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Abstract

We start with some global Maxwellian function M , which is a sta-
tionary solution (with the constant total density ρ) of the Boltzmann
equation, and we denote the number of the corresponding space vari-
ables by n. The notion of distance between the global Maxwellian
function and an arbitrary solution f (with the same total density ρ at
the fixed moment t) of the Boltzmann equation is introduced. In this
way we essentially generalize the important Kullback-Leibler distance,
which was used before. An extremal problem to find a solution of the
Boltzmann equation, such that dist{M,f} is minimal in the class of
solutions with the fixed values of energy and of n moments, is solved.

1 Introduction.

The well-known Boltzmann equation for the monoatomic gas has the form

∂f

∂t
= −ζ ·▽xf +Q(f, f), (1.1)
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where t∈R stands for time, x = (x1, ..., xn)∈Ω stands for space coordinates,
ζ = (ζ1, ..., ζn)∈R

n is velocity, and R denotes the real axis. The collision
operator Q is defined by the relation

Q(f, f) =

∫

Rn

∫

Sn−1

[f(ζ ′)f(ζ ′⋆)− f(ζ)f(ζ⋆)]B(ζ − ζ⋆, σ)dσdζ⋆, (1.2)

where B(ζ − ζ⋆, σ)≥0 is the collision kernel. Here we used the notation

ζ ′ = (ζ⋆ + ζ)/2 + σ|ζ⋆ − ζ |/2, ζ ′⋆ = (ζ⋆ + ζ)/2− σ|ζ⋆ − ζ |/2, (1.3)

where σ∈Sn−1, that is, σ∈Rn and |σ| = 1. The solution f(t, x, ζ) of Boltz-
mann equation (1.1) is the distribution function of gas. We start with some
global Maxwellian function M , which is the stationary solution (with the
total density ρ) of the Boltzmann equation. The notion of distance between
the global Maxwellian function and an arbitrary solution f (with the same
value ρ of the total density at the fixed moment t) of the Boltzmann equa-
tion is introduced. In this way we essentially generalize the Kullback-Leibler
distance [4], which was fruitfully used before (see further references in the
recent papers [2, 9, 12]). Our approach enables us to treat also the non-
homogeneous case. An extremal problem to find a solution of the Boltzmann
equation, such that dist{M, f} is minimal in the class of solutions with the
fixed values of energy and of n moments, is solved.

Some necessary preliminary definitions and results are given in Section 2.
An important functional, which attains maximum at the global Maxwellian
function is introduced in Section 3. The distance between solutions and the
corresponding extremal problem are studied in Section 4.

We use the notation C1
0 to denote the class of differentiable functions

f(ζ), which tend to zero sufficiently rapidly when ζ tends to infinity.

2 Preliminaries: main definitions and results

In this section we present some well-known notions and results connected
with the Boltzmann equation. The distribution function f(t, x, ζ) is non-
negative:

f(t, x, ζ)≥0, (2.1)

and so the entropy

S(t, f) = −

∫

Ω

∫

Rn

f(t, x, ζ) log f(t, x, ζ)dζdx (2.2)
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is well-defined.

Definition 2.1 A function φ(ζ) is called a collision invariant if it satisfies
the relation

∫

Rn

φ(ζ)Q(f, f)(ζ)dζ = 0 for all f∈C1
0 . (2.3)

It is well-known (see [11]) that there are the following collision invariants:

φ0(ζ) = 1, φi(ζ) = ζi (i = 1, 2, ..., n), φn+1(ζ) = |ζ |2. (2.4)

The notions of density ρ(t, x), total density ρ(t), mean velocity u(t, x), energy
E(t, x), and total energy E(t) are introduced via formulas:

ρ(t, x) =

∫

f(t, x, ζ)dζ, ρ(t) =

∫

Ω

ρ(t, x)dx, (2.5)

u(t, x) =
(

1/ρ(x, t)
)

∫

ζf(t, x, ζ)dζ, (2.6)

E(t, x) =

∫

|ζ |2

2
f(t, x, ζ)dζ, E(t) =

∫

Ω

∫

Rn

|ζ |2

2
f(t, x, ζ)dζdx. (2.7)

The function
f =

(

ρ/(2πT )n/2
)

exp
(

− |ζ − u|2/(2T )
)

. (2.8)

is called the global Maxwellian and is a function of the mass density ρ > 0,
bulk velocity u = (u1, ..., un) and temperature T. We assume that the domain
Ω is bounded and so its volume is bounded too:

Vol(Ω) = VΩ < ∞. (2.9)

Therefore, the function

M(ζ) =
(

ρ/
(

VΩ(2πT )
n/2

))

exp
(

− |ζ − u|2/(2T )
)

(2.10)

is a global Maxwellian with the constant total density ρ.

Proposition 2.2 [11] The global Maxwellian function M(ζ) is the station-
ary solution of the Boltzmann equation (1.1).

Boltzmann proved in [1] the fundamental result below:

Theorem 2.3 Let f ∈ C1
0 be a non-negative solution of equation (1.1). Then

the following inequality holds:

dS/dt ≥ 0. (2.11)
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3 Extremal problem

Similar to the cases considered in [7, 8], an important role is played by the
functional

F (f) = λE + S, λ = −1/T, (3.1)

where S and E, respectively, are defined by formulas (2.2) and (2.7). The
parameters λ = −1/T and ρ are fixed. Now, we use the calculus of variations
(see [3]) and find the function fmax which maximizes the functional (3.1) on
the class of functions with the same ρ(t) = ρ at the fixed moment t. The
corresponding Euler’s equation takes the form

δ

δf

[

λ
|ζ |2

2
f − f log f + µf

]

= 0. (3.2)

Here δ
δf

stands for the functional derivative. Our extremal problem is con-
ditional and µ is the Lagrange multiplier. Hence, we have

λ
|ζ |2

2
− 1− log f + µ = 0. (3.3)

From the last relation we obtain

f = Ce−|ζ|2/(2T ). (3.4)

Formulas (2.10) and (3.4) imply that

f = M(ζ) =
ρ

VΩ(2πT )n/2
e−

|ζ|2

2T . (3.5)

We have the inequality
δ2

δf 2
F = −1/f < 0. (3.6)

Corollary 3.1 The global Maxwellian function M(ζ), which is defined by
formula (3.4), gives the maximum of the functional F on the class of func-
tions with the same value ρ of the total density ρ(t) at the fixed moment
t.
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In view of (2.2), (2.7), and (3.1) we see that

(

F (f)
)

(t) = −

∫

Ω

∫

Rn

( |ζ |2

2T
+ log f(t, x, ζ)

)

f(t, x, ζ)dζdx. (3.7)

It follows from (2.5), (3.5), and (3.7) that

F (M) = −ρ log
( ρ

VΩ(2πT )n/2

)

. (3.8)

Therefore, Corollary 3.1 can also be proved without using the calculus of
variation (see [10]). Indeed, taking into account relations (3.5), (3.7), and
(3.8) and the fact that the total densities of M and f are equal, we have

F (M)− F (f) =

∫

Ω

∫

Rn

M
(

1−
f

M
+

f

M
log

f

M

)

dζdx. (3.9)

Using inequality 1 − x + x log x > 0 for x > 0, x6=1, we derive from (3.9)
that

F (M)− F (f) > 0 (f 6=M). (3.10)

Remark 3.2 Since the extremal problem is conditional, the connection be-
tween the energy and entropy can be interpreted in terms of game theory. The
functional (3.1) defines this game. The global Maxwellian function M(ζ) is
the solution of it. A game interpretation of quantum and classical mechanics
problems is given in the papers [7, 8].

4 Distance

Let f(t, x, ζ) be a nonnegative solution of the Boltzmann equation (1.1). We
assume that T and the value ρ = ρ(t) at some moment t are fixed. According
to (3.10) we have

F (M)− F (f)≥0, (4.1)

where the global Maxwellian function M(ζ) is defined in (3.5). The equality
in (4.1) holds if and only if f(t, x, ζ) = M(ζ). Hence, we can introduce the
following definition of distance between the solution f(t, x, ζ) and the global
Maxwellian function M(ζ):

dist{M, f} = F (M)− F (f). (4.2)
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Remark 4.1 In the spatially homogeneous case, if not only the total den-
sities ρM and ρf of M and f are equal, but the energies EM and Ef are
equal too, then our definition (4.2) of distance coincides with the Kullback-
Leibler distance (see [12]). However, our approach enables us to treat also
the non-homogeneous case.

Next, we study the case EM 6= Ef and start with an example.

Example 4.2 Let T1 6= T and consider the global Maxwellian function

M1(ζ) =
ρ

VΩ(2πT1)n/2
exp

(

−
|ζ |2

2T1

)

. (4.3)

Direct calculation shows that

E1 = EM1
= ρnT1/2 6= E, (4.4)

F (M1) = −ρ
(

log
( ρ

VΩ(2πT1)n/2
)

− n(1− T1/T )/2
)

. (4.5)

It follows from (3.8) and (4.5) that

dist{M,M1} = −ρn
(

log(T1/T )− T1/T + 1
)

/2. (4.6)

We introduce the class C(ρ, E1, U) of non-negative functions functions f(t, x, ζ)
with the given total density ρ (see (2.8)), total energy

∫

Ω

∫

Rn

|ζ |2

2
f(t, x, ζ)dζdx = E1, (4.7)

and total moments U =
(

U1, U2, ..., Un

)

, where

Uk =

∫

Ω

∫

Rn

ζkf(t, x, ζ)dζdx. (4.8)

Recall that the global Maxwellian function M is defined by (3.5).
Extremal problem. Find a function f , which minimizes the functional

dist{M, f} on the class C(ρ, E1, U).
The corresponding Euler’s equation takes the form

δ

δf

[

(λ+ ν)
|ζ |2

2
f − f log f + µf + f

∑

k

γkζk

]

= 0. (4.9)
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Recall that our extremal problem is conditional, and µ, ν, γk are the La-
grange multipliers. Hence, we have

(λ+ ν)
|ζ |2

2
− log f − 1 + µ+

∑

k

γkζk = 0. (4.10)

From the last relation we obtain

f = C exp
(

(λ+ ν)
|ζ |2

2
+
∑

k

γkζk

)

. (4.11)

According to (2.5) we have λ+ ν < 0. Now, we rewrite (4.11) as

f = C1

(

−
2π

λ+ ν

)−n/2

exp
(λ+ ν

2

∑

k

(

ζk +
γk

λ+ ν

)2)

, (4.12)

where

C1 = C
πn/2

(−(λ + ν)/2)n/2
exp

(

−

∑

k γ
2
k

2(λ+ ν)

)

. (4.13)

To calculate the parameters µ, ν, γk we use again the well-known formulas
∫ ∞

−∞

e−aξ2dξ =
√

π/a,

∫ ∞

−∞

ξ2e−aξ2dξ =
1

2a

√

π/a, a > 0. (4.14)

Formulas (2.5), (4.7), (4.8), (4.12), and (4.14) imply that

C1 = ρ/VΩ, γk/(λ+ ν) = −Uk/ρ, −(λ+ ν) = T−1
1 , (4.15)

where

T1 =
2

nρ
E1 −

1

nρ2

∑

k

U2
k . (4.16)

Because of (4.12) and (4.15) we see that f is just another global Maxwellian
function

f = M1(ζ) =
ρ

VΩ(2πT1)n/2
exp

(

−
|ζ − U/ρ|2

2T1

)

. (4.17)

Moreover, the inequality

δ2

δf 2
[dist{M, f}] = 1/f (4.18)

holds, that is, the functional dist{M, f} attains its minimum on the function
f = M1, which satisfies conditions ρ(t) = ρ, (4.7), and (4.8). The following
assertion is true.
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Proposition 4.3 Let M andM1, respectively, be defined by (3.5) and (4.17).
If the function f satisfies conditions ρ(t) = ρ, (4.7), (4.8), and f 6=M1, then

dist{M, f} > −
nρ

2

(

log(T1/T )− T1/T + 1
)

+
|U |2

2ρT1

.
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