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GROUND STATES OF SEMI-RELATIVISTIC PAULI-FIERZ
AND NO-PAIR HAMILTONIANS IN QED AT CRITICAL
COULOMB COUPLING

MARTIN KONENBERG AND OLIVER MATTE

ABSTRACT. We consider the semi-relativistic Pauli-Fierz Hamiltonian and
a no-pair model of a hydrogen-like atom interacting with a quantized photon
field at the respective critical values of the Coulomb coupling constant. For
arbitrary values of the fine-structure constant and the ultra-violet cutoff,
we prove the existence of normalizable ground states of the atomic sys-
tem in both models. This complements earlier results on the existence of
ground states in (semi-)relativistic models of quantum electrodynamics at
sub-critical coupling by E. Stockmeyer and the present authors. Technically,
the main new achievement is an improved estimate on the spatial exponential
localization of low-lying spectral subspaces which is uniform in the Coulomb
coupling constant.

1. TWO MODELS FOR A HYDROGEN-LIKE ATOM IN RELATIVISTIC QED

1.1. Introduction. By now the standard model non-relativistic quantum elec-
trodynamics (QED) has been studied mathematically in great detail. In this
model non-relativistic electrons described by molecular Schrodinger operators
interact with a relativistic quantized photon field via minimal coupling. The
resulting Hamiltonian is called the non-relativistic Pauli-Fierz (NRPF) oper-
ator. One may ask whether mathematical results on the NRPF operator can
be extended to models accounting for the electrons by relativistic operators as
well. There exist two such models whose mathematical analysis seems canon-
ical and interesting as an intermediate step towards full QED, where, besides
the photon field, also electrons and positrons are described as quantized fields.
The first model is given by the semi-relativistic Pauli-Fierz (SRPF) operator
where the non-relativistic kinetic energy of an electron in the NRPF model is
replaced by its square root. The second one is a no-pair model introduced in
[12] in order to study the stability of relativistic matter interacting with the
quantized radiation field. In this model the Schrodinger operators are substi-
tuted by Dirac operators and the whole Hamiltonian is restricted to a subspace
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where all electrons live in positive spectral subspaces of the free Dirac oper-
ators. In the case of a hydrogen-like atom — that is, for one electron — both
models are introduced in detail in Subsection after some notation has been
fixed in Subsection [L.2l They have both been investigated in the mathematical
literature before [6, 8, [IT) 12] 17], but to a much lesser extend than models
of non-relativistic QED. Their mathematical analysis is actually more difficult
than in the non-relativistic case since the electronic and photonic degrees of
freedom are coupled by non-local operators, namely the square roots and spec-
tral projections, respectively. In our earlier works [9 10, 15] together with
E. Stockmeyer we gave some further contributions to these models by proving
the existence of energy minimizing, exponentially localized ground states of the
atomic system — a question which has been solved in non-relativistic QED in
[T, 2, [7, [13].

Typically, in relativistic atomic models there exist critical values, 7., of the
Coulomb coupling constant, v > 0, restricting the range where physically dis-
tinguished self-adjoint realizations of the Hamiltonian can be found. (In the
physical application we have v = €27, where €? is the square of the elementary
charge and Z > 0 is the atomic number.) For the SRPF operator the critical
value is equal to the critical constant in Kato’s inequality, 2/7. In the no-pair
model the critical value is the one of the (purely electronic) Brown-Ravenhall
operator, 2/(2/m + 7/2) [4]. According to [9, [10] these critical values do not
change when the interaction with the quantized photon field is taken into ac-
count. The main results of [9] [10] hold, however, only for sub-critical v. Thus,
the existence of ground states of hydrogen-like atoms at critical Coulomb cou-
pling in the SRPF and no-pair models has not yet been proven and we wish to
close this gap in the present article.

Presumably it is possible to directly prove the existence of ground states
along the lines of 1], [7, 9, [10], also for v = v.. We think, however, that it would
be quite a tedious procedure to replace all arguments in [9] [10] that exploit the
sub-criticality of v by alternative ones. For instance, simple characterizations
of the form domains of the Hamiltonians are available, for sub-critical v, which
is very convenient in order to argue that certain formal computations can be
justified rigorously. Therefore, it seems more convenient to pick some family
of ground state eigenvectors, {¢,} <., and consider the limit v .. To this
end we shall apply a compactness argument in Section [3] similar to one used
in [7] in order to remove an artificial photon mass. Among other ingredients
this compactness argument requires a bound on the spatial localization of ¢.,
which is uniform in v < ~.. FEarlier results on the localization of low-lying
spectral subspaces of the SRPF and no-pair operators provide, however, only
v-dependent estimates [15]. Hence, from a technical point of view the main
new achievement of the present article shall be a suitable bound on the spatial



exponential localization of spectral subspaces corresponding to energies below
the ionization threshold which is uniform in v < 7.. This localization estimate
is derived in Section [2 by suitably adapted versions of ideas in [I], 14 [15]. We
remark that by now we are able to improve the localization estimates of [15]
thanks to some more recent results of [10] collected in Proposition [L3l An
important requisite for the analysis of both non-local models studied here are
commutator estimates involving sign functions of Dirac operators, multiplica-
tion operators, and the radiation field energy. Many such estimates have been
derived in [9, 10, 14, 15]. For our new proof of the exponential localization we
need, however, still some additional ones. For this reason, and also to make
this paper self-contained and the proofs comprehensible, we derive all required
commutator estimates in Appendix [Al

The main results of this paper are Theorem 2.4] (Exponential localization)
and Theorem [3.4] (Existence of ground states at critical coupling).

1.2. Notation. The Hilbert space underlying the atomic models studied in
this article is

&)
(1.1) W= AR CY) @ Fl A ] :/ o ZH] dx,
R3

or a certain subspace of it. Here (%] = D, -, (™1¢] denotes the bosonic
Fock space modeled over the one photon Hllbert space

H = LR x Zs,dk), /dk: —Z/(P

ANEZo

The letter £ = (k, A) always denotes a tuple consisting of a photon wave vector,
k € R?, and a polarization label, A € Zg The components of k are denoted as

k = (kW k@ k®). We recall that Jb O] :=C and, for n € N, fén)[%] =
S, L*((R3 x Zg) ), where, for (™ € LQ((IRB’ X Z9)"),

(8 wn)><k17"'7 Z w( 7T(1 ) W(”))a

7'('6671

S,, denoting the group of permutations of {1,...,n}. For f € # and n €
No, we further define af(f)®™ : Z[#] — J("H [¢] by al(f)™ M) =
Vi + 18,1 (f@y™). Then al(f) = @7, aT(f)(” and a(f) := a'(f)* are the

standard bosonic creation and annihilation operators satisfying the canonical
commutation relations

(1'2) [aﬁ(f),aﬁ(g)]:(), [a’(f)aaT(g)]:<f|g>]la f,g€x,

where a* is a' or a. Writing

(1.3) k, = k@, kW 0), k=KD kY E®)eR?,



we introduce two polarization vectors,

k, k
(1.4) e(k,0) = —, ek, 1) = — A e(k,0),
k| K|
for almost every k € R3. Moreover, we introduce a coupling function,
1 ,
(1.5) Gy(k) = (G1,G? GD) (k) := —e % e > e(k),
T

for all x € R? and almost every k = (k,\) € R* x Z,. The values of the ultra-
violet cut-off, A > 0, and e € R are arbitrary. (In the physical application e
is the square root of Sommerfeld’s fine structure constant and e? =~ 1/137.)
For short, we write a*(Gy) 1= (aﬁ(GQ)), aﬁ(G,(f)), aﬁ(G,(f’))). Then the quantized
vector potential is the triple of operators A = (AM, A AG)) in 7 given as
-
(1.6) A= les ® (af(Gx) + a(Gx)) dx.
|R3
The radiation field energy is the second quantization, Hy := dI'(w), of the
dispersion relation w : R® x Z, — R, k = (k,\) — w(k) := |k|. By definition,
dl'(w) is the direct sum dI'(w) := @, dI'™(w), where dI'¥(w) := 0, and
dT'™(w) is the maximal multiplication operator in ﬁé") [#] associated with
the symmetric function (ki, ..., k,) — w(ky) + - +w(ky,), if n € N.

As usual we shall consider operators in L?*(R2, C*) or .#,[#] also as operators
acting in the tensor product 7 by identifying |x|™! = |x|'® 1, H; = 1 ® Hy,
etc. (The hat " indicates multiplication operators.)

Next, let ag, aq,as, a3 denote hermitian 4x4 Dirac matrices obeying the
Clifford algebra relations

(17) OéiOéj—FOéjOél' = 251']'1, i,j6{071,2,3}.
In what follows they act on the second tensor factor in # = L*(R?) @ C* ®

F,| ). Then the free Dirac operator minimally coupled to A is given as
3
(18)  Da=a-(—iVx+A)+ag= Y a;(—id,, + AV) + aq.
j=1
It is clear that D4 is well-defined a priori on the dense domain

P :=CP(R*,CY)® %, (algebraic tensor product)

where € C F,[#] denotes the subspace of all (™), € .%,[#] such that
only finitely many components 1™ are non-zero and such that each 1™, n € N,
is essentially bounded with compact support. Moreover, it is well-known that
D is essentially self-adjoint on Z; see, e.g., [12]. We use the symbol D, again
to denote its closure starting from 2.



Finally, we use the symbols D(T) and Q(T) to denote the domain and
form domain, respectively, of some suitable operator 7. We put a A b =
min{a,b}, a Vb := max{a,b}, a,b € R, and (y) = (1 +y»)"? y € R
C(a,b,...),C"(a,b,...),... denote positive constants which depend only on
the quantities a,b,... displayed in their arguments and whose values might
change from one estimate to another.

1.3. The semi-relativistic Pauli-Fierz and no-pair models. In what fol-
lows we shall denote the maximal operator of multiplication with the Coulomb
potential, —y/|x|, v = 0, in # by V,. Then the semi-relativistic Pauli-Fierz
(SRPF) operator is defined, a priori on the dense domain &, as

H,?r = |DA| +Vy+Hf

Notice that the absolute value |Da| is actually a square root operator min-
imally coupled to A. For, if the Dirac matrices are given in the standard
representation, then

Dal =T B TY?,  Ta=(0-(—iVx+A)’+1,

where o is a formal vector containing the three 2x2 Pauli spin matrices. Ac-
cording to [10] the quadratic form associated with H: is semi-bounded below,
if and only if v is less than or equal to the critical constant in Kato’s inequality,

vwr=2/7.

Thus, the range of stability of A7 is the same as the one of the purely electronic

square root operator,
lsr .
H§ Ti=/1-Ac+V,.

From now on the symbol HY will again denote the Friedrichs extension of the
SRPF operator, provided that v € [0,~].

Compared to the non-relativistic Pauli-Fierz model there are only a few
mathematical works dealing with its semi-relativistic analogue: Spinless square
root operators coupled to quantized fields appear in the study of Rayleigh
scattering in [6] and the fiber decomposition of HL is investigated in [17]. To
recall some further results we define the ionization threshold and the ground
state energy of HY', respectively, as

¥ =info[HJ], BT =info[H]], v € (0,7]].
Then the following shall be relevant for us:
Proposition 1.1 ([8,9]). (i) For alle € R, A >0, and v € (0,~],
(1.9) XY - EF > 1—info[HS™] > 0.
(ii) For alle € R, A >0, and v € (0,7), E is an eigenvalue of H'.



Proof. Part (i) follows from [§] (at least in the case v € (0,1/2), where H" is
essentially self-adjoint on 2 [10]). An alternative proof of (L9) covering all
v € (0,75] can be found in [9]. Part (ii) is the main result of [9]. O

In the present paper we shall extend the results on the spatial exponential
localization of spectral subspaces below ¥ of HZ', v € (0,7%), [15] and Propo-
sition [[LTI(ii) to the critical case v = ~2".

In order to introduce the second model studied in this paper we first recall
that the spectrum of D consists of two half-lines, 0(Da) = (—o0, —1]U[1, 00).
We denote the orthogonal projections onto the positive and negative spectral

subspaces by
1 1
Pi: = ]]-Ri(DA):é]]-:tésAa SA = DA|DA|_1.

Then the no-pair operator is a self-adjoint operator acting in the positive spec-
tral subspace Py defined, a priori on the dense domain P{ 2 C Pi#,
by

(1.10) HY := P{ (Da +V, + Hy) Py .

Thanks to [15, Proof of Lemma 3.4(ii)], which implies that P4 maps Z into
D(Do) N D(HY), for every v > 0, and Hardy’s inequality, we actually know
that H is well-defined on 2. Due to [I0] the quadratic form associated with
H j is semi-bounded below, if and only if v is less than or equal to

Ve =2/2/m+7/2),
which is the critical constant in the Brown-Ravenhall model determined in [4].
Again we denote the Friedrichs extension of the no-pair operator by the same
symbol H j , if v € [0,~72P]. Because of technical reasons it is convenient to add
the following counter-part acting in the negative spectral subspace P, ¢,

HT =Py (—Da+V,+ H;) Py, 7€ [0,~:P],

which is also defined as a Friedrichs extension starting from 2. In fact, H}
and H_~ are unitarily equivalent as the unitary and symmetric matrix o =
1 (i a3 g anti-commutes with Dy, so that 19P1;F = P, v. Thus, if questions
like localization and existence of ground states are addressed, then we may
equally well consider the operator

np .yt - _ 7+ +
(1.11) HY:=HI®H, =H &{JH I},
For later reference we observe that
1 1
(112) Hfflp:‘DA‘+§(V»Y+Hf)+§SA<VV+Hf)SA on 9.

The mathematical analysis of a molecular analogue of Hj has been initiated
in [I2] where the stability of the second kind of relativistic matter has been



established in the no-pair model under certain restrictions on e, A, and the
nuclear charges. Moreover, an upper bound on the (positive) binding energy is
derived in [I1]. To recall some results on hydrogen-like atoms used later on we
put

¥ = inf o[H,"], BT = inf o[HIP], v € (0,7."].
Both parts of the following proposition are proven in [10]:

Proposition 1.2 ([10]). (i) For alle € R, A > 0, and v € (0,72P], there is
some c(y,e,A) > 0 such that

(1.13) W — BT > c(y,e,A).
(ii) For alle € R, A >0, and v € (0,7Z®), EIP is an eigenvalue of HJP.

The exponential localization of spectral subspaces corresponding to energies
below ¥."P is shown in [I5], again for sub-critical values of v only. We propose
to extend the latter result as well as Proposition [L2(ii) to the case v = 2P in
the present article.

We close this subsection by recalling some further results of [10] used later on.
In order to improve the localization estimates of [15] and to deal with critical
coupling constants the bounds in (IL14]) below are particularly important. For
they allow to control small pieces of the electronic kinetic energy by the total
Hamiltonian even in the critical cases. Their proofs involve a strengthened
version of the sharp generalized Hardy inequality obtained recently in [5, [19]
and an analogous inequality for the Brown-Ravenhall model [5].

.l st np st np
D o A
(1) For~ € [0,Y2), H, is essentially self-adjoint on 9.

(i1) For alle € (0,1), 6 >0, and v € [0,7.],

(1.14) | Dol < 0H, + C(e, A6, ¢), |Dal* <0 H,+C'(e,\,d,¢),

in the sense of quadratic forms on Q(H,).

(1ii) D(H.,) C D(Hs) and, for all 6 > 0, v € [0,7.], and ¥ € D(H,),

(1.15) [He ]l < (1+0) [[Hy 3l + Cle, A, 6) ([l

2. EXPONENTIAL LOCALIZATION

In this section we show that low-lying spectral subspaces of HY and HJP are
exponentially localized with respect to x in a L? sense. This result is stated
and proven in Theorem 2.4l at the end of this section. The general idea behind
its proof, which rests on a simple identity involving the spectral projection (see
(27)) and the Helffer-Sjostrand formula, is due to [I]. (More precisely, (2.7) is
variant of a similar identity used in [I]. It has been employed earlier in [I4].)



From a technical point of view the key step in the proof consists, however,
in showing that the resolvent of a certain comparison operator stays bounded
after the conjugation with exponential weights (Lemma [2.3)). Moreover, one
has to derive a useful resolvent identity involving the comparison operator
and the original one (Lemma [22)). In these steps our arguments are more
streamlined and simpler than those used in the earlier paper [15] as we work
with a simpler comparison operator. Moreover, we now treat critical v as well.
By now these improvements are possible thanks to the results of [10] collected
in Proposition [[.3]

In the whole section we fix some pu € C§°(R2,[0,1]) such that u = 1 on
{|x| <1} and g =0 on {|x| > 2} and set ur(x) := p(x/R), for all x € R* and
R > 1. Then we put

Vir:= (1= pr) Vs = (ur = 1) 7/[x]
and define two comparison operators (compare (LI2])),

HYp = |Dal+Vor+ Hr, 7€ (0,77,
n 1 1 n
H’y,rj)’% = |DA| + 5 (V%R =+ Hf) =+ 5 SA (V’Y,R + Hf) SA ) v € <O77cp] )

on the domain 2 to start with. According to Proposition [[3(i) both operators
then are essentially self-adjoint and we again use the symbols HX'; and H ;15%
to denote their self-adjoint closures. Clearly,

(2.1) SrZ X = Varlle,  HJR 2 X" —[[V;kllo

where ||V, || < 1/R, R > 1. In order to treat both models at the same time
we shall use the following notation from now on:

{ The symbols H, Hg, >, ¥ denote either

(22) ST ST ST ST n n n n
HS', HS'p, S, ES or H, H'%, Y EmP.

Since the domains of H and Hg will in general be different we cannot compare
their resolvents by means of the second resolvent identity. To overcome this
problem we shall regularize the difference of their resolvents by means of the
following cut-off function, which is also kept fixed throughout the whole section:
We pick some x € C*(R2,[0,1]) such that x = 0 on {|x| < 2} and x =1 on
{|x| > 4} and set xg(x) := x(x/R), for all x € R* and R > 1.
Finally, we introduce a class of weight functions,

W, ={F € C™R.[0,00)): F(0)=0, |[Fllo <00, [VF| <a},
where a € (0, 1), and define two families of operators on the dense domain 2,
Up(2) = (H —2)"" (Hg — H) xre",

Wi (2) == (H —2)7" [xr, Hr]e",



for e C\R,R>1, F € #,, and a € (0,1). Since (V;, =V, r)xr = 0 we
actually have Uf (z) = 0 when H = HZ".

Lemma 2.1. Let 2 € C\R, R> 1, F € #,, and a € (0,/2]. Then UL (z) and
WE(2) extend to bounded operators on F# and

1V |Rez|

1V |Rez|
sup [|Uf (2)]| < C(e, A, R) 1A [Tm 2|

—— = sup |[WE(()| < C'(e,A\,R
s DRl s WG £ CeA R

Proof. In the case of the no-pair operator we have
1
Ub(2) = 3 Sa(HX —2) " (Vor—Vy) el [e" Sae”, xp] on 2,

where we used [H2P, Sa] = 0 = (V;, =V, r) Xg- In Lemma we shall show
that

1] (Hr + 1) [ Sa e’ xr] || < Cle, A, w) [ VXII/R,

for every k € [0,1). Combining the previous bound with the following conse-

quence of X772 < C'|Do|"?, (ILI4)), and (LI5),

for every ¢ € D(H}P), we deduce that

1V |Rez|?
LA |Im 2|2

%] B )P < | (2P =) ||,

7| Hew < Cle,A)

|7 (He + 1) (Hy? = 2) 7| lle” gl

< C'(e, A) (**F/R)

[vEE el < 5]

%|"7*(H + 1) [e " Sae” xr] ¢
1V |Rez|
1A |Im 2|

el peED.

Next, we turn to Wf(z). In the case of the SRPF operator [xgr, Hp| =
[Xg, |Dal], and it follows from Lemma [A.3] that, for all F' € #,,

(2.3) || xrs Sal ||+ || 1Dal ™ [xns |1 Dal ] eF[| < C 1V xR [l < C R /R

Here we also used that 0 < F' < 4aR on supp(Vxg). On account of (LI4]) we
also have

1V |Rez]

DAYt =271 < Cle ) ey

Putting these remarks together we arrive at the asserted bound on W£ (z) for
the SRPF operator.



In the case of the no-pair operator
Xr, HyRe" = [xr, [Dalle”

1 1
+ 5 [XR, SA] 6F er_FSA €F + 5 SA Hf [XR) SA] 6F

1 1
(2.4) -+ 5 [XR) SA] GF V%ReiFSA GF + 5 SA V'%R [XR, SA] 6F

The first term on the RHS of (2.4) is dealt with exactly as in the case of the
SRPF operator above. Moreover, on account of (Z3) and ||e™ ¥ Sael’| < 1+Ca
(see (A7) the norms of both operators in the third line of (Z4]) are bounded
by some F-independent constant times e*®/R% By Lemma we finally
have

[(He + 1) [xr, Sale” Hi || < Cle, A) [[Vxre”[loo < Cle, A) [ Vx| /R,

and we conclude by means of the following consequence of (L5,

1V |Rez]

LA |Imz|’

Here we also use that [HP, S| = 0. O

Lemma 2.2. Forallz€ C\R, R>1, F € #,, and a € (0,1/2],

Xr(H—2)""'—(Hg—2)'xp= (Hr—2) e " (Uf (2)" + Wg(z)*) :
Proof. For all p € 9,
{(H=2)""Xp—xr(Hr—2)""} (Hr — 2) ¢

= (H—2)"'xr(Hr—2) ¢ — Xr
— (H ) (HR—H+H—2)XR¢ Xr¢+ (H—2)"" [xr, Hr]p
={(H "(Hr—H)xre"}e "o+ {(H—2)"[xr, Hrle" } e "¢
( —i—WR ))e’F(HR—z)’l(HR—z)go.

Now, UR(z) and WR(z) are bounded and (Hg — z) Z is dense in S, as Hp is
essentially self-adjoint on &. Hence, we infer that

_ _ —F —F _ _
(H —z) 1XR_XR(HR_Z) 1 — (UR(2)+WR(2))6 F(HR—Z) L
Taking the adjoint of this operator identity and replacing Z by z we arrive at
the assertion. O

| e Sx (2 )71 = B (27 - 2)7 | < Cle )

Lemma 2.3. There exist g : (0,00) — (0,00) and ay € (0,/2] such that the
following bound holds, for all § > 0 and a € (0, ay),

sup{ ||eF(HR—z)_1e_F|| c Fe,, Rez <X — ||V, rllc — 9(a) —5} <

S| =

10



In the case of the SRPF operator we may choose ag = 1/2 and g(a) = C a?,
for some universal constant C' > 0. In the case of the no pair operator we may

choose g(a) = C(e,A)a
Proof. 1t suffices to show that, for Rez < ¥ — ||V, gl —g(a) — 6 and ¢ € 2,
(25) ORI <Re(w|e"(Hr—2)e ") <] [le"(Hr — 2) e~

In fact, if F' € #,, then e~F maps 2 bijectively into itself, thus (Hp—2z) e ' P is
dense in 77, as we know that Hp is essentially self-adjoint on & and z € o(Hp).
In particular, we may insert ¢ := e’ (Hp — 2)"te ¥, p € S, into ([2.3), since
F € %, is bounded, and this yields the assertion.

First, we prove (2.3]) for the SRPF operator. To this end we put

Kp = [Sa,efle ™™, tFe,.

We know from [I5, Lemma 3.5] that [|[Cp|| < Ca. (We also re-obtain this
bound as a special case of (AJ) below.) By a straightforward computation

using [Da, efle™" = —iav - VF we then find as in [15]
Re [e" HYp et — H,SYTR} =Re [¢ |Dale™™ — |Dal]
= %DA [e’F, [Sa, eF]] —%a~VF(/Cp—ICF) on9.
On account of ||Kr|| < Ca, |- VF| < ||[VF||»x < a, and the bound
(2.6) | Da[e", [Sa, €"]] | S C"IVF|5, < C"a?,

proven in [I5, Lemma 3.6] and Lemma [A4] below we arrive at
Re [e" HYpe ¥ > Hy — C"a® > 5% — |V, gllo — C"a® on 2.

Therefore, we obtain (2.5]) for the SRPF operator.
Next, we treat the no-pair operator. In this case

np  — n _ 1 1
e HN e — HY, = e [Dale™" — |DA|+§A(V%R)+§A(Hf)
on 9, where
A(T) = €FSATSA€7F—SATSA:—SATICF—ICFTSA+ICFTICF,

for "=V, g and T' = H;. Clearly, ||A(V, r)|| < O(a) ||V;.rll since ||[Kr|| <
Ca, and

(ol AH) )| < alp|SaHiSag) + (1+1/a) [H” Krgl|
<aCle,A) (| (HJR+ [Varllo) @)
for all @ € (0,1/2] and ¢ € &, where we used

|HKp (H: +1)"7| < Cle,A)a

11



in the second step, which follows from ([A.12]) below. Therefore,
Re [e" H e "] > (1 — O(a)) H)Y, — O(a) [|Vy ks — C"a®

v v

2 X% — [[V) lle — O(a) %,
for all sufficiently small a > 0, and we conclude as above in the SRPF case. [J

In the following theorem, which is our first main result, we denote the spectral
family of some self-adjoint operator, T', as R > A — 1,(T).

Theorem 2.4 (Exponential localization). Let e € R and A > 0. Then the
following assertions hold true:
(i) There is some universal constant, C > 0, such that, for all A\ < X%, a €
(0, Y2] with A :=¥" =X =Ca® >0, and v € (0,7"], we have Ran(1\(HS")) C
D(e*) and

|e”X 1\ (H)|| < Cle, A, A) .
(ii) There is some C(e,A) > 0, such that, for all A < ¥*°, a > 0 with A =
Zn;— A—C(e,A)a >0, and v € (0,92%], we have Ran(1,(HXP)) C D(e*™)
an

| e Ly(HP)|| < C'(e, A, A).

Proof. We treat both models simultaneously again using the notation (2.2)) and
the function g appearing in the statement of Lemma

We put A := ¥ — X — g(a) and choose R := 1V (3/A) so that Hp >
Y — ||Vrlloo = ¥ — A/3; recall (2I). Then we pick some f € C§°(R,[0,1])
satisfying f = 1on [E,A] and f =0on R\ (F—1,A\+A/3), so that f(Hg) =0,
thus

(2.7) XeIn(H) = (xr f(H) — f(Hg) xr) 1x(H).

(This identity with yr replaced by 1 is observed in [I] for similar purposes.)
As in [I] we extend f almost analytically to some f € C5°(C) with

supp(f) C [E —1L,A+A/3] +i[-1,1], [0-f(z)| < C(A,N)|Imz|N, z € C,

and apply the Helffer-Sjostrand formula,

AT = [T =27 dute) . du(e) = 5 0:p () d= 1 .

271

which is valid, for any self-adjoint operator 7" in some Hilbert space; see, e.g.,
[3]. Combining it with (2.7) and Lemma 2.2l we obtain, for every F € #,,

yref Ly(H) = / e (xi (H — 2" — (Hg — =) xz) 1a(H) du(2)

_ / e (Hg - 2) e " (UE(2) + WE(2)) Tn(H) dp2)
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Applying Lemma 2T and Lemma 23] (with § = A/3) we arrive at

Cle A R) [ [0:f(:)]
P, (H| <
o e LI < == | T

|dz N dzZ| < C(e, A, A).

To conclude we pick a sequence F,, € #,, n € N, converging monotonically to
alx|—a on {|x| > 2}. Then, by monotone convergence, [, e2*™/[|4)(x)[|%.d*x =
“b

lim [, 62F"(X)||@Z)(X)||2yéd3x < C'(e, A, A), for ¢ € Ran(1,(H)) C [S FLd*x.
n—o0
U

3. GROUND STATES AT CRITICAL COUPLING

Starting from the assertions of Propositions [[LI[(ii) and [L2(ii), namely that
HZ and HIP have eigenvalues at the bottom of their spectra, as long as v is
sub-critical, we prove in this section that both operators still possess ground
state eigenvectors, when « attains the critical values vJ* and 7., respectively.

We shall make use of the following abstract lemma which is a variant of a
result we learned from [1; see [9, Lemma 5.1] for a proof.

Lemma 3.1. Let T, Ty, T, . .. be self-adjoint operators acting in some separable
Hilbert space, Z°, such that {T;};en converges to T in the strong resolvent
sense. Assume that E; is an eigenvalue of T; with corresponding eigenvector
¢; € D(I;). If {¢;}jen converges weakly to some 0 # ¢ € X, then E :=
lim; . E; exists and is an eigenvalue of T'. If E; = inf o[T}], then T is semi-
bounded below and E = inf o[T].

As we wish to consider the limit as v approaches its critical values we employ
the following new convention from now on:

{ The symbols H.,, X, E,, 7. denote either

(3'1) ST ST ST Sr n n n n
HE X5, B, et or HIP, S0P TP AP

Lemma 3.2. H, converges to H,_ in the strong resolvent sense, asy /.. In
particular,

(3.2) limsup £, < E,. .
Y<7Ye
Proof. For every v € (0,7.), we know that Q(H,) = Q(|Do|)NQ(Hs) C Q(H,.)
[10]. Since Z is a form core for H,, we thus have N, .., Q(H,) = Q(H,.), where
the closure is taken with respect to the form norm of H,, . Since the expectation
values (@ | H, @) \ (¢ | Hy ) converge monotonically, as v ,* v, for every
© € Nyer Q(H,) = O(|Do|) N Q(Hs), it follows from [20, Satz 9.23a] that H,
converges to H, in the strong resolvent sense. 0

In order to verify the assumption ¢ # 0 of Lemma [B.1] we shall adapt a com-
pactness argument from [7]. To this end we need the infra-red bounds of the
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next proposition which give some information on the localization and the weak
derivatives of ground state eigenvectors with respect to the photon variables.
In non-relativistic QED soft photon bounds (without infra-red regularization)
have been obtained first in [2] and photon derivative bounds have been intro-
duced in [7]. To state these bounds for our models we recall the notation

(alk) )k, k) = (o D2 (R kL k)
almost everywhere, for 1) = ()2 € #,[#], and a(k) (¢9,0,0,...) = 0.

Proposition 3.3 (Infra-red bounds). Let e € R and A > 0. Then there
is some C(e,A) € (0,00), such that, for all v € (0,7.) and every normalized

n € Nog,

ground state eigenvector, ¢., of H,, we have the soft photon bound,
C(e, A)
(3.3) la(k) &4 1" < Lyw<ay Tk
for almost every k = (k,\) € R3 x Z5, and the photon derivative bound,
1 1
(3.4) [lalk,\) ¢, — a(p, A Cle,A) |k — ( n )
) e 0n =ale. ) 6n | < e ) =l (e + g ]

for almost every k,p € R® with 0 < |k| < A, 0 < |p| < A, and X € Z5. (Here
we use the notation (L3).) In particular,

(3.5 sup S P < oo,
¥€(0,7¢) f,—1

where ¢, = (¢§"):2y € @, LA(R?, €Y @ Z [A].

Proof. First, we prove the soft photon bound (3.3)) for the SRPF operator. To
this end we put

Ra(iy) = (Da —iy)™', y€R, Ric:= (HY —EF +1k[)™", k#0,
and (recall (ILH]))
Gy (k) := Gy(k) — Go(k) = Go(k) (e * —1).
For v € (0,7%"), we derived the following representation in [9],
a(k) ¢y = i(|k| Ry — 1) Go(k) - X — R - G (k) Sahy + L, (k) ,
for almost every k = (k,\) € R® x Z,, where

L(k) := /[R Ric Da Raliy) a - Gz (k) Ra(iy) ¢, %

Here the Bochner integral I, (k) is actually absolutely convergent. In fact, pick
some F' € C*(R2,[0,00)) such that F(x) = a|x|, for large |x|, and |VF]| < a,

14



where a is sufficiently small. By virtue of (I.I4)) and Theorem 24 we then
obtain

IL@N < [ {I1DA1 Rl 104 Batin)|
: d
Gk sup [(e7*% — 1) e [leF Ra (iy) e ], } 2

Here || [Da|" Rac || < Ce, A)/(1A[k|) by (LIA), ||| Dal”* Raliy)ll < C {y)~"*,
and the composition e R (iy) e is well-defined with ||ef Ra(iy) e | <
C (y)~! by Lemma [ATl below. Using also |Go(k)| < (le|/27) [k|™7* L{j<ay
and |e~%* — 1| < |[k| |x]|, we arrive at the y-independent estimate

C'(e, A) k|72 C"(e, A
for almost every k = (k,\) € R® x Z,. Now, it is also clear how to estimate
the remaining terms in the formula for a(k) ¢, and to get (B.3). (Notice that
e Sa 6l < lle"Sa e || |eF s, where [[¢FSx e || < 1+ Ca by (@) and
a simple approximation argument.)

In a similar fashion we next derive the photon derivative bound (3.4)) for the

SRPF operator. In fact, [|[(Rx —Rp) || < |p| 7k —p||Rx ||, ¥ € S, by the
first resolvent identity, thus

I1,(k, \) — L(p, \)|
</R{HmAr/4nkuH|DA|3/4RA<w>H

5 (R < Tpgny

~ dy
sup {| Gk, A) =GP, Mle "} e Raiy) e | eI}
[k —p|

e R TN

dy
-sup {|Gulp, Nl } [ Ra (i) =" o, | } 7

Here |Gx(p, )| < (le|/27) [p|72|x] Iypj<a} and some elementary estimates [7]
(see also [9 §6.3]) using the special choice (L) of the polarization vectors
reveal that

‘éx<k7 )‘) - éx(l)v )‘)‘ 1 1
3.6 <O+ x| |k - n ,
(3:6) K (1 i) e = | (i * o)

provided that 0 < |k, |p| < A. By Young’s inequality, also |k — p| |k|~!|p|~">
is bounded by the RHS of (8.6). Putting these remarks together we conclude
that ||Z,(k, \) — I,(p, A)|| is bounded from above by the RHS of ([84), for 0 <
k|, |p| < A. Agam we leave the treatment of the first two terms in the formula
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for a(k) ¢, to the reader; we just note that |k|™||k|Go(k, ) — |p|Go(k, \)|
can bounded by the RHS of ([B8.6]), too; see [7] or [9, §6.3].

Finally, in the case of the no-pair operator we already observed in [10, Re-
mark 7.2] that the bound proven in Theorem [2.4(ii) provides a proof of the
infra-red bounds ([B.3) and (3.4]) with a ~-independent constant. In fact, in
[10] we derived a formula for a(k) ¢.,, when ¢, is a ground state eigenvector of
HP, v € (0,7c), which comprises of more terms than in the SRPF case but is
otherwise completely analogous. Hence, by essentially the same estimates as
above we may derive the infra-red bounds also for the no-pair model. OJ

Finally, we arrive at the principal result of this article:

Theorem 3.4 (Ground states at critical coupling). Fore € R and A > 0,
the minima of the spectra of both HZ5 and Hj;.p are etgenvalues.

Proof. Again we treat both models simultaneously using the notation (3.1]).
(Recall that in view of (LII)) it suffices to show the existence of ground states
for Hfg’p instead of HJE]p in the no-pair model.)

Let ¢, denote a normalized ground state eigenvector of H., for every v €
(0,7¢). Then the family {¢-},c(0,.) contains some weakly convergent sequence,
{0+, }ien, v /" Ye- We denote the weak limit of the latter by ¢,,. On account
of Lemmata [3.1] and it suffices to show that ¢, # 0.

With the exponential localization and infra-red bounds at hand the following
compactness argument is the same as in [7] (where an artificial photon mass is
removed instead), except that we first take the partial Fourier transform with
respect to x before we apply the Rellich-Kondrashov theorem. (If one does
not exchange the roles of the electronic position and momentum coordinates
then the compactness argument requires imbedding theorems for more exotic
function spaces since one has to deal with fractional derivaties w.r.t. x [9} [10].
The variant of the argument below can also be used to simplify the proofs in
[9, 10].)

Let £ > 0. On account of (B3] we find some ng € N such that

[e.e]

. (n) £
(3.7) Vre ) s D eI <

n=ng+1

Forn € N, v € (0,7.], and 8 = (¢, A1,..., \n) € {1,2,3,4} x Z, we set
ok, k) = 6 (%, 6k, Ay K An)

and denote the partial Fourier transform of gb,(yng) with respect to x as QAS,(YnQ) . Then

the soft photon bound (B.3) shows that qg,(yng)(f ki, ..., k,) =0, for almost every
(&, k4, ..., k,) € R3™HY such that |k;| > A, for some j € {1,...,n}. Moreover,

16



pick some s € (0, 1). By virtue of (.I4)) we then have, for all v € (0,7.), n € N,
and every choice of 6,

B [ I8 ey € < (603 (A0
>
< <¢“{ | H‘/‘b“{) +C<67A7S> = E“/ —|—C(€,A,S) < ‘E'Yc‘ + by —|—C(€,A,S) .
Consequently, we find some R > 1 such that

no
(38) S e 620 < £
n=1

As in [7] an application of Holder’s inequality with respect to d*¢ d*"~VK and
the photon derivative bound ([B.4) yield, for p € [1,2) and v € (0, .),

/ [655(&. k + b, K) = 6" (& k. K)[" @€ d*" VK i’k

[k|<A,
|k+h|<A
<C) | a(k +h,X) ¢, — a(k,\) ¢, |['d’k
ACT2 ji<a,
|k+h|<A
ol AN
< C'lhp? / / TCRUIEE +/ 7 ( Top = €I
[(u, v)[72 2 J | (us 0) P
(ww)l<a O |(0)]

where the constants C, C’, C" € (0, 00) depend on p,n, A, but not ony € (0, ).

Since Qﬁﬁ,") is permutation symmetric with respect to the variables ky, ..., k, the
previous estimate implies [I8, §4.8] that the weak first order partial derivatives

of QAﬁﬁ/"Q) with respect to its last 3n variables exist on @, := Br x B}, where B,
denotes the open ball in R? of radius p centered at the origin, and that

sup Vi 0yl <00, pEL2), i=1,....n, n=1...,n.
'YE(OWC) B

Finally, since sup, ¢ (... He“'f“(b% | < oo, for some a > 0, we know that QAﬁﬁ/"Q) has
weak first order derivatives with respect to & and

IVed ™)o@y < Cpyn. R A) [V | oo
= C'(p,n, B, A) %01l 2 gocnsny < C"(p,m, R A).

As observed in [7] bounds with respect to the LP-norms, p < 2, are actually suffi-

cient in this situation. In fact, if we choose p € [1,2) so large that 2 < %,
then, for every n = 1,...,ng and every choice of 8, we may apply the Rellich-

Kondrashov theorem to show that every subsequence of {(ﬁfg?g}jeN contains

17



another subsequence which is strongly convergent in L*(Q,). (Obviously, @,
satisfies the required cone condition.) By finitely many repeated selections of

subsequences we may hence assume without loss of generality that {Qg(y?)g}jehd

converges strongly in L*(Q,,) to gzg,(z?g, forallm =0,...,ny and §. Taking (3.7

and (B.8) into account we arrive at

00 ng
s = S 1B > im 52 5716 ey > lim o, I2 —e =1~ <.
n=0 n=0 6
Since € > 0 is arbitrary we conclude that ||¢,. || = 1. O

APPENDIX A. ESTIMATES ON COMMUTATORS

In this appendix we derive some bounds on the operator norms of certain
commutators involving the sign function of the Dirac operator which have been
used repeatedly in the main text. Except for those of Lemma [A.2] all results
and estimations presented here are variants of earlier ones in [15]. Nevertheless,
we shall give a self-contained exposition for the convenience of the reader.
The following basic lemma, stating that the resolvent of the Dirac operator,

Ra(iy) = (Da—iy)™,  ye€ER,
stays bounded after conjugation with suitable exponential weights, is more or
less folkloric, at least in the case of classical vector potentials. The proof of

(A.2) given, e.g., in [14] for classical vector potentials works for quantized ones
without any changes.

Lemma A.1. Lety € R, a € [0,1), and F € C*(R2,R) such that |VF| < a.
Then iy € o(Da +icc- VF) and

(A.1) Rh(iy) == e" Ra(iy)e ¥ = (Da +ic- VF —iy)™" onD(e "),
(A2) [|RR(y)] < V6(1—a®) " y)

All commutator estimates below are based on the following representation of
Sa = DA |Da|™! as a strongly convergent principal value,

(Ag) SA@Z):TII_)IEIO/T RA(Zy)@Z)%, Ve .

Lemma A.2. For every bounded F € C®(R3,R) with |VF| < 1/2, all x €
C>(R3,1[0,1]), and x € [0, 1),

1%~ (Hy + 1) [e" Sa e, X] || < Cle, Ay 5) [[Vx|oo -

Proof. To begin with we put Hy := Hy + 1 and observe that

(A4) H; " Ry (iy) = Roliy) (B = T RX(iy)
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where T' € £ () is the closure of H{l/Qa - (A 4+ iVF) and satisfies ||T]| <
C(e, A). In fact, since Ry(iy) and H_l/2 commute we obtain, for every ¢ € Z,

{ﬁ_l/Q RE (iy) — Ro(iy) H_I/Q} (Da +ic-VE —iy) ¢
= —Ro(iy) H; "a- (A +iVF) o
= —Ro(iy) T Ry (iy) (Da +ic - VF —iy) ¢
As Dy is essentially self-adjoint on 2 we know that (D +ia- VF —iy) & is
dense in J# and we obtain ([A4). (In fact, if ¥ € S and ¢, € Z converge to
RX (iy) 1 € D(D4) in the graph norm of Da —iy, then (Da +ic-VF —iy) o, —

¥.) Applying the generalized Hardy inequality, |x|™* < C(k)|Dog|**, and
| |Do|"Ro(iy)|| < C'(k){y)** we deduce from (A2) and (A4) that

%77 Hy 7 RE (i) || < C"(e, A, R) (y)< .

Together with (A3), [RX (iy),x] = R4 (iy)ic - Vx R (iy), and (AT)&(A2)
this permits to get

(1% | H; 7 " Sa e, x]0)]

~r—1/0 . . . d
</}<\f<|“so\Hf / Ri(zy)za-VxRi(zy)wM;y
R

< C"(e, A k) /[R<?/>“_2d?/' IVxllse NIl
for all ¢ € D(|x|7"), ¥ € F, and we conclude. O

The bounds derived in the following lemma are slightly more general than the
corresponding ones of [15, Lemma 3.5].

Lemma A.3. Let k € [0,1), € > 0, and x € C*°(R2,[0,1]) with |Vx| bounded.
Moreover, let F,G € C*(R3,R) be bounded with bounded first order derivatives
and such that |V (F — G)| < 1/2. Then

(A.5) [1Dal" [x e " < CH) (VX +x VG) e|oo
(A.6) [1Da] ™ [x e, ID | A< CE NV +xVE) el

In particular, we have, for every bounded G € C*(R3,R) such that |VG| < 1/2,
(A7) |e“Sae || <1+ C|VG||.

Proof. Combining ([A.3), the computation

(A.8) [Ra(iy), x €] e"~¢ = Ra(iy)ic- (Vx + x VG) " R (iy)
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and the bounds || |Da|® Ra (iy)|| < C'(k) (y)*' and ||[RSF (iy)|| < C' (y)~! we
find, for all ¢ € D(|Dal|*) and ¢ € J2,

|(|Dal” ¢ [x e, Sal e o)

< /{R (|Dal" ¢ | Ra(iy)ia - (Vx + x VG) e RGF (iy) v )] %

(A9) <R (VX +xVGE) 6F||m4<y>“2dy|lwll 11

which gives ([A.5]). Choosing k =0, x = 1, and F' = 0 we also obtain (A7),
HeGSAe_GH < || Sall + ’ (€9, Sale ™| <1+ C|| VG| .

To derive ([A.6) we write |[Da| = Da Sa and compute

[x e“, |Dal] ¢ — i - (Vx +xVG)er (eG_FSAeF_G) + Da [XeG, Sal ef'=¢

on 2. (Thanks to [I5, Proof of Lemma 3.4(ii)] we know that Sx maps ef~¢2 =
9 into D(Dy) N'D(H¢) which is left invariant under multiplication with y e®.)
Using |Da|*Da = Sa |Da|” with k := 1 — ¢ < 1 we thus observe that (A.6)

is a consequence of (A.H) and (A.T). O

The next lemma is just a special case of [15, Lemma 3.6].

Lemma A.4. For all bounded F € C™(R3,R) such that |[VF| < a < 1/2, the
bound (20) holds true.

Proof. A straightforward computation yields
[, [Ra(iy), €"]] = Ra(iy)ic- VF { R (iy) + Rx" (iy)} icc - VF Ra(iy) .
Together with (A.2]) and (A.3]) this permits to get
[(Dae|le™, [Sa, "] ¥)]

< / |Da Balin) | IVEIZ (1BE )l + I BRG] | Ba) | 2

dy
< C|VF go/—,
IVE R (Y)?

for all normalized ¢ € D(D4) and ¢ € 2. O

The last lemma of this appendix again presents a variant of a bound obtained
in [I5, Lemma 3.5]. In order to prove it we recall some technical tool introduced
in [15]. First, we put

(A.10) Hy:=Hi+K, T,:=[H" - AlH! on 9,

and recall the bound ||T, || < C(e,A)/K"?, for v > 1/2 and K > 1; see [15]

Lemma 3.1]. In view of (A.2)) it shows that, for a sufficiently large choice
of K > 1, the Neumann series = (y) := > )2 {—RX (iy) T\, }* converges and

v
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satisfies, say, ||ZF(y)|| < 2, for all v > 1/2, y € R, and F € C*(R3,R) with
IVF| < 1/2. Moreover, it is easy to verify the following useful intertwining
relation [15, Corollary 3.1],

(A.11) H;" Ry (iy) = =, (y) Ri(iy) H; ™.
Lemma A.5. Let v > 1/2 and x, F, and G be as in LemmalA.3 Then
(A12) [|(H: + 1) [0 €, Sal "€ HY || < Cle, A (T + x VE) o

Proof. We define Hy by ([A10), for some sufficiently large K > 1 such that the
remarks preceding the statement are applicable. By means of (A.3), (A.g), and
(A-11)) we then obtain

[Co| H" [x e, Sal e HY v)|

. o e d
</[R’W!Hf”RA(Zy)Za-(VX+XVG)€FR§ F(iy) H; 1/f>’7y

< /[R (¢ | E0(y) Raliy)ic- (Vx + xVG) e" x

14

—G— —F/- 'T—V Vv d
x E§7(y) REF Gy) H Hy )|

<C Slelg{HES(y)H =5~ Hy H (VX + x VG) eFHoo/<y>2dy
Yy

R

<O (VX +xVE) oo,

for all normalized o, 1) € 2. This implies (AI2) since ||(He + 1)V HY|| < K,
where our choice of K depends only on e and A. 0
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