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Abstract. This article is a journey starting at solution concepts in
Game Theory, passing through reputation systems in Artificial Intelli-
gence, and ending at a primary primitive in Cryptography. We introduce
new concepts like a rational foresighted player, social game, and social
equilibrium. We therefore propose a novel scheme, named socio-rational
secret sharing, in which rational players have long-term interactions in a
social context. In this society, players run secret sharing protocols while
founding and sustaining a trust network among themselves. We combine
rational secret sharing, proposed by Halpern and Teague [7], with social
secret sharing, introduced by Nojoumian et. al. [18], in order to provide
a new solution concept. To motivate our approach, consider a repeated
secret sharing game such as sealed-bid auctions, where each auctioneer
is supposed to receive shares of secure bids belonging to independent
auctions. If we assume each party has a reputation value, we can then
penalize (or reward) players who are selfish (or unselfish) from game
to game in a long-term interaction. This social reinforcement rationally
stimulates players to be cooperative. Despite of all the existing protocols,
ours is independent of the security assumption and the communication
model of the secret sharing scheme that is being used, and has a single
reconstruction round.

Keywords: social secret sharing, rational secret sharing

1 Introduction

The classical (t, n)-secret sharing scheme was proposed by [22, 3] where a dealer
distributes shares of a secret α among n players P1, . . . , Pn such that any group of
t or more players can reconstruct the secret in the absence of the dealer whereas
any group of size less than t cannot gain any information about the secret.

In the Shamir’s threshold secret sharing scheme, the dealer first generates
a random polynomial f(x) ∈ Zq such that f(0) = ξ, and then sends shares
f(i) to player Pi for 1 ≤ i ≤ n. As a result, any set of t players can simply
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reconstruct ξ by Lagrange interpolation while no set of fewer than t players has
any information about the secret. The standard assumption in the traditional
secret sharing scheme is that each player is either honest or malicious where
(1) At least t honest parties cooperate in the reconstruction phase in order to
recover the secret, and (2) Total number of malicious players is less than t.

As started by Halpern and Teague [7], a new research direction was initiated
in the area of secret sharing and multiparty computation in a game-theoretic
sense. In this new construction, players are rational rather than being honest or
malicious meaning that they only act in their own self-interest. As we illustrate
later, the classical secret sharing completely fails in this setting (see [4, 9] for
an overview in this direction). Recently, the authors in [18, 19] introduced the
notion of social secret sharing by constructing a publicly known trust network
among players. In this construction, weights of players, i.e., the number of shares
each can hold, are periodically updated such that players who cooperate end up
with more shares than those who defect, that is, non-cooperative participants.

1.1 Our Construction in Nutshell

The general idea is that each rational foresighted player is selfish and also has
concerns about the future gain or loss, and the game (secret sharing) is going to
be repeated over time for an unknown number of times.

Each player has a reputation value which is adjusted each time the game is
played. The initial value of the reputation is zero and its computation is public. If
a player cooperates (e.g., reveal his share) his trust value is enhanced, otherwise,
it is decreased. Then, the utility that each player gains would be based on the
combination of the following factors:

1. Estimation of the future gain or loss due to the trust adjustment (virtual)
2. Learning the secret at the current time (real)
3. The number of other players learning the secret at the moment (real)

To estimate the future impact, we consider the following scenario: whenever a
player cooperates, we assume he also gains some extra units of utility (that is, he
has a chance to learn more secrets in the next games), and whenever he defects,
we assume he also loses some extra units of utility (that is, he loses a chance to
learn more secrets in the next games). This gain or loss is virtual at the current
time but will be realized in the future. As an example, consider a scenario in
which a retail store says if you buy something today (cooperate), you will receive
a discount (utility) on your next purchase (future).

In other words, if the reputation of Pi is decreased, he will have less chance
to be invited to the future secret sharing. Otherwise, Pi is going to be invited
to more secret sharing. To realize this scenario, in each new secret sharing or
game, the dealer selects players based on their reputation values, e.g., %50 from
reputable players, %30 from newcomers, and %20 from non-reputable parties.
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1.2 Motivation

Our motivation therefore is to melt in the idea of the social secret sharing scheme
into its rational counterpart in order to provide a new solution concept. In this
new construction, players sustain the stated trust network overtime to improve
(or purify) their society. In fact, players enter into long-term interactions for
handling an unknown number of independent secret sharing schemes.

We intend to provide a new solution independent of the security assumption
and the communication model of the applied secret sharing with only a single
round of reconstruction. Moreover, we would like to consider the players’ behav-
iors even in the intermediate computations between sharing and reconstruction
phases, such as, proactive share update, joint random number generation, etc. All
these intermediate computations can be as critical as the reconstruction phase
in real-world applications. To further motivate our socio-rational secret sharing,
consider the following two scenarios in a sealed-bid auction:

Selfish Behavior at the Reconstruction Phase: each auctioneer is supposed to
sequentially receive shares of secure bids belonging to an unknown number of
independent auctions. An auctioneer may deviate in the winner determination
phase of an auction with this hope that he is the only one who learns the outcome,
similar to rational secret sharing. (However, as we stated earlier, dealers can
reduce the utility of selfish players by not inviting them to the next games.)

Selfish Behavior Between Sharing and Reconstruction Phases: suppose an
auctioneer has been involved in many independent societies each of which is
running a sequence of secure auctions. If this player simultaneously receives
many requests for intermediate computations (e.g., jointly generate a random
number as a mask) from those societies, due to the time and resource limitations,
he must decide to which one he should contribute based on the utility he gains.

1.3 Contribution

As our main contribution, we propose a socio-rational secret sharing scheme
where players have incentive to cooperate not only in the reconstruction phase
but also in the intermediate computations throughout a secret’s lifetime. This
incentive is sustained from one scheme to another one by a motivation of the
personal reputation’s enhancement. In fact, players avoid any selfish behavior
due to the social reinforcement of the trust network. Having a social trust network
not only affects the rational cryptography but also can significantly impress
game-theoretic constructions.

Some of the existing solutions are not really fair since the protocol is aborted
if a selfish player deviates. This means that a selfish player can force the protocol
to be executed for an exponential number of iterations (an unfair punishment),
which may cause the cryptographic primitives used in the scheme to be broken.
But our proposed protocol has an everlasting punishment or reward approach
while providing opportunities for newcomers. It also worth mentioning that any
secret sharing scheme can be used in our proposed dealer-free construction.



4 Nojoumian

Our contribution is totally different from the punishment strategy used in
the repeated prisoners’ dilemma [21] where players penalize potential deviants.
As the authors have mentioned, the major point behind the repeated games is
the fact that if each participant believes any deviation terminates the mutual
cooperation (resulting in a subsequent loss that outweighs the short-term gain),
he then prefers to cooperate. For instance, consider the prisoners’ dilemma with
Cooperation and Defection actions. Both players cooperate until one of them
deviates. Then, the other player chooses D for a specific number of times as a
punishment. Meanwhile, the deviant rewards the punisher by selecting C as a
compensation. Finally, the game returns to the mutual cooperation. Indeed, our
approach has the following advantages over the punishment strategy:

• In our model, a player is not just an abstract entity who selects actions.
It also has a social characteristic reflected in his reputation that shows his
trustworthiness. This attribute is solely built by the player himself.
• The punishment strategy is performed by selecting actions that are harmful

for deviants whereas the punishment or reward in our model is independent
of the action’s selection, i.e., losing or gaining reputation and utility.
• Our approach avoids penalizing innocent players or the punisher himself. It

also avoids being involved, to some extend, in a game with seriously selfish
players who are not reputable at the first place.
• The punishment strategy does not consider that a game may have various

importance and utility weights whenever it is repeatedly played. For instance,
whether it is a secret sharing for a missile launch or for a safety box.
• The punishment strategy has a discrete penalizing approach whereas our

construction has a continuous impact on deviants. For example, it may take
a long time to regain the lost reputation.
• Our proposed approach not only consider the punishment or reward but

also defines six different scenarios in order to fairly deal with various types
of players including good player, bad player, and newcomers.

Our contribution is also different from the constructions forming histories
and beliefs such as subgame perfect equilibrium or Bayesian equilibrium [21].
In the former, players reassess their decisions based on the past history, i.e., a
sequence of previous actions. In the latter, the game is designed to deal with
the situations in which parties are not certain about the characteristics of each
others. Therefore, they form beliefs, i.e., a probability distributions over actions,
to anticipate any future behaviors.

Let Pi be a specific player and Pj for 1 ≤ j 6= i ≤ n denotes all the other
players except Pi. More specifically, our trust calculation method and social
setting differs from these kinds of solution concepts in the following aspects:

• In forming a belief about Pi’s intentions both parties contribute. That is,
Pi is indirectly involved by his behavior, i.e., action selections, and Pj-s are
directly involved by the methodology that they use in order to form the
probability distribution over actions. A belief may or may not be a common
knowledge meaning that various players may have different judgments and
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beliefs about Pi. Whereas, the reputation of Pi in a trust network is solely
constructed by his behavior through a trust function, which is a commonly
known function for the reputation measurement. That is, the reputation
is a direct reflection of Pi’s attitude (no misunderstanding), and he very
well knows the impact of his decision on other players’ mind considering his
current characteristic, whether he is known as a good player, a bad player,
or a newcomer. He can also estimate how much extra utility he may gain or
lose after his reputation’s adjustment, which is a strong enforcement.

• Histories and beliefs are more general compared to the reputation system
in a trust network. This means a belief as a probability distribution can
be defined over any set of actions for any types of players. Whereas, the
reputation is built over a specific set of actions, such as Cooperation and
Defection (X : corruption as a malicious behavior might be also considered
in a mixed model), for a specific types of players, such as good or bad players,
and newcomers. As a result, the reputation system is simpler to be analyzed
in a solution concept and is more suitable for cryptographic constructions.

• In the history and belief systems all measurements are inside of the game-
theoretic model whereas our reputation system isolates these computations
from the game. For instance, two separate probability distributions can be
defined over players’ types and actions by considering the past behaviors 1.
But our publicly known trust function combines these two measurements in a
single reputation value outside of the game-theoretic model (although these
values might be interpreted similar to types and beliefs). In other words, the
punishment or reward is embedded inside of our reputation system which
continuously affects players’ utilities in the game-theoretic model, i.e., losing
utility due to the reputation’s decline or losing reputation and not being
selected for the future sharing.

2 Preliminaries

In this section, required background regarding some fundamental game-theoretic
concepts along with social and rational secret sharing schemes are presented.

2.1 Game-Theoretic Concepts

Definition 1. Let A def= A1×· · ·×An be an action profile for n players. A game
Γ = (Ai, ui) for 1 ≤ i ≤ n, presented in normal form, is a set of possible actions
Ai and a utility function ui : A 7→ R for each player Pi. We refer to a vector of
actions a = (a1, . . . , an) ∈ A as an outcome of the game.

Definition 2. The utility function ui illustrates the preferences of player Pi
over different outcomes. We say Pi prefers outcome a to a′ iff ui(a) > ui(a′),
and he weakly prefers outcome a to a′ if ui(a) ≥ ui(a′).
1 Pi is good or bad with 0.7 or 0.3 probabilities respectively. Based on that, a Pj may

belief that Pi reveals or not reveals his share with 0.9 or 0.1 probabilities accordingly.
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In order to allow players to follow randomized strategies (i.e., strategy is the
way of choosing actions), we define σi as a probability distribution over Ai for a
player Pi meaning that he samples ai ∈ Ai according to σi. A strategy is said to
be pure-strategy if each σi assigns probability 1 to an action, otherwise, it is said
to be mixed-strategy. Let σ = (σ1, . . . , σn) be the vector of players’ strategies,
and let (σ′i,σ−i)

def= (σ1, . . . , σi−1, σ
′
i, σi+1, . . . , σn), i.e., only Pi changes σi into

σ′i and other players’ strategies remain the same in the vector. Therefore, ui(σ)
denotes the expected utility of Pi under the strategy vector σ. A rational player’s
goal is to maximize this utility. In all the following definitions, one can substitute
an action ai ∈ Ai with its probability distribution σi ∈ Si or vice versa.

Definition 3. A vector of strategies σ is a Nash equilibrium if for all i and any
σ′i 6= σi it holds that ui(σ′i,σ−i) ≤ ui(σ). This means no one gains any advantage
by deviating from the protocol as long as other parties follow the protocol.

Definition 4. Let S−i
def= S1 × · · · × Si−1 × Si+1 × · · · × Sn. A strategy σi ∈ Si

(or an action) is weakly dominated by a strategy σ′i ∈ Si (or another action)
with respect to S−i if:

1. For all σ−i ∈ S−i, it holds that ui(σi,σ−i) ≤ ui(σ′i,σ−i).
2. There exists a σ−i ∈ S−i such that ui(σi,σ−i) < ui(σ′i,σ−i).

Meaning that Pi can never improve its utility by playing σi, and can sometimes
improve it by not playing σi. 2

Definition 5. Given Γ = (Ai, ui) for 1 ≤ i ≤ n and a strategy profile S, let
DOMi(S) denotes the set of strategies in Si that are weakly dominated by other
strategies with respect to S−i. Let S0

i denotes the initial set of Pi’s strategies.

1. For k ≥ 1, define Ski
def= Sk−1

i \ DOMi(Sk−1).
2. Let S∞i

def=
⋂
k Ski , i.e., strategies that are survived in all elimination rounds.

We say σi survives iterated deletion of weakly dominated strategies if σi ∈ S∞i .

Nash equilibrium surviving iterated deletion of weakly dominated strategies
are used in [7, 6, 14, 1].

2.2 Rational Secret Sharing Scheme

In this section, we quickly review rational secret sharing, initiated by Halpern
and Teague [7]. This construction was later improved by Gordon and Katz [6].
The scheme consists of a dealer who holds a secret and n players P1, . . . , Pn.

The protocol proceeds in a sequence of iterations of which only one iteration
is the real reconstruction phase (i.e., the last iteration) and the rest are just
fake iterations for trapping selfish players. At the end of each iteration, the
2 A strategy σi ∈ Si is strictly dominated if player Pi can always improve its utility

by not playing σi.
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protocol either terminates due to the selfish behavior’s observation/cooperative
share reconstruction, or proceeds to the next iteration otherwise. Indeed, in
any given round, players do not know whether the current iteration is the real
reconstruction phase in which a player may gain more utility by being silent
and not sending his share to others, or just a test round in which a player must
cooperate, otherwise, the other players abort the protocol.

To make this more clear, consider the following scenario for a player Pj . If
players Pi for 1 ≤ i < t− 1 or t− 1 < i ≤ n reveal their shares, nothing changes
whether Pj reveals his share or not. In the former case, no one learns the secret.
In the latter case, everyone learns the secret. On the other hand, if players Pi
for i = t − 1 reveal their shares, then Pj can not only learn the secret with his
own private share (i.e., t shares are sufficient to use Lagrange interpolation) but
also can prevent others to learn it by not revealing his share, i.e., the preference
of a self-interested player in rational secret sharing. In other words, for each Pi,
revealing the share is weakly dominated by not revealing the share. As a result,
no one reveals his share and the secret is never reconstructed.

Let ui(a) denotes the utility of player Pi for a specific outcome a of the
protocol. Suppose li(a) is a bit defining whether Pi has learned the secret or not
in a specific outcome. We therefore consider δ(a) =

∑
i li(a) which denotes the

number of players who have learned the secret. As proposed in [7], the following
assumptions regarding players’ utility functions are made:

• li(a) > li(a′)⇒ ui(a) > ui(a′).
• If li(a) = li(a′) and δ(a) < δ(a′)⇒ ui(a) > ui(a′).

The first assumption means Pi prefers the outcome in which he learns the secret,
that is, since li(a) = 1 and li(a′) = 0, therefore, he prefers a. The second one
means Pi prefers the outcome in which the fewest number of other players learn
the secret. As illustrated in [7], the Nash equilibrium is too weak for rational
secret sharing. As a result, they suggested to design a protocol that applies a
Nash equilibrium surviving iterated deletion of weakly dominated strategies.

2.3 Social Secret Sharing Scheme

In this section, we review social secret sharing, introduced by Nojoumian et. al.
[18, 19], where shares are allocated based on a player’s reputation and the way
he interacts with other parties. In this scheme, weights of players are adjusted
such that participants who cooperate receive more shares compared to non-
cooperative parties. This is similar to human social life where people share more
secrets with whom they really trust and vice versa.

In other words, each player initially receives a constant number of shares.
Consequently, players are assigned weights based on their behaviors. As a result,
each player receives a number of shares according to his trust value which is the
representation of a player’s reputation over time. The authors apply the trust
management approach proposed in [17]. We review this technique in order to
use it in our social network. The design of this function is out of the scope of
our construction meaning that one can apply an arbitrary trust function.
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Definition 6. Let T ji (p) be the trust value assigned by Pj to Pi in period p. Let
Ti : N 7→ R be the trust function representing the reputation of Pi.

Ti(p) =
1

n− 1

∑
j 6=i

T ji (p) where −1 ≤ Ti(p) ≤ +1 and Ti(0) = 0

Ti(p) = T ji (p) if Pj for 1 ≤ j 6= i ≤ n have equal trust values for Pi, i.e., trust
values (personal quantity) are equal to the reputation value (social quantity).

The general idea in [17] is to support good players, discredit bad ones, and
create opportunities for newcomers whom we do not know much about their
behaviors. The authors demonstrate and resolve the problem of a highly cited
construction in the literature [23]. As shown in Table 1, six possible actions and
three sets B,N ,G are defined for bad, new, and good players respectively, where
α, β define boundaries on the trust values for different sets of players.

Trust Value Cooperation: Pi(C) Defection: Pi(D)

Pi ∈ B ⇒ Ti(p) ∈ [−1, β) Encourage Penalize

Pi ∈ N ⇒ Ti(p) ∈ [β, α] Give a Chance Take a Chance

Pi ∈ G ⇒ Ti(p) ∈ (α,+1] Reward Discourage

Table 1. Six Possible Actions for the Trust Management [17]

This construction applies monotonically increasing and decreasing functions
µ(x) and µ′(x), in the case of cooperation C and defection D, to publicly update
the trust (or reputation) value of each player Pi. For instance, by assigning
η = 0.01 < θ = 0.05 < κ = 0.09, we can simply define various points and
construct an appropriate trust function via regression.

Pi(C)⇒ Ti(p) = Ti(p− 1) + µ(x)

µ(x) ∈


[η, θ) Pi ∈ B
θ Pi ∈ N
(θ, κ] Pi ∈ G

Pi(D)⇒ Ti(p) = Ti(p− 1)− µ′(x)

µ′(x) ∈


(θ, κ] Pi ∈ B
θ Pi ∈ N
[η, θ) Pi ∈ G

It worth mentioning that the authors also define λ as the transaction cost to
fairly deal with cheap cooperations and expensive defections.

3 Literature Review

As we mentioned, the notion of rational secret sharing is introduced by Halpern
and Teague [7], which is later improved by Gordon and Katz [6]. Assuming
the same game-theoretic model, Lysyanskaya and Triandopoulos [14] provide
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a solutions in a mixed-behavior setting in which players are either rational or
malicious, and Abraham et. al. [1] define a notion of resistance to coalitions and
present a coalition-resistant protocol. All these constructions use simultaneous
channels (either a broadcast channel or secure private channels) which means
each player must decide on the value he wants to broadcast before observing the
values broadcasted by others, i.e., a strategic game.

The proposed constructions in [12, 13, 8] rely on physical assumptions such
as secure envelopes and ballot boxes, which might be impossible or hard to be
implemented for distant players. With the same assumptions, Micali and shelat
[16] provide a purely rational secret sharing using a verifiable trusted channel.
They show that all the existing solutions not only rely on the players’ rationality,
but also on their beliefs. As a result, they cannot guarantee that all rational
players learn the secret. For instance, if Pi believes that equilibrium (a, b) will
be played whereas Pj believes equilibrium (a′, b′) is going to be played, then the
game ends up with (a, b′) which may not be an equilibrium at all.

Kol and Naor [11] introduce an equilibrium notion of strict Nash equilibrium
in an information-theoretic secure setting. In Nash equilibrium, no deviations
are advantageous (i.e., no incentive to deviate). In its strict counterpart, all
deviations are disadvantageous (i.e., an incentive not to deviate). They first
consider both simultaneous and non-simultaneous broadcast channels and then
provide a new solution to avoid the simultaneous channel at the cost of increasing
the round complexity by using the synchronous broadcast channel.

They later [10] show that all the existing computational-based cryptographic
protocols are susceptible to backward induction because of the cryptographic
primitives used in the beginning of those protocols, that is, they can surely be
broken after an exponential number of rounds. The authors then illustrate a new
cryptographic coalition-resilient approach that is immune to backward induction
by considering simultaneous as well as non-simultaneous broadcast channels.

The computational strict Nash equilibrium is introduced in [5] which is a
stable solution concept with respect to trembles. This construction is dealer-free
and can tolerate a coalition of size t−1 without using simultaneous channels. In
can even be run over asynchronous point-to-point networks. Finally, it is efficient
in terms of computation, share size, and round complexity.

Maleka et. al. [15] present repeated rational secret sharing, with the exact
same approach proposed in [21], by considering two punishment strategies. In
the former, each player reveals his share as long as other players cooperate. As
soon as the first defection is observed, players do not reveal their shares in every
subsequent game. In the latter, players do not send their shares to the deviant
for k subsequent games after observing the first defection. These constructions
are severely problematic. In the first one, each player not only punishes the
deviant but also other players including himself. In the second method, a player
may deviate in an expensive reconstruction without having any concern for k
subsequent cheap reconstructions. Indeed, the nature of a punishment strategy
must depend on how much future outcomes are worth for each player. Finally,
they only consider a fixed number of m players without considering newcomers.
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Other constructions are recently proposed in the literature. For instance, Ong
et. al. [20] illustrate a protocol which is fair when the reconstruction phase is
executed with many rational players together with a minority of honest parties.
Asharov and Lindell [2] show that in all the existing protocols, the designer needs
to know the actual utility values of players. They then show that it is possible
to achieve utility independence through the relaxation of assumptions.

4 Socio-Rational Secret Sharing (SRS)

We first provide the formal definitions of social game which is repeated for an
unknown number of times, social equilibrium, and socio-rational secret sharing.
In our model, we assume that trust values are equal to the reputation value
of each Pi, that is, Ti(p) = T ji (p) for 1 ≤ j 6= i ≤ n where Ti(0) = 0. The
construction of this function is independent of the proposed protocol, therefore,
we apply the existing function presented in [17]. Since the significance of each
secret sharing is different from game to game, we assume that the transaction
cost is considered for each sharing outside of the game, i.e., it is embedded inside
of the trust calculation scheme and has its impacts on players’ utilities.

Definition 7. Let A def= A1× · · · ×An and T def= T1× · · · × Tn be the action and
reputation profiles respectively. In a society S of size |S| = N , a social game
Γ = (Ai, Ti, ui), for 1 ≤ i ≤ n and n ≤ N , is repeatedly played and contains a
set of possible actions Ai, a trust value Ti, and a utility function ui : A×Ti 7→ R
for each player Pi. The value Ti(p) in period p is computed by a trust function
T : N 7→ R, and a = (a1, . . . , an) ∈ A is said to be the game’s outcome.

Definition 8. A vector of strategies σ is said to be a social equilibrium in a
social game if for all i and any σ′i 6= σi it holds that ui(σ′i,σ−i) ≤ ui(σ), and
consequently, it is said to be strict social equilibrium if ui(σ′i,σ−i) < ui(σ).
This is due to ui : A× Ti 7→ R, i.e., a player with Ti cannot gain any benefit in
the society by deviating from the protocol as long as others follow the protocol.

The utility function is a central part in every game since each player makes
decision based on his expected utility. The utility assumption refers to players’
preferences over the game’s outcome whereas the utility computation illustrate
the method of computing the utility of each player, i.e., utility function.

4.1 Utility Assumption

Similar to Section 2.2, let ui(a) denotes Pi’s utility of a, let li(a) denotes if Pi
has learned the secret, and define δ(a) =

∑
i li(a). Finally, assume T a

i (p) shows
the reputation of Pi after a which has happened in p− 1.

A. If li(a) = li(a′) and T a
i (p) > T a′

i (p)⇒ ui(a) > ui(a′).
B. li(a) > li(a′)⇒ ui(a) > ui(a′).
C. If li(a) = li(a′) and δ(a) < δ(a′)⇒ ui(a) > ui(a′).
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The preference A illustrates that whether Pi learns the secret or not he prefers
to stay reputable. B and C are the same assumptions of rational secret sharing.

Definition 9. In a social game, a rational foresighted player has prioritized
preferences: Aρ1 � Bρ2 � Cρ3 : A (greediness) is strictly preferred to B by the
multiplicative factor ρ1, B (selfishness) is at least as good as C by a significance
factor ρ2, and C (selfishness) with the impact factor ρ3, where ρ1 � ρ2 ≥ ρ3 ≥ 1.

This means that a rational foresighted player has a long-term vision and first
prefers to achieve the highest level of trustworthiness. Only in that case, he would
be involved in the future games and consequently gains more profits; this can
be interpreted as greediness. He secondly prefers the outcome in which he learns
the secret. Finally, he desires the fewest number of other players learn the secret.
We next construct a new utility function which satisfies all three preferences.

4.2 Utility Computation

Our proposed function ui : A×Ti 7→ R shows the utility that each player Pi can
gain in a specific outcome, considering his reputation.

I. Sample Function. Let ωi(a) = 3/(2−T a
i (p)) where T a

i (p) ∈ [−1,+1], and
let τi(a) = T a

i (p) − T a
i (p − 1). We also consider Ω > 0 to be a unit of utility

and then compute the utility ui(a) that each player is supposed to receive. To
satisfy all the stated assumptions, consider the following mathematical terms:

A :
|τi(a)|
τi(a)

× ωi(a)×Ω, i.e., future loss or gain (1)

B : li(a)×Ω where li(a) ∈ {0, 1} (2)

C :
Ω

δ(a) + 1
where δ(a) =

∑
i

li(a) (3)

(1) The first equation would be +ωi(a)Ω if a player cooperates and it would
be −ωi(a)Ω otherwise. This means a player gains or loses at least 1 and at
most 3 (depending on his reputation value reflected in ωi) units of utility in
the future sharing due to his current behavior; although the gain or loss might
be more than our estimation. (2) The second equation illustrate that a player
gains one unit of utility if he learns the secret at the moment and he loses this
opportunity otherwise. (3) The final equation expresses that one unit of utility
is divided among all players that have learned the secret. We therefore combine
these equations with their corresponding coefficients.

ui(a) = ρ1

(
|τi(a)|
τi(a)

× ωi(a)×Ω
)

+ ρ2

(
li(a)×Ω

)
+ ρ3

(
Ω

δ(a) + 1

)
(4)

= Ω ×

(
ρ1

(
|τi(a)|
τi(a)

× ωi(a)
)

+ ρ2

(
li(a)

)
+ ρ3

(
1

δ(a) + 1

))
(5)
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The proposed function shows that if a player defects (or cooperates) with a
selfish (or unselfish) motivation, he may gain (or lose) a unit of utility Ω at the
moment but he will definitely lose (or gain), at least, a unit of utility Ω in the
future. Although this may not be the case in reality since the cost (or gain) of
a defection (or cooperation) is mush more than that due to the reduction (or
amplification) of the reputation, as an everlasting characteristic which remains
with the player for his entire life. In addition, we later show that the dealer gives
less (or more) chance of contribution to non-reputable (or reputable) players in
the future games.

II. General Function. It worth mentioning that one can design any arbitrary
function as long as it satisfies our utility assumptions. For instance, instead of
using δ(a), we can define a function f(δ(a)) where f : {0, . . . , n} 7→ R in order to
consider the number of players learning the secret, and so forth. A perfect design
of this function is out of the scope of this paper. Our intention is to show the
impact of the first property on the rational secret sharing scheme when rational
foresighted players with future concerns are considered.

Proposition 1. A utility function Fi with the following linear combination of
preference factors ρ1 � ρ2 ≥ ρ3 ≥ 1 and functions f1(Ti), f2(li), f3(δ) satisfies
the preference of a rational foresighted player, that is, Aρ1 � Bρ2 � Cρ3 , where
|f1| is a monotonically increasing function, f3 is a monotonically decreasing
function (excluding zero), and |f1(Ti)| ≥ f2(li) ≥ f3(δ) except that f2(0) < f3(0).

Fi(a) = Ω

(
ρ1f1(Ti) + ρ2f2(li) + ρ3f3(δ)

)
(6)

f1 :

{
R>0 τi > 0
R<0 otherwise

f2 :

{
0 li = 0
R>0 li = 1

f3 :

{
1 δ = 0
R>0 δ ∈ {1 . . . n}

Proof. Due to the lack of space we leave the proof but only analyze the situation
in which f2(0) < f3(0), i.e., li = 0 and δ = 0 (no one has learned the secret).
This means that at most t−1 players, where t is the threshold, have cooperated.
As a result, Pi is either among the cooperative players who have revealed their
shares or among the non-cooperative parties. However, the first property states
that Pi potentially gains more utilities if he enhances his reputation, no matter
if he learns the secret or not. Therefore, in the case of the cooperation we have:

Pi(C) : (τi > 0, f2 = 0, f3 = 1) then u
Pi(C)
i (a) = Ω

(
ρ1f1 + ρ3

)
We can simply compute the utility of Pi in the case of the defection as follows:

Pi(D) : (τi < 0, f2 = 0, f3 = 1) then u
Pi(D)
i (a′) = Ω

(
− ρ1f1 + ρ3

)
Consequently we get uPi(C)

i (a) > u
Pi(D)
i (a′) which confirms the statement. ut
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4.3 Proposed Protocol

Before illustrating any details, we first define socio-rational secret sharing. For
the sake of simplicity, let assume all players consider the pure-strategy.

Definition 10. A socio-rational secret sharing Γ ∈ ∆ is a social game with
(1) an action set Ai = {C,D}, (2) a trust function Ti for rational foresighted
players with types G,N ,B who are involved in various societies, as defined in
Section 2.3, and (3) a utility function ui : A×Ti 7→ R, as defined in Section 4.2.

I. Sharing. The sharing phase is similar to that of the regular secret sharing.
The only difference is the way that the dealer selects players for secret sharing
in the society. In fact, he gives more chance to reputable players compared to
unreliable parties. This method of selection realizes the term ρ1f1(Ti) in our
proposed utility function. Suppose φ is the probability distribution over types
B,N ,G meaning that the dealer selects n out of N , where n ≤ N , players from
the society based on this non-uniform probability distribution.

φ =
∑

j∈{B,N ,G}

φj = 1 where φB � φN < φG (7)

This means, although it is the best approach to mostly invite the reputable
players for any secret sharing in the society, it is not fair if the dealer does not
provide any opportunity for newcomers or if he completely ignores bad players.
Once in a while he should give a chance even to bad players to compensate for
their past behaviors. This is a realistic approach even in human society and can
be seen as the forgiveness factor of the dealer.

II. Reconstruction. The secret recovery phase is also similar to that of the
standard secret sharing schemes meaning that any construction can be selected
independent of its security assumption and the communication model. We only
attach our reputation system a long with our game-theoretic model to the se-
lected scheme. Finally, since players’ reputation and the trust function are public
information, therefore, all computations associated to the reputation system is
done by any authority or a committee of players on a public board.

It worth mentioning that it is not required to consider unknown number of
iterations in the reconstruction of a secret (which is the case in all the existing
rational secret sharing) since we consider a socio-rational secret sharing scheme
as a long-term game. In other words, those iterations for a single reconstruction
are conceptually stretched over time on multiple reconstructions of different
secrets in a social setting.

We initially analyze the 2-out-of-2 case by considering our sample function
in Equation (5), and then use the general form of our utility function.

Theorem 1. In our (2, 2)-socio-rational secret sharing, C strictly dominates D,
considering our sample utility function. In other words, D is strictly dominated
by C. As a result, (C, C) is a strict social equilibrium which is a unique solution.
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Proof. We compute the utility of each outcome for Pi. For the sake of simplicity
we assume ωi(a) = 1; although the proof is valid for all values of ωi(a) ∈ [1, 3]:

1. (C, C) : (τi > 0, li = 1, δ = 2) then u
(C,C)
i (a) = Ω

(
ρ1 + ρ2 +

ρ3

3

)
2. (C,D) : (τi > 0, li = 0, δ = 1) then u

(C,D)
i (a) = Ω

(
ρ1 +

ρ3

2

)
3. (D, C) : (τi < 0, li = 1, δ = 1) then u

(D,C)
i (a) = Ω

(
− ρ1 + ρ2 +

ρ3

2

)
4. (D,D) : (τi < 0, li = 0, δ = 0) then u

(D,D)
i (a) = Ω

(
− ρ1 + ρ3

)
We simply ignore the common term Ω. Since ρ1 � ρ2 ≥ ρ3 ≥ 1, we have:

u
(C,D)
i (a) = ρ1 +

ρ3

2
≤ ρ1 +

ρ2

2
< ρ1 + ρ2

< ρ1 + ρ2 +
ρ3

3
= u

(C,C)
i (a)

u
(D,C)
i (a) = −ρ1 + ρ2 +

ρ3

2
< ρ2 +

ρ3

2
< ρ1 +

ρ3

2
= u

(C,D)
i (a)

u
(D,D)
i (a) = −ρ1 + ρ3

≤ −ρ1 + ρ2

< −ρ1 + ρ2 +
ρ3

2
= u

(D,C)
i (a)

Consequently, we gain the following payoff inequality which proofs the theorem:

Pi cooperates︷ ︸︸ ︷
u

(C,C)
i (a) > u

(C,D)
i (a) >

Pi defects︷ ︸︸ ︷
u

(D,C)
i (a) > u

(D,D)
i (a) (8)

The interesting observation is the difference between two consecutive utilities
u

(C,D)
i (a) and u

(D,C)
i (a). This means, it is better for Pi to cooperate even if he

knows he will not learn the secret whereas the other party will learn it. On the
other hand, even if Pi learns the secret by deviating at the moment and using
the share of the other party, he will gain less utility. This is due to the potential
future gain or loss and the significance of the reputation in a society. ut

As we mentioned earlier, a more realistic approach by common sense is to
consider a suitable multiplicative factor ρ1 for the estimation of the future loss
(or gain). In that case, the enforcement for the cooperation would be even more
and the following inequality is going to be hold:
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u
(C,C)
i (a) > u

(C,D)
i (a)

ρ1
� u

(D,C)
i (a) > u

(D,D)
i (a) (9)

In all the existing solutions, the payoff matrix shown in Table 2 has been
considered. This matrix satisfies the properties B and C without defining any
impact factors, where U+ > U > U− > U−−. The payoff matrix associated
with socio-rational secret sharing is illustrated in Table 3, satisfying all three
preference assumptions.

HHH
HHP1

P2 Cooperation Defection

Cooperation U ,U U−−,U+

Defection U+,U−− U−,U−

Table 2. (2, 2)-Rational SS [2]

HHH
HHP1

P2 Cooperation Defection

Cooperation U+,U+ U ,U−

Defection U−,U U−−,U−−

Table 3. (2, 2)-Socio-Rational SS

First of all, we should stress that our socio-rational game is a non-cooperative
game. In fact, the cooperation is self-enforcing due to the reputation and future
concerns of rational foresighted players who decide individually. In a cooperative
game, this enforcement is provided by a third party and players do not really
compete. Second, this payoff matrix does not mean that players never deviate.
As an example, consider a scenario that a player is involved in different societies.
If he is required to cooperate for secret reconstructions of various schemes at the
same time, he will select the one in which he can gain more utility, of course, by
considering his reputation.

Theorem 2. In a socio-rational secret sharing scheme with n parties, C strictly
dominates D for all players Pi, assuming the preferences of rational foresighted
parties. Consequently, the vector aC = (aC1 , . . . , a

C
n) (or σC = (σC1 , . . . , σ

C
n) in the

case of the mixed-strategy) is a strict social equilibrium as a unique solution.

Proof. We first compute the utility of each outcome based on Equation (6) for
the least possible threshold t = 2 where n > 2, i.e., two shares are enough
to learn the secret. Ci (or Di ) means Pi cooperates (or defects), C−i (or D−i)
means, excluding Pi, all the other players cooperate (or defect), andM−i means,
excluding Pi, some players cooperate and some of them defect; we have both
Cooperation and Defection.

1. (Ci, C−i) : (τi > 0, li = 1, δ = n)

u
(Ci,C−i)
i (a) = Ω

(
ρ1f1 + ρ2f2 + ρ3f3(n)

)
2. (Ci,M−i) : (τi > 0, li = 1, δ = n)

u
(Ci,M−i)
i (a) = Ω

(
ρ1f1 + ρ2f2 + ρ3f3(n)

)
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3. (Ci,D−i) : (τi > 0, li = 0, δ = n− 1)

u
(Ci,D−i)
i (a) = Ω

(
ρ1f1 + ρ3f3(n− 1)

)
4. (Di, C−i) : (τi < 0, li = 1, δ = n)

u
(Di,C−i)
i (a) = Ω

(
− ρ1f1 + ρ2f2 + ρ3f3(n)

)
5. (Di,M−i) : (τi < 0, li = 1, δ ∈ {n− 1, n})

u
(Di,M−i)
i (a) = Ω

(
− ρ1f1 + ρ2f2 + ρ3f3(δ)

)
6. (Di,D−i) : (τi < 0, li = 0, δ = 0)

u
(Di,D−i)
i (a) = Ω

(
− ρ1f1 + ρ3f3(0)

)
As before, we ignore the common term Ω. Since the utilities of items 1 and 2
as well as 4 and 5 are almost equal, we ignore the items 2 and 5. Based on our
proposed utility function, we have:

u
(Ci,D−i)
i (a) = ρ1f1 + ρ3f3(n− 1)

≤ ρ1f1 + ρ3f2

≤ ρ1f1 + ρ2f2

< ρ1f1 + ρ2f2 + ρ3f3(n) = u
(Ci,C−i)
i (a)

u
(Di,C−i)
i (a) = −ρ1f1 + ρ2f2 + ρ3f3(n)

≤ −ρ1f1 + ρ2f2 + ρ3f2

≤ −ρ1f1 + ρ2f2 + ρ2f2

< −ρ1f1 + ρ1f2 + ρ1f2 = ρ1(2f2 − f1)
≤ ρ1f1 since f2 ≤ f1
< ρ1f1 + ρ3f3(n− 1) = u

(Ci,D−i)
i (a)

u
(Di,D−i)
i (a) = −ρ1f1 + ρ3f3(0)

≤ −ρ1f1 + ρ3f2

≤ −ρ1f1 + ρ2f2

< −ρ1f1 + ρ2f2 + ρ3f3(n) = u
(Di,C−i)
i (a)

Consequently, we gain the following payoff inequality:

Pi cooperates︷ ︸︸ ︷
u

(Ci,C−i)
i (a) > u

(Ci,D−i)
i (a) >

Pi defects︷ ︸︸ ︷
u

(Di,C−i)
i (a) > u

(Di,D−i)
i (a) (10)

The same result can be gained for any values of t, which proofs the theorem. ut
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Expected Utility. In this section, we show how each player can compute his
expected utility. This is specifically useful if he would like to decide on different

requests received from various societies, i.e., EUCi (a)
?
> EUCi (a′) where a,a′ are

for different games.
We stress that the utility value represents the relation between actions and

their corresponding consequences for a player whereas the expected utility of Pi
is an estimation of gain or loss when he plays with a player Pj . We therefore
compute the expected utility with a linear combination of utility values and
probability of Pj ’s cooperation. Let εj = (T a

j (p) + 1)/2 where εj ∈ [0, 1] shows
how probably the opponent Pj may cooperate.

EUCi (a) = εj U+ + (1− εj) U (11)

EUDi (a) = εj U− + (1− εj) U−− (12)

Corollary 1. In our socio-rational secret sharing, EUCi (a)
always
> EUDi (a).

Proof.

EUCi (a) > EUDi (a)
εj U+ + (1− εj) U > εj U− + (1− εj) U−−

εj (U+ − U−) > (1− εj) (U−− − U)
U+ − U−

U−− − U
<

1− εj
εj

since (U−− − U) < 0

Since εj ∈ [0, 1] and the LH side is negative, the inequality is always hold. ut

Corollary 2. In our social setting, players have more motivation to cooperate
with trustworthy parties or contribute in a society with more reliable participants.

Proof. Suppose Pi is involved in two games with Pj and Pk who have different
reputation values, for instance, let εj > εk. Assume Pi receives the same unit of
utility in both games, and let aij ,aik be the outcomes of two games accordingly.
We therefore consider the following inequality:

EUCi (aij)
?
> EUCi (aik)

εj U+ + (1− εj) U
?
> εk U+ + (1− εk) U

εj U+ − εk U+ ?
> (1− εk) U − (1− εj) U

(εj − εk) U+ ?
> (εj − εk) U since εj > εk

U+ > U which is true

ut
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5 Conclusion and Future Direction

This paper provides a multidisciplinary research connecting three major areas
of Computer Science in order to propose a novel solution for one of the most
fundamental cryptographic primitives.

As we illustrated, the social network with reputation consideration is a strong
self-enforcement for players to cooperate, for instance, a player may change his
non-cooperative approach after analyzing his reputation, or after estimating his
future loss. In our social setting, players can compensate for their past behavior.
On the other hand, reputable players can gain more profits as long as they act
properly, and newcomers can fairly start their social interactions. Finally, we
should stress that having a trust network by considering long-term interactions
can be seen as a new direction in game theory itself, specifically, the theoretical
models used in social sciences such as economics and political science because
elements in those frameworks are more close to human social behavior.

As our future work, we are interested to consider other complicated models.
For instance, using referral chain in which two players who are interacting for
the first time, can gain some information with respect to each other’s reputation
through other parties or common friends. We also would like to scrutinize the
impact of a situation in which a player is involved in various societies while he
is holding different reputation values associated to each one. Finally, it would
be interesting to build a hybrid model where both reputation and belief are
considered. In that case, by considering all the other parameters of the game,
the reputation can be viewed as an estimation of the past behaviors whereas the
belief can be considered as an anticipation of the future activities.
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