ = b

− 1

2

∣∣∣∣∣∣∣∣∣ (17)

Hardness of LHN(ρ, ε, n) and hardness of LPN(ε, n) are directly related:

Lemma 15. For any ρ, ε, if there exists a probabilistic polynomial time adversary A achieving AdvLHNA (ρ, ε, n) ≥
δ, then there exists a probabilistic polynomial time adversary B for which AdvLPNB (ε, n) ≥ δ.

Proof of Lemma 15. Let BO = ALHNρ(O). That is, B runs A and gives A access to an oracle LHNρ applied to

B’s oracle O. Since LHNρ(LPN
x
ε) ≡ LHNx

ρ,ε and LHNρ(LPN
x
1/2) ≡ Un ×Berρ by Corollary 8, AdvLPNB (ε, n) can be

expressed as

AdvLPNB (ε, n) =

∣∣∣∣∣∣∣∣∣Pr

x

$← KG, b
$← F2,

Ob =

{
LHNx

ρ, 12
if b = 0

LHNx
ρ,ε, if b = 1

,

b̂
$← BOb()

: b̂ = b

− 1

2

∣∣∣∣∣∣∣∣∣
= AdvLHNA (ρ, ε, n).

11

We will not need the reverse direction, but it is possible to show that LHN for an n-bit secret is at least as
hard as LPN with a secret of length n − 1 using Subspace LWE [Pie10]. Thus, LHN and LPN are essentially
equivalent up to a 1 bit change in secret length.

5 Proof of Man-in-the-Middle-security

Let SHBN be the event that the Reader accepts in the challenge phase of bilinear HBN, and similarly define THBN

for symmetric HBN. For any efficient adversary A, we define the adversary’s advantage, AdvHB
N

A = Pr[SHBN],

Adv′HB
N

A = Pr[THBN]. Our main result will be the following.

Theorem 16. For any efficient adversary A,

AdvHB
N

A ≤ 2εLPN + negl

Adv′HB
N

A ≤ 2εLPN + negl

The proof of Theorem 16 will consist of several steps. First, in Section 5.1, we establish an initial indistin-
guishability result, Theorem 17. Roughly speaking, Theorem 17 shows that any efficient adversary cannot dis-
tinguish between “nearby” keys X0,X1. Next, in Section 5.2, we build on Theorem 17 to establish Theorem 25,
which uses a sequence of games to show that the adversary cannot even distinguish between “faraway” keys X0

and Xm. Then, in Section 5.3, we provide an alternative construction of the final game in the sequence, and
present Theorem 23, which states that the adversary has negligible advantage in the final game. The proof of
Theorem 23 will require Theorem 26, a technical result for understanding products of matrices, which we state
and prove in Section 5.4. Finally, in Section 5.5, we prove Theorem 23 and Theorem 16.

5.1 Indistinguishability for nearby keys

Our first main result, Theorem 17, establishes that no efficient adversary A interacting with a Tag and Reader

T ,R can distinguish (in Phase II) whether the parties share a uniformly random secret key X0
$← Fn×n2 or a

nearby secret key X1 which differs by a rank 1 matrix, i.e. X1 = X0 ⊕ rs> for r, s
$← Fn2 .

The proof uses the sequence of games technique. For the bilinear protocol, in A0, A interacts in Phase I

with T X0
ε ,RX0

ε , which correctly execute the protocol using a uniformly random key X0
$← Fn×n2 , and in Phase

II with RX0
ε . In A5, A interacts with T X1

ε ,RX1
ε in Phase I, and then with T X0

ε in Phase II. In the sequence
of intermediate games, T ,R initially share secret X0 but attempt to simulate the protocol for secret X1 in an
attempt to force A to reveal information about X0 and hence r.

Theorem 17 establishes that these two games, and also their symmetric variants, are computationally indis-
tinguishable from each other. Let SΓ be the event that the Reader accepts in the challenge phase of Game Γ.
For any efficient adversary A and any game Γ, we define the advantage AdvΓ

A = Pr[SΓ]. All games are shown in
Figure 8.

Theorem 17. For any efficient adversary A,

|AdvA0

A − AdvA5

A | ≤ 2εLPN,

|AdvB0

A − AdvB5

A | ≤ 2εLPN.

Transitions between games. The proof of Theorem 17 is built from a sequence of games with three types
of transitions. Two types of transitions are syntactically equivalent ways to rewrite the distributions, while one
type of transition is computationally indistinguishable based on LPN. The three types are as follows.

Changing Sampling of b(i),a(i),a∗(i). The transitions between Games A0-A1 and Games A4-A5, and
similarly Games B0-B1 and Games B4-B5, change how a(i),b(i),a∗(i) are sampled, using Lemma 15.

12

Rewriting the error term. In Games A1-A2 and Games A3-A4 we use Lemma 13 to convert back and

forth between representing a(i)>r and b(i)>s as a function of fi and ei, respectively; and representing fi and ei

as functions of a(i)>r,b(i)>s respectively. Likewise, in Games B1-B2 and Games B3-B4, we apply Lemma 13 to

a(i)>r and b(i)>r.

Switching X0 and X1. In Games A2-A3 and in Games B2-B3, we use Corollary 19 to perform the

actual switch. Throughout the sequence of games, we first sample X0
$← Fn×n2 at random, then sample r, s, and

compute X1 = X0 ⊕ rs>. X0 is used as the key in the challenge phase, and X is used in the attack phase. For
the first few games, X = X0, and then we switch to X = X1. For all games, Figure 8 lists changes between
games, while the following are common to all games:

zi
$← wzX(a′(i),b(i), ei)

wi
$← wzX(a(i),b′(i), fi)

R∗ = RX0 ⇔

{
w∗i

$← wzX0(a∗(i),b∗(i), f∗i)

(a∗(i), f∗i)
$← (Un,Berε)

Game X (a(i), fi)
$← Ra() (b(i), ei)

$← Tb()

A0 X0 LHNr
ε, 1

2

LHNs
ε, 1

2

A1 X0 LHNr
ε,ε LHNs

ε,ε

A2 X0 LHNr
ε,ε LHNs

ε,ε

A3 X1 LHNr
ε,ε LHNs

ε,ε

A4 X1 LHNr
ε,ε LHNs

ε,ε

A5 X1 LHNr
ε, 1

2

LHNs
ε, 1

2

(a) Non-symmetric

Game X Ra() = Tb()

B0 X0 LHNr
ε, 1

2

B1 X0 LHNr
ε,ε

B2 X0 LHNr
ε,ε

B3 X1 LHNr
ε,ε

B4 X1 LHNr
ε,ε

B5 X1 LHNr
ε, 1

2

(b) Symmetric

Figure 8: Summary of Games

Theorem 17 will follow from Corollary 18, Corollary 19, and Corollary 21, which we now state and prove.

Corollary 18. The following games are equivalent:

|Pr[SA1
]− Pr[SA2

]| = |Pr[SA3
]− Pr[SA4

]| = 0,

|Pr[SB1
]− Pr[SB2

]| = |Pr[SB3
]− Pr[SB4

]| = 0.

Proof. For the non-symmetric case, we apply Lemma 13 with (ρ,x) = (ε, r) to Ra(), and with (ρ,x) = (ε, s) to
Tb(). As a result, we find that Ra() and Tb() produce identical distributions in Games A1-A2 and Games A3-A4.
Similarly, applying Lemma 13 with (ρ,x) = (ε, r) to both Ra() and Tb() yields equivalence of Games B1-B2 and
Games B3-B4.

Next we show that the games involving swapping keys are equivalent:

Corollary 19. |Pr[SA2]− Pr[SA3]| = 0, |Pr[SB2]− Pr[SB3]| = 0

The proof of Corollary 19 requires a technical lemma.

Lemma 20. Given any b̂ ∈ Fn2 ,X0 ∈ Fn×n2 , let x
$← Fn2 , X1

$← X0 ⊕ xy> and (a, e)
$← LHN(x). Then for any

y ∈ Fn2 , wzX0(a, b̂, e) ≡ wzX1(a, b̂, e).

13

Proof.

wzX1(a,b′, e) = a>X1b
′ ⊕ Ber∆ε,ε(1|a>x)

= a>X0b
′ ⊕ a>xy>b′ ⊕ Ber∆ε,ε(1|a>x)

= a>X0b
′ ⊕

{
Ber∆ε,ε(1|0) if a>x = 0

Ber∆ε,ε(1|1) ⊕ y>b′ if a>x = 1

= a>X0b
′ ⊕

{
Ber∆ε,ε(1|0) if a>x = 0

U1 if a>x = 1
(18)

= a>X0b
′ ⊕

{
Ber∆ε,ε(1|0) if a>x = 0

Ber∆ε,ε(1|1) if a>x = 1

= a>X0b
′ ⊕ Ber∆ε,ε(1|a>x)

= wzX0(a,b′, e)

Equation 18 follows from Fact 2 and ∆ε,ε(b|1) = 1
2 .

The lemma uses the LHN distribution 3 to annihilate the adversary’s contribution y>b′ to w corresponding
to xy>. Corollary 19 then follows from several applications of Lemma 20.

Proof of Corollary 19. For Games A2-A3, we apply the lemma for X0 with (x,y) = (r, s) and (a,b′) =
(a(i),b′(i)), which yields equivalence for RwX(a(i),b′(i), fi) = wz(a(i),b′(i), fi). Next we apply the lemma for X>0
with (x,y) = (s, r) and (a,b′) = (b(i),a′(i)), which yields equivalence for TzX(a′(i),b(i), ei) = wzX

>
(b(i),a′(i), ei).

For Games B2-B3, the result follows from applying Lemma 20 for X0 = X>0 with (x,y) = (r, r) and (a,b′) equal
to (a(i),b′(i)) and (b(i),a′(i)) respectively.

Finally, we consider the remaining games in Corollary 21.

Corollary 21. The following games are computationally indistinguishable:

|Pr[SA0
]− Pr[SA1

]|, |Pr[SA4
]− Pr[SA5

]| ≤ εLPN,
|Pr[SB0

]− Pr[SB1
]|, |Pr[SB4

]− Pr[SB5
]| ≤ εLPN.

Corollary 21 will follow from Lemma 22.

Lemma 22. Given a challenge oracle Ob =

{
LPNr

1/2 if b = 0

LPNr
ε, if b = 1

, we can construct two separate challenge oracles,

(O(1)
b ,O(2)

b) =

{
(LPNr

1/2, LPN
s
1/2) if b = 0

(LPNr
ε, LPN

s
ε) if b = 1

Proof. The lemma follows from applying Corollary 9 once for b = 0 and once for b = 1, setting x = r, z = s in
both cases.

Proof of Corollary 21. We define four games, as shown in Figure 9. In each game αΓ1,Γ2 , the adversary A
interacts with the tag TΓ1,Γ2 , readerRΓ1,Γ2 , and Phase II readerR∗Γ1,Γ2

. Let T X
Γ1,Γ2

= (Tb(),TzX(·, ·, ·)),RX
Γ1,Γ2

=

(Ra(),RwX(·, ·, ·)), where Rw(·, ·, ·) = Tz(·, ·, ·) = wz(·, ·, ·), and X,Ra(),Tb() are as specified in Figure 9. For all
αΓ1,Γ2 , βΓ1,Γ2 respectively, let R∗Γ1,Γ2

= R∗X0 be identical to the reader in A0, B0 respectively.

3This key step is actually the raison d’être of LHN.

14

Game X Ra() Tb()

αA0,A1 X1
$← KeyGenHBN(1n)⊕ rs> O(1)

b O(2)
b

αA4,A5 X0
$← KeyGenHBN(1n) O(1)

b
O(2)

b

βB0,B1 X1
$← KeyGen.SymmHBN(1n)⊕ rr> LHNε(Ob) LHNε(Ob)

βB4,B5 X0
$← KeyGen.SymmHBN(1n) LHNε(Ob̄) LHNε(Ob̄)

Figure 9: Interpolating Games

We define the generic advantage of an adversary against a tag T , reader R, and challenge phase reader R∗:

Adv
(T ,R,R∗)
A =

∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr

X
$← KeyGen,

s
$← AT

X,RX

1 (1n),

A∗
$← R∗1

X,

(z∗,B∗)
$← A2(s,A∗)

w∗
$← R∗2

X(B∗)

:
∀i ∈ [k], B̂e(i) 6= 0n,
|z∗ ⊕w∗| ≤ k · uHBN(ε)

∣∣∣∣∣∣∣∣∣∣∣∣∣
Let TΓ,RΓ,R∗Γ be the Tag, Reader, and Phase II Reader in Game Γ. Consider the adversary BΓ1,Γ2 defined as

follows. BΓ1,Γ2
(O) constructs game αΓ1,Γ2

from its oracle via Lemma 22. It runs A, returning 1 if A is accepted
(i.e. |z∗ ⊕w∗| ≤ k · uHBN(ε)), and 0 otherwise. Then by Lemma 22,

εLPN ≥ AdvLPNB

= |Adv
(TΓ1

,RΓ1
,R∗Γ1

)

A − Adv
(TΓ2

,RΓ2
,R∗Γ2

)

A |
= |AdvΓ1

A − AdvΓ2

A |

The same argument establishes that εLPN ≥ |AdvΓ1

A −AdvΓ2

A | for the βΓ1,Γ2
, except that we replace Lemma 22

by Lemma 15 for the construction of Ra() for T and Tb() for R.

Proof of Theorem 17. It follows from the triangle inequality and the above corollaries that

|AdvA0

A − AdvA5

A | ≤
∑
i∈[5]

|AdvAi−1

A − AdvAi
A | ≤ εLPN + 0 + 0 + 0 + εLPN = 2εLPN,

|AdvB0

A − AdvB5

A | ≤
∑
i∈[5]

|AdvBi−1

A − AdvBi
A | ≤ εLPN + 0 + 0 + 0 + εLPN = 2εLPN,

5.2 Indistinguishability for X0 and X0 ⊕
∑m

j=1 r
(j)s(j)>

Next, we use Theorem 17 repeatedly to prove Theorem 25, which states that the adversary cannot distinguish

between X0 or X0 ⊕
∑m
i=1 r(i)s(i)> with non-negligible advantage, for any polynomial m. We define two new

sequences of games Ai,j and Bi,j , where j remains the same as in Figure 8, and i ∈ {0, . . . ,m}. The only change

is in the key generation step. For all games, we generate X0 ∈ Fn×n2 and ∀j ∈ [m], r(j), s(j) $← Fn2 . For ` ∈ [m],

we define X` = X0 ⊕
∑
j≤` r(j)s(j)>.

In Game Ai,j , if Game A0,j had key Xt, we now use Xt+i. That is, Xt+i is used in the challenge phase,
while X0 is used in the attack phase. We shall prove that Game A0,0 is indistinguishable from Game A5,m, and
similarly Game B0,0 is indistinguishable from Game B5,m.

15

Theorem 23. For all efficient A,

|AdvA0,0

A − Adv
A5,m

A | ≤ 2εLPN,

|AdvB0,0

A − Adv
B5,m

A | ≤ 2εLPN.

First, we need another result on indistinguishability of games.

Corollary 24. For all i ∈ [m],

|AdvA2,i−1

A − Adv
A3,i

A | = 0,

|AdvB2,i−1

A − Adv
B3,i

A | = 0,

Proof of Corollary 24. ∀i ∈ [m], Game A2,i−1 and Game A3,i both use Xi as the challenge key. The only
difference is the labeling of the secrets: Game A2,i−1 sets Ra() = LHNε,ε(r

(i)), while Game A3,i uses Ra() =
LHNε,ε(r

(i−1)). Since r(i), r(i−1) are independent of Xi, it follows that Game A2,i ≡ Game A3,i−1. By the same
argument, Game B2,i ≡ Game B3,i−1.

Proof of Theorem 23. By the triangle inequality,

|AdvA0,0

A − Adv
A5,m

A | ≤ |AdvA0,0

A − Adv
A2,0

A |+

∑
i∈[m]

|AdvA2,i−1

A − Adv
A3,i

A |

+ |AdvA3,m

A − Adv
A5,m

A |

≤ 2εLPN +
∑
i∈[m]

|AdvA2,i−1

A − Adv
A3,i−1

A |+
∑
i∈[m]

|AdvA3,i−1

A − Adv
A2,i

A | (19)

= 2εLPN. (20)

Equation 19 follows from Corollary 18 and Corollary 21. Equation 20 follows from Corollary 19 and Corollary 24.
A similar argument establishes the second inequality.

5.3 An Alternative Construction of A5,m and B5,m

In the original construction, X0
$← Fn×n2 and ∀j ∈ [m], r(j) (and s(j) in Game A5,m) are randomly chosen

from Fn2 . Consider x(j),y(j) for j ∈ [m]. In the bilinear case, we set x(j) = r(j) and y(j) = s(j). In the
symmetric case, we set x(j) = r(j) and y(j) = r(j). For both cases, Xm is constructed from these values by

Xm = X0 ⊕
∑m
j=1 x(j)y(j)>. The adversary then interacts with T Xm ,RXm in Phase I, and R∗X0 in Phase II.

Alternatively, we can build the final game by choosing Xm
$← Fn×n2 and letting X0 = Xm ⊕

∑m
j=1 x(j)y(j)>.

For all j ∈ [m], we can defer the random choice of x(j),y(j) until after Phase I, since now they are not used at
all in Phase I.

Let R,S be such that ∀j ∈ [m],Re(i) = r(j),Se(j) = s(j). The final game now looks as follows:

16

Adv
A5,m

A =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr

Xm
$← KeyGenHBN(1n),

s
$← AT

Xm ,RXm

1 (1n),

Â
$← Fn×k2 ,

(z∗, B̂)
$← A2(s, Â),

R,S
$← Fn×m2 ,

f
$← Bernε ,

w∗ = diag(Â>X>mB̂)⊕ diag(Â>RS>B̂)⊕ f

:
∀i ∈ [k], B̂e(i) 6= 0n,
|z∗ ⊕w∗| ≤ k · uHBN(ε)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(21)

Adv
B5,m

A =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr

Xm
$← KeyGen.SymmHBN(1n),

s
$← AT

Xm ,RXm

1 (1n),

Â
$← Fn×k2 ,

(z∗, B̂)
$← A2(s, Â),

R
$← Fn×m2 ,S = R,

f
$← Bernε ,

w∗ = diag(Â>X>mB̂)⊕ diag(Â>RS>B̂)⊕ f

:
∀i ∈ [k], B̂e(i) 6= 0n,
|z∗ ⊕w∗| ≤ k · uHBN(ε)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(22)

In Section 5.5, we use Equation 21 and Equation 22 to prove the following theorem, which states that A has
negligible advantage in the final games:

Theorem 25. For all probabilistic polynomial time A,

Adv
A5,m

A ≤ negl,

Adv
B5,m

A ≤ negl.

Theorem 25 will follow if we can prove that w∗ is almost uniformly distributed, since no adversary can guess
a uniformly distributed value. In order to do this, we first develop some technical tools in Section 5.4 to address
the diag(Â>RS>B̂) component of the sum.

5.4 A Theorem for Products of Random Matrices

Let SÂ be the event that rank(Â) < k. Let TB̂>S be the event that rank(B̂>S) = 0. The main result of this
section is the following theorem.

Theorem 26. Given Â
$← Fn×k2 and any B̂ ∈ Fn×k2 such that ∀i ∈ [m], B̂e(i) 6= 0k, let R

$← Fn×m2 . For the

bilinear protocol, S
$← Fn×m2 , while for the symmetric protocol, S = R. Then for any ẑ ∈ Fk2 ,

(a) Pr[SÂ] ≤ 2k−n, Pr[TB̂>S] ≤ k2−m

(b) If events SÂ and TB̂>S do not occur, then Pr[diag(Â>RS>B̂) = ẑ] = 2−k

Roughly speaking, Theorem 26 states that Â and B̂>S are “degenerate” only with negligible probability, and
if Â, B̂>S are nondegenerate, then diag(Â>RS>B̂) is uniformly distributed.

17

Proof of Theorem 26(a). First consider SÂ. We find that

Pr[rank(Â) < k] = Pr[∃x ∈ Fk2 \
{
0k
}

: Âx = 0k] (23)

≤
∑

x∈Fk2\{0k}

Pr[Âx = 0k] (24)

=
∑

x∈Fk2\{0k}

∏
i∈[n]

Pr[(e(i)>Â)x = 0] (25)

= (2k − 1) ·
∏
i∈[n]

2k−1

2k
(26)

≤ 2k−n

Equation 23 and Equation 26 both follows from rank(X) + rank(ker(X)) = k, for X = Â,x respectively.

Equation 24 follows from the union bound. Equation 25 follows from independence of the columns e(i)>Â of
Â.

Next consider TB̂>S. We find that ∀i ∈ [k],

Pr[∃i ∈ [k],S>B̂e(i) = 0m] ≤
∑
i∈[k]

Pr[S>B̂e(i) = 0m] (27)

=
∑
i∈[k]

∏
j∈[m]

Pr[e(j)>SB̂e(i) = 0] (28)

=
∑
i∈[k]

∏
j∈[m]

2m−1

2m
(29)

= 2−m (30)

Equation 27 follows from the union bound. Equation 28 follows from independence of the columns e(j)>S of S.
Equation 29 follows from rank(X) + rank(ker(X)) = m for X = B̂e(i).

We move on to Theorem 26(b). We will need the following two lemmata.

Lemma 27. Let R
$← Fn×m2 . Then ∀Â ∈ Fn×k2 with rank(Â) = k ≤ n, ∀Ŷ ∈ Fk×m2 , Pr[Â>R = Ŷ] = 2−km.

Proof. Each column Ŷe(i) = Â>(Re(i)) is an independently random element of Im(Â>). Since Â has full rank,

Im(Â>) is all of Fk2 , so that each column is a uniformly random k-bit vector.

Lemma 28. Let Y
$← Fk×m2 , S

$← Fn×m2 . Given any ẑ ∈ Fk2 and B̂ ∈ Fn×k2 so that ∀i ∈ [k],S>B̂e(i) 6= 0n,

Pr[diag(YS>B̂) = ẑ] = 2−k

Proof. For all i ∈ [k], let y(i) = Y>e(i) and x(i) = S>B̂e(i). Then

Pr[diag(YS>B̂) = ẑ] =

k∏
i=1

Pr[y(i)>x(i) = ẑi] (31)

=

k∏
i=1

|{y(i) : y(i)>x(i) = ẑi}|
|Fn2 |

(32)

=

k∏
i=1

2n−1

2n
(33)

= 2−k

18

Equation 31 follows from expressing the diagonal of the product YS>B̂ in terms of Y and S>B̂. Equation 32
follows from independence of the y(i). Equation 33 follows from | ker(x(i))| = 2n−1 = |Fn2 \ ker(x(i))| for x(i) 6=
0k.

Theorem 26(b) now follows immediately from Lemma 27 and Lemma 28.

5.5 Final Steps

Now we have all the tools necessary to prove Theorem 25 and, finally, Theorem 16.

Proof of Theorem 25. By Theorem 26, for any vector ẑ ∈ Fk2 of guesses made by the adversary, if SÂ,TB̂>S do
not occur, then then Pr[w = ẑ] = 2−k, so that

w = diag(Â>XmB̂)⊕ diag(ÂRS>B̂)⊕ f

= diag(Â>XmB̂)⊕ Berk1
2
⊕ f

= Berk1
2

(34)

Equation 34 follows from Fact 2. Therefore, for a random vector u
$← Fk2 , if SÂ,TB̂>S do not occur, then

Pr[|z⊕w| ≤ k · uHBN(ε)] = Pr[|z⊕ u| ≤ k · uHBN(ε)]

≤ 2−k((1
2−(1+δ)(ε⊕ε))

2

(35)

Equation 35 follows from the well-known Chernoff bound, Pr[X ≤ (1− µ) ·X] ≤ e−µ2k.

Recall that with uHBN(ε) = (1 + δ)(ε ⊕ ε), HBN achieves completeness e−δ
2k, i.e. an honest T fails with

probability at most e−δ
2k. If we set δ so that uHBN(ε) = (ε⊕ ε)(1 + δ) = 1

2 (1− δ), we obtain the same bound of

e−δ
2k for both soundness and completeness. (ε⊕ ε)(1 + δ) = 1

2 (1− δ) results in δ =
1
2−(ε⊕ε)
1
2 +(ε⊕ε) = 1−4ε+4ε2

1+4ε−4ε2 . As a

result, we obtain

Pr[|z⊕w| ≤ k · uHBN(ε)] ≤ 2−kδ
2

= 2
−k

(
1−4ε+4ε2

1+4ε−4ε2

)2

If ε is a constant, for example, the bound is 2−O(k), which is negligible.

Proof of Theorem 16.

AdvHB
N

A ≤ Adv
A5,m

A + 2εLPN (36)

≤
(

2k−n + k2−m + 2
−k

(
1−4ε+4ε2

1+4ε−4ε2

)2
)

+ 2εLPN (37)

= negl (38)

Equation 36 follows from Theorem 23. Equation 37 follows from applying Theorem 26. Equation 38 follows
from the LPN assumption and from setting k < n− ω(log n),m = n, and ε = θ(1).

6 Conclusion

We have introduced HBN, a bilinear version of HB, and proven its security in the Man-in-the-Middle model,
for both the non-symmetric and symmetric variants. Along the way, we have introduced a new notation the
simplifies working with random variables over F2, assembled a useful collection of lemmas for working with LPN,
and introduced the LHN problem. We hope that these technical tools will be useful for future work on protocols
based on LPN.

19

References

[AL87] Dana Angluin and Philip D Laird. Learning from Noisy Examples. Machine Learning, 2(4):343–370,
1987.

[BC08] Julien Bringer and Herve Chabanne. Trusted-HB: a low-cost version of HB secure against man-in-
the-middle attacks. arXiv, 2008.

[BCD06] Julien Bringer, Hervé Chabanne, and Emmanuelle Dottax. HB++: a lightweight authentication
protocol secure against some attacks. In Second International Workshop on Security, Privacy and
Trust in Pervasive and Ubiquitous Computing (SecPerU 2006), pages 28–33. IEEE Computer Society,
2006.

[DK08] D Duc and Kwangjo Kim. Securing HB against GRS man-in-the-middle attack. caislab.icu.ac.kr,
2008.

[FS09] Dmitry Frumkin and Adi Shamir. Un-Trusted-HB: Security vulnerabilities of Trusted-HB. EPrint,
2009.

[GRS05] Henri Gilbert, Matthew Robshaw, and Herve Sibert. Active attack against HB+: a provably secure
lightweight authentication protocol. Electronics Letters, 2005.

[GRS08a] Henri Gilbert, Matthew Robshaw, and Yannick Seurin. Good variants of HB+ are hard to find. In
Proc. Financial Cryptography and Data Security, pages 156–170, 2008.

[GRS08b] Henri Gilbert, Matthew Robshaw, and Yannick Seurin. HB#: Increasing the security and efficiency
of HB. In Proc. EUROCRYPT, volume 4965, pages 361–378, 2008.

[HB01] Nicholas Hopper and Manuel Blum. Secure human identification protocols. In Proc. ASIACRYPT,
2001.

[JW05] Ari Juels and Stephen Weis. Authenticating pervasive devices with human protocols. In Proc.
CRYPTO, pages 293–308, 2005.

[Kea93] M. Kearns. Efficient noise-tolerant learning from statistical queries. In Proceedings of the 25th ACM
Symposium on Theory of Computing, pages 392–401. ACM, 1993.

[KPC+11] Eike Kiltz, Krzystof Pietrzak, David Cash, Abhishek Jain, and Daniele Venturi. Efficient Authenti-
cation from Hard Learning Problems. In Proc. Eurocrypt, pages 7–26, 2011.

[KSS10] Jonathan Katz, Ji Sun Shin, and Adam Smith. Parallel and concurrent security of the HB and HB+

protocols. Journal of Cryptology, 23(3):402–421, 2010.

[LMM08] X Leng, K Mayes, and K Markantonakis. HB-MP+ protocol: An improvement on the HB-MP
protocol. 2008 IEEE International Conference on RFID, 2008.

[MP07] Jorge Munilla and Alberto Peinado. HB-MP: A further step in the HB-family of lightweight authen-
tication protocols. Computer Networks, 2007.

[OOV08] Khaled Ouafi, Raphael Overbeck, and Serge Vaudenay. On the security of HB# against a man-in-
the-middle attack. Proc. ASIACRYPT, 2008.

[Pie10] Krzystof Pietrzak. Subspace LWE, 2010. Manuscript available at http://homepages.cwi.nl/

~pietrzak/publications/SLWE.pdf.

A Modeling the Active Security Game

The adversary A can be defined as two algorithms A = (A1,A2). In Phase I, A1 has access to the Phase I oracles
T ,R, and outputs its state s for input to A2. A2 submits b∗(i) to the Phase II challenger R∗ (either in parallel
or in serial) and receives a∗(i) in exchange, as shown in Figure 10. From the model, we see that the reason HBN

can be used in either two or three rounds is precisely because the computation of b(i) does not depend on a′(i),

20

http://homepages.cwi.nl/~pietrzak/publications/SLWE.pdf
http://homepages.cwi.nl/~pietrzak/publications/SLWE.pdf

and a(i) does not depend on b′(i).

Phase I s
$← AT ,R1 ,

Phase II b∗(i)
$← A2(s),

In serial or parallel a∗(i)
$← R∗(b∗(i)),

Phase II: Final z∗i
$← A2(b∗(i),a∗(i), s)

Two round Three Round

b(i) $← T b(a′(i)) b(i) $← T b()

a(i) $← Ra() a(i) $← Ra(b′(i))

zi
$← T z(a′(i),b(i)) zi

$← T z(a′(i),b(i))

wi
$← T w(z′i,a

(i),b′(i)) wi
$← T w(z′i,a

(i),b′(i))

Figure 10: Modeling the Oracles in Two and Three Rounds

21

	Introduction
	Our Contribution
	Outline

	Preliminaries
	Notation
	Learning Parity with Noise (LPN)
	HB and HB+ protocols
	Security Models

	New protocols
	Learning Halfspaces with Noise (LHN)
	Working with probability distributions of additive variables over F2
	Learning Parity with Noise (LPN)
	Learning Halfspaces with Noise (LHN)

	Proof of Man-in-the-Middle-security
	Indistinguishability for nearby keys
	Indistinguishability for X0 and X0 j=1m r(j)s(j)
	An Alternative Construction of A5,m and B5,m
	A Theorem for Products of Random Matrices
	Final Steps

	Conclusion
	Modeling the Active Security Game

