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1 Introduction  

The local fractional Taylor formula has been generalized by many authors. 

Kolwankar and Gangal had already written a classically formal version of the 

local fractional Taylor series [1,2] 
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where  D f y  is the Kolwankar and Gangal local fractional derivatives, denoted 

by 
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and its reminder is  
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On the other hand, Adda and Cresson obtained the following relation[3] 
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where        ,, , yF y x y D f f y x
          

and Adda and Cresson’s local fractional derivative is denoted by 

      ,lim y
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d f y D f f y x
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Recently, Yang and Gao proposed the generalized local fractional Taylor 

series to study the Newton iteration method and introduced the following 

generalized local fractional Taylor series [7] 
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with 0a x x b    ,  ,x a b   and Gao-Yang-Kang local fractional 

derivative is denoted by[4-8]  
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with            0 01f x f x f x f x       .   

Successively, the sequential local fractional derivatives is denoted by 
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If there exists the relation  

   0f x f x  
                           

(1.9)
 

with 0x x   ,for , 0   and ,   . Then  f x is called local fractional 

continuous on the interval  ,a b , denoted by 

   ,f x C a b .                            (1.10) 

and sequential local fractional continuity is denoted by  

 ,kC a b                           
(1.11) 

or 

   ,kf x C a b . 

However, the proof of the generalized local fractional Taylor series is not given. 

As a pursuit of the work we give some results for generalized local fractional 
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Taylor formula by using the generalized mean value theorem for local fractional 

integrals and prove it.  

2 Preliminaries 

Definition 1  

Let  f x is local fractional continuous on the interval ,a b  Local fractional integral 

of  f x  of order in the interval ,a b is defined [4,6-7]   
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where 
1j j jt t t   ,  1 2max , , ,...jt t t t     , and 

1,j jt t     
for 0,..., 1j N  , 

0 , Nt a t b  , is a partition of the interval  ,a b .   

Here, it follows that  

    0a aI f x   if a b ;                        (2.2) 

       a b b aI f x I f x   if a b ;                   (2.3) 

and      0
a aI f x f x

.                      
(2.4) 

Properties of the operator can be found in [6]. We only need here the following: 

For any    ,f x C a b , 0 1  , we have  
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For 0 1  ,    kf x  ,kC a b , then we have  
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For        ,f x g x C a b
  , then we have [6] 

       a bI f x g b g a   .                       (2.8) 

Theorem 1 (Mean value theorem for local fractional integrals) 

Suppose that    ,f x C a b , we have [6]  
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Theorem 2  

Suppose that    kf x ,     1kf x  ,C a b , for 0 1  , then we have 
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with 0a x x b    , where           
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Proof. From (2.5) and (2.9), we have  
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Successively, it follows from (2.13) that  
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Hence we have the result. 

Remark. When 0k  , considering the formula 

         
0

00
0 0[ ]x xI f x f x f x f x   , we have      00[ ]a xI f x f x .  

Theorem 3 (Generalized mean value theorem for local fractional integrals) 

Suppose that          , , ,f x C a b f x C a b
  , we have  
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Proof. Taking 1k   in (2.10), we deduce the result.   

3 Generalized local fractional Taylor’s formula  

In this section we will introduce a new generalization of local fractional Taylor 

formula that involving local fractional derivatives. We will begin with the mean 

value theorem for local fractional integrals.  

Theorem 4 (Generalized local fractional Taylor formula) 

Suppose that     1kf x  ,C a b ,  for 0,1,...,k n  and 0 1  , then we 

have 
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Successively, it follows from (2.20) that  
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Applying (2.9) and (2.22) , we have 
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with 0a x x b    ,  ,x a b  . 

Combing the formulas (2.22) and(2.26) in (2.20), we have the result.  

Theorem 5 

Suppose that     1kf x  ,C a b , for 0,1,...,k n and 0 1  , then we have 

 
   
 

      

  
1 1

0

0

1 1 1

nk nn
k

k

f f x x
f x x

k n

 
 

 

 



 
    

           

(2.27)

 

with 0 1  , ( , )x a b  , where           
1

1 ...

k times

k
x xf x D D f x  



 


. 

Proof. Applying (2.19), for 0 0x  and 0a x x b    , we have 
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If x  , then we have 
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with 0 1  . 

Hence, the proof of the theorem is completed. 

4 Applications: generalized local fractional series 

and approximation of functions 

Theorem 6 (Generalized local fractional Taylor series) 

Suppose that     1kf x  ,C a b , for 0,1,...,k n and 0 1  , then we have 
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Therefore the theorem is proved.  

Theorem 7 (Generalized local fractional Mc-Laurin’s series) 

Suppose that     1kf x  ,C a b , for 0,1,...,k n and 0 1  , then we have 
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Proof. Taking 0 0x  in (2.30), we obtain the result.  

Theorem 8 (Theorem for approximation of functions) 

Suppose that     1kf x  ,C a b , for 0,1,...,k n and 0 1  , then we have 
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Proof. The proof follows directly form (2.19).  

Example  

The Mittag-Leffler function [8] with fractal dimension is defined as 
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5 discussions  

This paper has pointed out the generalized local fractional Taylor formula with 

local fractional derivative. As well, we discussed local fractional Taylor’ series 

with local fractional derivative. The generalized local fractional Taylor series 

seems to look like fractional Taylor’s series with modified Riemann-Liouville 

derivative in the form. However, the derivative of the former is local fractional 

derivative, the later is modified Riemann-Liouville derivative. The differences of 

them was discussed in refs.[7,9]. Hence, when we make use of the generalized 

local fractional Taylor formula with local fractional derivative, it is important to 

defer from them. 
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