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Abstract

Secure, cloud-based storage has attracted considerable attention, both from a theoretical and practical per-
spective. To access data in a private manner, “Oblivious RAM” techniques have been employed in the past to
store and retrieve data from an untrusted storage in such a way that no information regarding “usage statistics”
is revealed to a computationally bounded adversary monitoring it.

In this paper, we introduce a very natural setting where there are two or more non-communicating servers
(such as Yahoo cloud and Amazon AWS, which, in light of competitive nature are unlikely to collaborate) and
ask if more efficient Oblivious RAM simulations are possible than what are currently known for a single server
with sublinear work at each server. Surprisingly, we show the following:

To support n reads and writes, our two-server oblivious RAM protocol requiresO(n) memory for the servers,
O(1) memory for the client, and O(log n) amortized read/write overhead for data access. The constants in
the big-O notation are tiny, and we show that the storage and data access overhead of our solution concretely
compares favorably to the state-of-the-art single-server schemes. Furthermore, these parameters asymptotically
match the lower bound for any single-server solution and point out the fascinating possibility that two-server
solutions may even beat the single-server lower bound.

In addition, our protocol enjoys an important feature from a practical perspective as well. At the heart of
almost all previous single-server Oblivious RAM solutions, a crucial but inefficient process known as oblivious
sorting was required. In our two-server model, we describe a novel technique to bypass oblivious sorting, and
show how this can be carefully blended with existing techniques to attain a more practical Oblivious RAM
protocol in comparison to all prior work.
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1 Introduction

The concept of outsourcing data storage or computation is widespread in practice. This raises the issue of what
happens to the privacy of the data when the outsourcing service is only semi-trusted or untrusted. Encryption can
be employed to protect the content of the data, but it is apparent that information might be revealed based on how
the data is accessed. Simply put, encryption by itself alone does not entirely address the issue of data privacy at
hand.

The sequence of reads and writes a client makes to the remotely stored data is known as the access pattern.
Even if the content of the data is protected by encryption, the server storing the data can deduce information about
the encrypted data just by observing and analyzing the access pattern. For instance, the server can correlate this
pattern with public information about the client’s behavior, such as the purchase or sale of stock. Over time, the
server may learn enough information to predict the behavior of the client or the underlying semantics of the data,
thereby defeating the purpose of encrypting it in the first place.

A trivial solution would be for the client to access the entire stored database every single read or write. This
clearly hides the access pattern, but the per-access overhead is linear in the size of stored data. The question remains:

Is it possible to hide the access pattern with less than linear overhead?
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In the model where the client is a Random Access Machine (i.e. RAM model), Goldreich [11] initially intro-
duced the concept of hiding the access pattern in the context of software protection. A small protected CPU would
run on a machine with large unprotected RAM. The goal was to obliviously simulate access to RAM, so that the
set of instructions ran by the CPU would be protected against an outsider monitoring the RAM. In this manner, an
adversary observing the RAM would learn nothing about what instructions were executed except the total number
of instructions.

The work of [11] featured two solutions using constant client memory: a “square-root” solution and a “recursive
square-root” solution. The amortized time overhead of executing a program in the former scheme was O(

√
n), and

O(2
√

logn log logn) in the latter. Ostrovsky [20, 19] then discovered what is known as the “hierarchical solution”
which had amortized overhead O(min

{
(log3 n); (log3 t)

}
), where t is running time.

In the subsequent work of Goldreich and Ostrovsky [12] contained the merged results of [20, 19, 11] and
featured a simpler method of reshuffling. The work described a way of simulating oblivious RAM with O(log3 n)
amortized overhead per access for n data items, using constant client storage1 and O(n log n) server storage.

While the asymptotic behavior ofO(log3 n) overhead might seem efficient, this only gives a practical advantage
over the trivial solution when n > log3 n (without even considering the constants hidden in the O). A database
of size n = 220 results in an overhead factor of roughly 8000, and such a large overhead would seem to cast
oblivious RAM as outside the realm of practicality. Making oblivious RAM practical would be of great impact, as
it can be applied to software protection and several other important problems such as cloud computing, multiparty
computation, preventing cache attacks, etc. as we discuss later.

RELATED WORK. Subsequent works on Oblivious RAM [26, 27, 24, 14, 15] looked at improving the concrete
and asymptotic parameters of oblivious RAM. Each of these schemes introduces interesting new concepts, and we
give a full summary of these schemes in Section 2. The major practical bottleneck of all these works is a primitive
called oblivious sorting that is being called upon as a sub-protocol. Although the methods for oblivious sorting
have improved, it still remains as both the critical step and the primary stumbling block of all these schemes.

Even if new methods for oblivious RAM are discovered, there is an inherent limit to how much these schemes
can be improved. It was shown in the original work of Ostrovsky [20] that there is a lower bound for oblivious
RAM in this model.

([11], Theorem 6): To obliviously perform n queries using only O(1) client memory, there is a lower bound of
O(log n) amortized overhead per access.

We mention several results that are similar to Oblivious RAM but work in slightly different models. The works
of Ajtai [1] and Damgård et al. [10] show how to construct oblivious RAM with information-theoretic security
with poly-logarithmic overhead in the restricted model where the Adversary can not read memory contents. That
is, these results work in a model where an adversary only sees the sequence of accesses and not the data. The work
of Boneh, Mazieres and Popa [7] suggests ways to improve the efficiency of “square-root” solution [11, 12] when
memory contents are divided into larger blocks. Finally, the notion of Private Information Retrieval with Writing
allows for private storage and retrieval of data. This model differs from Oblivious RAM in the sense that, while the
communication complexity of the scheme is sub-linear, the server performs a linear amount of work on the database.
The work of Ostrovsky and Shoup [21] gives a multi-server solution to this problem in both the computational and
the information-theoretic setting. The current work can be viewed as a generalization of [21] model where servers
must also perform sublinear work. The notion of single-server “PIR Writing” was subsequently formalized in
Boneh, Kushilevitz, Ostrovsky and Skeith [6] where they provide a single-server solution. The case of amortized
“PIR Writing” of multiple reads and writes was considered in [8].

Also along the lines of oblivious simulation of execution, the classic result of Pippenger and Fischer [25] shows
that a single-tape Turing machine can be obliviously simulated by a two-tape Turing machine with logarithmic
overhead.

1We count storage as the number of records or data items stored in memory. We do not count small variables such as counters or loop
iterators toward this amount as these typically are tiny compared to the size of a data item, nor the private-key encryption/decryption cost
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OUR RESULTS. In this paper, we introduce a new model for oblivious RAM in which we can achieve far better
parameters than existing single-server schemes. We mention that our model, like most existing schemes, focuses
on computational rather than information-theoretic security, and we only make the mild assumption that one-way
functions exist. Instead of having a single server store our data, we consider using multiple2 servers to store our
data. These servers are assumed to not communicate or collude with each other, but only communicate with the
client. From a theoretical point of view, this model has been used in the past to much success such as in the seminal
works in the areas of multi-prover Interactive Proof Systems [4] and multi-server Private Information Retrieval [9].
We argue that this new model is still applicable to many scenarios in practice, for example, in cloud computing if
the client subscribes to two different cloud services.

In our two-server model, we introduce a new approach for oblivious RAM that completely bypasses oblivi-
ous sorting, which was the inhibiting factor of practicality in most previous schemes (we give a comparison in
Section 2.3). To perform a sequence of n reads or writes, our solution achieves O(log n) amortized overhead per
access, O(n) storage for the servers, and constant client memory. This matches the lower bound in the single-
server model, and thus no single-server solution that uses constant client memory can asymptotically outperform
our solution.

1.1 Applications

SOFTWARE PROTECTION. Original works of Goldreich [11] and Ostrovsky [20] envisioned protecting software
using oblivious RAM. A small tamper-resistant CPU could be incorporated in a system with a large amount of
unprotected RAM. A program could be run on this CPU by using oblivious RAM to access the large memory.
Because this RAM could be monitored by an adversary, the benefit of oblivious RAM is that it hides the access
pattern of the program that is running, thus revealing only the running time of the program to the adversary.

CLOUD COMPUTING. With the growing popularity of storing data remotely in the cloud, we want a way to do
so privately when the data is sensitive. As mentioned before, simply encrypting all the data is insufficient, and by
implementing oblivious RAM in the clouds, a client can privately store and access sensitive data on an untrusted
server.

PREVENTING SIDE-CHANNEL ATTACKS. There are certain side-channel attacks that are based on measuring the
RAM accesses that can be prevented by using oblivious RAM. For example, an adversary can mount a cache attack
by observing the memory cache of a CPU. This poses a real threat as it can be used for cryptanalysis and has even
been observed in practice in the work of Osvik-Shamir-Tromer [22].

MULTIPARTY COMPUTATION. In the case of MPC, we can apply oblivious RAM by letting the participants jointly
simulate the client, and have the contents of the server be stored in a secret-shared manner. This can be beneficial
in cases where the program we want to securely compute is more suitable to be modeled by a RAM program than
a circuit.

PRIVATE DATA STRUCTURES. Rather than protecting an entire program, we can consider the middle ground of
data structures. Data structures typically fit neatly into the RAM model, where each read or write is a sequence of
accesses to memory. Performing these operations will leak information about the data, and we can use oblivious
RAM to mitigate such issues. For example, commercial databases typically offer encryption to protect the data, but
to protect the access pattern we can replace the data structures with oblivious ones.

2In general, we can consider multiple servers. For our purposes, two servers suffice.
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2 Background

2.1 Model

We work in the RAM model, where there is a machine that can perform a sequence of reads or writes to memory
locations. Because we wish to hide the type of access performed by the client, we unify both types of accesses into
a operation known as a query. A sequence of n queries can be viewed as a list of (memory location, data) pairs
(v1, x1), . . . , (vn, xn), along with a sequence of operations op1, . . . , opn, where opi is a READ or WRITE operation.
In the case of READ operations, the corresponding x value is ignored. The sequence of queries, including both the
memory location and the data, performed by a client is known as the access pattern.

In our model, we wish to obliviously simulate the RAM machine with a client, which can be viewed as having
limited storage, that has access to multiple servers with large storage that do not communicate with one another.
However, the servers are untrusted and assumed to only be, in the best case, semi-honest, i.e. each server follows
the protocol but attempts to learn additional information by reviewing the transcript of execution. For our model,
we assume that the servers can do slightly more than just I/O, in that they can do computations locally, such as
shuffle arrays, as well as perform hashing and basic arithmetic and comparison operations. We mention that there
are some standard ways to deal with malicious servers, similar to a single-server case [20, 12]. However, due to
the fact that the servers in our model are assigned some computational tasks, guarding against malicious servers
requires additional techniques (described in the full version) to ensure security.

An oblivious RAM is secure if for any two access patterns in the ideal RAM, the corresponding views in the
execution of those access patterns of any individual server are computationally indistinguishable. Another way of
putting it is that the view of a server can be simulated in a way that is indistinguishable from the view of the server
during a real execution.

2.2 Tools

HASHING. In our scheme and in previous schemes, hashing is a central tool in storing the records. For our purposes,
the hash functions used for hashing will be viewed as either a random function or a keyed pseudo-random function
family Fk. Recall the standard hashing with buckets data structure: there is a table of m buckets, each of size b, and
a hash function h : V → {1 . . .m}. A record (v, x) is stored in bucket h(v).

CUCKOO HASHING. A variant of standard hashing known as Cuckoo Hashing was introduced by Pagh and
Rodler [23]. In this variant, the hash table does not have buckets, but now two hash functions h1, h2 are used.
Each record (v, x) can only reside in one of two locations h1(v) or h2(v), and it is always inserted into h1(v). If
there was a previous record stored in that location, the previous record is kicked out and sent to its other location,
possibly resulting in a chain of kicks. If the chain grows too long or there is a cycle, new hash functions are chosen,
and it was shown that this results in an amortized O(1) insertion time. A version of cuckoo hashing with a stash
was introduced by Kirsch et al. [16] where it was shown that the probability of having to reset drops exponentially
in the size of the stash.

OBLIVIOUS SORTING. A key ingredient in most previous schemes is the notion of oblivious sorting. This is a
sorting algorithm such that the sequence of comparisons it makes is independent of the data. For example, the
schemes of Batcher [3] and Ajtai et al. [2] are based on sorting networks, and recently a randomized shell sort was
introduced by Goodrich [13].

2.3 Comparison to Prior Work

We briefly overview the relevant key techniques used in previous schemes. We summarize all of these in Table 1

SQUARE ROOT SOLUTION. In the work of Goldreich [11] and subsequently Goldreich-Ostrovsky [12], a “square
root” solution (ORAMGO1) was introduced for oblivious RAM. This solution was not hierarchical in nature, and
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Scheme Comp. Overhead Client Storage Server Storage # of Servers Dist. Prob.3

[12]ORAMGO1 O(
√
n log n) O(1) O(n+

√
n) 1 negl

[12]ORAMGO2 O(log4 n) O(1) O(n log n) 1 negl

[12]ORAMGO3 O(log3 n) O(1) O(n log n) 1 negl

[26]ORAMWS O(log2 n) O(
√
n) O(n log n) 1 negl

[27]ORAMWSC O(log n log log n) O(
√
n) O(n) 1 poly

[24]ORAMPR O(log2 n) O(1) O(n) 1 poly

[14]ORAMGM1 O(log2 n) O(1) O(n) 1 negl

[14]ORAMGM2 O(log n) O(nν) O(n) 1 negl
[15]ORAMGMOT O(log n) O(nν) O(n) 1 negl

Our Scheme O(log n) O(1) O(n) 2 negl

Table 1: Comparison of oblivious RAM schemes.

instead had a permutation of the entire memory stored in a single array along with a cache of size
√
n which was

scanned in its entirety during every query. After every
√
n queries, the entire array was obliviously sorted and a

new permutation was chosen. This results in an amortized overhead of O(
√
n log n) per access.

HIERARCHICAL SOLUTION. In the work of Ostrovsky [20] and subsequently [12], a hierarchical solution was given
for oblivious RAM. In this solution, the server holds a hierarchy of bucketed hash tables, growing geometrically in
size. New records would be inserted at the smallest level, and as the levels fill up, they would be reshuffled down and
re-hashed by using oblivious sorting. A query for v would scan bucket hi(v) in the hash table on level i. By using
the oblivious sorting of Batcher [3], the scheme achieves anO(log4 n) amortized query overhead (ORAMGO2), and
with AKS [2], an O(log3 n) query overhead is achieved (ORAMGO3).

BUCKET SORTING. In the work of Williams-Sion [26], the client was given O(
√
n) working memory instead of

O(1). By doing so, it was possible to achieve a more efficient oblivious sorting algorithm by sorting the data locally
in chunks of size

√
n and then sending it back to the server. This resulted in a solution (ORAMWS) with O(log2 n)

query overhead. This idea of using the client to sort was continued in the work of Williams et al. [27] in which a
Bloom filter [5] was introduced to check whether or not an element was stored in a level before querying upon it.
This solution (ORAMWSC) was suggested to have O(log n log log n) overhead, but the a more careful analysis of
[24] shows that this depends on the number of hash functions used in the Bloom filter.

CUCKOO HASHING. Recently, Pinkas and Reinman [24] suggested a solution in which cuckoo hashing is used
instead of standard bucketed hashing. The oblivious sorting algorithm used the more practical one of [13]. This
resulted in a scheme (ORAMPR) that only used constant client memory, O(n) server storage, and only O(log2 n)
query overhead where the constant was empirically shown to be as small as 150. The work of Goodrich and
Mitzenmacher [14] also made use of cuckoo hashing, although the stashed variant of cuckoo hashing was used for
their scheme (ORAMGM1), which resulted in similar parameters. They also suggested a solution (ORAMGM2)
where the client has O(nν) memory, in which case they are able to achieve O(log n) query overhead. A stateless
version of this scheme is featured in [15] with similar asymptotics.

3Due to flaws in the way hash functions are used, the security analysis of [17] suggests that some of these schemes are only polynomially
secure.
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3 Our Scheme

3.1 Overview

Our new scheme uses the hierarchical format of Ostrovsky [20]. The general principle behind protocols using this
technique can be stated as: the data is encrypted (under semantically secure encryption) and stored in hierarchical
levels that reshuffle and move into larger levels as they fill up. To keep track of the movement, for each level we
logically divide different time periods into epochs, based on how many queries the client has already performed.
All parties involved are aware of a counter t that indicates the number of queries performed by the client.

In hierarchical schemes, the reshuffling process is the main bottleneck in efficiency, specifically the need to
perform “oblivious sorting” several times. We identify the purposes that oblivious sorting serves during reshuffling
and describe methods on how to replace oblivious sorting in our two-server model.

The first purpose of oblivious sorting is to separate real items from “dummy” items. Dummy items are records
stored in the levels to help the client hide the fact that it may have already found what it was looking for prior to
reaching that level. For example, if the client was searching for virtual memory location v, and it was found on
level 3, the client still needs to “go through the motions” and search on the remaining levels to hide the fact that v
had already been found. On all subsequent levels in this example, the client would search for “dummy” ◦ t instead
of v.

The second purpose of oblivious sorting is to identify old records being merged with new records. New records
are always inserted at the topmost level, and as the levels are reshuffled down, there is the possibility that an old
record will run into a new one on some lower level. Because they both have the same virtual memory location v, a
collision will occur. To resolve this, when records are being reshuffled, an oblivious sort is performed to place old
records next to new ones so that the old records can be effectively erased (re-encrypted as a dummy record).

Finally, oblivious sorting is used to apply a pseudo-random permutation to the records as they are being reshuf-
fled. A permutation is necessary to prevent the server from being able to track entries as they get reshuffled into
lower levels.

The key ingredient to our new techniques is the idea of “tagging” the records and letting the two servers do
most of the work for the client. A typical record looks like (v, x) where v is the index of the record (virtual memory
location), and x is the data stored at that index. In most previous schemes, a hash function was applied to v to
determine where the record would be stored in the data structure. Because the client cannot reveal v to the servers,
and yet we wish for the servers to do most of the work, the client needs to apply tags to the records. Later, when
the client needs to retrieve index location v, the client first computes the tag and then looks up the tag instead of v
in the data structure located on the servers.

Note that this tagging must be performed carefully. We want the client to use only O(1) working memory, so it
cannot simply keep a list of all the tags it has generated in the past. Instead, the tags must be deterministic so that
the client is able to re-create the tag at a future point in time when needed. However, if the tags depend only on v, a
server can immediately identify when two encrypted records have the same index location v.

To resolve the apparent tension between these two requirements, we use a pseudo-random function (PRF)
applied to v, the level it is stored on, as well as the period of time which it is stored at that level, known as the
epoch. We describe this in greater detail in our construction.

To begin, we first present a warm-up construction to demonstrate the utility of tagging and using two servers.
For a sequence of client queries of length n, this insecure strawman construction will have the servers storing O(n)
data, the client having O(1) working memory, and the amortized overhead of queries being O(log n).

3.2 Warm-up Construction

Recall that in our model, there is a client and two servers that only communicate with the client. The client wants
to perform a sequence of n data queries, where the t-th query is of the form (READ, vt, xt) or (WRITE, vt, xt). The
client keeps a counter for t. The client makes use of a semantically secure encryption scheme to encrypt all the data
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being stored on the servers. Whenever the client reads a record from the server, it is implied that the client needs to
decrypt it.

In our construction, we use the hierarchical structure of [12] combined with Cuckoo Hashing (similar to [24,
14]) and tagging to store the data. The two servers, S0 and S1, store alternating levels of the hierarchical data
structure. We allow the data structure to grow in levels as we insert more records. Typically, if there are n records
in the data structure, then there will be O(log n) levels among the two servers. We let N denote the total number of
levels.

The top level, level 1, of the hierarchical data structure is an array that holds a small number, c, of records.
While some of these may be “dummy” records, from the point of view of the servers each query will always insert
a single record at the top level. Level i consists of a table of size c · 2i. This acts as storage for a cuckoo hash table
that stores up to c · 2i−1 real records at α = 0.5 hash table utilization. We call a level full if that c · 2i−1 (real or
dummy) records are stored at that level, and half full if c · 2i−2 records are stored at that level. Note that we do not
think of c necessarily as a constant, and in our main construction c will be on the order of log n.

After c queries, the top level becomes full and will need to be reshuffled into the second level in some oblivious
manner. In general, after every c · 2i−1 queries level i is reshuffled to level i + 1. In our construction, we make
use of an optimization4 by means of a simple observation. By algebra, we see that whenever a multiple of c · 2i−1

queries have been performed, it will also the case that a multiple of c · 2i−j queries have been performed as well,
for all j = 2 . . . i. With this observation, we can avoid performing obsolete reshuffling at higher levels. Instead,
after the t-th query, we first compute i∗, the largest value such that c · 2i∗−1 divides t, and then reshuffle all levels
from 1 to i∗ into level i∗ + 1.

Every time a level has records reshuffled into our out of it, we call that a new epoch for the level. Thus, for level
i, every c · 2i−2 accesses by the client will be the start of a new epoch. We denote ei = bt/(c · 2i−2)c as the epoch
for level i.

Each level i will have two hash functions, hi,0 and hi,1, associated with it for the purpose of cuckoo hashing.
As mentioned previously, these can be modeled as PRFs parameterized by the level and the epoch.

For the purpose of tagging, the client will have a PRF F and a secret seed s kept private from the two servers.
All levels on both servers are initialized to be empty. To perform a read v query or write (v, y) query on index

location v, the client performs the steps in Figure 3 in the appendix.
After every c queries, the top level becomes full and needs to be reshuffled down. This reshuffle may cause a

cascade as previously indicated, and we now describe the reshuffling process that takes place at level i. Recall that
we require the reshuffling to be done at the deepest level possible, i.e. i is the largest value such that c · 2i−1|t. We
first prove a lemma describing the state of the levels prior to the reshuffle.

Lemma 1. Let t be a multiple of c and let i be the largest integer such that c · 2i−1|t. Then, prior to reshuffling,
the top level is full, levels 2 . . . i are half full, and level i+ 1 is empty. After reshuffling, levels 1 . . . i are empty and
level i+ 1 is half full.

Proof. Each query inserts exactly one record at the top level, and thus after every c queries the top level becomes
full and is reshuffled down to a lower level. Since t is a multiple of c, the top level is full prior to reshuffling.

Next, we show that level i+ 1 is empty. Write t = kc · 2i−1 for some integer k. By the maximality of i, k must
be odd. If k = 1, then this is the first time we are reshuffling into level i + 1, which is initialized to be empty. If
k > 1, then during the previous query t′ = (k− 1)c · 2i−1 it is the case that there is some i′ > i such that c · 2i′−1|t,
and thus level i + 1 was reshuffled and emptied into a lower level. Since the state of level i + 1 does not change
between queries t′ and t, it remains empty before reshuffling.

Indeed, observe that for any level j, the state of level j only changes every c · 2j−2 queries. For any positive
integer k, on query kc · 2j−2, it is the case that lower levels are shuffled into level j when k is odd, and level j is
shuffled into a lower level when k is even. Since t is a multiple of c · 2i−1, we can write t = kjc · 2j−2 for some

4This optimization has also been pointed out by [24].
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even kj for every level 2 ≤ j ≤ i. Thus just prior to query t, every level 2 ≤ j ≤ i had records reshuffled into it
and is non-empty.

Finally, we show that any level except the top must be either empty or half full. When records are shuffled out of
a level, it is left empty, so it only remains to show that any time records are shuffled into a level that it becomes half
full (note that due to the alternating nature of shuffling, we never shuffle records into a partially full level). After
the t-th query, we have already shown that the top level is full and contains c records, and each subsequent level up
to i is non-empty. By induction, we assume that levels 2 ≤ j ≤ i are exactly half full, and therefore contain c·2j−1

2

records. After reshuffling, all the records are placed in level i + 1, and there will be c +
∑i

j=2 c · 2j−2 = c · 2i−1

records. This is exactly half of c · 2i, which is the capacity of level i+ 1.

To reshuffle levels 1 . . . i into level i + 1, suppose Sb holds level i + 1 and let Sa = S1−b be the other server.
The steps in Figure 4 in the Appendix are performed.

3.3 Analysis of Warm-up Construction

We now turn our attention to analyzing the storage and communication overhead.

Claim 1. For a sequence of n queries, with a top level buffer of size c and a total of N levels, the construction
described in Section 3.2 uses O(n) memory for each server, O(1) working memory for the client, and O(c + N)
amortized overhead for queries. If c is a constant, this results in O(log n) amortized overhead for queries.

Proof. Aside from the top level, each level i is of size c · 2i and can store up to c · 2i−1 records. Recall that N , the
number of levels, is chosen so that c · 2N is O(n). The total amount of storage used by the two servers combined is
c+

∑N
j=2 c · 2j = c · 2N+1, which is O(n).

As in previous schemes, we don’t count the private keys nor the counter t of the client as storage because these
are typically small relative to the size of a record. Instead, we measure the working memory of the client as the
number of records it needs to simultaneously store and process. In the query portion of the scheme, the client will
simultaneously hold at most 2 records: the record matching its query, and the record pulled from the hash table.
During reshuffling, the client accesses the records one at a time, so only the size of a single record needs to be
allocated in the working memory of the client in this case. All in all, the client uses O(1) working memory.

Finally, during a read or write operation, the client scans the entire top buffer, which contains c elements, and 2
elements from each of theN remaining levels. This isO(c+N), but we also need to incorporate the amortized cost
of reshuffling. Every c · 2i−1 queries, the contents of level i are caught in the reshuffle step, being passed through
the client 3 times. This gives a total amortized overhead of

∑N
i=1

3c·2i

c·2i−1 = 6N , which is also O(c+N).

3.4 Full Construction

A recent result [17] points out that hash overflows leads to an adversary distinguishing different access patterns.
Plain cuckoo hashing and the variant of cuckoo hashing with a constant stash [14] yield a polynomial chance
of this event occurring. The work of Goodrich-Mitzenmacher [14] shows that cuckoo hashing with logarithmic
size stash yields a superpolynomially small chance (in n) of overflow, under the assumption that the size of the
table is Ω(log7 n). Thus, as a starting point, we use the level layout of [14], where smaller levels are standard
hash tables with buckets and larger levels are cuckoo hash tables with a stash of size O(log n). Furthermore, we
use a version of the “shared stash” idea introduced by [15] and subsequently used in [14, 17]. We emphasize
that this is where the similarities end with existing schemes and that significant modifications must be diligently
balanced to yield a scheme with our desired parameters. Before we begin describing our full construction, we take
a quick glance at the balancing dynamics involved in choosing the right parameters for our scheme. Our goal is to
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achieve O(log n) amortized overhead per query, while maintaining that the hash tables do not overflow with all but
negligible probability.

Recall that the hybrid construction in [14] uses standard hashing with buckets for lower levels, up until the
point where a level contains log7 n elements, where it switches to cuckoo hashing with a stash of size log n. For the
probability of overflow to be negligible for standard hashing, the buckets must be of size log n. To perform a read
query, a bucket is scanned at each of the smaller levels, and the entire stash is scanned along with 2 elements of the
cuckoo hash table at the larger levels. This operation already incurs a total of O(log n log log n) reads for the small
levels and O(log2 n) for the larger levels. We now summarize the series of modifications that need to be made to
the structure of the scheme:

Reduce Bucket Size. The standard hash tables will now use buckets of size 3 log n/ log log n. This causes the total
amount of reads for the small levels to drop down to O(log n). This produces a negative side effect: a bucket
will now overflow with 1

n2 probability.

Standard Hash with Stash. We introduce a stash of size log n to the standard hash tables to hold the overflows
from the now reduced bucket sizes. We prove in Appendix B that the probability of overflowing the stash is
negligible. This produces a negative side effect: each stash must be read at the smaller levels, bringing us
back to O(log n log log n) reads for the smaller levels.

Cache the Stash.[15, 14, 17] For both the smaller levels and larger levels, the stash of size log n will not be stored
at that level, but the entire stash is instead re-inserted into the hierarchy. In fact, by choosing the top level
to be of size O(log n), we can fit the entire stash into the top level. We show how this step is done during
a reshuffle. Now, because there is no longer a stash at any level, the total amount read from all the levels
combined will be O(log n). This will cause the levels to be reshuffled more often, but we show that it is at
most by a constant factor.

We now give the full details of our scheme.
Let c = 2 log n, where c is taken to be the size of the top level (i = 1) as in the warm-up scheme. We split the

top level in half so that each server holds half of the top level, and for subsequent levels, server Si mod 2 holds level
i. Let `cuckoo be the level such that c ·2`cuckoo−1 is Ω(log7 n), e.g. 7 log log n. For levels i = 2, . . . , `cuckoo−1, level
i will be a standard hash table consisting of c · 2i−1 buckets, each of size 3 log n/ log logn, along with a “mental”5

stash of size log n. For levels i = `cuckoo, . . . , N , level i will be a cuckoo hash table that can hold up to c · 2i−1

elements, which is of size c · 2i, along with a “mental” stash of size log n.
The client keeps a local counter t of how many queries have been performed so far, as well as a counter s to

indicate how many dummy stash elements were created. We describe how a query is performed in Figure 1. To
reshuffle levels 1 . . . i into level i+ 1, suppose Sb holds level i+ 1 and let Sa = S1−b be the other server. The steps
in Figure 2 are performed.

3.5 Analysis of Main Construction

Theorem 1. For a sequence of n queries, the main construction uses O(n) memory for each server, O(1) working
memory for the client, and O(log n) amortized overhead for queries.

Proof. Computing the sizes of the levels, level 1 is of size c = 2 log n, split between the servers, levels i =
2, . . . , `cuckoo − 1 are of size c · 2i−1 · 3 log n/ log logn each, giving a total of O(log9 n) size, since `cuckoo =
7 log log n. Levels i = `cuckoo, . . . , N are of size c · 2i each, where c · 2N = n, hence there is a total of O(n) size.
Note that the additional elements added in by the stash dummy elements can be counted as follows: every c/2 steps,

5There will be no physical stash at this level, but during reshuffles a temporary stash is created for the purpose of hashing which will
subsequently be re-inserted back to the top level.
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1. The client allocates temporary storage m, large enough to hold a single record, initialized to a dummy
value “dummy”.

2. Read each entry of the entire top level from both servers one at a time. If v is found as some entry (v, x)
then store x in m.

3. For small levels i = 2 . . . `cuckoo − 1, perform the following with the server holding level i:

(a) If v has not already been found, compute the tag for v at this level as z = Fs(i, ei, v). Else, set
z = Fs(i, ei, “dummy” ◦ t).

(b) Fetch into local memory the bucket corresponding to h(z) one element at a time, i.e. fetch (vj , xj)
for j = 1, . . . , 3 log n/ log logn from bucket h(z) one element at a time.

(c) If v is found in some record (vi, xi), then replace vi with “dummy” ◦ t and store xi in m.

(d) Re-encrypt the fetched records and store them back to their original locations, releasing them from
local client memory.

4. For large levels i = `cuckoo . . . N , perform the following with the server holding level i:

(a) If v has not already been found, compute the tag for v at this level as z = Fs(i, ei, v). Else, set
z = Fs(i, ei, “dummy” ◦ t).

(b) Fetch into local memory the records (v0, x0) and (v1, x1) from locations h0(z) and h1(z).

(c) If v is found at one of these locations, i.e. v = vb for some b = 0, 1, then replace vb with
“dummy” ◦ t and store xb in m.

(d) Re-encrypt the fetched records and store them back to their original locations, releasing them from
local client memory.

5. In the case of a write query, here we overwrite m = y.

6. Read each entry of the entire top level one at a time, and re-encrypt each record with the following
exception: If the record is of the form (v, x), then overwrite it with (v,m) before re-encrypting it.

7. If (v, x) was not overwritten at the top level, write (v,m) in the first available empty spot (even if m is
“dummy”), otherwise write a dummy value (“dummy” ◦ t, “dummy”).

8. The client increments the local query counter t. If t is a multiple of c/2, then a reshuffle step is
performed as described below.

Figure 1: Main Construction: Query

we insert another log n stash dummy records into the hierarchy. Therefore, after n steps, at most 2n log n/c = n
stash dummy records have been inserted, and we can simply accommodate this by adding one extra level at the
bottom.

Clearly, the client uses constant working memory as it only transmits records one at a time.
When the client performs the read operation, it reads 2 log n records from the top level, 3 log n/ log logn

elements from each level i = 2, . . . , `cuckoo − 1, and 2 elements from each level i = `cuckoo, . . . , N . Since
`cuckoo = 7 log log n and N = log n− log log n− 1, this gives a total of roughly 25 log n elements read.

Because we re-insert the stash (which is half the size of the top level), we need to reshuffle twice as often.
Following the warm-up analysis, recall that each reshuffle only moves an element in the level at most 3 times. We
sketch the analysis of the amortized overhead:
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1. Sa allocates a temporary array and inserts every (encrypted) record it holds between levels 1 and i. Sa
applies a random permutation to this temporary array and sends its contents one by one to the client.

2. The client re-encrypts each record and sends it to Sb. In this step, both empty and dummy records are
treated as real records.

3. Sb allocates a temporary array and inserts every record it holds between levels 1 and i as well as the
records it received from the client in the previous step. Sb applies a random permutation to this
temporary array and sends its contents one by one to the client.

4. The client re-encrypts each record and sends it to Sa, announcing that it is empty if the record is empty,
and tagging remaining records (v, x) with the output of the PRF Fs(i+ 1, ei+1, v), where ei+1 is the new
epoch of level i+ 1. Note that v may be a virtual memory address, a dummy value, or a stash dummy
value. In this step, dummy records are treated as real records and we are only concerned with eliminating
empty records.

5. Sa now holds c · 2i−1 tagged records. It allocates a temporary hash table (standard or cuckoo, depending
on the level), with a stash of size log n and it uses the hash functions corresponding to level i+ 1 and
epoch ei+1 to hash these records into this temporary table. If the insertion fails, new hash functions are
selected (we will show this happens with negligible probability). Sa then informs the client the number
of elements inside the stash, σ, then sends both the temporary table and the stash one record at a time to
the client.

6. As the client receives records from Sa one at a time, it re-encrypts each record and sends them to Sb
without modifying the contents except:

(a) The first σ empty records in the table the client receives from Sa are encrypted as
(“stashdummy” ◦ s, “empty”), incrementing s each time. Note that a table is always more than
half empty, and therefore we can always find σ empty slots.

(b) Subsequent empty records from the table are encrypted as (“empty”, “empty”).

(c) Every empty record in the stash is re-encrypted as (“stashdummy” ◦ s, “empty”), incrementing s
each time.

7. Sb stores the table records in level i+ 1 in the order in which they were received, and stores the stash
records at the top level.

Figure 2: Main Construction: Reshuffle

• For levels 2, . . . , `cuckoo−1, each level contains c ·2i−13 log n/ log log n elements and needs to be reshuffled
every c · 2i−1/2 steps. This incurs an amortized overhead of:

3
7 log logn−1∑

i=2

c · 2i−13 log n/ log logn
c · 2i−2

= O(log n)

with a constant of roughly 125.

• For levels `cuckoo, . . . , N , each level contains c ·2i elements and needs to be reshuffled every c ·2i−1/2 steps.
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This incurs an amortized overhead of:

3
logn−log logn−1∑
i=7 log logn

c · 2i

c · 2i−2
= O(log n)

with a constant of roughly 10.

Before we prove the security of our construction, we state a few important lemmas.

Lemma 2. At all times during the execution of the scheme, any record of the form (v, ∗) will appear at most once
in the hierarchy unless v = “empty”.

Proof. An index v must be either a virtual memory location, a dummy element, a stash dummy element, or empty.
Virtual memory locations are only introduced into the hierarchy either from a read query that found v at a lower level
and moved it to the top, or from a write query that did not find v in the hierarchy. A dummy element “dummy′′ ◦ t
can only be introduced during query t, and it can be introduced at most once. Similarly, stash dummy elements can
only be introduced once as s is incremented after every such entry.

Lemma 3. The same v will not be queried upon twice between reshuffles at any level.

Proof. Once v is queried upon at a level, i, either it is a “dummy” ◦ t value (in which case it will trivially never be
queried again, as t is incremented at the next query), or it is some virtual memory location. In the latter case, v will
be written to the top level after the query, and subsequent queries to v will find v before it reaches level i, and the
only way v can reach a deeper level is if i is reshuffled.

Lemma 4. Every level except the top will always be empty or half-full (a half-full standard hash contains a number
of records equal to half the number of buckets) and this state depends only on t.

Proof. This lemma is similar to Lemma 1, except now we have to take into account stashing. However, whenever
we stash an element, our reshuffling algorithm also introduces a stash dummy element inside the table. This causes
the amount of elements to be shuffled into any level to always be the same.

Lemma 5. Any time a level i is reshuffled, its stash is included in the shuffle.

Proof. Similar to the proof of Lemma 1, we observe that the only way a level is shuffled is if all previous levels
are shuffled as well and become empty. Because the stash of level i was stored in the hierarchy above level i, no
elements of the stash will fall below level i unless caused by a reshuffle, in which case it will be shuffled with level
i.

Theorem 2. Under the assumption that one-way functions exists, the main construction is a secure two-server
oblivious RAM.

Proof. One-way functions allow private-key encryption and authentication. We use method of [19] to prevent
tampering and thus must only show how to protect the access pattern.

We show how to simulate the view of a servers access pattern during the execution of the protocol upon any
sequence of queries q1, . . . , qn knowing only the length n. We begin by first making the observation that every
record is encrypted and will be re-encrypted whenever it is accessed. By the semantic security of the encryption,
we can assume that all these data contents are computationally indistinguishable from the encryption of any other
contents. We also replace both the hash functions (which are modeled as PRFs) and the tagging PRF by random
functions.
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We first consider the view of each server during a reshuffle. If the server is playing the role of Sa, after its initial
message out, it sees a random sequence of encrypted records (real or dummy) with tags, and announced empty
records. By Lemma 2, all the hidden records will contain elements with unique v’s, and hence their tags will also be
unique with overwhelming probability. The tags came from a random function that had not been previously used,
and so the tags that the server sees are independent from its view. Furthermore, because of Lemmas 4 and 5, the
number of empty records revealed will be deterministic and will not reveal any additional information. Thus, we
can simulate this view by calculating the number of pre-determined items of each type, and use encryptions of 0 for
all of them and tagging the appropriate records with completely random tags.

If the server is playing the role of Sb during a reshuffle, it will receive a sequence of encrypted records which
reveals no information. Next, after it shuffles these records and sends them out, it receives back another sequence
of encrypted records which also reveals no information. This view can be trivially simulated.

Finally, we argue that the sequence of reads can also be simulated. By the above arguments, we see that what
each server holds at level i is nearly independent of its view, except for the fact that the tags of the records stored at
that level are consistent with the hash function used at that level. By Lemma 3, between two reshuffles, the sequence
of queries made to level i will all be distinct, but they may arbitrarily intersect the elements contained in level i.
However, because only a negligible fraction of hash functions do not agree with the records in level i (i.e. would
cause an overflow), the distribution of the outputs of the hash function applied to any sequence of distinct queries is
statistically close to uniform6. Thus, we can simulate the probes to level i between reshuffles by a random sequence
of probes.

4 Conclusion and Open Problems

In this paper, we introduced a new multi-server model for oblivious RAM and constructed a two-server scheme
in this model. The scheme is secure against semi-honest servers, and with additional checks (described in the
full version) is secure against malicious servers. The parameters of the scheme – O(1) client memory, O(n)
server memory, and O(log n) overhead – match the lower bound of single-server oblivious RAM. The natural open
problem to ask is whether or not the same lower bound holds, or if a better scheme can be constructed in this new
model.

Our scheme was constructed under the assumption of the existence of one-way functions. We ask the open
question of whether or not information-theoretic multi-server oblivious RAM can be constructed with similar pa-
rameters. One naive way of doing so would be to duplicate each server and use information-theoretic secret sharing
between each server and its duplicate in order to replace encryption. The interesting question is to ask whether one
can do so with fewer servers or perhaps better performance.
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A Warm-up Constructions

1. The client allocates temporary storage m, large enough to hold a single record, initialized to a dummya

value “dummy”.

2. Read each entry of the entire top level one at a time. If v is found as some entry (v, x) then store x in m.

3. For subsequent levels i = 2 . . . N , perform the following with the server holding level i:

(a) If v has not already been found, compute the tag for v at this level as z = Fs(i, ei, v). Else, set
z = Fs(i, ei, “dummy” ◦ t).

(b) Fetch into local memory the records (v0, x0) and (v1, x1) from locations h0(z) and h1(z).

(c) If v is found at one of these locations, i.e. v = vb for some b = 0, 1, then replace vb with
“dummy” ◦ t and store xb in m.

(d) Re-encrypt the fetched records and store them back to their original locations, releasing them from
local client memory.

4. In the case of a write query, here we overwrite m = y.

5. Read each entry of the entire top level one at a time, and re-encrypt each record with the following
exception: If the record is of the form (v, x), then overwrite it with (v,m) before re-encrypting it.

6. If (v, x) was not overwritten at the top level, write (v,m) in the first available empty spot (even if m is
“dummy”), otherwise write a dummy value (“dummy” ◦ t, “dummy”).

7. The client increments the local query counter t. If t is a multiple of c, then a reshuffle step is performed
as described below.

aDummy records have been used in slightly different manners in various previous works. To be clear, in this work we treat dummy
values more as padding records to be treated as real records.

Figure 3: Warm-up Construction: Query
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1. Sa allocates a temporary array and inserts every (encrypted) record it holds between levels 1 and i. Sa
applies a random permutation to this temporary array and sends its contents one by one to the client.

2. The client re-encrypts each record and sends it to Sb. In this step, both empty and dummy records are
treated as real records.

3. Sb allocates a temporary array and inserts every record it holds between levels 1 and i as well as the
records it received from the client in the previous step. Sb applies a random permutation to this
temporary array and sends its contents one by one to the client.

4. The client re-encrypts each record and sends it to Sa, announcing that it is empty if the record is empty,
and tagging non-empty records (v, x) with the output of the PRF Fs(i+ 1, ei+1, v), where ei+1 is the
new epoch of level i+ 1. Note that v may be a virtual memory address or a dummy location. In this step,
dummy records are treated as real records and we are only concerned with eliminating empty records.

5. Sa now holds c · 2i−1 tagged records. It allocates a temporary table of size c · 2i+1 and it uses h0 and h1

for level i+ 1 and epoch ei+1 to hash these records into this temporary table. If the insertion fails, new
hash functions are selected. Sa sends the temporary table one record at a time to the client.

6. The client re-encrypts each record where empty records are encrypted as (“empty”, “empty”) so that Sb
does not know it is empty, and sends it to Sb. Sb then stores these records in level i+ 1 in the order in
which they were received.

Figure 4: Warm-up Construction: Reshuffle

B Standard Hash with Stash

Let m = polylog(n), b = 3 log n/ log logn and s = log(n). We show that in the case of hashing m values into a
standard hash table of size m with buckets of size b and a stash of size s, the probability of overflow is negligible in
n. Recall that whenever a bucket overflows, the element is inserted into the stash and is not considered an overflow.
We take a look at a standard balls and bins argument, and we start by calculating the probability that more than b
balls end up in any bin when we throw m balls into m bins. The probability that there are exactly i balls in any bin
can be bounded as:

Pr[Bin has i balls] =
(
m

i

)
1
mi

(
1− 1

m

)m−i
≤
(me
i

)i 1
mi

Taking the probability over all i = b, . . . ,m we get Pr[Bin has at least b balls] ≤
(
e
b

)b 1
1−e/b . We denote this

event by Ea,i, i.e. the event that bin a has more than i balls.
Plugging in b = 3 log n/ log logn, we get the classic result (if log logn > 3 log log log n):
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Pr[Ea,b] ≤
(e
b

)b 1
1− e/b

≤
(e
b

)b
2

≤ 2
(

e

3 log n/ log log n

)3 logn/ log logn

≤ 2
(
e
−3 logn+3 log log log n

log log n
logn

)
≤ 2
n2

Although the probabilities of overflow of each bin are not independent, we can calculate the probability that
at least c = log log log n of them overflow (more than b balls) as if they were independent. This is because the
probability that a bin overflows reduces the chance that another bin overflows, and thus treating them independently
gives an upper bound. The probability that exactly j bins (independently) overflow can be calculated as:

Pr[j bins overflow] ≤
(
m

j

)(
2
n2

)j (
1− 2

n2

)m−j
≤
(
me

j

)j 1
n2j
≤
(
e

j

)j 1
nj

Taking the probability over all j = c, . . . ,m we get Pr[at least c bins overflow] ≤ 1
nc

(
e
c

)c 1
1−e/c , which is

dominated by 1
nc and hence negligible in n.

Finally, we need to bound the amount of overflow that is caused by each bucket. We argue that with negligible
probability will a bucket contain more than d = log log log n log n/ log logn elements. We get (if log logn >
3(log log log n− log log log log n)):

Pr[Ea,c] ≤
(e
d

)d 1
1− e/d

≤
(e
d

)d
2

≤ 2
(

e

3 log log log n log n/ log logn

)3 log log log logn/ log logn

≤ 2
(
e
−3 log log logn logn+3 log log log n−log log log log n

log log n
log log logn logn

)
≤ 2

(
e−2 log log logn logn

)
≤ 2
n2 log log logn

Taking the Union Bound, the probability that all bins contain fewer than d elements is 2m
n2 log log log n which is

negligible in n.
Finally, we have to calculate the probability that there are more than s elements in the stash. Observe that if all

bins have fewer than d elements, and if at most c bins overflow, then there will be at most
cd = (log log log n)2 log n/ log log n elements in the stash, which (asymptotically) is less than s. The probability
that each of these conditions fail is negligible, and by the Union Bound, the probability that either of them fail is
still negligible.
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