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Abstract

Let Γa be Dirac matrices in d-dimensional Minkowski spacetime, and let βi = Bab
i Γab, where Γab = Γ[aΓb]

and Bab
i are arbitrary antisymmetric tensors. The trace of the symmetrized product of an odd number

of β-matrices vanishes identically. The trace of the symmetrized product of 2n β-matrices can be written
as a sum of certain B-contractions over the integer partitions of n, with every term being multiplied by a
numerical factor α. We provide a general algorithm to compute these α-coefficients for any d and up to
any desired value of n. The algorithm uses random matrices to generate a linear system of equations whose
solution is the set of coefficients for a given n. A recurrence relation among these coefficients is shown to
hold in all analyzed cases and is used to greatly simplify the computation for large values of n. Numerical
values for the α-coefficients are given for n = 1, . . . , 7.
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1. Introduction

Dirac matrices are ubiquitous in field theory. The calculation of Feynman diagrams in the Standard
Model of Particle Physics, for instance, requires computation of the trace of the product of a number of
Dirac matrices, a calculation that is somewhat cumbersome but a part of the daily lives of QFT-theorists.

Field theories in spacetime dimensions higher than four continue to make use of Dirac matrices. Dirac
matrices with one and two indices [cf. eq. (2)], for instance, provide a representation of the anti-de Sitter
algebra, and are thus relevant for theories of gravity.1 The trace of the symmetrized product of Dirac
matrices with two indices produces a symmetric invariant polynomial for the Lorentz algebra [1].

The calculation of these traces is essential for the computation of explicit expressions for (i) characteristic
classes for symmetry groups with an SO (n) subgroup [2, 3], (ii) topological invariants and (iii) generalized
Racah–Casimir operators [4]. In the context of high-energy physics, being able to efficiently perform this
kind of calculation is crucial for Chern–Simons (CS) gravity and supergravity theories (see, e.g., Refs. [5,
6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]). In order to express a CS (super)gravity Lagrangian in the Lorentz
basis (i.e., in terms of the spacetime curvature and torsion) one needs to (i) compute the required symmetric
invariant polynomial and (ii) use the mathematical techniques developed in Ref. [16].

The trace problem is deceptively simple in appearance. When there are just a few matrices involved
(which corresponds in physics to theories with low spacetime dimensionality, e.g., d = 3 or d = 5), it indeed
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1The de Sitter algebra is obtained by replacing Γa with iΓa. The Poincaré algebra can be recovered from any of the de Sitter
algebras by means of an İnönü–Wigner contraction.
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presents no difficulty whatsoever. However, when more Dirac matrices are involved (i.e., in calculations
for higher-dimensional theories, as d = 11), the calculations become extremely cumbersome and difficult
in practice. This is true not only for analytical but also for numerical computations; calculation time of
explicit expressions for the invariant polynomials grows exponentially with the size of the input when the
straightforward algorithms in symbolic algebra programs are used.

This problem and similar ones have been analyzed analytically [1], but no general formula or efficient
algorithm to solve the issue for an arbitrary number of matrices has been put forward.

In this paper we present a novel approach to the computation of the symmetrized product of an arbitrary
number of Dirac matrices with two indices. Our method makes use of random matrices and the partitions
of the integers to generate a linear system of equations whose solution provides a set of coefficients αs that
completely characterize the trace.

We give a self-contained description of the problem in section 2, where we also summarize our results. In
section 3 we explain our method and give two algorithms that can be used to determine the α-coefficients.
We close in section 4 with a brief discussion and conclusions.

2. Formulation of the Problem and Results

Let us consider Dirac matrices Γa, a = 0, . . . , d−1, in d-dimensional Minkowski spacetime. By definition,
they satisfy the Clifford algebra [17]

ΓaΓb + ΓbΓa = 2ηab1, (1)

where ηab = (−+ · · ·+) is the usual Minkowski metric and 1 stands for the m × m unit matrix, with
m = 2⌊d/2⌋.

Dirac matrices with two indices, which are the subject of this work, are defined as

Γab = Γ[aΓb] =
1

2
(ΓaΓb − ΓbΓa) . (2)

Experience shows that the trace of a product of Dirac matrices is most efficiently written with all matrices
multiplied by arbitrary antisymmetric tensors. Take, for instance, the trace of the symmetrized product of
two Dirac matrices with two indices, and compare the following equations:

Tr {ΓabΓcd} = m (ηadηbc − ηacηbd) , (3)

AabBcdTr {ΓabΓcd} = 2mAa
bB

b
a. (4)

The two terms on the right-hand side of eq. (3) have collapsed into one in eq. (4). Greater simplifications
are achieved for more complicated cases. If desired, eq. (3) can be recovered from eq. (4) by means of the
formal replacement Aab → δabcd , Bab → δabcd , where δabcd is the generalized Kronecker delta.

For completeness, let us define the symmetrized product of n matrices Mi, i = 1, . . . , n as

{M1 · · ·Mn} =
1

n!

∑

π∈Sn

Mπ(1) · · ·Mπ(n), (5)

where the sum extends over all permutations π in the symmetric group Sn.
Let Bab

i , i = 1, 2, 3, . . ., be arbitrary antisymmetric tensors, and let us define

βi = Bab
i Γab. (6)

The symmetrized product of n β-matrices can be written as a linear combination of Γ[p]-matrices,2 with
p = 0, 4, 8, . . . , 2n (for n even) or p = 2, 6, 10, . . . , 2n (for n odd). The only term that contributes to the trace
is that proportional to the identity matrix (p = 0). For odd d, however, the Γ[d] matrix is also proportional

2Here Γ[p] is a shorthand notation for Γa1···ap = Γ[a1
· · ·Γap], where we understand Γ[0] = 1.
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to the identity and must be generically taken into account when computing the trace. The expansion of the
symmetrized product of the β-matrices includes only Γ-matrices with an even number of indices, so that the
Γ[d]-term never actually shows up in our case. In particular, this means that the trace of the symmetrized
product of an odd number of β-matrices vanishes identically.

The trace of the symmetrized product of 2n β-matrices, on the other hand, can be written as

Tr {β1 · · ·β2n} = m
∑

s⊢n

αsB
(s), (7)

where the notation s ⊢ n [18] indicates that the sum must be performed over all integer partitions s of n,
and B(s) stands for the following sum of contractions of B-tensors:

B(s) =
∑

〈i1···i2n〉

〈

Bi1 · · ·Bi2s1

〉〈

Bi2s1+1 · · ·Bi2(s1+s2)

〉

· · ·
〈

Bi2(s1+···+sr−1)+1
· · ·Bi2(s1+···+sr)

〉

. (8)

In eq. (8), the notation 〈i1 · · · i2n〉 is used to indicate that the sum must be performed over all i1, . . . , i2n ∈
{1, . . . , 2n}, with the restriction that they be all different. This implements the permutation of all β-matrices.
Every term in the sum contains the product of r factors of the form 〈B1 · · ·Bq〉, where r is the length of
the partition s = (s1, . . . , sr), n = s1 + · · · + sr. The j-th factor in the product represents the trace of the
product of 2sj B-tensors, i.e.,

〈B1 · · ·Bq〉 = (B1)
c1

c2
(B2)

c2
c3
· · · (Bq)

cq
c1
, (9)

with q = 2sj .
To every term in eq. (7), i.e., to every partition s of n, there corresponds an αs coefficient. Numerical

values for the α-coefficients corresponding to the partitions of n = 1, . . . , 7 are given in Table 1.
The following examples for n = 1, . . . , 4 should help clarify the meaning of eqs. (7) and (8):

Tr {β1β2} = m
∑

〈ij〉

α1 〈BiBj〉 , (10)

Tr {β1 · · ·β4} = m
∑

〈ijkl〉

[α2 〈BiBjBkBl〉+ α11 〈BiBj〉 〈BkBl〉] , (11)

Tr {β1 · · ·β6} = m
∑

〈i1···i6〉

[α3 〈Bi1 · · ·Bi6〉+ α21 〈Bi1 · · ·Bi4〉 〈Bi5Bi6〉+

+α111 〈Bi1Bi2〉 〈Bi3Bi4〉 〈Bi5Bi6〉] , (12)

Tr {β1 · · ·β8} = m
∑

〈i1···i8〉

[α4 〈Bi1 · · ·Bi8〉+ α31 〈Bi1 · · ·Bi6〉 〈Bi7Bi8〉+

+ α22 〈Bi1 · · ·Bi4〉 〈Bi5 · · ·Bi8〉+ α211 〈Bi1 · · ·Bi4〉 〈Bi5Bi6〉 〈Bi7Bi8〉+

+α1111 〈Bi1Bi2〉 〈Bi3Bi4〉 〈Bi5Bi6〉 〈Bi7Bi8〉] . (13)

The proof of eq. (7) is by exhaustion; the right-hand side includes all possible terms that may contribute
to the trace of the symmetrized product of 2n β-matrices.3

Our approach to the computation of the α-coefficients is the subject of section 3.

3. Method

3.1. General Algorithm

The central observation behind the algorithm used in the computation of the α-coefficients shown in
Table 1 is the fact that eq. (7) is valid for arbitrary tensors Bab

i .

3The formula for Tr (Γ∗ {β1 · · ·βn}) includes pseudoscalar terms that appear in certain dimensions d (e.g., ǫabcdBab
i Bcd

j for
d = 4) but are absent from Tr {β1 · · ·β2n}, where only Lorentz scalars are allowed. Here Γ∗ = Γ0 · · ·Γd−1 is the d-dimensional
generalization of γ5 in d = 4.
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n s αs

1 1 1

2 1 + 1 1/2
2 −2/3

3 1 + 1 + 1 1/6
2 + 1 −2/3
3 32/45

4 1 + 1 + 1 + 1 1/24
2 + 1 + 1 −1/3
2 + 2 2/9
3 + 1 32/45
4 −272/315

5 1 + 1 + 1 + 1 + 1 1/120
2 + 1 + 1 + 1 −1/9
2 + 2 + 1 2/9
3 + 1 + 1 16/45
3 + 2 −64/135
4 + 1 −272/315
5 15872/14175

6 1 + 1 + 1 + 1 + 1 + 1 1/720
2 + 1 + 1 + 1 + 1 −1/36
2 + 2 + 1 + 1 1/9
2 + 2 + 2 −4/81
3 + 1 + 1 + 1 16/135
3 + 2 + 1 −64/135
3 + 3 512/2025
4 + 1 + 1 −136/315
4 + 2 544/945
5 + 1 15872/14175
6 −707584/467775

7 1 + 1 + 1 + 1 + 1 + 1 + 1 1/5040
2 + 1 + 1 + 1 + 1 + 1 −1/180
2 + 2 + 1 + 1 + 1 1/27
2 + 2 + 2 + 1 −4/81
3 + 1 + 1 + 1 + 1 4/135
3 + 2 + 1 + 1 −32/135
3 + 2 + 2 64/405
3 + 3 + 1 512/2025
4 + 1 + 1 + 1 −136/945
4 + 2 + 1 544/945
4 + 3 −8704/14175
5 + 1 + 1 7936/14175
5 + 2 −31744/42525
6 + 1 −707584/467775
7 89473024/42567525

Table 1: α-coefficients corresponding to the partitions of n = 1, . . . , 7.
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For illustration purposes, let us focus first on the n = 3 case. Eq. (12) simplifies greatly if we choose all
B-tensors to be equal, since in this case the sum over all different permutations of i1, . . . , i6 ∈ {1, . . . , 6} is
trivially performed. The result reads

1

6!m
Tr

(

β6
)

= α3

〈

B6
〉

+ α21

〈

B4
〉 〈

B2
〉

+ α111

〈

B2
〉3

. (14)

We wish to cast eq. (14) as a linear equation with three unknowns, namely, α3, α21 and α111. To do
this we need to be able to assign numerical values to the left-hand side and to the various 〈Bq〉-terms that
appear on the right-hand side. We accomplish this by (i) picking some antisymmetric tensor Bab with
random numerical entries and (ii) choosing an explicit representation for the Γ-matrices.4 We emphasize
that the possibility of choosing the B-tensors at will relies upon the fact that eq. (7) is valid for arbitrary
Bi’s.

To be able to solve for the α-coefficients we need two more equations. These are readily obtained by
randomly selecting two further B-tensors. Denoting the three different choices for the B-tensors by Bk, with
k = 1, 2, 3, we obtain the following 3× 3 linear system:

Z
(111)
1 α111 + Z

(21)
1 α21 + Z

(3)
1 α3 = T1, (15)

Z
(111)
2 α111 + Z

(21)
2 α21 + Z

(3)
2 α3 = T2, (16)

Z
(111)
3 α111 + Z

(21)
3 α21 + Z

(3)
3 α3 = T3, (17)

where

Tk =
1

6!m
Tr

(

β6
k

)

, (18)

Z
(111)
k =

〈

B2
k

〉3
, (19)

Z
(21)
k =

〈

B4
k

〉 〈

B2
k

〉

, (20)

Z
(3)
k =

〈

B6
k

〉

. (21)

The method to compute the α-coefficients for any value of n is now clear and can be summarized in the
following sequence:

1. Let p = p (n).5

2. Choose an explicit representation for the Γ-matrices (see, e.g., Ref. [19]).
3. For k = 1, . . . , p, do:

(a) Pick an antisymmetric tensor Bab
k with random numerical entries.

(b) Compute

Tk =
1

(2n)!m
Tr

(

β2n
k

)

, (22)

where βk = Bab
k Γab.

(c) For every partition s ⊢ n, n = s1 + · · ·+ sr, compute

Z
(s)
k =

r
∏

j=1

〈

B
2sj
k

〉

. (23)

The notation 〈Bq
k〉 stands for [see eq. (9)]

〈Bq
k〉 = (Bk)

c1
c2
(Bk)

c2
c3
· · · (Bk)

cq
c1
. (24)

4. The α-coefficients are the solution to the p× p linear system of equations
∑

s⊢n

Z
(s)
k αs = Tk (k = 1, . . . , p) . (25)

4See section 4 for a discussion of the choice of spacetime dimension d in which to carry out the computation.
5The partition function p (n) is the number of partitions of n [18].
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3.2. Minimal Algorithm

Careful inspection of the α-coefficients shown in Table 1 shows that there exists a recurrence relation
among different coefficients.

Let s be a partition of n. The frequency representation [18] of s is the notation s = (1µ1 2µ2 · · · ), where
µj represents the multiplicity of j, i.e., the number of times that a given integer j appears in s.

We find that the coefficient αs corresponding to the partition s = (1µ1 2µ2 · · · ) can be written as

αs =
n
∏

j=1

α
µj

j

µj !
, (26)

where αj are the coefficients associated with the “elementary” partitions 1 = 1, 2 = 2, 3 = 3, etc.
For example, all coefficients associated with the non-elementary partitions of n = 1, 2, 3 can be computed

from α1, α2 and α3 by means of the equations

α11 =
α2
1

2!

α0
2

0!
=

1

2
, (27)

α111 =
α3
1

3!

α0
2

0!

α0
3

0!
=

1

6
, (28)

α21 =
α1
1

1!

α1
2

1!

α0
3

0!
= −

2

3
. (29)

Of course, this recurrence relation also holds for more complicated cases, such as

α3211 =
α2
1

2!

α1
2

1!

α1
3

1!

α0
4

0!

α0
5

0!

α0
6

0!

α0
7

0!
= −

32

135
. (30)

When applied to an elementary coefficient, eq. (26) yields an identity.
The recurrence relation in eq. (26) can be used to compute the values for the α-coefficients associated with

all the non-elementary partitions of n. Its use, however, requires knowledge of the elementary coefficients,
for which no closed formula is available. This situation suggests a “minimal” algorithm that (i) calculates
elementary coefficients in a manner analogous to that of the “general” algorithm and (ii) computes non-
elementary coefficients from eq. (26).

The following sequence describes such an algorithm:

1. Let N be the maximum integer for which we wish to calculate the α-coefficients.
2. Choose an explicit representation for the Γ-matrices.
3. Pick an antisymmetric tensor Bab with random numerical entries.6

4. For n = 1, . . . , N , do:
(a) Compute

T =
1

(2n)!m
Tr

(

β2n
)

, (31)

where β = BabΓab.
(b) For every partition s ⊢ n, n = s1 + · · ·+ sr, compute

Z(s) =

r
∏

j=1

〈

B2sj
〉

. (32)

(c) Use the recurrence relation (26) to calculate all non-elementary coefficients associated with the
partitions of n (this step is empty for n = 1).

(d) Solve
∑

s⊢n

Z(s)αs = T (33)

for αn (this is a linear equation with one unknown).

6We took d = 2 and B01 = +1, since a two-index antisymmetric tensor has only one degree of freedom in two spacetime
dimensions, and overall numerical factors are not significant for the calculation. See section 4 for a discussion of the choice of
spacetime dimension d in which to carry out the computation.
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4. Discussion and Conclusions

The algorithms described in section 3 turn around the problem of finding formulas for the trace of
a product of Dirac matrices. The usual textbook approach starts with eq. (1) and deduces the required
formulas from there. Our approach here works the other way around. We start by identifying the general
form of the equation for the trace of the symmetrized product of 2n β-matrices. Eq. (7) amounts to such
an identification, since it contains all possible sums of B-contractions that may contribute to the trace. The
α-coefficients appear as undetermined parameters, which are computed by demanding validity of eq. (7) in
several nontrivial cases.

As stressed in section 3, our method works because eq. (7) holds for arbitrary antisymmetric tensors
Bab

i . We have used B-tensors with random numerical entries to generate the linear system of equations
whose solution provides the α-coefficients. In this sense our approach bears some resemblance to Monte
Carlo methods, where random numbers play a crucial role. The use of random matrices,7 however, is not
essential to our calculation. All that is required for the general algorithm to succeed is a set of B-tensors
such that every iteration produces an equation for the α-coefficients that is linearly independent from the
rest, yielding a full-rank Z matrix [cf. eq. (25)].

The solution we find is, of course, independent of the choice of B-tensors; this is conceptually clear,
but can also be verified by running the algorithm several times with different sets of (randomly generated)
B-tensors. The fact that the same solution is obtained every time confirms the correctness of eq. (7), i.e.,
that no other terms can be added to the trace.

The α-coefficients are also independent of the spacetime dimension d, which means that the algorithm
should in principle work for any d we choose. There is, however, an important caveat. To produce a
solvable system one needs the B-tensors to have a sufficient number of independent components, so that the
successive iterations of the algorithm yield linearly independent equations. We find that there is a minimum
spacetime dimension d = 2n that allows the Z matrix to achieve full rank. This means that the general
algorithm must be run with d ≥ 2n in order for a solution to be produced.

The minimal algorithm, with only one linear equation to be solved, works even with a minimum spacetime
dimension of d = 2.

Is our approach any better than the textbook method? One way to probe into this question is to compare
the runtime of both. The textbook method can be implemented in, e.g., Kasper Peeters’ excellent computer
algebra system “Cadabra” [20, 21]. We were able to deduce, starting only from the definition of Dirac
matrices, the α-coefficients for n = 1, 2, 3. The n = 3 case took some 30 min to be solved on a typical
desktop computer,8 while the n = 4 case caused the program to crash. This approach, of course, requires
hardly any input and produces the full sought-after formula. Starting from eq. (7), we programmed our
general algorithm in the computer algebra system “Maxima” [22] and were able to run it successfully for
n = 1, . . . , 7. The n = 8 case caused Maxima to run out of memory, a problem that can apparently be solved
by adjusting Maxima’s internal parameters. Runtime for n = 1, . . . , 4 was negligible, while the n = 7 case
took under half an hour. The minimal algorithm, which we also programmed in Maxima, had negligible
runtime even for N = 9. Table 2 summarizes runtime for these different scenarios.

Complexity for the general algorithm grows exponentially with n. Complexity for the minimal algorithm,
on the other hand, grows linearly with p.9 All foreseeable applications of the formula for the trace of a product
of 2n Dirac matrices with two indices are well covered by the minimal algorithm with negligible runtime.
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n p Textbook Method General Algorithm Minimal Algorithm
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2 2 negligible negligible negligible
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4 5 crashed negligible negligible
5 7 negligible negligible
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...
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30 5604 ∼ 5 min
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