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Abstract. We describe a systematic framework for using a stream cipher supporting an initialisation
vector (IV) to perform various tasks of authentication and authenticated encryption. These include
message authentication code (MAC), authenticated encryption (AE), authenticated encryption with
associated data (AEAD) and deterministic authenticated encryption (DAE) with associated data. Sev-
eral schemes are presented and rigourously analysed. A major component of the constructions is a keyed
hash function having low collision and differential probabilities. Methods are described to efficiently
extend such hash functions to take double inputs and more generally multiple inputs. In particular,
double-input hash functions are required for the construction of AEAD schemes. An important prac-
tical aspect of our work is that a designer can combine off-the-shelf stream ciphers with off-the-shelf
hash functions to obtain secure primitives for MAC, AE, AEAD and DAE(AD).
Keywords: stream cipher with IV, universal hash function, authentication, authenticated
encryption with associated data, deterministic authenticated encryption, modes of oper-
ations.

1 Introduction

Stream ciphers are one of the basic primitives for performing cryptographic operations. In the
conventional view, a stream cipher is considered to be a pseudo-random generator. It takes as
input a short secret random seed (called the secret key) and produces as output a long random
looking keystream. Encryption is performed by bitwise XORing the keystream to the message.
Decryption is performed by regenerating the keystream (from the shared secret seed) and XORing
it to the ciphertext.

Stream ciphers defined in the above manner are not very convenient for applications. A single
secret key cannot be securely used to encrypt two different messages. So, for each message, it is
required to have a separate secret key. As a result, the key management issue becomes complicated.

Over the last decade or so, the above view of stream ciphers has changed. In the modern view,
a stream cipher SC takes as input a secret key K and an initialisation vector (IV). The IV is not
required to be secret. A message M is encrypted as M ⊕ SCK(IV). The IV is communicated to the
receiver publicly, or could be generated at both ends as a counter value. Flexibility in usage arises
from the fact that the same key can now be used with different messages; the IV only needs to be
changed. Since there is no secrecy requirement on the IV, this is a much more easier task to manage.

This view of stream ciphers have, however, changed the theoretical model. The keystream that
is used to encrypt a particular message, is still required to appear random to a computationally
bounded adversary. So, the requirement is that for distinct values of IV, the outputs SCK(IV)
should appear independent and uniform random to a computationally bounded adversary. This is
theoretically captured by the notion of a pseudo-random function (PRF), and in the modern view,
a stream cipher with IV is modelled as a PRF. See [4] for further justification of this view.



The starting point of our work is the model of a stream cipher with IV as a PRF. This is a
PRF which takes as input a short fixed-length string and produces as output a long string. We
consider the problem of constructing higher-level primitives using such a PRF. The primitives that
we consider are message authentication code (MAC), authenticated encryption (AE), AE with
associated data (AEAD) and deterministic authenticated encryption (DAE) with associated data.
For each of these primitives, we describe efficient constructions and provide formal security analyses.

A core requirement in all the constructions is a keyed hash function. Such a hash function is
selected from a family {Hashτ} by choosing a uniform random τ . For distinct x and x′ and any y, we
require the probability that Hashτ (x)−Hashτ (x′) equals y to be low. Such hash functions are called
almost XOR universal hash functions. Starting from [9, 28, 13], constructions and efficient imple-
mentations of such functions have been studied extensively in the literature (see for example [27,
15, 8, 6]).

For the construction of AEAD schemes, we need an extended notion. The above kind of hash
functions take a single input. To handle associated data, the hash function needs to take two inputs.
A double-input hash function cannot be naively constructed from a single-input hash function by
merely concatenating the two inputs. This is because of the fact that even if (X,Y ) is not equal
to (X ′, Y ′), it may still be the case that X||Y = X ′||Y ′. Applying a single-input hash function to
the concatenated value will lead to the same output even though the pairs (X,Y ) and (X ′, Y ′) are
distinct.

To tackle this problem, we need a suitable encoding of the pair and then apply the single-input
hash function. Two generic encodings are described. Further, we describe modifications of some
well-known hash functions such as Poly1305 [6] and NH and NHT [8] to obtain double-input hash
functions.

A generic method for modifying a hash function to tackle variable length inputs is described
in [8]. This method is not suitable for use with a stream cipher with IV. Similarly, a generic method
described in [22] to extend a single-input PRF to a multi-input PRF is not suited for use with a
stream cipher with IV. Detailed discussion on these issues are given later.

The constructions that we present are important from an application point of view. There are
several well known stream ciphers and hash functions. SNOW [11] is a well-known example. The
eStream project [2] has resulted in stream ciphers geared either towards fast software implementa-
tions or for small hardware implementations. Combining a fast software oriented stream cipher with
a fast software oriented hash function using one of the methods proposed in this work will result
in a secure primitive with a fast software implementation. Similarly, one can combine a hardware
oriented stream cipher with a hardware oriented hash function using our methods to get a secure
primitive with small hardware footprint. So, in a sense, our constructions are general templates for
obtaining stream cipher based primitives for MAC, AE, AEAD and DAE(AD).

Prior and related work. The literature contains several scattered works on using a stream
cipher for MAC and AE. For MAC, the idea goes back to [28]. We present two constructions for
MAC. The first idea is based on [28] while the second idea is a variant. The recent proposal of
3GPP can be seen as a special case of the second idea. To the best of our knowledge, the formal
analysis of this construction has not appeared in the literature. A method for achieving AE using
a stream cipher is given in [5]. This is one of the four constructions that we define. As far as we are
aware of, there has been no previous work on constructing AEAD schemes from a stream cipher
with IV. Similarly, there has been no previous work on constructing DAE(AD) schemes from a
stream cipher with IV.
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Stream cipher based constructions for AE have been proposed as a combined primitive (see for
example [12] and its later version PHELIX) but has not been successful.

Authenticated Encryption. For typical applications, such as secure communication over the
internet, both confidentiality and authenticity of the communications are required. The combined
primitive of authenticated encryption was formalised in [17, 3]. Modes of operations of block ciphers
to achieve AE have been studied in the literature and several schemes are known [16, 14, 21, 20, 10,
25]. NIST of USA has standardised one such scheme, called GCM [18]. The issue of authenticating
an associated data was first formally tackled in [19]. Later works such as [20, 18, 26] incorporated
methods to perform AE and at the same time authenticate an associated data. Deterministic au-
thenticated encryption (with associated data) was formalised in [22] to model the so-called key-wrap
problem. Existing works on provable security treatment of AE, AEAD and DAE(AD) schemes have
almost exclusively focussed on modes of operations of block ciphers to achieve these functionalities.

2 Preliminaries

In this section, we introduce a few basic notions.

Stream cipher with IV. Let SCK : {0, 1}n → {0, 1}L be a stream cipher with IV, i.e., for every
choice of K, SCK maps an IV of length n bits to a string of length L bits. The length L is assumed
to be long enough for practical sized messages to be encrypted. Actual encryption of a message
M of ` bits using an initialisation vector IV is done by XORing the first ` bits of SCK(IV) to the
message. By a slight abuse of notation, we will write this as M ⊕ SCK(IV). The IV is from an
IV-space which is defined to be {0, 1}n. In other words, initialisation vectors are n-bit strings. The
key K is from a suitable (finite) key space and for all practical designs, keys would be at least n
bits long.

Pseudo-random function (PRF). Let D and R be finite non-empty sets and f is a random
(but, not necessarily, uniform random) function from D to R. In other words, f is drawn from the
set of all functions from D to R according to some distribution. Informally, the function f is said
to be a pseudo-random function if it is (computationally) indistinguishable from a uniform random
function from D to R.

A possible distinguisher (also called an adversary) A is a probabilistic algorithm which is given
oracle access to f . It adaptively queries the oracle with inputs x(1), . . . , x(q), receiving in return the
responses f(x(1)), . . . , f(x(q)). At the end of the interaction, A outputs a bit. Denote by Af ⇒ 1,
the event that this output is 1.

Let f∗ be a function chosen uniformly at random from the set of all functions mapping D to
R. Adversary A’s interaction with f∗ is defined in a manner similar to the above and denote by
Af∗ ⇒ 1, the event that the output of A after interaction with f∗ is 1. The PRF-advantage of A
in distinguishing f from f∗ is defined to be the following.

Advprf
f (A) = Pr[Af ⇒ 1]− Pr[Af∗ ⇒ 1].

The total query complexity σ of A is defined to be the total number of bits it provides in all the
queries. In other words, this is the sum of the lengths of all the individual queries.

The maximum (more precisely, the supremum) of such advantages over all adversaries which

run in time t, make q queries and have total query complexity σ is denoted by Advprf
f (t, q, σ).
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Stream Cipher with IV and PRF. The security assumption on the stream cipher with IV is
that of a pseudo-random function. See [4] for a discussion on the justification of this assumption.

A stream cipher with IV can be considered to be a random function where the randomness
arises from the uniform random choice of the key. For the PRF-assumption, the requirement is that
SCK is computationally indistinguishable from a function which is chosen uniformly at random

from the set of all functions which map {0, 1}n to {0, 1}L. By Advprf
SC(t, q, σ) we will denote the

resource-bounded advantage of an adversary in breaking the PRF-property of SC.

Hash functions. Let {Hashτ} be a keyed family of hash functions on a common domain and a
common range. The key τ is chosen from an appropriate finite set.

A basic requirement on the hash family is the following: For any x and for a uniform random τ ,
the random variable Hashτ (x) is uniformly distributed over the range. Two kinds of probabilities [7]
are defined for the hash function family.

Collision probability. For distinct x and x′, the collision probability of Hashτ corresponding to
the pair (x, x′) is Pr[Hashτ (x) = Hashτ (x′)], where the probability is taken over the uniform
random choice of τ .

Differential probability. This requires an additive group structure on the range of the hash
function family. For distinct x and x′ and any y, the differential probability of Hashτ corre-
sponding to the triplet (x, x′, y) is Pr[Hashτ (x)−Hashτ (x′) = y], where the probability is taken
over the uniform random choice of τ .

If all the collision probabilities are bounded above by ε, then Hashτ is said to be almost universal
(ε-AU); if all the differential probabilities are bounded above by ε, then Hashτ is said to be almost
XOR universal (ε-AXU).

There are well known examples of both AU and AXU hash families. Univariate polynomials
over finite fields give rise to such families. For such hash function families, a key τ usually consists
of a fixed number of elements of the underlying finite field and can be represented by a fixed-length
bit-string. The basic idea of polynomial-based hashing yields function families which are AU/AXU
only for fixed-length inputs. These can be modified to handle variable-length inputs [6, 8, 24]. The
output (called a digest) is a short fixed-length string.

Another class of hash families are known. These can also handle variable length inputs and
produces short fixed-length digests. But, the key τ for such hash functions can be quite long. A
prefix of the key having length equal to the length of the message is actually used. In certain cases,
the length of the key-prefix is actually slightly greater than the length of the message to be hashed.
Examples of such hash families are known [13, 8, 24]. In particular, UMAC [8] is a well-known
example which can be used to perform very fast hashing in software.

One issue about using such hash functions is the key. Since the key can be quite long, it is not
practical to store the key. Instead, a stream cipher is used to generate the key. In this work, we
will consider in details how such hash functions can be securely and efficienctly combined with a
stream cipher supporting an IV.

For the sake of convenience, we will distinguish two types of hash functions.

Type-I. For such hash functions, the key length is independent of the message length. Typically,
a key will be a short fixed-length bit string.

Type-II. For such hash functions, the number of bits of the hash key required to produce the
digest is as long as the message length. In some cases, it is actually slightly longer than the
message length. Suppose τ is the hash key required to hash a message M and τ ′ is any string
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such that τ is a prefix of τ ′. Then, Hashτ (M) = Hashτ ′(M), i.e., using a key longer than that
necessary to hash a message M does not change the digest.

Message authentication code. Here we will primarily consider deterministic MAC algorithms
which utilise a nonce. A MAC algorithm takes as input a nonce N and a message M and produces
a tag as tag = MACK(N,M). The key K is secret and is shared between a sender and a receiver.
The sender generates tag and sends (N,M, tag) to the receiver; the receiver regenerates the tag
from the received nonce and the message and compares to the received tag. If they are equal, the
receiver accepts, otherwise, the receiver rejects.

Security is defined using a game in the following manner. An adversary A is a probabilistic algo-
rithm which has oracle access to the tag generation algorithm MACK(·, ·), which is instantiated with
a uniform random key K. A adaptively queries the oracle with inputs (N (1),M (1)), . . . , (N (q),M (q))
and receives in response the corresponding tags tag(1), . . . , tag(q). The restriction on A is that all the
nonces N (1), . . . , N (q) have to be distinct. After the interaction, A produces a forgery (N,M, tag)
such that (N,M) is not equal to (N (i),M (i)) for any 1 ≤ i ≤ q. Note that N may be equal to one
of the earlier N (i). Define succ to be the event that MACK(N,M) = tag conditioned on the event∧q
i=1(MACK(N (i),M (i)) = tag(i)).

The advantage of A in breaking the MAC algorithm is defined to be the following probability:

Advauth
MAC(A) = Pr[succ] = Pr

[
MACK(N,M) = tag

∣∣∣∣∣
q∧
i=1

(MACK(N (i),M (i)) = tag(i))

]
.

By AdvMAC(t, q, σ), we denote the maximum advantage of any adversary running in time t, making
q queries (including the forgery attempt) and having query complexity σ. The query complexity
also counts the number of bits in the forgery.

Authenticated encryption (with associated data). The goal of such a scheme is to perform
both encryption and authentication of a message and also possibly authenticate an additional data
or header. There are two deterministic algorithms – the encryption and the decryption algorithms.

The encryption algorithm AEAD.EncryptK(N,H,M) takes as input a nonce N , a (possibly
empty) header H and a message M ; and produces as output (C, tag). Typically, the length of C is
equal to the length of M . The decryption algorithm AEAD.DecryptK(N,H,C, tag) takes as input a
nonce N , a header H and a pair (C, tag) and either outputs a message M or outputs ⊥ signifying
that the input is rejected. The usual correctness requirement is to be satisfied, namely,

AEAD.DecryptK(N,H,AEAD.EncryptK(N,H,M)) = M.

There are two security requirements on an AE scheme – confidentiality (or privacy) and au-
thentication. Below we separately define confidentiality and authentication.

Privacy of an AEAD scheme. As usual, let an adversary A be a probabilistic algorithm. A has
oracle access to AEAD.EncryptK(·, ·, ·) where K is chosen uniformly at random and can adaptively
query the oracle with inputs (N (1), H(1),M (1)), . . . , (N q), H(q),M (q)) receiving in response the cor-
responding outputs (C(1), tag(1)), . . . , (C(q), tag(q)). Finally, A outputs a bit. Let Areal ⇒ 1 be the
event that A outputs the bit 1.

Now consider the interaction of A with an oracle which behaves as follows. On input a triple
(N,H,M), it returns (C, tag) where the length of C is equal to the length of M and tag is an element
of the tag-space. The strings C and tag are chosen uniformly at random and are independent of
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all other inputs and responses. Denote by Arnd ⇒ 1 the event that A outputs the bit 1 after
such interaction. The advantage of an adversary A in breaking the privacy of the AEAD scheme is
defined as follows.

Advaead-priv
AEAD (A) = Pr[Areal ⇒ 1]− Pr[Arnd ⇒ 1].

The maximum of this advantage over all adversaries running in time t, making q queries and having

query complexity σ will be denoted by Advpriv
AEAD(t, q, σ).

Authentication of an AEAD scheme. In this case, the adversary A is still a probabilistic
algorithm having oracle access to AEAD.EncryptK(·, ·, ·) where K is chosen uniformly at random.
The goal of the adversary is, however, different. It is to produce a forgery.
A adaptively queries the oracle with inputs (N (1), H(1),M (1)), . . . , (N q), H(q),M (q)) and receives

in response the corresponding outputs (C(1), tag(1)), . . . , (C(q), tag(q)). At the end of the interaction,
A outputs a tuple (N,H,C, tag), where (N,H,C, tag) is not equal to (N (i), H(i), C(i), tag(i)) for any
1 ≤ i ≤ q. The nonce N in the forgery attempt may be equal to one of the earlier N (i).

Define succ(A) to be the conditional event that AEAD.DecryptK(N,H,C, tag) does not return
⊥ where the conditioning is on the event

∧q
i=1(AEAD.EncryptK(N i), H(i),M (i)) = (C(i), tag(i))).

Note that the definition of succ requires an implicit access to the decryption oracle of the AEAD
scheme. The advantage of an adversary A in breaking the authentication of the AEAD scheme is
defined as follows.

Advaead-auth
AEAD (A)

= Pr[succ(A)]

= Pr

[
AEAD.DecryptK(N,H,C, tag) 6=⊥

∣∣∣∣∣
q∧
i=1

(AEAD.EncryptK(N i), H(i),M (i)) = (C(i), tag(i)))

]
.

The maximum of this advantage over all adversaries running in time t, making q queries and having
query complexity σ will be denoted by Advaead-auth

AEAD (t, q, σ).

AE Schemes. These are defined in a manner similar to that of AEAD schemes. The only difference
is that there is no header or associated data in an AE scheme. Definitions of privacy and authen-
tication of AE schemes are obtained from that of AEAD schemes by dropping the header. The
superscripts ae-priv and ae-auth will be used to denote privacy and authentication for AE schemes.

3 Double-Input Hash Functions

Rogaway and Shrimpton [22] consider the problem of constructing a PRF which can handle a vector
of strings as input. They propose an iterative method which repeatedly applies a single-input PRF
successively to the different components of the vector. It is mentioned in [22] that this procedure
is more efficient than using a padding rule to first convert the vector of strings to a single string
and then applying a single-input PRF to this single string. In the context that [22] considers, this
is perhaps correct. The PRFs considered in [22] is basically a mode of operation of a block cipher.
As such, the parameter of interest is the number of block cipher invocations to process the vector.

In the context of stream cipher with IV, the parameter changes. Such a stream cipher typi-
cally has two phases – an initialisation (or setup) phase during which the IV is processed but, no
keystream is generated; and a key generation phase, during which the actual keystream is gener-
ated. The time per byte of the initialisation phase is typically much more than the time per byte
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of the key generation phase. So, for using a stream cipher with IV, it is of interest to reduce the
number of setup calls.

Building a PRF from a stream cipher with IV will involve using a hash function to map a long
string to a fixed-length string. This string will be considered to be the IV and the stream cipher
will be applied to this IV. Iteratively applying such a PRF will mean that the stream cipher is
repeatedly initialised. Instead it is better to encode the vector of strings into a single string and
apply a hash function to the single string. The output of the hash function is then used as the IV
to the stream cipher. In this approach, the stream cipher is initialised only once.

For this approach to work, we need efficient methods for encoding a vector of strings into a single
string. To a certain extent, the method depends on the nature of the single-input hash function.
We present two generic methods. For both methods, the underlying single-input hash function is
defined for strings of certain lengths and has low differential and collision probabilities only for
equal length strings.

We start by describing the extension of a single-input hash function to a double-input hash
function. Full details of these extensions are provided. Later we mention how the same idea easily
extends to construct multi-input hash functions.

Generic Construction-I. Let hτ : {0, 1}≤L → {0, 1}n such that the differential probabilities of
hτ are small on equal length strings; and for any string A, hτ (A) = hτ (A||0i) for any i ≥ 1. This
null-extension property is true for many hash functions such as those based on polynomials or linear
functions. Further, the function hτ is defined only for inputs whose lengths are multiples of some
fixed block length β. This block length need not be equal to the length of the digest n.

For any two strings A and B, define the embedding E as follows.

E(A,B) = A||B||binw(len(A))||10k.

Here k is the minimum non-negative integer such that the total length of A||B||binw(len(A))||10k

is a multiple of the block length β. We are assuming that the length of A is at most 2w − 1 bits.

Proposition 1. Suppose that (A,B) 6= (A′, B′); C = E(A,B), C ′ = E(A′, B′); and ` = len(C) ≥
`′ = len(C ′). Then the followings hold.

1. C 6= C ′||0`−`′,
2. Pr[hτ (C)⊕ hτ (C ′) = α] ≤ ε for every α ∈ {0, 1}n. Here ε is an upper bound on the differential

probabilities of hτ .

Proof. Let D = A||B||binw(len(A)), D′ = A′||B′||binw(len(A′)) and m = len(D), m′ = len(D′).
If ` > `′ then certainly m > m′ and so the (m + 1)st bit of C is 1 while the (m + 1)st bit of

C||0`−`′ is 0. So, let ` = `′. Without loss of generality, assume that m ≥ m′. If m > m′, then as
before the (m+ 1)st bit of C is 1 while the (m+ 1)st bit of C||0`−`′ is 0. So, suppose that m = m′.
If len(A) 6= len(A′), then the last w bits of D and D′ are different and so C 6= C ′. On the other
hand, if len(A) = len(A′), then this fact together with m = m′ implies that len(B) = len(B′). Since
(A,B) 6= (A′, B′), we have either A 6= A′ or B 6= B′. Since the lengths of A and A′ are equal and so
are the lengths of B and B′, it follows that A||B 6= A′||B′. So, in all cases we see that C 6= C ′||0`−`′ .
This proves the first statement.

For the second statement, note that by the null-extension property of the hash function,
hτ (C ′) = hτ (C ′||0`−`′). So,

Pr[hτ (C)⊕ hτ (C ′) = α] = Pr[hτ (C)⊕ hτ (C ′||0`−`′) = α] ≤ ε.
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The last inequality follows from the differential property of h. ut
Defining HashDblτ (A,B) by the map hτ (E(A,B)) gives a double argument hash function with

low differential probabilities.

Polynomial hashing. Let IF = GF (2n) and hτ : ∪L/ni=1 IFi → IF defined as

hτ (M0,M1, . . . ,Mt−1) = τM0 ⊕ τ2M1 ⊕ · · · ⊕ τ tMt−1.

Here the block length β equals n. It is well-known that hτ has differential probability of at most
t/2n for two messages with t blocks. Further, appending a message with all-zero blocks does not
change the value of the digest under hτ , i.e., the null-extension property holds. Applying Generic
Construction-I provides a desired double-input hash function.

Note. GCM [18] uses a hash function called GHASH which uses polynomial based hashing. The
construction is essentially a double-input hash function, though, this is not explicitly mentioned. To
handle variable length inputs, GHASH concatenates the lengths of both the inputs. As the above
construction shows, this is not required. So, following the above construction, one can obtain a
simplification of GHASH.

Modification of Poly-1305. The description of Poly-1305 is at byte level. A message M consists
of a sequence of bytes. These are formatted into segments where each segment consists of 16 bytes
and the last segment has possibly less than 16 bytes. A one is appended to each segment; for the
last segment, after appending the one, further zeros are appended (if required) so that the segment
length comes to 129 bits. As a result of this padding, each segment length becomes 129 bits. Denote
by E-Poly1305(M) the output of this padding scheme. It has been shown in [6], that for any integer
u, if E-Poly1305(M)− E-Poly1305(M ′)− u ≡ 0 mod 2130 − 5, then M = M ′.

The digest is obtained by evaluating a polynomial at a point which is equal to the key of the hash
function. This polynomial is defined by the segments which form the coefficients of the polynomial.
Denote the digest as polyτ (E-Poly1305(M)), where τ is the key.

As before, let bin32(len(A)) be the 32-bit binary encoding of the length of the bit string A. This
32-bit encoding is considered to be a sequence of 4 bytes. Define the encoding E(A,B) as follows:

E(A,B) 7→ E-Poly1305(A||B||bin32(len(A))).

Then the map HashDblτ (A,B) = polyτ (E(A,B)) is a double argument hash function with low
differential probabilities.

Generic Construction-II. A generic method is described in [8] for the following: Given a single-
input hash function which is defined for strings whose lengths are multiples of the block length β and
which has low collision (resp. differential) probabilities for equal length strings, construct a single-
input hash function which can handle arbitrary length inputs and has low collision (resp. differential)
probabilities for two strings of possibly unequal lengths. The construction is the following.

Let {hτ} be a family of functions where hτ : D → R, with D = ∪i∈I{0, 1}i for some finite
non-empty index set I of non-negative integers and R = {0, 1}n. In other words, the range consists
of fixed length strings whereas the domain consists of strings of some particular lengths. Let a be
the length of the longest string in D and α ≥ dlog2 ae be a positive integer. Given a message M , it
is formatted into M1, . . . ,Mt such that M1, . . . ,Mt−1 are all exactly a bits long and Mt is at most
a bits.
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A family {h′τ} is defined as follows: On input M , if M is the empty string, then return 0α; else,
let Len = binα(len(M) mod a) and i be the least non-negtive integer such that Mt||0i is in A and
return

hτ (M1)|| · · · ||hτ (Mt−1)||hτ (Mt||0i)||Len.
This approach cannot be directly used with a stream cipher with IV. The output of such a

single-input hash function is not a fixed-length binary string. Note that the length is appended
after the hashing.

We describe a generic construction which ensures that the output is always a fixed-length string.
The first part shows how to construct a single-input hash function which can handle variable length
strings and the second part shows how to construct a double-input hash function. In contrast to the
first generic construction that we have described, in this case, it is not required for the underlying
single-input hash function to possess the null-extension property.

First part. Let M be a message and let E(M) be M ||10k where k is the minimum positive integer
such that the length of E(M) is multiple of the block length β and E(M) can be hashed using h.
Suppose there are r blocks in E(M). Define a new hash function as follows.

h∗τ,ρ(M) = hτ (E(M))⊕ ψρ(r). (1)

Here ψρ maps n bits to n bits and satisfies the following differential property: For r 6= r′ and for
any n-bit string α, Pr[ψρ(r)⊕ ψρ(r′) = α] = 1/2n. Such functions ψ can be constructed using the
so-called powering-up method [20] and from linear feedback shift registers [23].

Proposition 2. If the collision (resp. differential) probabilities of h are bounded above by ε, then
the collision (resp. differential) probabilities of h∗ given by (1) are also bounded above by ε.

Proof. We show the result for differential probabilities. Let M and M ′ be two distinct strings and
let α be any n-bit string. Let the number of blocks in E(M) and E(M ′) be r and r′ respectively.
There are two cases to consider.
Case r 6= r′. Then the following computation shows the result.

Pr[h∗τ,ρ(M)⊕ hτ,ρ(M ′) = α]

= Pr[hτ (E(M))⊕ ψρ(r)⊕ hτ (E(M ′))⊕ ψρ(r′) = α]

= Pr[ψρ(r)⊕ ψρ(r′) = α− hτ (E(M)) + hτ (E(M ′))]

=
1

2n

≤ ε.

Case r = r′. This means that the lengths of E(M) and E(M ′) are equal. For this case, we will utilise
the fact that h has low differential probabilities for equal length strings.

If the lengths of M and M ′ are not equal, then the 1 padded at the end of the longer string is
different from the 0 present in the same position of the shorter string. If the lengths of M and M ′

are equal, then since they are distinct, there is a positing where the two strings differ. In either case,
B = E(M) 6= E(M ′) = B′. Further, the lengths of B and B′ are equal. The following computation
now completes the proof.

Pr[h∗τ,ρ(M)⊕ hτ,ρ(M ′) = α]

= Pr[hτ (E(M))⊕ ψρ(r)⊕ hτ (E(M ′))⊕ ψρ(r′) = α]

= Pr[hτ (B)⊕ hτ (B′) = α]

≤ ε.
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The last inequality follows from the differential property of h for equal length strings. ut

Second part. Modification of h∗τ to handle two arguments can be done in the following manner.
Given two inputs H and M , define E(H,M) to be the string H||M ||binw(len(H))||10k where, H is
of size at most 2w− 1 and k is the minimum non-negative integer such that the entire length of the
string is a multiple of the block length β. Again note that the block length need not necessarily be
equal to n, which is the size of the digest. Let r be the number of blocks in E(H,M) and define
h∗τ,ρ(H,M) as follows.

h∗τ,ρ(H,M) = hτ (E(H,M))⊕ ψρ(r). (2)

Proposition 3. Suppose that the collision (resp. differential) probabilities of h are bounded above
by ε. Then the collision (resp. differential) probabilities of h∗ given by (2) are also bounded above
by ε.

Proof. We prove the statement on differential probabilities. Let (H,M) and (H ′,M ′) be two
distinct header-message pairs and let α be any n-bit string. Let r and r′ be the number of blocks
in E(H,M) and E(H ′,M ′) respectively.

As in the proof of Proposition 2, it can be shown that if r 6= r′, then

Pr[h∗(H,M)⊕ h∗(H ′,M ′) = α] = 1/2n ≤ ε.

Suppose that r = r′, i.e., the number of blocks in E(H,M) and E(H ′,M ′) are equal. Then the
lengths of E(H,M) and E(H ′,M ′) are also equal.

If the lengths of H||M and H ′||M ′ are not equal, then the lengths of H||M ||binw(len(H)) and
H ′||M ′||binw(len(H ′)) are also unequal. The 1 padded to the end of the longer of these two strings
is different from the 0 at the same position in the shorter string. So, E(H,M) and E(H ′,M ′)
are distinct. Suppose now that the lengths of H||M and H ′||M ′ are equal. Then the lengths of
H||M ||binw(len(H)) and H ′||M ′||binw(len(H ′)) are also equal. If the length of H is different from
the length of H ′, then binw(len(H)) is different from binw(len(H ′)) and so, once more, E(H,M) and
E(H ′,M ′) are distinct.

If the lengths of H and H ′ are equal, then since the lengths of H||M and H ′||M ′ are also
equal, it necessarily follows that the lengths of M and M ′ are equal. Then, by the fact that
(H,M) 6= (H ′,M ′), it follows that H||M 6= H ′||M ′ and so E(H,M) and E(H ′,M ′) are distinct.
Thus, in all cases, the equal length strings E(H,M) and E(H ′,M ′) are seen to be distinct. Now
applying the differential property of h for equal length strings, we get the result. ut

NH. The core of the UMAC construction [8] is a non-linear hash function NH and its so-called
Toeplitz version NHT. Both these functions take as input, strings whose lengths are even multiples
of a word length w and produces as output a 2w-bit string. The collision and differential properties
of these functions for equal length strings are analysed in [8].

A major advantage of this hash is its speed in software. Using the approach outlined above,
both NH and NHT can be tailored for use in the AE schemes to be proposed later. It should be
noted that the generic method for securely handling variable length strings given in [8] does not
provide a hash function suitable for use with a stream cipher. Further, as described above, both
NH and NHT can be converted into double-input hash functions which can handle arbitrary length
strings and preserve the collision and differential properties. This makes them suitable for use in
the AEAD schemes to be proposed later.
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3.1 Multi-Input Hash Function

A related question is that of obtaining a hash function which takes κ ≥ 2 inputs and has low
differential probabilities. It is easy to extend the constructions of double-input hash functions to
cover this case. We provide the details for the two generic constructions given above.

Extension of Generic Construction-I. As before, let hτ : {0, 1}≤L → {0, 1}n be such that the
differential probabilities of hτ are small on equal length strings, and hτ satisfies the null-extension
property.

Fix κ ≥ 2. For strings A1, . . . , Aκ, define the embedding E as follows.

E(A1, . . . , Aκ) = A1|| · · · ||Aκ||binw(len(A1))|| · · · ||binw(len(Aκ−1))||10k.

Here k is the minimum non-negative integer such that the total length of the right hand side
is a multiple of the block length β. Observe that the lengths of κ − 1 of the input strings are
concatenated.

Define a hash function h∗ on κ strings as follows.

h∗τ (A1, . . . , Aκ) = hτ (E(A1, . . . , Aκ)).

As in Proposition 1, it can be shown that the differential probabilities of h∗ are low if the differential
probabilities of h are low.

Extension of Generic Construction-II. In this case, we do not have the null extension property
of the underlying hash function.

Fix κ ≥ 2. Given κ input strings A1, . . . , Aκ define E(A1, . . . , Aκ) as follows.

E(A1, . . . , Aκ) = A1|| · · · ||Aκ||binw(len(A1))|| · · · ||binw(len(Aκ−1))||10k.

As before, k is the minimum non-negative integer such that the entire length of the string on the
right hand side is a multiple of the block length β. Let r be the number of blocks in E(A1, . . . , Aκ)
and define h∗τ,ρ(H,M) as follows.

h∗τ,ρ(A1, . . . , Aκ) = hτ (E(A1, . . . , Aκ))⊕ ψρ(r). (3)

As in Proposition 3, it can be shown that the differential probabilities of h∗ are small if the
differential probabilities of h are small.

Other encodings. We describe two possible modifications.

1. Instead of appending the lengths at the end of the message, it is possible to append the
length of an input component immediately after the component appears. For example, Generic
Construction-I can be modified as follows.

E(A1, . . . , Aκ) = A1||binw(len(A1))|| · · · ||Aκ−1||binw(len(Aκ−1))||Aκ||10k.

Similarly for Generic Construction-II. The advantage of doing this is that one does not need to
carry forward the encodings of the different lengths to be appended after all the inputs have
been read.
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2. The lengths of all the arguments are encoded as w-bit binary numbers. It is possible to have
different length encodings of the arguments. For example, if it is known that the first argument
is never more than 216−1 bits long, then one can use a 16-bit encoding for the length of the first
argument and a 32-bit encoding of the lengths of the other arguments. Whatever encoding is
decided must be used consistently for all inputs. This strategy will result in reducing the length
of the final encoded string.

Instead of appending 10k at the end, one may append the length of the last argument and then
pad by zeros to make the total length a multiple of the block length. Compared to our proposal,
this strategy will result in a longer padded string.

4 MAC Construction

A well-known method [28] for constructing a MAC is to combine a PRF with a hash function
in the following manner: given a nonce N and a message M , the digest is defined to be tag =
Hashτ (M)⊕PRFK(N). The secret key of the MAC algorithm is (K, τ), i.e., it consists of the secret
key of the PRF and the secret key of the hash function. When using a stream cipher with IV, the
PRF is replaced by SC, i.e., tag = Hashτ (M)⊕ SCK(N). Here N plays the role of the IV.

As long as τ is short, i.e., Hash is a Type-I hash function, the above construction is efficient
and practical. For a Type-II hash function, the hash key τ is very long. Generating such a long
uniform random bit string and storing it securely is very difficult. This reduces the practicability
of the scheme.

A MAC scheme is shown in Table 1. This can be instantiated using either Type-I or Type-II
hash function. As mentioned earlier, only the prefix of τ required for hashing M is to be generated.
The integrity algorithm [1] of 3GPP is a variant of the scheme given in Table 1. The only difference
is that the values of R and τ are produced as (τ,R) = SCK(N). Compared to the scheme in
Table 1, this change does not improve the efficiency or the practicability. It, however, makes the
formal analysis more complicated. So, we have chosen to ignore this variant.

Table 1. A MAC scheme.

MACK(N,M)
(R, τ) = SCK(N);
tag = Hashτ (M)⊕R.

Theorem 1. Suppose the differential probabilities of Hash are bounded above by ε. Then

Advauth
MAC(t, q, σ) ≤ Advprf

SC(t, q, σ) + ε.

Proof. In the first standard reduction, SCK is replaced by a random oracle. On distinct inputs, this
oracle returns independent and uniform random strings of appropriate lengths. Let succ(real) (resp.
succ(rnd)) be the event that the adversary is successful against SCK (resp. the random oracle).
Then, it is standard to show the following.

Advauth
MAC(t, q, σ) = Pr[succ(real)] ≤ Advprf

SC(t, q, σ) + Pr[succ(rnd)].
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Let (R(i), τ (i)) be the response of the random oracle on input N (i) and let (R, τ) be the response
on input N , where (N,M, tag) is the forgery attempt. The crux of the analysis is to show that
Pr[succ(rnd)] is small. In more details, this probability is the following.

Pr[succ(rnd)] = Pr

[
Hashτ (M)⊕R = tag

∣∣∣∣∣
q∧
i=1

(
Hashτ (M (i))⊕R(i) = tag(i)

)]
. (4)

There are two cases to consider. If N is different from each N (i), then by the random oracle
assumption, (R, τ) is distributed uniformly and is independent of all previous (R(i), τ (i)). Due
to the independence, the conditional probability in (4) is equal to the unconditional probability
Pr[Hashτ (M)⊕R = tag] which in turn, is equal to 1/2n ≤ ε.

So, suppose that N = N (i) for some i. Since (N,M) is not equal to (N (i),M (i)), it necessarily
follows that M 6= M (i). Further, (R, τ) is independent of (R(j), τ (j)) for j 6= i and the probability
in (4) is equal to

Pr
[
Hashτ (M)⊕R = tag|Hashτ (i)(M

(i))⊕R(i) = tag(i)
]
. (5)

Note that (R, τ) = $(N) and (R(i), τ (i)) = $(N (i)), where $ denotes the random oracle. By as-
sumption N = N (i) and so R = R(i). (If R and τ were generated as (τ,R) = SCK(N), then this
would not have held.) Since R is uniformly distributed and is independent of τ (i), it follows that
Pr[R = Hashτ (i)(M

(i)) = tag(i)] = 1/2n ≤ ε.
Also, one would expect τ = τ (i). If a Type-I hash function is used, then the hash key is a

fixed length string and so τ = τ (i) holds. But, for Type-II hash functions, we are working with an
overloaded notation where τ (resp. τ (i)) is the appropriate length prefix of the hash key required
for hashing the message M (resp. M (i)). Since the lengths of M and M (i) can be different, we do
not necessarily have τ = τ (i).

We now consider the following joint probability.

Pr
[
Hashτ (M) = tag ⊕R,Hashτ (i)(M

(i)) = tag(i) ⊕R
]
.

Assume without loss of generality that M (i) is not shorter than M . Then the length of τ is at
most the length of τ (i). By the condition on Type-II hash function, Hashτ (M) = Hashτ (i)(M), i.e.,
hashing using a longer key does not change the digest.

Pr
[
Hashτ (i)(M) = tag ⊕R,Hashτ (i)(M

(i)) = tag(i) ⊕R
]

=
∑
a,b

Pr
[
Hasha(M) = tag ⊕ b,Hasha(M (i)) = tag(i) ⊕ b

]
× Pr[τ (i) = a]× Pr[R = b]

=
1

2n
×
∑
a,b

Pr
[
Hasha(M) = tag ⊕ b,Hasha(M (i)) = tag(i) ⊕ b

]
× Pr[τ (i) = a].

There is no randomness in the condition Hasha(M) = tag⊕b,Hasha(M (i)) = tag(i)⊕b, i.e., it either
holds with probability 0 or with probability 1. For a fixed value of a, the condition holds with
probability 1, if b = Hasha(M)⊕ tag = Hasha(M

(i))⊕ tag(i), otherwise it holds with probability 0.
So, for every a, there is at most one b for which the probability is non-zero. As a result,

Pr
[
Hashτ (i)(M) = tag ⊕R,Hashτ (i)(M

(i)) = tag(i) ⊕R
]
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=
1

2n
×
∑
a,b

Pr
[
Hasha(M) = tag ⊕ b,Hasha(M (i)) = tag(i) ⊕ b

]
× Pr[τ (i) = a]

≤ 1

2n
×
∑
a

Pr
[
Hasha(M)⊕ Hasha(M

(i)) = tag ⊕ tag(i)
]
× Pr[τ (i) = a]

≤ 1

2n
× Pr

[
Hashτ (i)(M)⊕ Hashτ (i)(M

(i)) = tag ⊕ tag(i)
]

≤ ε

2n
.

This shows that the probability in (5) and hence, the probability in (4) is bounded above by ε.
Combined with the other inequalities, we get the desired result. ut

Note. If a vector of strings is required to be authenticated, then one can use a multi-input hash
function. The ensuing analysis remains unchanged.

4.1 PRF from PRF

SC maps fixed-length bit strings to long strings and the security assumption on SC is that of a PRF.
We briefly consider how SC can be used to construct a PRF which maps long strings to fixed-length
bit strings. Such a PRF can be used to obtain a MAC algorithm which does not use a nonce.

The conversion uses a hash function which maps the long message into a short digest. SC is then
applied on the short digest and a fixed length prefix of the keystream is produced as the output.

From this discussion, the PRF constructed from SC and hash is the following. Given secret key
(K, τ) and input M , the output tag is produced as follows: N = Hashτ (M) and tag = SCK(N).

The idea behind the security of this construction is the following. If M (1), . . . ,M (q) are dis-
tinct inputs, and Hash has low collision probabilities, then with high probability N (1), . . . , N (q)

are also distinct, where N (i) = Hashτ (M (i)). Conditioned under this event and assuming SCK to
be a PRF, the outputs tag(1), . . . , tag(q) appear to be independent and uniformly distributed to
a computationally bounded adversary. We make a more detailed analysis in the context of DAE
schemes.

As in the case of authentication, if τ is long, then it is advantageous to generate τ using the
stream cipher itself. This variant is as follows. Here fStr is some fixed string (such as 0n). Given a
secret key K and a message M the output tag is produced as follows: τ = SCK(fStr); N = Hashτ (M)
and tag = SCK(N). The idea behind the security of this scheme is almost the same as the previous
one. Only difference is that we need to argue that the probability that fStr is equal to any N (i) is
small, which follows from the fact that Hashτ (x) is uniformly distributed for any fixed x.

5 Constructions of AE Schemes

The proposed schemes for performing AE are given in Table 2. Only the encryption algorithms are
described. Corresponding decryption algorithms can be easily constructed.

AE-1 has been suggested as a standard method of performing authenticated encryption from a
stream cipher [5]. For AE-1, a Type-I hash function is suitable. This is because, for this scheme, the
hash key is provided as part of the secret key of the scheme. If a Type-II hash function is desired
to be used, then the hash key will be long and it will not be practical to specify this as part of the
secret key. In this case, AE-2 should be used. In this scheme, the hash key is generated from K ′

which itself is a fixed length string.
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Table 2. AE schemes.

AE-1.EncryptK,τ (N,M)
(R,Z) = SCK(N);
C = M ⊕ Z;
tag = Hashτ (C)⊕R.

AE-2.EncryptK,K′(N,M)
τ = SCK(K′);
(R,Z) = SCK(N);
C = M ⊕ Z;
tag = Hashτ (C)⊕R.

AE-3.EncryptK,τ (N,M)
(R,Z) = SCK(N);
C = M ⊕ Z;
tag = Hashτ (M)⊕R.

AE-4.EncryptK,K′(N,M)
τ = SCK(K′);
(R,Z) = SCK(N);
C = M ⊕ Z;
tag = Hashτ (M)⊕R.

On the face of it, AE-2 may appear to be slower compared to AE-1, since it requires two
invocations of SC. There are two points to note.

First, the two invocations of SC can be done in parallel. So, in hardware, if a Type-II hash
function requires smaller space than a Type-I hash function, then it may be advantageous to use
AE-2 in comparison to AE-1.

Second, the hash key τ in AE-2 does not depend on the message. So, subject to the availability
of secure storage a sufficiently long hash key may be generated and stored once per session. Then
the time for generating the hash key is amortised over all the messages hashed in one session.
This approach can be used when messages are comparatively short which is true, for example, in
internet communications. There are, of course, many related implementation issues such as cache
misses which would also determine the actual speed.

Schemes AE-3 and AE-4 hash the message M instead of the ciphertext C. In the context of
authenticated encryption, the suggestion for hashing the message has not appeared earlier in the
literature. One possible advantage of hashing the message M instead of the ciphertext C is that the
task of hashing and ciphertext generation can proceed in parallel. For hardware implementations,
this can be an advantage.

In AE-2, there are two keys K and K ′. If a single key system is desired, then one may generate
K ′ itself by applying SCK on a fixed n-bit string fStr as K ′ = SC(fStr). Again, this will have a
minimal effect on the security bound. But, on the other hand, it will require a separate application
of SC. It should be noted, though, that K ′ can be generated once per session.

Privacy of the schemes. We consider only AE-1 and the rest are similar. Under the assumption
that SC is a PRF, the privacy of the scheme is easy to argue. Suppose the q queries are (N (i),M (i))
and the corresponding responses are (C(i), tag(i)). The nonce restriction implies that N (1), . . . , N (q)

are distinct. Since N (1), . . . , N (q) are distinct, by the PRF assumption on SC, a computationally
bounded adversary will not be able to distinguish between SC(N (1)), . . . ,SC(N (q)) and independent
and uniform random strings of corresponding lengths.

The strings (R(1), Z(1)), . . . , (R(q), Z(q)) are prefixes of appropriate lengths of these strings. Since
C(i) = Z(i) ⊕M (i) and tag(i) = Hashτ (C(i))⊕R(i), the random variables

(C(1), tag(1)), . . . , (C(q), tag(q))

also appear independent and uniformly distributed to a computationally bounded adversary. This
shows the privacy of AE-1 and the following bound can be derived.

Advae-priv
AE-1 (t, q, σ) ≤ Advprf

SC(t, q, σ). (6)
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The privacy bounds of the other schemes are the same.

Authentication of the schemes. In this case, the arguments for the first two schemes are slightly
different with the argument for AE-2 being a little more complicated. We first present this argument
below. Later, we give the argument for AE-3 from which the argument for AE-4 follows after some
modifications based on the argument for AE-2.

Theorem 2. Suppose the differential probabilities of Hash are bounded above by ε. Then

Advae-auth
AE-2 (t, q, σ) ≤ Advprf

SC(t, q, σ) +
q + 1

2n
+ ε.

Advae-auth
AE-4 (t, q, σ) ≤ Advprf

SC(t, q, σ) +
q + 1

2n
+ ε.

Proof. We prove the result for AE-2. Suppose the queries are (N (1),M (1)), . . . , (N (q),M (q)) and
the corresponding responses are (C(1), tag(1)), . . . , (C(q), tag(q)). Further, suppose that the forgery
attempt is (N,C, tag) with the restriction that this is not equal to (N (i), C(i), tag(i)) for any 1 ≤
i ≤ q. The forgery attempt implicitly defines (R,Z) = SCK(N).

Let succ(real) be the event that the forgery is accepted. Let Repeat be the event that K ′ is equal
to one of N (1), . . . , N (q) or N . Since K ′ is chosen uniformly at random, Pr[Repeat] ≤ (q + 1)/2n.
Then

Advae-auth
AE-2 (t, q, σ) = Pr[succ(real)]

= Pr[succ(real)|Repeat]× Pr[Repeat] + Pr[succ(real)|Repeat]× Pr[Repeat]

≤ Pr[Repeat] + Pr[succ(real)|Repeat].

(The event Repeat is the essential difference between the analysis of AE-1 and AE-2. In AE-1, this
event is not defined and τ is a uniform random string which is independent of all other random
variables. In AE-2, under the condition Repeat, and assuming SC to be a PRF, we can assume that
τ is a uniform random string which is independent of all other random variables. The rest of the
proof is the same for both schemes.)

Next, SCK is replaced by a random oracle. On distinct inputs, this oracle returns independent
and uniform random strings of appropriate lengths. Let succ(rnd) be the event that the adversary
is successful against the random oracle. Then, it is standard to show the following.

Pr[succ(real)|Repeat] ≤ Advprf
SC(t, q, σ) + Pr[succ(rnd)|Repeat].

The analysis of Pr[succ(rnd)|Repeat] is to show the following (with SC() is replaced with a random
oracle $()).

Pr[succ(rnd)|Repeat]

= Pr

[
Hashτ (C)⊕R = tag

∣∣∣∣∣Repeat ∧
q∧
i=1

(Hashτ (C(i))⊕R(i) = tag(i))

]
(7)

≤ ε.

Strictly speaking, we should also be conditioning on the event
∧q
i=1

(
Z(i) = M (i) ⊕ C(i)

)
. But,

conditioned on Repeat and replacing SC() by $() results in both R and τ being independent of Z(i)

for all i. So conditioning on this event will not change the probability.
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There are two cases to consider. If N is different from each N (i), then (R,Z) is distributed
uniformly and is independent of all previous (R(i), Z(i)). Due to the independence, the conditional
probability in (7) is equal to the unconditional probability Pr[Hashτ (C) ⊕ R = tag] which due to
the uniform distribution of R and its independence from τ , is equal to 1/2n ≤ ε.

So, suppose that N = N (i) for some i. Then (R,Z) is independent of (R(j), Z(j)) for j 6= i and
R = R(i). The probability in (7) is equal to

Pr
[
Hashτ (C)⊕R = tag|Hashτ (C(i))⊕R = tag(i)

]
. (8)

By the restriction on the adversary, we have (N,C, tag) 6= (N (i), C(i), tag(i)). Since we are assuming
N = N (i), it necessarily follows that (C, tag) 6= (C(i), tag(i)). If C = C(i), then certainly tag 6= tag(i)

and so the above probability is zero. So, let C 6= C(i). In this case, as in the proof of Theorem 1,
the probability in (8) can be shown to be bounded above by ε. From this the result follows. ut

Theorem 3. Suppose the differential probabilities of Hash are bounded above by ε. Then

Advae-auth
AE-1 (t, q, σ) ≤ Advprf

SC(t, q, σ) + ε.

Advae-auth
AE-3 (t, q, σ) ≤ Advprf

SC(t, q, σ) + ε.

Proof. We give the proof for AE-3.

Suppose as before that the queries are (N (1),M (1)), . . . , (N (q),M (q)) and the corresponding re-
sponses are (C(1), tag(1)), . . . , (C(q), tag(q)). Further, suppose that the forgery attempt is (N,C, tag)
with the restriction that this is not equal to (N (i), C(i), tag(i)) for any 1 ≤ i ≤ q.

Let succ(real) be the event that the forgery is accepted. Let SCK be replaced by a random oracle.
On distinct inputs, this oracle returns independent and uniform random strings of appropriate
lengths. Let succ(rnd) be the event that the adversary is successful against the random oracle.
Then, as before, it is standard to show the following.

Pr[succ(real)] ≤ Advprf
SC(t, q, σ) + Pr[succ(rnd)].

We show

Pr[succ(rnd)]

= Pr

[
Hashτ (M)⊕R = tag

∣∣∣∣∣
q∧
i=1

(
Z(i) = M (i) ⊕ C(i),Hashτ (M (i))⊕R(i) = tag(i)

)]
(9)

≤ ε.

In this case, we cannot ignore the event
∧q
i=1

(
Z(i) = M (i) ⊕ C(i)

)
. This is because the message,

rather than the ciphertext is hashed. If the N in the forgery attempt is equal to some N (i), then Z
and Z(i) will have an overlap. Since the adversary provides C in the forgery attempt and M equals
C ⊕ Z, this M is not independent of Z(i).

There are two cases to consider. If N is different from each N (i), then (R,Z) is distributed
uniformly and is independent of all previous (R(i), Z(i)). Due to the independence, the conditional
probability in (9) is equal to the unconditional probability Pr[Hashτ (M)⊕R = tag] which in turn,
is equal to 1/2n ≤ ε.
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So, suppose that N = N (i) for some i. Then (R,Z) is independent of (R(j), Z(j)) for j 6= i and
R = R(i). As a result, (9) reduces to the following.

Pr
[
Hashτ (M)⊕R = tag

∣∣∣(Z(i) = M (i) ⊕ C(i),Hashτ (M (i))⊕R = tag(i)
)]
. (10)

Suppose that the length of M is at most the length of M (i), so that, Z is a prefix of Z(i). The
other condition where Z(i) is a proper prefix of Z can be dealt with in a similar manner. Conditioning
on the event Z(i) = M (i) ⊕ C(i), fixes the value of Z. Let this value be z. Then M = C ⊕ z. If
Z is a proper prefix of Z(i), then certainly M 6= M (i); if Z = Z(i), then z = M (i) ⊕ C(i) and
M = C ⊕ z = C ⊕ C(i) ⊕M (i).

Since N = N (i) and for an allowed forgery (N,C, tag) 6= (N (i), C(i), tag(i)), it necessarily follows
that (C, tag) 6= (C(i), tag(i)). If C = C(i), then tag 6= tag(i). From M = C⊕C(i)⊕M (i) and C = C(i),
it follows that M = M (i). Then, the probability in (10) is 0.

So, suppose that C 6= C(i) and then C⊕z = M 6= M (i) (under the condition Z(i) = M (i)⊕C(i)).
The probability in (10) is equal to

Pr
[
Hashτ (C ⊕ z)⊕R = tag

∣∣∣Hashτ (M (i))⊕R = tag(i)
]
.

As in the proof of Theorem 1, this probability can be shown to be bounded above by ε. ut

6 Handling Associated Data

None of the schemes given in the previous section can directly handle associated data. It is tempting
to concatenate the header and then apply the hash function. But, this does not work. To see
this, first consider AE-1 and AE-2 and suppose that Hashτ (C) is replaced by Hashτ (H||C). The
authentication property of this scheme is easily attacked. The attacker A queries the oracle on the
input (N,H = h1,M = m1m2) and receives (C = c1c2, tag); here h1,m1,m2, c1 and c2 are bits and
tag is computed as tag = Hashτ (h1c1c2)⊕R, where (R,Z) = SCK(N).

The forgery is (N,H ′ = h1c1, C
′
2 = c2, tag). First note that this forgery is allowed, since H ′ 6= H

(and C ′ 6= C). We have H ′||C ′ = H||C, but, this is allowed. Validity of the forgery is seen as follows.
Since N is not changed, R remains unchanged and so Hashτ (H ′||C ′)⊕R = Hash(H||C)⊕R = tag.

AE-3 and AE-4 also do not support associated data. Again, the simple possibility of hashing the
concatenation of the header and the message (i.e., Hashτ (H||M)) instead of only the message (i.e.,
Hashτ (M)) gives rise to an insecure scheme. The adversary A makes a query (N,H ′ = 0,M ′ = 00)
and obtains in response (C ′ = c′1c

′
2, tag

′). Here tag′ = Hashτ (H ′||M ′) ⊕ R = Hashτ (000) ⊕ R.
Let (R,Z = z1z2) be the output of SCK(N) and then c1 = z1; c2 = z2. The adversary outputs
(N,H = 00, c1, tag

′) as the forgery. Since the nonce is not changed, the pair (R,Z) remains the same,
and so, the single bit message M = m1 corresponding to the forgery is m1 = c1 ⊕ z1 = c1 ⊕ c1 = 0.
The digest computation for the forgery is then Hashτ (H||M)⊕R = Hashτ (000)⊕R = tag′. So, the
concatenate-and-hash strategy does not work.

The requirement is a hash function which accepts two inputs and has low collision and differential
probabilities. More formally, we need a family {Hashτ} where for each τ , the function Hashτ (A,B)
is an n-bit string. For such hash functions, we will overload notation and write Hashτ (A) as a
shorthand for Hashτ (A, λ), where λ is the empty string. Existing hash functions can be modified
to obtain such double-input hash functions as has been described in Section 3.

In Table 3, we present several ways to incorporate additional data into an AE scheme. Only
the encryption algorithms are shown and the corresponding decryption algorithms can be easily
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constructed. Schemes described along the first column can be efficiently instantiated by Type-
I hash functions, i.e., hash functions for which keys are short fixed-length bit strings. Schemes
described along the second column can be efficiently instantiated by Type-II hash functions, i.e.,
hash functions for which keys are long. The first four schemes incorporate the header while hashing
the ciphertext or the message. The later four schemes hash the header along with the nonce.
Schemes 1, 2, 5 and 6 hash the ciphertext, whereas schemes 3, 4, 7 and 8 hash the message.

Table 3. AEAD schemes.

AEAD-1.EncryptK,τ (H,N,M)
(R,Z) = SCK(N);
C = M ⊕ Z;
tag = Hashτ (H,C)⊕R.

AEAD-2.EncryptK,K′(H,N,M)
τ = SCK(K′);
(R,Z) = SCK(N);
C = M ⊕ Z;
tag = Hashτ (H,C)⊕R.

AEAD-3.EncryptK,τ (H,N,M)
(R,Z) = SCK(N);
C = M ⊕ Z;
tag = Hashτ (H,M)⊕R.

AEAD-4.EncryptK,K′(H,N,M)
τ = SCK(K′);
(R,Z) = SCK(N);
C = M ⊕ Z;
tag = Hashτ (H,M)⊕R.

AEAD-5.EncryptK,τ (H,N,M)
V = Hashτ (H,N);
(R,Z) = SCK(V );
C = M ⊕ Z;
tag = Hashτ (C)⊕R.

AEAD-6.EncryptK,K′(H,N,M)
(τ1, τ2) = SCK(K′);
V = Hashτ1(H,N);
(R,Z) = SCK(V );
C = M ⊕ Z;
tag = Hashτ2(C)⊕R.

AEAD-7.EncryptK,τ (H,N,M)
V = Hashτ (H,N);
(R,Z) = SCK(V );
C = M ⊕ Z;
tag = Hashτ (M)⊕R.

AEAD-8.EncryptK,K′(H,N,M)
(τ1, τ2) = SCK(K′);
V = Hashτ1(H,N);
(R,Z) = SCK(V );
C = M ⊕ Z;
tag = Hashτ2(M)⊕R.

We provide explanations for Schemes 5 to 8. Since N is a nonce, the pair (H,N) is also a
nonce, i.e., the freshness of N ensures the freshness of (H,N). Assuming that Hash has low collision
probabilities, the outputs V are distinct and hence play the role of nonces. Conditioned on the
event that the V s are distinct, Scheme AEAD-5 reduces to Scheme AE-1; Scheme AEAD-6 reduces
to Scheme AE-2; Scheme AEAD-7 reduces to Scheme AE-3; and Scheme AEAD-8 reduces to Scheme
AE-4. The privacy and authentication bounds for these AEAD schemes are the same as that for
the corresponding AE schemes plus an additive term of ε ×

(q
2

)
/2n ≤ ε × q2/2n+1 which accounts

for the probability that there is a collision among the V s.

The AEAD Schemes 1 to 4 are almost the same as AE schemes 1 to 4, except for the incorpora-
tion of the header information H as the first argument of the hash function. Under the assumption
that the double-input hash function has low collision and differential probabilities, the analysis of
these AEAD schemes is exactly the same as that of the corresponding AE schemes and hence, have
the same security bounds.

GCM. The NIST standard GCM [18] can be seen as a construction following the scheme AEAD-1.
A top-level view of GCM computation is as follows.

GCMK,τ (N,H,M)
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V = fτ (N);
(R,Z) = SCK(V );
C = M ⊕ Z;
tag = GHASHτ (H,C)⊕R.

The function len(A) applied to a string A returns an n/2-bit string containing the length of A.
There are several points to be noted about the top-level specification. It uses an underlying n-bit
block cipher EK ; the key K in GCM is the secret key of this block cipher.

The hash key τ is obtained as τ = EK(0n). The nonce N in GCM can be of arbitrary length.
An n-bit value V is produced by applying fτ to N and the function fτ is defined as follows: if
len(N) = n− 32, then return N ||031||1; otherwise, return GHASHτ (N).

The function SCK is defined in the following manner.

SCK(V ) = (EK(V0), EK(V1), . . .).

V0 = V and for i ≥ 1, Vi is defined from Vi−1 by incrementing the last 32 bits of Vi−1. The block
cipher EK is used in a counter mode of operation and can be seen as a stream cipher supporting
an IV.

Defined in this manner, SC, however, is not a PRF. To see this let V be an n-bit string and V ′

be obtained from V by incrementing the last 32-bits of V . Then the first block of SCK(V ′) equals
the second block of SCK(V ) and so the outputs can be easily distinguished from random strings.

Even though SC is not a PRF, the GCM construction is secure. This is because the input V
to SC is essentially obtained as the output of a hash function with low differential probabilities.

As a result, for two inputs V (s) and V (t) to SC, the blocks V
(s)
i and V

(t)
j are equal with very low

probability. This probability is upper bounded by the maximum differential probability of the hash
function. Conditioned on the event that all the input blocks are distinct and under the assumption
that EK is a pseudo-random permutation, the outputs of EK on these blocks will appear to be
random to a computationally bounded adversary.

GHASHτ is a double-input hash function and is defined in the following manner. Given two
strings A and B, write A as A1, . . . , Ar1−1, Ar1 and B as B1, . . . , Br2−1, Br2 where the blocks are
n-bit blocks except for the last blocks Ar1 and Br2 which are possibly partial blocks. Let k1 and k2
be the minimum non-negative integers such that Ar1 ||0k1 and Ar2 ||0k2 are n-bit blocks.

Then GHASHτ (A,B) is defined as follows.

GHASHτ (A,B) = Polyτ (A1, . . . , Ar1−1, Ar1 ||0k1 , B1, . . . , Br2−1, Br2 ||0k2 , len(A)||len(B)).

Here Polyτ is the usual polynomial hash function over GF (2n), i.e.,

Polyτ (X1, . . . , Xk) = X1τ
k ⊕X2τ

k−1 ⊕ · · · ⊕Xkτ.

The definition of the double-input hash function GHASHτ (A,B) is different from the polynomial-
based double-input hash function definition that we described in Section 3. In our definition, only
the length of the first input is required to be concatenated.

7 Deterministic Authenticated Encryption

This is an authenticated encryption (with associated data) scheme which does not use a nonce.
Syntactically, such a scheme is almost the same as that of an AEAD scheme.
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It consists of two algorithms DAEAD.EncryptK(H,M) and DAEAD.DecryptK(H,C, tag), where
K is from a suitable key space. The encryption algorithm produces (C, tag) as output and the
decryption algorithm either rejects its input (by producing the symbol ⊥) or produces a message.
Soundness is ensured by the following condition.

DAE.DecryptK(H,DAE.EncryptK(H,M)) = M.

This is clearly a deterministic algorithm and invoking the encryption algorithm twice on the same
message will return the same output.

Security of DAEAD schemes are defined in much the same way as that for AE schemes. There
are two parts – privacy and authentication. (See [22] for an approach where the two parts can be
merged into an equivalent single security model.) Since the scheme is deterministic, the adversary
is not allowed to repeat a query to the encryption oracle. For authentication, a forgery attempt
is a pair (H,C, tag) where (C, tag) is not equal to the output of any possible previous query

(H,M) to the encryption oracle. As in the case of AEAD, we denote by Advdaead-priv
D (t, q, σ) (resp.

Advdaead-auth
D (t, q, σ)) the maximum advantage of any adversary in breaking the privacy (resp. the

authenticity) of a DAEAD scheme D, where the maximum is over all adversaries running in time
t, making q queries and having query complexity σ (i.e., sending a total of σ bits in all its queries).

A DAE scheme is a special case of a DAEAD scheme where the header is the empty string for
all messages. Conceptually, a DAE scheme is not much different from an AE scheme. (Similarly,
for DAEAD and AEAD schemes.) This can be seen by considering the nonce-message pair of an
AE scheme to be a message of a DAE scheme. In the security model of an AE scheme, the nonce
cannot be repeated, while in a DAE scheme, the message cannot be repeated. So, considering the
nonce to be a part of the message ensures that messages are not repeated.

This, however, causes a difference in how the two primitives are constructed. While it is true
that messages in a DAE scheme are distinct, it is not necessarily true that there is a specific location
of n bits which have distinct values for different messages. Rather the entire message needs to be
considered as a nonce. This makes the construction of DAE schemes significantly more inefficient
compared to an AE scheme.

In broad terms, a DAE scheme can always be used as an AE scheme: simply consider the pair
(N,M) as the message in the DAE scheme. But, the converse is not true, i.e., an AE scheme cannot
be used as a DAE scheme.

Table 4. DAEAD scheme.

DAEAD-1K,τ .Encrypt(H,M)
V = Hashτ (H,M);
tag = SCK(V );
Z = SCK(tag);
C = M ⊕ Z;
return (C, tag).

DAEAD-1K,τ .Decrypt(H,C, tag)
Z = SCK(tag);
M = C ⊕ Z;
V = Hashτ (H,M);
ttag = SCK(V );
if (ttag=tag) then return M ;
else return ⊥.

In Table 4, we present a DAEAD scheme. It requires a double-input hash function Hash. The
scheme in Table 4 is suitable for Type-I hash functions, i.e., hash functions where the key τ is a
short fixed length string. Extension of the scheme to Type-II hash functions is straightforward. Let
K ′ be another independent and uniform random n-bit string and produce τ as τ = SCK(K ′).

21



The basic idea of the construction is simple and is based on the SIV construction in [22].
Intuitively, messages are considered to be nonces. If the pairs (H,M) are distinct, then the outputs
V of the hash function are also distinct (under the assumption that the hash function has low
collision probabilities). Assuming SC to be a PRF and applying it on distinct values of V ensures
that the different values of tag are independent and uniformly distributed. In particular, with high
probability, these values are also distinct. Again applying SC on the different values of tag ensures
that the values of Z are independent and uniformly distributed. Since C is obtained by XORing Z
and M , the values of C are also independent and uniformly distributed. So, the different (C, tag)
pairs are independent and uniformly distributed strings. From this the privacy of the scheme follows.
Formalising this argument is routine and gives the following result.

Theorem 4.

Advdaead-priv
DAEAD (t, q, σ) ≤ Advprf

SC(t, q, σ) +
q2ε

2
+

q2

2n+1
.

We next consider the authentication property. Write EK,τ as a shorthand for the encryption
function. Note that ttag computed in the decryption module is a function of (H,C, tag) and write
RGen(H,C, tag) to denote this function, i.e., ttag = RGen(H,C, tag).

Theorem 5.

Advdaead-auth
DAEAD (t, q, σ) ≤ Advprf

SC(t, q, σ) + qε+
1

2n
.

Proof. Suppose the queries to the encryption oracle are (H(1),M (1)), . . . , (H(q),M (q)) and the
corresponding outputs are (C(1), tag(1)), . . . , (C(q), tag(q)). Let the forgery attempt be (H,C, tag).

Before getting into the detailed analysis, we make a few simple but important observations.

1. For fixed values of K and τ , the pair (C, tag) is functionally determined from (H,M). If (C ′, tag′)
is different from (C, tag), then the corresponding (H ′,M ′) is necessarily different from (H,M).

2. The forgery attempt (H,C, tag) implicitly defines a message M as M = C ⊕ SCK(tag).
3. By the restriction on the adversary, (H,C, tag) cannot be equal to (H(i), C(i), tag(i)) for any i.

If (C, tag) equals (C(i), tag(i)) for some i, then certainly H 6= H(i) and so, (H,M) 6= (H(i),M (i)).
If on the other hand, (C, tag) is not equal to any (C(i), tag(i)), then (H,M) is different from
(H(i),M (i)). So, in both cases, (H,M) is different from all previous (H(i),M (i)) that have been
queried to the encryption oracle.

Let Seen be the following event.

EK,τ (H(1),M (1)) = (C(1), tag(1)), . . . ,EK,τ (H(1),M (1)) = (C(q), tag(q)).

Since the sources of randomness are K and τ , Seen is equivalent to the event

q∧
i=1

(
Z(i) = M (i) ⊕ C(i)

)
∧

q∧
i=1

(
tag(i) = SCK(Hashτ (H(i),M (i)))

)
.

Note that V (i) = Hashτ (H(i),M (i)). We show that Pr[RGen(H,C, tag) = tag|Seen] is small,
which proves the authenticity of the scheme.

Since (H,M) is distinct from all previous (H(i),M (i)), the probability that V is equal to one of
the V (i)s is at most qε. Let DistinctV be the event that V is distinct from all the V (i)s.

Pr[RGen(H,C, tag) = tag|Seen] ≤ qε+ Pr[RGen(H,C, tag) = tag|Seen,DistinctV].
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In the next step, replace SCK by a random oracle, i.e., the tag(i)s and the Z(i)s are strings
of appropriate lengths drawn independently and uniformly at random. Let this be change be
denoted by SC2rnd and for notational simplicity, we will write the corresponding probability as
Pr[RGen(H,C, tag) = tag|Seen,DistinctV, SC2rnd]. As is standard, it is possible to show the follow-
ing.

Pr[RGen(H,C, tag) = tag|Seen,DistinctV]

≤ Advprf
SC(t, q, σ) + Pr[RGen(H,C, tag) = tag|Seen,DistinctV,SC2rnd].

Under the condition DistinctV and SC2rnd, ttag is uniformly distributed and independent of all
other random variables. As a result, the probability that this value is equal to tag is 1/2n.

Putting the inequalities together gives the result. ut

8 Conclusion

In this paper, we considered the problem of utilising a stream cipher with IV to construct sev-
eral important cryptographic primitives. Several constructions are given for MAC, AE, AEAD and
DAE(AD) schemes. These constructions can be instantiated using known stream ciphers. Addition-
ally, certain types of hash functions are required. We define suitable variants of well-known hash
functions which are tailored for our applications. As a result of our work, a designer of practical
cryptographic systems gets the option of using a wider variety of secure and efficient constructions
for important cryptographic tasks than was previously known.
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