Fractional Trigonometric Functions in Complex-valued Space:
 Applications of Complex Number to Local Fractional Calculus of Complex Function

Yang Xiao-Jun
Department of Mathematics and Mechanics, China University of Mining and Technology, Xuzhou Campus, Xuzhou, Jiangsu, 221008, P. R.C
dyangxiaojun@163.com

This paper presents the fractional trigonometric functions in complex-valued space and proposes a short outline of local fractional calculus of complex function in fractal spaces.

Key words: Fractional trigonometric function, complex function, local fractional calculus, fractal space

MSC2010: 30E99, 28A80, 28A99

Introduction 1

The trigonometric functions played an important role in both mathematics and engineering. Recently, the fractional trigonometric functions in real-valued space were discussed [1]. Recently, the fractional trigonometric functions in realvalued space were discussed in fractal space and their exponent was fractal dimension $[2,3]$. In similar manner the fractional trigonometric functions in complex-valued space were structured [2.3].

There are many definitions of local fractional calculus [2-11]. Hereby we write down Gao-Yang-Kang's local fractional derivatives [2-6]

$$
\begin{equation*}
f^{(\alpha)}\left(x_{0}\right)=\left.\frac{d^{\alpha} f(x)}{d x^{\alpha}}\right|_{x x x_{0}}=\lim _{x \rightarrow x_{0}} \frac{\Delta^{\alpha}\left(f(x)-f\left(x_{0}\right)\right)}{\left(x-x_{0}\right)^{\alpha}}, \tag{1.1}
\end{equation*}
$$

with $\Delta^{\alpha}\left(f(x)-f\left(x_{0}\right)\right) \cong \Gamma(1+\alpha) \Delta\left(f(x)-f\left(x_{0}\right)\right)$.
and Gao-Yang-Kang's local fractional integrals [2-6]

$$
\begin{equation*}
{ }_{a} I_{b}^{(\alpha)} f(x)=\frac{1}{\Gamma(1+\alpha)} \int_{a}^{b} f(t)(d t)^{\alpha}=\frac{1}{\Gamma(1+\alpha)} \lim _{\Delta t \rightarrow 0} \sum_{j=0}^{j=N} f\left(t_{j}\right)\left(\Delta t_{j}\right)^{\alpha}, \tag{1.2}
\end{equation*}
$$

where $\Delta t_{j}=t_{j+1}-t_{j}, \Delta t=\max \left\{\Delta t_{1}, \Delta t_{2}, \Delta t_{j}, \ldots\right\}$, and $\left[t_{j}, t_{j+1}\right]$ for $j=0, \ldots, N-1, t_{0}=a, t_{N}=b$, is a partition of the interval $[a, b]$. Based on local fractional calculus, local fractional Fourier transforms [2] ,denoted by

$$
\begin{equation*}
f_{\omega}^{F, \alpha}(\omega):=\frac{1}{\Gamma(1+\alpha)} \int_{-\infty}^{+\infty} E_{\alpha}\left(-i^{\alpha} \omega^{\alpha} x^{\alpha}\right) f(x)(d x)^{\alpha}, 0<\alpha \leq 1 \tag{1.3}
\end{equation*}
$$

and local fractional Laplace transforms [3] , denoted by

$$
\begin{equation*}
f_{s}^{L, \alpha}(s):=\frac{1}{\Gamma(1+\alpha)} \int_{0}^{+\infty} E_{\alpha}\left(-s^{\alpha} x^{\alpha}\right) f(x)(d x)^{\alpha}, 0<\alpha \leq 1, \tag{1.4}
\end{equation*}
$$

as new tools to deal with local fractional differential equations and local differential systems, were proposed. More recently, a new imaginary unit proposed in $[2,3]$. As a pursuit of the work we suggest fractional trigonometric functions in complex-valued space and their application to local fractional calculus of complex function.

2 The real-valued fractional trigonometric functions

In this section, we start with real-valued Mittag-Leffler function in fractal spaces. Here transforms method is proposed.

2.1 Mittag-Leffler function in fractal space

Definition 1

Let $E_{\alpha}: \mathbb{R} \rightarrow \mathbb{R}, x^{\alpha} \rightarrow E_{\alpha}\left(x^{\alpha}\right)$, denote a continuously function, which is so-called Mittag-Leffler function [2,3]

$$
\begin{equation*}
E_{\alpha}\left(x^{\alpha}\right):=\sum_{k=0}^{\infty} \frac{x^{\alpha k}}{\Gamma(1+\alpha k)}, 0<\alpha \leq 1 . \tag{2.1}
\end{equation*}
$$

Remark 1. The parameter α is fractal dimension. There always exists the relation

$$
\left|E_{\alpha}\left(x^{\alpha}\right)-E_{\alpha}\left(y^{\alpha}\right)\right|<\zeta|x-y|^{\alpha}, \text { for } x, y \in \mathbb{R},
$$

where ζ is constant.
We have the following relations

$$
\begin{equation*}
E_{\alpha}\left(\lambda^{\alpha} x^{\alpha}\right) E_{\alpha}\left(\lambda^{\alpha} y^{\alpha}\right)=E_{\alpha}\left(\lambda^{\alpha}(x+y)^{\alpha}\right), \lambda \in C, \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{\alpha}\left(i^{\alpha} x^{\alpha}\right) E_{\alpha}\left(i^{\alpha} y^{\alpha}\right)=E_{\alpha}\left(i^{\alpha}(x+y)^{\alpha}\right), \tag{2.3}
\end{equation*}
$$

where the function $E_{\alpha}\left(i^{\alpha} x^{\alpha}\right)$ is periodic with the period P_{α} defined as the solution of the equation

$$
\begin{equation*}
E_{\alpha}\left(i^{\alpha}\left(P_{\alpha}\right)^{\alpha}\right)=1, \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
i^{2 \alpha}=-1 \tag{2.5}
\end{equation*}
$$

As a direct result, we have [2]

$$
\begin{equation*}
E_{\alpha}\left(x^{\alpha}\right) E_{\alpha}\left(i^{\alpha} y^{\alpha}\right)=E_{\alpha}\left(x^{\alpha}+i^{\alpha} y^{\alpha}\right), \text { for } 0<\alpha \leq 1 \text { and } x, y \in \mathbb{R}, \tag{2.6}
\end{equation*}
$$

Taking into account the relation (2.6) with $x=y=0$, we arrive at the result

$$
\begin{equation*}
E_{\alpha}\left(0^{\alpha}\right)=1 \tag{2.7}
\end{equation*}
$$

Definition 2

The fractional trigonometric function is denoted by

$$
\begin{equation*}
E_{\alpha}\left(i^{\alpha} x^{\alpha}\right):=\cos _{\alpha} x^{\alpha}+i^{\alpha} \sin _{\alpha} x^{\alpha} \tag{2.8}
\end{equation*}
$$

with

$$
\begin{equation*}
\cos _{\alpha} x^{\alpha}:=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 \alpha k}}{\Gamma(1+2 \alpha k)} \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\sin _{\alpha} x^{\alpha}:=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{(2 k+1) \alpha}}{\Gamma[1+\alpha(2 k+1)]} . \tag{2.10}
\end{equation*}
$$

Successively, it follows from (2.9) and (2.10) that

$$
\begin{gather*}
\cos _{\alpha} 0^{\alpha}=1 \tag{2.11}\\
\text { and } \\
\sin _{\alpha} 0^{\alpha}=0 \tag{2.12}
\end{gather*}
$$

Remark 2. Taking into account the fractal dimension $\alpha=1$, the formulas (2.9) and (2.10) become respectively
$\cos x=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k}}{\Gamma(1+2 k)}$ and $\sin x=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{\Gamma[2(k+1)]}$.
Hence, we have following result.
The function $E_{\alpha}\left(i^{\alpha}\left(P_{\alpha}\right)^{\alpha}\right)$ is periodic with the period P_{α} defined as the solution of the equation $E_{\alpha}\left(i^{\alpha}\left(P_{\alpha}\right)^{\alpha}\right)=1$, then

$$
\begin{equation*}
P_{\alpha}=2 \pi . \tag{2.13}
\end{equation*}
$$

2.2 Transforms method

Definition 3

The circle of fractional order, which is defined by the equality

$$
\begin{equation*}
x^{2 \alpha}+y^{2 \alpha}=R^{2 \alpha}, \quad x, y, R \in \mathbb{R}, R>0,0<\alpha \leq 1 . \tag{2.14}
\end{equation*}
$$

Definition 4

The fractional-order circle region of order $\alpha, 0<\alpha \leq 1$, which is defined by the expression

$$
\begin{equation*}
x^{2 \alpha}+y^{2 \alpha} \leq R^{2 \alpha}, \quad x, y, R \in \mathbb{R}, R>0,0<\alpha \leq 1 . \tag{2.15}
\end{equation*}
$$

Definition 5

The fractional-order equation of the roundness is defined by the equality

$$
\begin{equation*}
x^{2 \alpha}+y^{2 \alpha}+z^{2 \alpha}=R^{2 \alpha}, \quad x, y, z, R \in \mathbb{R}, R>0,0<\alpha \leq 1 . \tag{2.16}
\end{equation*}
$$

Definition 6

The fractional-order equation of the sphere is defined by the equality

$$
\begin{equation*}
x^{2 \alpha}+y^{2 \alpha}+z^{2 \alpha} \leq R^{2 \alpha}, \quad x, y, z, R \in \mathbb{R}, R>0,0<\alpha \leq 1 . \tag{2.17}
\end{equation*}
$$

For (2.14) then there is a fractional-order trigonometric transform

$$
\left\{\begin{array}{l}
x^{\alpha}=R^{\alpha} \cos _{\alpha} \theta^{\alpha} \tag{2.17}\\
y^{\alpha}=R^{\alpha} \sin _{\alpha} \theta^{\alpha}
\end{array}\right.
$$

where $0<\theta<2 \pi$ and $R>0$.
For (2.14) there is a fractional-order trigonometric transform

$$
\left\{\begin{array}{l}
u^{\alpha}=R^{\alpha} \sin _{\alpha} \eta^{\alpha} \cos _{\alpha} \theta^{\alpha} \tag{2.19}\\
v^{\alpha}=R^{\alpha} \sin _{\alpha} \eta^{\alpha} \sin _{\alpha} \theta^{\alpha}, \\
w^{\alpha}=R^{\alpha} \cos _{\alpha} \eta^{\alpha}
\end{array}\right.
$$

where $0 \leq \theta \leq 2 \pi$ and $0<\eta<\pi$.

3 The complex-valued fractional trigonometric functions

In this section, we start with complex-valued Mittag-Leffler function in fractal spaces.

Definition 7

Let $E_{\alpha}: C \rightarrow C, z^{\alpha} \rightarrow E_{\alpha}\left(z^{\alpha}\right)$, denote a continuously function, which is so-called the complex-valued Mittag-Leffler function

$$
\begin{equation*}
E_{\alpha}\left(z^{\alpha}\right):=\sum_{-\infty}^{+\infty} \frac{z^{k \alpha}}{\Gamma(1+\alpha k)}, 0<\alpha \leq 1, \tag{3.1}
\end{equation*}
$$

Remark 3. The parameter α is fractal dimension. we always arrive at the relation

$$
\left|E_{\alpha}\left(z_{1}^{\alpha}\right)-E_{\alpha}\left(z_{2}^{\alpha}\right)\right|<\zeta\left|z_{1}-z_{2}\right|^{\alpha}, \text { for } z_{1}, z_{2} \in C,
$$

where ζ is constant.
As a direct result, we have the following formulas:

$$
\begin{align*}
& E_{\alpha}\left(z_{1}^{\alpha}\right) E_{\alpha}\left(z_{2}^{\alpha}\right)=E_{\alpha}\left(z_{1}^{\alpha}+z_{2}^{\alpha}\right), z_{1}, z_{2} \in C \tag{3.2}\\
& E_{\alpha}\left(z_{1}^{\alpha}\right) E_{\alpha}\left(z_{2}^{\alpha}\right)=E_{\alpha}\left(\left(z_{1}+z_{2}\right)^{\alpha}\right), z_{1}, z_{2} \in C \tag{3.3}
\end{align*}
$$

Definition 8

A fractional-order complex number is given by

$$
\begin{equation*}
z^{\alpha}=x^{\alpha}+i^{\alpha} y^{\alpha}, z^{\alpha} \in C_{1}^{\alpha}, \quad x, y \in \mathbb{R}, \quad 0<\alpha \leq 1, \tag{3.4}
\end{equation*}
$$

its conjugate of complex number is denoted by

$$
\begin{equation*}
\overline{z^{\alpha}}=x^{\alpha}-i^{\alpha} y^{\alpha}, \overline{z^{\alpha}} \in C_{1}^{\alpha}, x, y \in \mathbb{R}, 0<\alpha \leq 1, \tag{3.5}
\end{equation*}
$$

and its fractional modulus is defined by the expression

$$
\begin{equation*}
\left|\overline{z^{\alpha}}\right|=\left|z^{\alpha}\right|=\sqrt{\overline{z^{\alpha}} \cdot z^{\alpha}}=\sqrt{x^{2 \alpha}+y^{2 \alpha}} . \tag{3.6}
\end{equation*}
$$

It's easy to see that if $z^{\alpha}=x^{\alpha}+i^{\alpha} y^{\alpha}$ is purely real, that is, $\operatorname{Re}\left(z^{\alpha}\right)=x^{\alpha}$. On the other hand, if z^{α} is purely imaginary, then $\operatorname{Im}\left(z^{\alpha}\right)=y^{\alpha}$.

Definition 9

The fractional trigonometric function is denoted by

$$
\begin{equation*}
E_{\alpha}\left(i^{\alpha} z^{\alpha}\right):=\cos _{\alpha} z^{\alpha}+i^{\alpha} \sin _{\alpha} z^{\alpha}, \tag{3.7}
\end{equation*}
$$

with

$$
\begin{equation*}
\cos _{\alpha} z^{\alpha}:=\sum_{k=0}^{\infty}(-1)^{k} \frac{z^{2 \alpha k}}{\Gamma(1+2 \alpha k)} \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\sin _{\alpha} z^{\alpha}:=\sum_{k=0}^{\infty}(-1)^{k} \frac{z^{(2 k+1) \alpha}}{\Gamma[1+\alpha(2 k+1)]} \tag{3.9}
\end{equation*}
$$

Remark 4. In special case of $\alpha=1$ fractional-order complex number becomes

$$
\begin{equation*}
z=x+i y, z \in C, \quad x, y \in \mathbb{R}, \tag{3.10}
\end{equation*}
$$

its conjugate of complex number is denoted

$$
\begin{equation*}
\bar{z}=x-i y, \quad \overline{z^{\alpha}} \in C_{1}^{\alpha}, x, y \in \mathbb{R}, \tag{3.11}
\end{equation*}
$$

yields the fractional modulus defined by the expression

$$
\begin{equation*}
|\bar{z}|=|z|=\sqrt{\bar{z} \cdot z}=\sqrt{x^{2}+y^{2}} . \tag{3.12}
\end{equation*}
$$

It follows the definition of classical complex number in special case of $\alpha=1$.

Theorem 1

For a fractional-order complex number

$$
\begin{equation*}
z^{\alpha}=x^{\alpha}+i^{\alpha} y^{\alpha}, z^{\alpha} \in C_{1}^{\alpha}, x, y \in \mathbb{R}, \quad 0<\alpha \leq 1, \tag{3.13}
\end{equation*}
$$

There exists an equivalent formula in the form of the trigonometric function, denoted by the expression

$$
\begin{equation*}
z^{\alpha}=x^{\alpha}+i^{\alpha} y^{\alpha}=\sqrt{x^{2 \alpha}+y^{2 \alpha}}\left(\cos _{\alpha} x^{\alpha}+i^{\alpha} \sin _{\alpha} x^{\alpha}\right) . \tag{3.14}
\end{equation*}
$$

Then

$$
\begin{equation*}
\cos _{\alpha} x^{\alpha}=\frac{x^{\alpha}}{\sqrt{x^{2 \alpha}+y^{2 \alpha}}} \tag{3.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\sin _{\alpha} x^{\alpha}=\frac{y^{\alpha}}{\sqrt{x^{2 \alpha}+y^{2 \alpha}}} . \tag{3.16}
\end{equation*}
$$

Proof. Dividing by $\sqrt{x^{2 \alpha}+y^{2 \alpha}}$ in (3.14), we get

$$
\begin{align*}
& \frac{z^{\alpha}}{\sqrt{x^{2 \alpha}+y^{2 \alpha}}} \\
& =\frac{x^{\alpha}}{\sqrt{x^{2 \alpha}+y^{2 \alpha}}}+i^{\alpha} \frac{y^{\alpha}}{\sqrt{x^{2 \alpha}+y^{2 \alpha}}} \tag{3.17}\\
& =\cos _{\alpha} x^{\alpha}+i^{\alpha} \sin _{\alpha} x^{\alpha} .
\end{align*}
$$

Hence we deduce the result.

4 Application: Local fractional calculus of complexvariable function

In this section we give a short outline of local fractional calculus. It is a useful tool to deal with non-differentiable function in complex space.

4.1 Local fractional continuity of complex functions

Take into account the relation

$$
\begin{equation*}
\left|E_{\alpha}\left(z_{1}^{\alpha}\right)-E_{\alpha}\left(z_{2}^{\alpha}\right)\right|<\zeta\left|z_{1}-z_{2}\right|^{\alpha}, \tag{4.1}
\end{equation*}
$$

with any $z_{1}, z_{2} \in z, z \in C, \quad \zeta$ is constant,
which is called complex Hölder inequality of $E_{\alpha}\left(z^{\alpha}\right)$.

Definition 11

$$
\begin{equation*}
\left|f\left(z_{1}\right)-f\left(z_{2}\right)\right|<\zeta\left|z_{1}-z_{2}\right|^{\alpha}, \tag{4.2}
\end{equation*}
$$

with any $z_{1}, z_{2} \in z, z \in C, \zeta$ is constant, $f(z)$ is complex Hölder function.

Definition 12

Given z_{0} and $\left|z-z_{0}\right|^{\alpha}<\delta^{\alpha}$, then for any z we have

$$
\begin{equation*}
\left|f(z)-f\left(z_{0}\right)\right|<\varepsilon^{\alpha} . \tag{4.3}
\end{equation*}
$$

Here $f(z)$ is called local fractional continuous at $z=z_{0}$, denoted by

$$
\begin{equation*}
\lim _{z \rightarrow z_{0}} f(z)=f\left(z_{0}\right) . \tag{4.4}
\end{equation*}
$$

Setting for any $z \in C f(z)$ is called local fractional continuous at $z, f(z)$ is called local fractional continuous on C, denoted by $f \in C_{\alpha}(C)$.

As a direct result, we have the following result:
Suppose that $\lim _{z \rightarrow z_{0}} f(z)=f\left(z_{0}\right)$ and $\lim _{z \rightarrow z_{0}} g(z)=g\left(z_{0}\right)$, then we have that

$$
\begin{array}{r}
\lim _{z \rightarrow z_{0}}[f(z) \pm g(z)]=f\left(z_{0}\right) \pm g\left(z_{0}\right), \\
\lim _{z \rightarrow z_{0}}[f(z) g(z)]=f\left(z_{0}\right) g\left(z_{0}\right), \tag{4.6}
\end{array}
$$

and

$$
\begin{equation*}
\lim _{z \rightarrow z_{0}}[f(z) / g(z)]=f\left(z_{0}\right) / g\left(z_{0}\right), \tag{4.7}
\end{equation*}
$$

the last only if $g\left(z_{0}\right) \neq 0$.

4.2 Local fractional derivatives of complex functions

Setting $F \in C_{\alpha}(C)$, the local fractional derivative of $F(z)$ at z_{0} is

$$
\begin{equation*}
{ }_{z_{0}} D_{z}^{\alpha} F(z)=: \lim _{z \rightarrow z_{0}} \frac{\Gamma(1+\alpha)\left[F(z)-F\left(z_{0}\right)\right]}{\left(z-z_{0}\right)^{\alpha}}, 0<\alpha \leq 1 . \tag{4.8}
\end{equation*}
$$

If this limit exists, then the function $F(z)$ is said to be local fractional analytic at Z_{0}, denoted by ${ }_{z_{0}} D_{z}^{\alpha} F(z),\left.\frac{d^{\alpha}}{d z^{\alpha}} F(z)\right|_{z=z_{0}}$ or $F^{(\alpha)}\left(z_{0}\right)$.

If this limit exists for all z_{0} in a region $C_{\alpha}(C)$, then the function $f(z)$ is said to be local fractional analytic in a region $C_{\alpha}(C)$.

As a direct result for definition of local fractional derivatives, we have the following result:
Suppose that $f(z)$ and $g(z)$ are local fractional analytic functions, the following rules are valid:

$$
\begin{gather*}
\frac{d^{\alpha}(f(z) \pm g(z))}{d z^{\alpha}}=\frac{d^{\alpha} f(z)}{d z^{\alpha}} \pm \frac{d^{\alpha} g(z)}{d z^{\alpha}} ; \tag{4.9}\\
\frac{d^{\alpha}(f(z) g(z))}{d z^{\alpha}}=g(z) \frac{d^{\alpha} f(z)}{d z^{\alpha}}+f(z) \frac{d^{\alpha} g(z)}{d z^{\alpha}} ; \tag{4.10}\\
\frac{d^{\alpha}}{d z^{\alpha}}\left(\frac{f(z)}{g(z)}\right)=\frac{g(z) \frac{d^{\alpha} f(z)}{d z^{\alpha}}+f(z) \frac{d^{\alpha} g(z)}{d z^{\alpha}}}{g(z)^{2}} \text { if } g(x) \neq 0 ; \tag{4.11}\\
\frac{d^{\alpha}(C f(z))}{d z^{\alpha}}=C \frac{d^{\alpha} f(z)}{d z^{\alpha}}, \text { where } C \text { is a constant; } \tag{4.12}
\end{gather*}
$$

If $y(z)=(f \circ u)(z)$ where $u(z)=g(z)$, then

$$
\begin{gather*}
\frac{d^{\alpha} y(z)}{d z^{\alpha}}=f^{(\alpha)}(g(z))\left(g^{(1)}(z)\right)^{\alpha} . \tag{4.13}\\
\frac{d^{\alpha} z^{k \alpha}}{d z^{\alpha}}=\frac{\Gamma(1+k \alpha)}{\Gamma(1+(k-1) \alpha)} z^{(k-1) \alpha} ; \tag{4.14}\\
\frac{d^{\alpha} E_{\alpha}\left(z^{\alpha}\right)}{d z^{\alpha}}=E_{\alpha}\left(z^{\alpha}\right) ; \tag{4.15}\\
\frac{d^{\alpha} \sin _{\alpha} z^{\alpha}}{d z^{\alpha}}=\cos _{\alpha} z^{\alpha} ; \tag{4.16}\\
\frac{d^{\alpha} \cos _{\alpha} z^{\alpha}}{d z^{\alpha}}=-\sin _{\alpha} z^{\alpha} . \tag{4.17}
\end{gather*}
$$

4.3 Local fractional integrals of complex functions

Setting $f \in C_{\alpha}(C)$ and letting f be defined, single-valued in C. The local fractional integral of $f(z)$ along the contour C in C from point z_{p} to point z_{q}, is defined as

$$
\begin{equation*}
I_{C}{ }^{\alpha} f(z)=\frac{1}{\Gamma(1+\alpha)} \lim _{|\Delta z| \rightarrow 0} \sum_{i=0}^{n-1} f\left(z_{i}\right)(\Delta z)^{\alpha}=\frac{1}{\Gamma(1+\alpha)} \int_{C} f(z)(d z)^{\alpha}, \tag{4.18}
\end{equation*}
$$

where for $i=0,1, \ldots, n \quad(\Delta z)^{\alpha}=z_{i}^{\alpha}-z_{i-1}{ }^{\alpha}, z_{0}=z_{p}$ and $z_{n}=z_{q}$.
For convenience, we assume that

$$
\begin{equation*}
{ }_{z_{0}} I_{z_{0}}{ }^{(\alpha)} f(z)=0 \text { if } Z=z_{0} . \tag{4.19}
\end{equation*}
$$

Taking into account the definition of local fractional integrals, we have the following result:

Suppose that $f, g \in C_{\alpha}(C)$, the following rules are valid:

$$
\begin{align*}
& \frac{1}{\Gamma(1+\alpha)} \int_{C}(f(z)+g(z))(d z)^{\alpha}=\frac{1}{\Gamma(1+\alpha)} \int_{C} f(z)(d z)^{\alpha}+\frac{1}{\Gamma(1+\alpha)} \int_{C} g(z)(d z)^{\alpha} ; \tag{4.18}\\
& \frac{1}{\Gamma(1+\alpha)} \int_{C} k f(z)(d z)^{\alpha}=\frac{k}{\Gamma(1+\alpha)} \int_{C} f(z)(d z)^{\alpha}, \text { for a constant } k ; \tag{4.19}\\
& \frac{1}{\Gamma(1+\alpha)} \int_{C} f(z)(d z)^{\alpha}=\frac{1}{\Gamma(1+\alpha)} \int_{C_{1}} f(z)(d z)^{\alpha}+\frac{1}{\Gamma(1+\alpha)} \int_{C_{2}} f(z)(d z)^{\alpha}, \tag{4.20}
\end{align*}
$$

where $C=C_{1}+C_{2}$;

Theorem 2

If the contour C has end points z_{p} and z_{q} with orientation z_{p} to z_{q}, and if function $f(z)$ has the primitive $F(z)$ on C, then we have

$$
\begin{equation*}
\frac{1}{\Gamma(1+\alpha)} \int_{C} f(z)(d z)^{\alpha}=F\left(z_{q}\right)-F\left(z_{p}\right) . \tag{4.21}
\end{equation*}
$$

Proof. The proof of the theorem is similar to that of real function and is omitted. For more detail for real function, see[4,6].

Theorem 3

If C is a simple closed contour, and if function $f(z)$ has a primitive on C then

$$
\begin{equation*}
\frac{1}{\Gamma(1+\alpha)} \oint_{C} f(z)(d z)^{\alpha}=0 . \tag{4.22}
\end{equation*}
$$

Proof. The definition of a closed contour is that $z_{q}=z_{p}$. So

$$
\begin{equation*}
\cdot \frac{1}{\Gamma(1+\alpha)} \int_{C} f(z)(d z)^{\alpha}=F\left(z_{q}\right)-F\left(z_{p}\right)=0 . \tag{4.23}
\end{equation*}
$$

This proof of the theorem is completed.

Corollary 4

If the contours C_{1} and C_{2} have same end points and if $f(z)$ is local fractional analytic on C_{1}, C_{2} and between them, then we have

$$
\begin{equation*}
\frac{1}{\Gamma(1+\alpha)} \int_{C_{1}} f(z)(d z)^{\alpha}=\frac{1}{\Gamma(1+\alpha)} \int_{C_{2}} f(z)(d z)^{\alpha} . \tag{4.24}
\end{equation*}
$$

Proof. If $C=C_{1}-C_{2}$, then we have

$$
\begin{equation*}
\frac{1}{\Gamma(1+\alpha)} \int_{C} f(z)(d z)^{\alpha}=\frac{1}{\Gamma(1+\alpha)} \int_{C_{1}} f(z)(d z)^{\alpha}-\frac{1}{\Gamma(1+\alpha)} \int_{C_{2}} f(z)(d z)^{\alpha}=0 . \tag{4.25}
\end{equation*}
$$

This proof of the corollary is completed.

Corollary 5

If the closed contours C_{1}, C_{2} is such that C_{2} lies inside C_{1}, and if $f(z)$ is local fractional analytic on C_{1}, C_{2} and between them, then we have

$$
\begin{equation*}
\frac{1}{\Gamma(1+\alpha)} \int_{C_{1}} f(z)(d z)^{\alpha}=\frac{1}{\Gamma(1+\alpha)} \int_{C_{2}} f(z)(d z)^{\alpha} . \tag{4.26}
\end{equation*}
$$

Proof. Taking new same end points path and using Corollary 4, we deduce the result.

References

[1] G. Jumarie. Laplace's transform of fractional order via the Mittag-Leffler functionand modified Riemann-Liouville derivative. Appl. Math. Lett..22, 2009,1659-1664.
[2] X. Yang, Z. Kang, C. Liu. Local Fractional Fourier's Transform Based on the Local Fractional Calculus. In: The 2010 International Conference on Electrical and Control Engineering , pp.1242-1245. IEEE Computer Society, 2010.
[3] X.Yang. Local Fractional Laplace’s Transform Based on the Local Fractional Calculus. In: Proc. Of The 2011 International Conference on Computer Science and Information Engineering, pp. 391-397, Springer, 2011.
[4] X.Yang, L.Li, and R.Yang. Problems of Local Fractional Definite Integral of the One-variable Non-differentiable Function, World Sci-Tech R\&D.. 31(4), 2009, 722-724.
[5] F. Gao, X.Yang, Z. Kang. Local Fractional Newton's Method Derived from Modified Local Fractional Calculus. In: Proc. of the second Scientific and Engineering Computing Symposium on Computational Sciences and Optimization, pp. 228-232. IEEE Computer Society, 2009,
[6] X.Yang, Research on fractal mathematics and some applications in mechanics. M.S.thesis, China University of Mining and Technology, 2009.6.
[7] K.M.Kolwankar, and A.D.Gangal, Local Fractional Fokker-Planck Equation. Phys. Rev. Lett.. 80, 1998, 214-217.
[8] F.B.Adda, and J. Cresson. About Non-differentiable Functions. J. Math. Anal. Appl.. 263, 2001, 721 - 737.
[9] K.M.Kolwankar, and A.D.Gangal, Fractional differentiability of nowhere differentiable functions and dimensions, Chaos. 6 (4), 1996, 505-513.
[10] A.Babakhani, V.D.Gejji, On Calculus of Local Fractional Derivatives, J. Math. Anal. Appl.. 270, 2002, 66-79.
[11] Y.Chen, Y.Yan, and K. Zhang, On the Local Fractional Derivative, J. Math. Anal. Appl.. 362, 2010, 17-33.

