
ar
X

iv
:1

10
6.

13
93

v1
  [

m
at

h-
ph

] 
 7

 J
un

 2
01

1

GROUND STATES OF SEMI-RELATIVISTIC PAULI-FIERZ
AND NO-PAIR HAMILTONIANS IN QED AT CRITICAL

COULOMB COUPLING

MARTIN KÖNENBERG AND OLIVER MATTE

Abstract. We consider the semi-relativistic Pauli-Fierz Hamiltonian and
a no-pair model of a hydrogen-like atom interacting with a quantized photon
field at the respective critical values of the Coulomb coupling constant. For
arbitrary values of the fine-structure constant and the ultra-violet cutoff,
we prove the existence of normalizable ground states of the atomic sys-
tem in both models. This complements earlier results on the existence of
ground states in (semi-)relativistic models of quantum electrodynamics at
sub-critical coupling by E. Stockmeyer and the present authors. Technically,
the main new achievement is an improved estimate on the spatial exponential
localization of low-lying spectral subspaces which is uniform in the Coulomb
coupling constant.

1. Two models for a hydrogen-like atom in relativistic QED

1.1. Introduction. By now the standard model non-relativistic quantum elec-
trodynamics (QED) has been studied mathematically in great detail. In this
model non-relativistic electrons described by molecular Schrödinger operators
interact with a relativistic quantized photon field via minimal coupling. The
resulting Hamiltonian is called the non-relativistic Pauli-Fierz (NRPF) oper-
ator. One may ask whether mathematical results on the NRPF operator can
be extended to models accounting for the electrons by relativistic operators as
well. There exist two such models whose mathematical analysis seems canon-
ical and interesting as an intermediate step towards full QED, where, besides
the photon field, also electrons and positrons are described as quantized fields.
The first model is given by the semi-relativistic Pauli-Fierz (SRPF) operator
where the non-relativistic kinetic energy of an electron in the NRPF model is
replaced by its square root. The second one is a no-pair model introduced in
[12] in order to study the stability of relativistic matter interacting with the
quantized radiation field. In this model the Schrödinger operators are substi-
tuted by Dirac operators and the whole Hamiltonian is restricted to a subspace
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where all electrons live in positive spectral subspaces of the free Dirac oper-
ators. In the case of a hydrogen-like atom – that is, for one electron – both
models are introduced in detail in Subsection 1.3 after some notation has been
fixed in Subsection 1.2. They have both been investigated in the mathematical
literature before [6, 8, 11, 12, 17], but to a much lesser extend than models
of non-relativistic QED. Their mathematical analysis is actually more difficult
than in the non-relativistic case since the electronic and photonic degrees of
freedom are coupled by non-local operators, namely the square roots and spec-
tral projections, respectively. In our earlier works [9, 10, 15] together with
E. Stockmeyer we gave some further contributions to these models by proving
the existence of energy minimizing, exponentially localized ground states of the
atomic system – a question which has been solved in non-relativistic QED in
[1, 2, 7, 13].

Typically, in relativistic atomic models there exist critical values, γc, of the
Coulomb coupling constant, γ > 0, restricting the range where physically dis-
tinguished self-adjoint realizations of the Hamiltonian can be found. (In the
physical application we have γ = e2Z, where e2 is the square of the elementary
charge and Z > 0 is the atomic number.) For the SRPF operator the critical
value is equal to the critical constant in Kato’s inequality, 2/π. In the no-pair
model the critical value is the one of the (purely electronic) Brown-Ravenhall
operator, 2/(2/π + π/2) [4]. According to [9, 10] these critical values do not
change when the interaction with the quantized photon field is taken into ac-
count. The main results of [9, 10] hold, however, only for sub-critical γ. Thus,
the existence of ground states of hydrogen-like atoms at critical Coulomb cou-
pling in the SRPF and no-pair models has not yet been proven and we wish to
close this gap in the present article.

Presumably it is possible to directly prove the existence of ground states
along the lines of [1, 7, 9, 10], also for γ = γc. We think, however, that it would
be quite a tedious procedure to replace all arguments in [9, 10] that exploit the
sub-criticality of γ by alternative ones. For instance, simple characterizations
of the form domains of the Hamiltonians are available, for sub-critical γ, which
is very convenient in order to argue that certain formal computations can be
justified rigorously. Therefore, it seems more convenient to pick some family
of ground state eigenvectors, {φγ}γ<γc , and consider the limit γ ր γc. To this
end we shall apply a compactness argument in Section 3 similar to one used
in [7] in order to remove an artificial photon mass. Among other ingredients
this compactness argument requires a bound on the spatial localization of φγ,
which is uniform in γ < γc. Earlier results on the localization of low-lying
spectral subspaces of the SRPF and no-pair operators provide, however, only
γ-dependent estimates [15]. Hence, from a technical point of view the main
new achievement of the present article shall be a suitable bound on the spatial
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exponential localization of spectral subspaces corresponding to energies below
the ionization threshold which is uniform in γ 6 γc. This localization estimate
is derived in Section 2 by suitably adapted versions of ideas in [1, 14, 15]. We
remark that by now we are able to improve the localization estimates of [15]
thanks to some more recent results of [10] collected in Proposition 1.3. An
important requisite for the analysis of both non-local models studied here are
commutator estimates involving sign functions of Dirac operators, multiplica-
tion operators, and the radiation field energy. Many such estimates have been
derived in [9, 10, 14, 15]. For our new proof of the exponential localization we
need, however, still some additional ones. For this reason, and also to make
this paper self-contained and the proofs comprehensible, we derive all required
commutator estimates in Appendix A.

The main results of this paper are Theorem 2.4 (Exponential localization)
and Theorem 3.4 (Existence of ground states at critical coupling).

1.2. Notation. The Hilbert space underlying the atomic models studied in
this article is

(1.1) H := L2(R3
x,C4)⊗ Fb[K ] =

∫ ⊕R3

C4 ⊗ Fb[K ] d3x ,

or a certain subspace of it. Here Fb[K ] =
⊕∞

n=0 F
(n)
b [K ] denotes the bosonic

Fock space modeled over the one photon Hilbert space

K := L2(R3 × Z2, dk) ,

∫
dk :=

∑

λ∈Z2

∫R3

d3k .

The letter k = (k, λ) always denotes a tuple consisting of a photon wave vector,
k ∈ R3, and a polarization label, λ ∈ Z2. The components of k are denoted as

k = (k(1), k(2), k(3)). We recall that F
(0)
b [K ] := C and, for n ∈ N, F

(n)
b [K ] :=

SnL
2((R3 × Z2)

n), where, for ψ(n) ∈ L2((R3 × Z2)
n),

(Sn ψ
(n))(k1, . . . , kn) :=

1

n!

∑

π∈Sn

ψ(n)(kπ(1), . . . , kπ(n)) ,

Sn denoting the group of permutations of {1, . . . , n}. For f ∈ K and n ∈N0, we further define a†(f)(n) : F
(n)
b [K ] → F

(n+1)
b [K ] by a†(f)(n) ψ(n) :=√

n+ 1Sn+1(f⊗ψ(n)). Then a†(f) :=
⊕∞

n=0 a
†(f)(n) and a(f) := a†(f)∗ are the

standard bosonic creation and annihilation operators satisfying the canonical
commutation relations

(1.2) [a♯(f) , a♯(g)] = 0 , [a(f) , a†(g)] = 〈 f | g 〉1 , f, g ∈ K ,

where a♯ is a† or a. Writing

(1.3) k⊥ := (k(2) , −k(1) , 0) , k = (k(1), k(2), k(3)) ∈ R3,
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we introduce two polarization vectors,

(1.4) ε(k, 0) =
k⊥

|k⊥|
, ε(k, 1) =

k

|k| ∧ ε(k, 0) ,

for almost every k ∈ R3. Moreover, we introduce a coupling function,

(1.5) Gx(k) =
(
G(1)

x , G(2)
x , G(3)

x

)
(k) := −e 1{|k|6Λ}

2π|k|1/2 e
−ik·x ε(k) ,

for all x ∈ R3 and almost every k = (k, λ) ∈ R3 × Z2. The values of the ultra-
violet cut-off, Λ > 0, and e ∈ R are arbitrary. (In the physical application e
is the square root of Sommerfeld’s fine structure constant and e2 ≈ 1/137.)

For short, we write a♯(Gx) := (a♯(G
(1)
x ), a♯(G

(2)
x ), a♯(G

(3)
x )). Then the quantized

vector potential is the triple of operators A = (A(1), A(2), A(3)) in H given as

(1.6) A :=

∫ ⊕R3

1C4 ⊗
(
a†(Gx) + a(Gx)

)
d3x .

The radiation field energy is the second quantization, Hf := dΓ(ω), of the
dispersion relation ω : R3 × Z2 → R, k = (k, λ) 7→ ω(k) := |k|. By definition,
dΓ(ω) is the direct sum dΓ(ω) :=

⊕∞
n=0 dΓ

(n)(ω), where dΓ(0)(ω) := 0, and

dΓ(n)(ω) is the maximal multiplication operator in F
(n)
b [K ] associated with

the symmetric function (k1, . . . , kn) 7→ ω(k1) + · · ·+ ω(kn), if n ∈ N.
As usual we shall consider operators in L2(R3

x,C4) or Fb[K ] also as operators
acting in the tensor product H by identifying |x̂|−1 ≡ |x̂|−1 ⊗ 1, Hf ≡ 1⊗Hf ,
etc. (The hatˆindicates multiplication operators.)

Next, let α0, α1, α2, α3 denote hermitian 4×4 Dirac matrices obeying the
Clifford algebra relations

(1.7) αi αj + αj αi = 2 δij 1 , i, j ∈ {0, 1, 2, 3} .
In what follows they act on the second tensor factor in H = L2(R3

x) ⊗ C4 ⊗
Fb[K ]. Then the free Dirac operator minimally coupled to A is given as

(1.8) DA := α · (−i∇x +A) + α0 :=

3∑

j=1

αj (−i∂xj
+ A(j)) + α0 .

It is clear that DA is well-defined a priori on the dense domain

D := C∞
0 (R3,C4)⊗ C , (algebraic tensor product)

where C ⊂ Fb[K ] denotes the subspace of all (ψ(n))∞n=0 ∈ Fb[K ] such that
only finitely many components ψ(n) are non-zero and such that each ψ(n), n ∈ N,
is essentially bounded with compact support. Moreover, it is well-known that
DA is essentially self-adjoint on D ; see, e.g., [12]. We use the symbol DA again
to denote its closure starting from D .
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Finally, we use the symbols D(T ) and Q(T ) to denote the domain and
form domain, respectively, of some suitable operator T . We put a ∧ b :=
min{a, b}, a ∨ b := max{a, b}, a, b ∈ R, and 〈y〉 := (1 + y2)1/2, y ∈ R.
C(a, b, . . . ), C ′(a, b, . . . ), . . . denote positive constants which depend only on
the quantities a, b, . . . displayed in their arguments and whose values might
change from one estimate to another.

1.3. The semi-relativistic Pauli-Fierz and no-pair models. In what fol-
lows we shall denote the maximal operator of multiplication with the Coulomb
potential, −γ/|x|, γ > 0, in H by Vγ. Then the semi-relativistic Pauli-Fierz
(SRPF) operator is defined, a priori on the dense domain D , as

Hsr
γ := |DA|+ Vγ +Hf .

Notice that the absolute value |DA| is actually a square root operator min-
imally coupled to A. For, if the Dirac matrices are given in the standard
representation, then

|DA| = T 1/2
A ⊕ T 1/2

A , TA := (σ · (−i∇x +A))2 + 1 ,
where σ is a formal vector containing the three 2×2 Pauli spin matrices. Ac-
cording to [10] the quadratic form associated with Hsr

γ is semi-bounded below,
if and only if γ is less than or equal to the critical constant in Kato’s inequality,

γsrc := 2/π .

Thus, the range of stability of Hsr
γ is the same as the one of the purely electronic

square root operator,

Hel,sr
γ :=

√
1−∆x + Vγ .

From now on the symbol Hsr
γ will again denote the Friedrichs extension of the

SRPF operator, provided that γ ∈ [0, γsrc ].
Compared to the non-relativistic Pauli-Fierz model there are only a few

mathematical works dealing with its semi-relativistic analogue: Spinless square
root operators coupled to quantized fields appear in the study of Rayleigh
scattering in [6] and the fiber decomposition of Hsr

γ=0 is investigated in [17]. To
recall some further results we define the ionization threshold and the ground
state energy of Hsr

γ , respectively, as

Σsr := inf σ[Hsr
0 ] , Esr

γ := inf σ[Hsr
γ ] , γ ∈ (0, γsrc ] .

Then the following shall be relevant for us:

Proposition 1.1 ([8, 9]). (i) For all e ∈ R, Λ > 0, and γ ∈ (0, γsrc ],

(1.9) Σsr − Esr
γ > 1− inf σ[Hel,sr

γ ] > 0 .

(ii) For all e ∈ R, Λ > 0, and γ ∈ (0, γsrc ), E
sr
γ is an eigenvalue of Hsr

γ .
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Proof. Part (i) follows from [8] (at least in the case γ ∈ (0, 1/2), where Hsr
γ is

essentially self-adjoint on D [10]). An alternative proof of (1.9) covering all
γ ∈ (0, γsrc ] can be found in [9]. Part (ii) is the main result of [9]. �

In the present paper we shall extend the results on the spatial exponential
localization of spectral subspaces below Σsr of Hsr

γ , γ ∈ (0, γsrc ), [15] and Propo-
sition 1.1(ii) to the critical case γ = γsrc .

In order to introduce the second model studied in this paper we first recall
that the spectrum of DA consists of two half-lines, σ(DA) = (−∞,−1]∪ [1,∞).
We denote the orthogonal projections onto the positive and negative spectral
subspaces by

P±
A := 1R±(DA) =

1

2
1± 1

2
SA , SA := DA |DA|−1.

Then the no-pair operator is a self-adjoint operator acting in the positive spec-
tral subspace P+

AH defined, a priori on the dense domain P+
A D ⊂ P+

AH ,
by

(1.10) H+
γ := P+

A (DA + Vγ +Hf)P
+
A .

Thanks to [15, Proof of Lemma 3.4(ii)], which implies that P+
A maps D into

D(D0) ∩ D(Hν
f ), for every ν > 0, and Hardy’s inequality, we actually know

that H+
γ is well-defined on D . Due to [10] the quadratic form associated with

H+
γ is semi-bounded below, if and only if γ is less than or equal to

γnpc := 2/(2/π + π/2) ,

which is the critical constant in the Brown-Ravenhall model determined in [4].
Again we denote the Friedrichs extension of the no-pair operator by the same
symbol H+

γ , if γ ∈ [0, γnpc ]. Because of technical reasons it is convenient to add

the following counter-part acting in the negative spectral subspace P−
A H ,

H−
γ := P−

A (−DA + Vγ +Hf)P
−
A , γ ∈ [0, γnpc ] ,

which is also defined as a Friedrichs extension starting from D . In fact, H+
γ

and H−
γ are unitarily equivalent as the unitary and symmetric matrix ϑ :=

α1 α2 α3 α0 anti-commutes with DA, so that ϑP+
A = P−

A ϑ. Thus, if questions
like localization and existence of ground states are addressed, then we may
equally well consider the operator

(1.11) Hnp
γ := H+

γ ⊕H−
γ = H+

γ ⊕ {ϑH+
γ ϑ} .

For later reference we observe that

(1.12) Hnp
γ = |DA|+

1

2
(Vγ +Hf) +

1

2
SA (Vγ +Hf)SA on D .

The mathematical analysis of a molecular analogue of H+
γ has been initiated

in [12] where the stability of the second kind of relativistic matter has been
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established in the no-pair model under certain restrictions on e, Λ, and the
nuclear charges. Moreover, an upper bound on the (positive) binding energy is
derived in [11]. To recall some results on hydrogen-like atoms used later on we
put

Σnp := inf σ[Hnp
0 ] , Enp

γ := inf σ[Hnp
γ ] , γ ∈ (0, γnpc ] .

Both parts of the following proposition are proven in [10]:

Proposition 1.2 ([10]). (i) For all e ∈ R, Λ > 0, and γ ∈ (0, γnpc ], there is
some c(γ, e,Λ) > 0 such that

(1.13) Σnp −Enp
γ > c(γ, e,Λ) .

(ii) For all e ∈ R, Λ > 0, and γ ∈ (0, γnpc ), Enp
γ is an eigenvalue of Hnp

γ .

The exponential localization of spectral subspaces corresponding to energies
below Σnp is shown in [15], again for sub-critical values of γ only. We propose
to extend the latter result as well as Proposition 1.2(ii) to the case γ = γnpc in
the present article.

We close this subsection by recalling some further results of [10] used later on.
In order to improve the localization estimates of [15] and to deal with critical
coupling constants the bounds in (1.14) below are particularly important. For
they allow to control small pieces of the electronic kinetic energy by the total
Hamiltonian even in the critical cases. Their proofs involve a strengthened
version of the sharp generalized Hardy inequality obtained recently in [5, 19]
and an analogous inequality for the Brown-Ravenhall model [5].

Proposition 1.3 ([10]). Let γc be γ
sr
c or γnpc and Hγ be Hsr

γ or Hnp
γ . Then, for

all e ∈ R and Λ > 0, the following holds:

(i) For γ ∈ [0, 1/2), Hγ is essentially self-adjoint on D.

(ii) For all ε ∈ (0, 1), δ > 0, and γ ∈ [0, γc],

|D0|ε 6 δ Hγ + C(e,Λ, δ, ε) , |DA|ε 6 δ Hγ + C ′(e,Λ, δ, ε) ,(1.14)

in the sense of quadratic forms on Q(Hγ).

(iii) D(Hγ) ⊂ D(Hf) and, for all δ > 0, γ ∈ [0, γc], and ψ ∈ D(Hγ),

(1.15) ‖Hf ψ‖ 6 (1 + δ) ‖Hγ ψ‖+ C(e,Λ, δ) ‖ψ‖ .

2. Exponential localization

In this section we show that low-lying spectral subspaces of Hsr
γ and Hnp

γ are

exponentially localized with respect to x in a L2 sense. This result is stated
and proven in Theorem 2.4 at the end of this section. The general idea behind
its proof, which rests on a simple identity involving the spectral projection (see
(2.7)) and the Helffer-Sjöstrand formula, is due to [1]. (More precisely, (2.7) is
variant of a similar identity used in [1]. It has been employed earlier in [14].)
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From a technical point of view the key step in the proof consists, however,
in showing that the resolvent of a certain comparison operator stays bounded
after the conjugation with exponential weights (Lemma 2.3). Moreover, one
has to derive a useful resolvent identity involving the comparison operator
and the original one (Lemma 2.2). In these steps our arguments are more
streamlined and simpler than those used in the earlier paper [15] as we work
with a simpler comparison operator. Moreover, we now treat critical γ as well.
By now these improvements are possible thanks to the results of [10] collected
in Proposition 1.3.

In the whole section we fix some µ ∈ C∞
0 (R3

x, [0, 1]) such that µ = 1 on
{|x| 6 1} and µ = 0 on {|x| > 2} and set µR(x) := µ(x/R), for all x ∈ R3 and
R > 1. Then we put

Vγ,R := (1− µR) Vγ = (µR − 1) γ/|x̂| ,
and define two comparison operators (compare (1.12)),

Hsr
γ,R := |DA|+ Vγ,R +Hf , γ ∈ (0, γsrc ] ,

Hnp
γ,R := |DA|+

1

2
(Vγ,R +Hf) +

1

2
SA (Vγ,R +Hf)SA , γ ∈ (0, γnpc ] ,

on the domain D to start with. According to Proposition 1.3(i) both operators
then are essentially self-adjoint and we again use the symbols Hsr

γ,R and Hnp
γ,R

to denote their self-adjoint closures. Clearly,

(2.1) Hsr
γ,R > Σsr − ‖Vγ,R‖∞ , Hnp

γ,R > Σnp − ‖Vγ,R‖∞ ,

where ‖Vγ,R‖ 6 1/R, R > 1. In order to treat both models at the same time
we shall use the following notation from now on:

(2.2)

{
The symbols H, HR, Σ, E denote either
Hsr

γ , H
sr
γ,R, Σ

sr, Esr
γ or Hnp

γ , Hnp
γ,R, Σ

np, Enp
γ .

Since the domains of H and HR will in general be different we cannot compare
their resolvents by means of the second resolvent identity. To overcome this
problem we shall regularize the difference of their resolvents by means of the
following cut-off function, which is also kept fixed throughout the whole section:

We pick some χ ∈ C∞(R3
x, [0, 1]) such that χ = 0 on {|x| 6 2} and χ = 1 on

{|x| > 4} and set χR(x) := χ(x/R), for all x ∈ R3 and R > 1.
Finally, we introduce a class of weight functions,

Wa :=
{
F ∈ C∞(R3

x, [0,∞)) : F (0) = 0 , ‖F‖∞ <∞ , |∇F | 6 a
}
,

where a ∈ (0, 1), and define two families of operators on the dense domain D ,

UF
R (z) := (H − z)−1 (HR −H)χR e

F ,

W F
R (z) := (H − z)−1 [χR , HR] e

F ,
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for z ∈ C \ R, R > 1, F ∈ Wa, and a ∈ (0, 1). Since (Vγ − Vγ,R)χR = 0 we
actually have UF

R (z) = 0 when H = Hsr
γ .

Lemma 2.1. Let z ∈ C \ R, R > 1, F ∈ Wa, and a ∈ (0, 1/2]. Then UF
R (z) and

W F
R (z) extend to bounded operators on H and

sup
F∈Wa

‖UF
R (z)‖ 6 C(e,Λ, R)

1 ∨ |Re z|
1 ∧ |Im z| , sup

F∈Wa

‖W F
R (z)‖ 6 C ′(e,Λ, R)

1 ∨ |Re z|
1 ∧ |Im z| .

Proof. In the case of the no-pair operator we have

UF
R (z) =

1

2
SA (Hnp

γ − z)−1 (Vγ,R − Vγ) e
F
[
e−F SA e

F , χR

]
on D ,

where we used [Hnp
γ , SA] = 0 = (Vγ − Vγ,R)χR. In Lemma A.2 we shall show

that
∥∥ |x̂|−κ (Hf + 1)−

1/2 [e−F SA e
F , χR]

∥∥ 6 C(e,Λ, κ) ‖∇χ‖/R ,

for every κ ∈ [0, 1). Combining the previous bound with the following conse-
quence of |x̂|−1/2 6 C |D0|1/2, (1.14), and (1.15),

∥∥ |x̂|−1/8H
1/2
f ψ

∥∥2
6

∥∥ |x̂|−1/4 ψ
∥∥ ∥∥Hf ψ

∥∥ 6 C(e,Λ)
1 ∨ |Re z|2
1 ∧ |Im z|2

∥∥(Hnp
γ − z)ψ

∥∥2
,

for every ψ ∈ D(Hnp
γ ), we deduce that

∥∥UF
R (z)ϕ

∥∥ 6
1

2

∥∥ |x̂|−1/8 (Hf + 1)
1/2(Hnp

γ − z)−1
∥∥ ‖eFµR‖

·
∥∥ |x̂|−7/8(Hf + 1)−

1/2[e−F SA e
F , χR]ϕ

∥∥

6 C ′(e,Λ) (e2aR/R)
1 ∨ |Re z|
1 ∧ |Im z| ‖ϕ‖ , ϕ ∈ D .

Next, we turn to W F
R (z). In the case of the SRPF operator [χR , H

sr
γ,R] =

[χR , |DA| ], and it follows from Lemma A.3 that, for all F ∈ Wa,

(2.3)
∥∥ [χR, SA] e

F
∥∥+

∥∥ |DA|−1/4[χR, |DA| ] eF
∥∥ 6 C ‖∇χR e

F‖∞ 6 C ′ e4aR/R .

Here we also used that 0 6 F 6 4aR on supp(∇χR). On account of (1.14) we
also have

∥∥ |DA|1/4(Hsr
γ − z)−1

∥∥ 6 C(e,Λ)
1 ∨ |Re z|
1 ∧ |Im z| .

Putting these remarks together we arrive at the asserted bound on W F
R (z) for

the SRPF operator.
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In the case of the no-pair operator

[χR , H
np
γ,R] e

F = [χR , |DA| ] eF

+
1

2
[χR, SA] e

F Hf e
−FSA e

F +
1

2
SAHf [χR, SA] e

F

+
1

2
[χR, SA] e

F Vγ,R e
−FSA e

F +
1

2
SA Vγ,R [χR, SA] e

F .(2.4)

The first term on the RHS of (2.4) is dealt with exactly as in the case of the
SRPF operator above. Moreover, on account of (2.3) and ‖e−FSAe

F‖ 6 1+C a
(see (A.7)) the norms of both operators in the third line of (2.4) are bounded
by some F -independent constant times e4aR/R2. By Lemma A.5 we finally
have
∥∥(Hf + 1)−1 [χR , SA] e

F Hf

∥∥ 6 C(e,Λ) ‖∇χR e
F‖∞ 6 C(e,Λ) ‖∇χ‖ e4aR/R ,

and we conclude by means of the following consequence of (1.15),

∥∥Hf SA (Hnp
γ − z)−1

∥∥ =
∥∥Hf (H

np
γ − z)−1

∥∥ 6 C(e,Λ)
1 ∨ |Re z|
1 ∧ |Im z| .

Here we also use that [Hnp
γ , SA] = 0. �

Lemma 2.2. For all z ∈ C \ R, R > 1, F ∈ Wa, and a ∈ (0, 1/2],

χR (H − z)−1 − (HR − z)−1χR = (HR − z)−1e−F
(
UF
R (z)

∗ +W F
R (z)∗

)
.

Proof. For all ϕ ∈ D ,
{
(H − z)−1 χR − χR (HR − z)−1

}
(HR − z)ϕ

= (H − z)−1 χR (HR − z)ϕ− χR ϕ

= (H − z)−1 (HR −H +H − z)χR ϕ− χR ϕ+ (H − z)−1 [χR , HR]ϕ

=
{
(H − z)−1 (HR −H)χR e

F
}
e−Fϕ+

{
(H − z)−1 [χR , HR] e

F
}
e−Fϕ

=
(
U

F

R(z) +W
F

R(z)
)
e−F (HR − z)−1(HR − z)ϕ .

Now, U
F

R(z) and W
F

R(z) are bounded and (HR − z)D is dense in H , as HR is
essentially self-adjoint on D . Hence, we infer that

(H − z)−1 χR − χR (HR − z)−1 =
(
U

F

R(z) +W
F

R(z)
)
e−F (HR − z)−1.

Taking the adjoint of this operator identity and replacing z by z we arrive at
the assertion. �

Lemma 2.3. There exist g : (0,∞) → (0,∞) and a0 ∈ (0, 1/2] such that the
following bound holds, for all δ > 0 and a ∈ (0, a0],

sup
{
‖eF (HR − z)−1e−F‖ : F ∈ Wa , Re z 6 Σ− ‖Vγ,R‖∞ − g(a)− δ

}
6

1

δ
.

10



In the case of the SRPF operator we may choose a0 = 1/2 and g(a) = C a2,
for some universal constant C > 0. In the case of the no pair operator we may
choose g(a) = C(e,Λ) a.

Proof. It suffices to show that, for Re z 6 Σ− ‖Vγ,R‖∞ − g(a)− δ and ψ ∈ D ,

δ ‖ψ‖2 6 Re
〈
ψ
∣∣ eF (HR − z) e−Fψ

〉
6 ‖ψ‖

∥∥eF (HR − z) e−Fψ
∥∥ .(2.5)

In fact, if F ∈ Wa, then e
−F maps D bijectively into itself, thus (HR−z) e−FD is

dense in H , as we know thatHR is essentially self-adjoint on D and z ∈ ̺(HR).
In particular, we may insert ψ := eF (HR − z)−1e−Fϕ, ϕ ∈ H , into (2.5), since
F ∈ Wa is bounded, and this yields the assertion.

First, we prove (2.5) for the SRPF operator. To this end we put

KF := [SA , e
F ] e−F , ±F ∈ Wa .

We know from [15, Lemma 3.5] that ‖KF‖ 6 C a. (We also re-obtain this
bound as a special case of (A.5) below.) By a straightforward computation
using [DA, e

F ]e−F = −iα · ∇F we then find as in [15]

Re
[
eF Hsr

γ,R e
−F −Hsr

γ,R

]
= Re

[
eF |DA| e−F − |DA|

]

=
1

2
DA

[
e−F , [SA , e

F ]
]
− i

2
α · ∇F (KF −K−F ) on D .

On account of ‖KF‖ 6 C a, ‖α · ∇F‖ 6 ‖∇F‖∞ 6 a, and the bound

(2.6)
∥∥DA

[
e−F , [SA , e

F ]
] ∥∥ 6 C ′ ‖∇F‖2∞ 6 C ′ a2,

proven in [15, Lemma 3.6] and Lemma A.4 below we arrive at

Re
[
eF Hsr

γ,R e
−F

]
> Hsr

γ,R − C ′′a2 > Σsr − ‖Vγ,R‖∞ − C ′′a2 on D .

Therefore, we obtain (2.5) for the SRPF operator.
Next, we treat the no-pair operator. In this case

eF Hnp
γ,R e

−F −Hnp
γ,R = eF |DA| e−F − |DA|+

1

2
△(Vγ,R) +

1

2
△(Hf)

on D , where

△(T ) := eF SA T SA e
−F − SA T SA = −SA T KF −KF T SA +KF T KF ,

for T = Vγ,R and T = Hf . Clearly, ‖△(Vγ,R)‖ 6 O(a) ‖Vγ,R‖∞ since ‖KF‖ 6

C a, and

|〈ϕ |△(Hf)ϕ 〉| 6 a 〈ϕ |SAHf SA ϕ 〉+ (1 + 1/a)
∥∥H1/2

f KF ϕ
∥∥2

6 aC(e,Λ) 〈ϕ | (Hnp
γ,R + ‖Vγ,R‖∞)ϕ 〉 ,

for all a ∈ (0, 1/2] and ϕ ∈ D , where we used
∥∥H1/2

f KF (Hf + 1)−
1/2
∥∥ 6 C(e,Λ) a

11



in the second step, which follows from (A.12) below. Therefore,

Re
[
eF Hnp

γ,R e
−F

]
> (1−O(a))Hnp

γ,R −O(a) ‖Vγ,R‖∞ − C ′′a2

> Σnp − ‖Vγ,R‖∞ −O(a) Σnp ,

for all sufficiently small a > 0, and we conclude as above in the SRPF case. �

In the following theorem, which is our first main result, we denote the spectral
family of some self-adjoint operator, T , as R ∋ λ 7→ 1λ(T ).

Theorem 2.4 (Exponential localization). Let e ∈ R and Λ > 0. Then the
following assertions hold true:

(i) There is some universal constant, C > 0, such that, for all λ < Σsr, a ∈
(0, 1/2] with ∆ := Σsr − λ−C a2 > 0, and γ ∈ (0, γsrc ], we have Ran(1λ(H

sr
γ )) ⊂

D(ea|x̂|) and ∥∥ea|x̂| 1λ(H
sr
γ )

∥∥ 6 C(e,Λ,∆) .

(ii) There is some C(e,Λ) > 0, such that, for all λ < Σnp, a > 0 with ∆ :=
Σnp − λ − C(e,Λ) a > 0, and γ ∈ (0, γnpc ], we have Ran(1λ(H

np
γ )) ⊂ D(ea|x̂|)

and ∥∥ea|x̂| 1λ(H
np
γ )

∥∥ 6 C ′(e,Λ,∆) .

Proof. We treat both models simultaneously again using the notation (2.2) and
the function g appearing in the statement of Lemma 2.3.

We put ∆ := Σ − λ − g(a) and choose R := 1 ∨ (3/∆) so that HR >

Σ − ‖VR‖∞ > Σ − ∆/3; recall (2.1). Then we pick some f ∈ C∞
0 (R, [0, 1])

satisfying f = 1 on [E, λ] and f = 0 on R\(E−1, λ+∆/3), so that f(HR) = 0,
thus

(2.7) χR 1λ(H) =
(
χR f(H)− f(HR)χR

)1λ(H) .

(This identity with χR replaced by 1 is observed in [1] for similar purposes.)
As in [1] we extend f almost analytically to some f ∈ C∞

0 (C) with
supp(f) ⊂ [E − 1, λ+∆/3] + i [−1, 1] , |∂zf(z)| 6 C(∆, N) |Im z|N , z ∈ C ,
and apply the Helffer-Sjöstrand formula,

f(T ) =

∫C(T − z)−1 dµ(z) , dµ(z) :=
1

2πi
∂zf(z) dz ∧ dz ,

which is valid, for any self-adjoint operator T in some Hilbert space; see, e.g.,
[3]. Combining it with (2.7) and Lemma 2.2 we obtain, for every F ∈ Wa,

χR e
F 1λ(H) =

∫C eF (
χR (H − z)−1 − (HR − z)−1χR

)1λ(H) dµ(z)

=

∫C eF (HR − z)−1e−F
(
UF
R (z)

∗ +W F
R (z)∗

)1λ(H) dµ(z) .

12



Applying Lemma 2.1 and Lemma 2.3 (with δ = ∆/3) we arrive at

sup
F∈Wa

∥∥χR e
F 1λ(H)

∥∥ 6
C(e,Λ, R)

∆

∫C |∂zf(z)|
|Im z| |dz ∧ dz| 6 C(e,Λ,∆) .

To conclude we pick a sequence Fn ∈ Wa, n ∈ N, converging monotonically to
a|x|−a on {|x| > 2}. Then, by monotone convergence,

∫R3 e
2a|x|‖ψ(x)‖2

F4
b
d3x =

lim
n→∞

∫R3 e
2Fn(x)‖ψ(x)‖2

F4
b
d3x 6 C ′(e,Λ,∆), for ψ ∈ Ran(1λ(H)) ⊂

∫ ⊕R3 F 4
b d

3x.

�

3. Ground states at critical coupling

Starting from the assertions of Propositions 1.1(ii) and 1.2(ii), namely that
Hsr

γ and Hnp
γ have eigenvalues at the bottom of their spectra, as long as γ is

sub-critical, we prove in this section that both operators still possess ground
state eigenvectors, when γ attains the critical values γsrc and γnpc , respectively.

We shall make use of the following abstract lemma which is a variant of a
result we learned from [1]; see [9, Lemma 5.1] for a proof.

Lemma 3.1. Let T, T1, T2, . . . be self-adjoint operators acting in some separable
Hilbert space, X , such that {Tj}j∈N converges to T in the strong resolvent
sense. Assume that Ej is an eigenvalue of Tj with corresponding eigenvector
φj ∈ D(Tj). If {φj}j∈N converges weakly to some 0 6= φ ∈ X , then E :=
limj→∞Ej exists and is an eigenvalue of T . If Ej = inf σ[Tj ], then T is semi-
bounded below and E = inf σ[T ].

As we wish to consider the limit as γ approaches its critical values we employ
the following new convention from now on:

(3.1)

{
The symbols Hγ, Σ, Eγ, γc denote either
Hsr

γ , Σ
sr, Esr

γ , γ
sr
c or Hnp

γ , Σnp, Enp
γ , γnpc .

Lemma 3.2. Hγ converges to Hγc in the strong resolvent sense, as γ ր γc. In
particular,

(3.2) lim sup
γ<γc

Eγ 6 Eγc .

Proof. For every γ ∈ (0, γc), we know that Q(Hγ) = Q(|D0|)∩Q(Hf) ⊂ Q(Hγc)

[10]. Since D is a form core for Hγc we thus have ∩γ<γcQ(Hγ) = Q(Hγc), where
the closure is taken with respect to the form norm ofHγc . Since the expectation
values 〈ϕ |Hγ ϕ 〉 ց 〈ϕ |Hγc ϕ 〉 converge monotonically, as γ ր γc, for every
ϕ ∈ ∩γ<γcQ(Hγ) = Q(|D0|) ∩ Q(Hf), it follows from [20, Satz 9.23a] that Hγ

converges to Hγc in the strong resolvent sense. �

In order to verify the assumption φ 6= 0 of Lemma 3.1 we shall adapt a com-
pactness argument from [7]. To this end we need the infra-red bounds of the
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next proposition which give some information on the localization and the weak
derivatives of ground state eigenvectors with respect to the photon variables.
In non-relativistic QED soft photon bounds (without infra-red regularization)
have been obtained first in [2] and photon derivative bounds have been intro-
duced in [7]. To state these bounds for our models we recall the notation

(a(k)ψ)(n)(k1, . . . , kn) = (n+ 1)1/2 ψ(n+1)(k, k1, . . . , kn) , n ∈ N0 ,

almost everywhere, for ψ = (ψ(n))∞n=0 ∈ Fb[K ], and a(k) (ψ(0), 0, 0, . . . ) = 0.

Proposition 3.3 (Infra-red bounds). Let e ∈ R and Λ > 0. Then there
is some C(e,Λ) ∈ (0,∞), such that, for all γ ∈ (0, γc) and every normalized
ground state eigenvector, φγ, of Hγ, we have the soft photon bound,

(3.3) ‖a(k)φγ‖2 6 1{|k|6Λ}
C(e,Λ)

|k| ,

for almost every k = (k, λ) ∈ R3 × Z2, and the photon derivative bound,

(3.4)
∥∥ a(k, λ)φγ − a(p, λ)φγ

∥∥ 6 C(e,Λ) |k− p|
( 1

|k|1/2|k⊥|
+

1

|p|1/2|p⊥|
)
,

for almost every k,p ∈ R3 with 0 < |k| < Λ, 0 < |p| < Λ, and λ ∈ Z2. (Here
we use the notation (1.3).) In particular,

(3.5) sup
γ∈(0,γc)

∞∑

n=1

n ‖φ(n)
γ ‖2 <∞ ,

where φγ = (φ
(n)
γ )∞n=0 ∈

⊕∞
n=0 L

2(R3,C4)⊗ F
(n)
b [K ].

Proof. First, we prove the soft photon bound (3.3) for the SRPF operator. To
this end we put

RA(iy) := (DA − iy)−1, y ∈ R , Rk := (Hsr
γ −Esr

γ + |k| )−1, k 6= 0 ,

and (recall (1.5))

G̃x(k) := Gx(k)−G0(k) = G0(k) (e
−ik·x − 1) .

For γ ∈ (0, γsrc ), we derived the following representation in [9],

a(k)φγ := i
(
|k| Rk − 1

)
G0(k) · x̂φγ −Rk α · G̃x̂(k)SAφγ + Iγ(k) ,

for almost every k = (k, λ) ∈ R3 × Z2, where

Iγ(k) :=

∫RRkDARA(iy)α · G̃x̂(k)RA(iy)φγ
dy

π
.

Here the Bochner integral Iγ(k) is actually absolutely convergent. In fact, pick
some F ∈ C∞(R3

x, [0,∞)) such that F (x) = a|x|, for large |x|, and |∇F | 6 a,
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where a is sufficiently small. By virtue of (1.14) and Theorem 2.4 we then
obtain

‖Iγ(k)‖ 6

∫R {∥∥ |DA|1/4 Rk

∥∥ ∥∥ |DA|3/4RA(iy)
∥∥

· |G0(k)| sup
x

∣∣(e−ik·x − 1) e−F (x)
∣∣ ‖eFRA(iy) e

−F‖ ‖eFφγ‖
} dy

π
.

Here ‖ |DA|1/4 Rk ‖ 6 C(e,Λ)/(1∧ |k|) by (1.14), ‖ |DA|3/4RA(iy)‖ 6 C 〈y〉−1/4,
and the composition eFRA(iy) e

−F is well-defined with ‖eFRA(iy) e
−F‖ 6

C 〈y〉−1 by Lemma A.1 below. Using also |G0(k)| 6 (|e|/2π) |k|−1/2 1{|k|6Λ}

and |e−ik·x − 1| 6 |k| |x|, we arrive at the γ-independent estimate

‖Iγ(k)‖ 6 1{|k|6Λ}
C ′(e,Λ) |k|1/2

1 ∧ |k| ·sup
γ<γsr

c

‖eFφγ‖ 6 1{|k|6Λ}
C ′′(e,Λ)

|k|1/2 ,

for almost every k = (k, λ) ∈ R3 × Z2. Now, it is also clear how to estimate
the remaining terms in the formula for a(k)φγ and to get (3.3). (Notice that
‖eF SA φγ‖ 6 ‖eFSA e

−F‖ ‖eFφγ‖, where ‖eFSA e
−F‖ 6 1 + C a by (A.7) and

a simple approximation argument.)
In a similar fashion we next derive the photon derivative bound (3.4) for the

SRPF operator. In fact, ‖(Rk−Rp)ψ‖ 6 |p|−1|k−p| ‖Rk ψ‖, ψ ∈ H , by the
first resolvent identity, thus

‖Iγ(k, λ)− Iγ(p, λ)‖

6

∫R {∥∥ |DA|1/4 Rk

∥∥ ∥∥ |DA|3/4RA(iy)
∥∥

· sup
x

{
|G̃x(k, λ)− G̃x(p, λ)|e−F (x)

}
‖eFRA(iy) e

−F‖ ‖eFφγ‖
} dy

π

+
|k− p|
|p|

∫R {∥∥ |DA|1/4 Rk

∥∥ ∥∥ |DA|3/4RA(iy)
∥∥

· sup
x

{
|G̃x(p, λ)|e−F (x)

}
‖eFRA(iy) e

−F‖ ‖eFφγ‖
} dy

π
.

Here |G̃x(p, λ)| 6 (|e|/2π) |p|1/2|x| 1{|p|6Λ} and some elementary estimates [7]
(see also [9, §6.3]) using the special choice (1.4) of the polarization vectors
reveal that

|G̃x(k, λ)− G̃x(p, λ)|
|k| 6 C (1 + |x|) |k− p|

( 1

|k|1/2|k⊥|
+

1

|p|1/2|p⊥|
)
,(3.6)

provided that 0 < |k|, |p| < Λ. By Young’s inequality, also |k− p| |k|−1|p|−1/2

is bounded by the RHS of (3.6). Putting these remarks together we conclude
that ‖Iγ(k, λ)− Iγ(p, λ)‖ is bounded from above by the RHS of (3.4), for 0 <
|k|, |p| < Λ. Again we leave the treatment of the first two terms in the formula
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for a(k)φγ to the reader; we just note that |k|−1
∣∣ |k|G0(k, λ) − |p|G0(k, λ)

∣∣
can bounded by the RHS of (3.6), too; see [7] or [9, §6.3].

Finally, in the case of the no-pair operator we already observed in [10, Re-
mark 7.2] that the bound proven in Theorem 2.4(ii) provides a proof of the
infra-red bounds (3.3) and (3.4) with a γ-independent constant. In fact, in
[10] we derived a formula for a(k)φγ, when φγ is a ground state eigenvector of
Hnp

γ , γ ∈ (0, γc), which comprises of more terms than in the SRPF case but is
otherwise completely analogous. Hence, by essentially the same estimates as
above we may derive the infra-red bounds also for the no-pair model. �

Finally, we arrive at the principal result of this article:

Theorem 3.4 (Ground states at critical coupling). For e ∈ R and Λ > 0,
the minima of the spectra of both Hsr

γsr
c
and H+

γnp
c

are eigenvalues.

Proof. Again we treat both models simultaneously using the notation (3.1).
(Recall that in view of (1.11) it suffices to show the existence of ground states
for Hnp

γnp
c

instead of H+
γnp
c

in the no-pair model.)

Let φγ denote a normalized ground state eigenvector of Hγ, for every γ ∈
(0, γc). Then the family {φγ}γ∈(0,γc) contains some weakly convergent sequence,
{φγj}j∈N, γj ր γc. We denote the weak limit of the latter by φγc. On account
of Lemmata 3.1 and 3.2 it suffices to show that φγc 6= 0.

With the exponential localization and infra-red bounds at hand the following
compactness argument is the same as in [7] (where an artificial photon mass is
removed instead), except that we first take the partial Fourier transform with
respect to x before we apply the Rellich-Kondrashov theorem. (If one does
not exchange the roles of the electronic position and momentum coordinates
then the compactness argument requires imbedding theorems for more exotic
function spaces since one has to deal with fractional derivaties w.r.t. x [9, 10].
The variant of the argument below can also be used to simplify the proofs in
[9, 10].)

Let ε > 0. On account of (3.5) we find some n0 ∈ N such that

(3.7) ∀ γ ∈ (0, γc) :

∞∑

n=n0+1

‖φ(n)
γ ‖2 < ε

2
.

For n ∈ N, γ ∈ (0, γc], and θ = (ς, λ1, . . . , λn) ∈ {1, 2, 3, 4} × Zn
2 , we set

φ
(n)
γ,θ(x,k1, . . . ,kn) := φ(n)

γ (x, ς,k1, λ1, . . . ,kn, λn)

and denote the partial Fourier transform of φ
(n)
γ,θ with respect to x as φ̂

(n)
γ,θ . Then

the soft photon bound (3.3) shows that φ̂
(n)
γ,θ(ξ,k1, . . . ,kn) = 0, for almost every

(ξ,k1, . . . ,kn) ∈ R3(n+1), such that |kj | > Λ, for some j ∈ {1, . . . , n}. Moreover,
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pick some s ∈ (0, 1). By virtue of (1.14) we then have, for all γ ∈ (0, γc), n ∈ N,
and every choice of θ,

Rs

∫

|ξ|>R

‖φ̂(n)
γ,θ(ξ, ·)‖2L2(R3n) d

3ξ 6 〈 φ(n)
γ,θ | (−∆)s/2 φ

(n)
γ,θ 〉

6 〈 φγ |Hγ φγ 〉+ C(e,Λ, s) = Eγ + C(e,Λ, s) 6 |Eγc |+ Σ + C(e,Λ, s) .

Consequently, we find some R > 1 such that

(3.8)

n0∑

n=1

∥∥1{|ξ|>R} φ̂
(n)
γ

∥∥2
<
ε

2
.

As in [7] an application of Hölder’s inequality with respect to d3ξ d3(n−1)K and
the photon derivative bound (3.4) yield, for p ∈ [1, 2) and γ ∈ (0, γc),∫

|k|<Λ,

|k+h|<Λ

∫∫ ∣∣φ̂(n)
γ,θ(ξ,k+ h,K)− φ̂

(n)
γ,θ(ξ,k,K)

∣∣p d3ξ d3(n−1)K d3k

6 C
∑

λ∈Z2

∫

|k|<Λ,

|k+h|<Λ

∥∥ a(k + h, λ)φγ − a(k, λ)φγ

∥∥p
d3k

6 C ′ |h|p
∫

|(u,v)|<Λ

{ |(u,v)|∫

0

dr

|(u, v)|p/2 +

Λ∫

|(u,v)|

dr

rp/2

}
du dv

|(u, v)|p = C ′′ |h|p,

where the constants C,C ′, C ′′ ∈ (0,∞) depend on p, n,Λ, but not on γ ∈ (0, γc).

Since φ
(n)
γ is permutation symmetric with respect to the variables k1, . . . , kn the

previous estimate implies [18, §4.8] that the weak first order partial derivatives

of φ̂
(n)
γ,θ with respect to its last 3n variables exist on Qn := BR × Bn

Λ, where Bρ

denotes the open ball in R3 of radius ρ centered at the origin, and that

sup
γ∈(0,γc)

‖∇ki
φ̂
(n)
γ,θ‖Lp(Qn) <∞ , p ∈ [1, 2) , i = 1, . . . , n , n = 1, . . . , n0 .

Finally, since supγ∈(0,γc) ‖ea|x̂|φ
(n)
γ,θ‖ <∞, for some a > 0, we know that φ̂

(n)
γ,θ has

weak first order derivatives with respect to ξ and

‖∇ξφ̂
(n)
γ,θ‖Lp(Qn) 6 C(p, n, R,Λ) ‖∇ξφ̂

(n)
γ,θ‖L2(R3(n+1))

= C ′(p, n, R,Λ) ‖x̂φ(n)
γ,θ‖L2(R3(n+1)) 6 C ′′(p, n, R,Λ) .

As observed in [7] bounds with respect to the Lp-norms, p < 2, are actually suffi-

cient in this situation. In fact, if we choose p ∈ [1, 2) so large that 2 < 3(n0+1) p
3(n0+1)−p

,

then, for every n = 1, . . . , n0 and every choice of θ, we may apply the Rellich-

Kondrashov theorem to show that every subsequence of {φ̂(n)
γj ,θ

}j∈N contains
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another subsequence which is strongly convergent in L2(Qn). (Obviously, Qn

satisfies the required cone condition.) By finitely many repeated selections of

subsequences we may hence assume without loss of generality that {φ̂(n)
γj ,θ

}j∈N
converges strongly in L2(Qn) to φ̂

(n)
γc,θ

, for all n = 0, . . . , n0 and θ. Taking (3.7)

and (3.8) into account we arrive at

‖φγc‖2 =
∞∑

n=0

‖φ̂(n)
γc ‖2 > lim

j→∞

n0∑

n=0

∑

θ

‖φ̂(n)
γj ,θ

‖2L2(Qn)
> lim

j→∞
‖φγj‖2 − ε = 1− ε .

Since ε > 0 is arbitrary we conclude that ‖φγc‖ = 1. �

Appendix A. Estimates on commutators

In this appendix we derive some bounds on the operator norms of certain
commutators involving the sign function of the Dirac operator which have been
used repeatedly in the main text. Except for those of Lemma A.2 all results
and estimations presented here are variants of earlier ones in [15]. Nevertheless,
we shall give a self-contained exposition for the convenience of the reader.

The following basic lemma, stating that the resolvent of the Dirac operator,

RA(iy) := (DA − iy)−1, y ∈ R ,
stays bounded after conjugation with suitable exponential weights, is more or
less folkloric, at least in the case of classical vector potentials. The proof of
(A.2) given, e.g., in [14] for classical vector potentials works for quantized ones
without any changes.

Lemma A.1. Let y ∈ R, a ∈ [0, 1), and F ∈ C∞(R3
x,R) such that |∇F | 6 a.

Then iy ∈ ̺(DA + iα · ∇F ) and
RF

A(iy) := eF RA(iy) e
−F = (DA + iα · ∇F − iy)−1 on D(e−F ) ,(A.1)

‖RF
A(iy)‖ 6

√
6 (1− a2)−1〈y〉−1.(A.2)

All commutator estimates below are based on the following representation of
SA = DA |DA|−1 as a strongly convergent principal value,

(A.3) SA ψ = lim
τ→∞

∫ τ

−τ

RA(iy)ψ
dy

π
, ψ ∈ H .

Lemma A.2. For every bounded F ∈ C∞(R3
x,R) with |∇F | 6 1/2, all χ ∈

C∞(R3
x, [0, 1]), and κ ∈ [0, 1),

∥∥ |x̂|−κ (Hf + 1)−
1/2 [eF SA e

−F , χ]
∥∥ 6 C(e,Λ, κ) ‖∇χ‖∞ .

Proof. To begin with we put Ȟf := Hf + 1 and observe that

(A.4) Ȟ
−1/2
f RF

A(iy) = R0(iy)
(
Ȟ

−1/2
f − T RF

A(iy)
)
,
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where T ∈ L (H ) is the closure of Ȟ
−1/2
f α · (A + i∇F ) and satisfies ‖T‖ 6

C(e,Λ). In fact, since R0(iy) and Ȟ
−1/2
f commute we obtain, for every ϕ ∈ D ,

{
Ȟ

−1/2
f RF

A(iy)−R0(iy) Ȟ
−1/2
f

}
(DA + iα · ∇F − iy)ϕ

= −R0(iy) Ȟ
−1/2
f α · (A+ i∇F )ϕ

= −R0(iy) T R
F
A(iy) (DA + iα · ∇F − iy)ϕ .

As DA is essentially self-adjoint on D we know that (DA + iα · ∇F − iy)D is
dense in H and we obtain (A.4). (In fact, if ψ ∈ H and ϕn ∈ D converge to
RF

A(iy)ψ ∈ D(DA) in the graph norm ofDA−iy, then (DA+iα·∇F−iy)ϕn →
ψ.) Applying the generalized Hardy inequality, |x̂|−2κ 6 C(κ) |D0|2κ, and
‖ |D0|κR0(iy)‖ 6 C ′(κ)〈y〉κ−1 we deduce from (A.2) and (A.4) that

∥∥ |x̂|−κ Ȟ
−1/2
f RF

A(iy)
∥∥ 6 C ′′(e,Λ, κ) 〈y〉κ−1.

Together with (A.3), [RF
A(iy), χ] = RF

A(iy) iα · ∇χRF
A(iy), and (A.1)&(A.2)

this permits to get
∣∣〈 |x̂|−κ ϕ

∣∣ Ȟ−1/2
f [eF SA e

−F , χ]ψ
〉∣∣

6

∫R ∣∣〈 |x̂|−κ ϕ
∣∣ Ȟ−1/2

f RF
A(iy) iα · ∇χRF

A(iy)ψ
〉∣∣ dy

π

6 C ′′′(e,Λ, κ)

∫R〈y〉κ−2dy · ‖∇χ‖∞ ‖ϕ‖ ‖ψ‖ ,

for all ϕ ∈ D(|x̂|−κ), ψ ∈ H , and we conclude. �

The bounds derived in the following lemma are slightly more general than the
corresponding ones of [15, Lemma 3.5].

Lemma A.3. Let κ ∈ [0, 1), ε > 0, and χ ∈ C∞(R3
x, [0, 1]) with |∇χ| bounded.

Moreover, let F,G ∈ C∞(R3
x,R) be bounded with bounded first order derivatives

and such that |∇(F −G)| 6 1/2. Then
∥∥ |DA|κ [χ eG , SA ] eF−G

∥∥ 6 C(κ) ‖(∇χ+ χ∇G) eF‖∞ ,(A.5)
∥∥ |DA|−ε [χ eG , |DA| ] eF−G

∥∥ 6 C(ε) ‖(∇χ+ χ∇G) eF‖∞ .(A.6)

In particular, we have, for every bounded G ∈ C∞(R3
x,R) such that |∇G| 6 1/2,

(A.7)
∥∥eGSAe

−G
∥∥ 6 1 + C ‖∇G‖∞ .

Proof. Combining (A.3), the computation

(A.8) [RA(iy), χ e
G] eF−G = RA(iy) iα · (∇χ+ χ∇G) eF RG−F

A (iy) ,
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and the bounds ‖ |DA|κRA(iy)‖ 6 C ′(κ) 〈y〉κ−1 and ‖RG−F
A (iy)‖ 6 C ′ 〈y〉−1 we

find, for all ϕ ∈ D(|DA|κ) and ψ ∈ H ,
∣∣〈 |DA|κ ϕ

∣∣ [χ eG, SA] e
F−G ψ

〉∣∣

6

∫R ∣∣〈 |DA|κ ϕ
∣∣RA(iy) iα · (∇χ+ χ∇G) eF RG−F

A (iy)ψ
〉∣∣ dy

π

6 C ′′(κ) ‖(∇χ+ χ∇G) eF‖∞
∫R〈y〉κ−2dy ‖ϕ‖ ‖ψ‖ ,(A.9)

which gives (A.5). Choosing κ = 0, χ = 1, and F = 0 we also obtain (A.7),
∥∥eGSAe

−G
∥∥ 6 ‖SA‖+

∥∥ [eG, SA] e
−G‖ 6 1 + C ‖∇G‖∞ .

To derive (A.6) we write |DA| = DA SA and compute

[χ eG, |DA| ] eF−G = iα · (∇χ+ χ∇G) eF
(
eG−FSAe

F−G
)
+DA [χ eG, SA] e

F−G

on D . (Thanks to [15, Proof of Lemma 3.4(ii)] we know that SA maps eF−GD =
D into D(D0) ∩D(Hf) which is left invariant under multiplication with χ eG.)
Using |DA|−εDA = SA |DA|κ with κ := 1 − ε < 1 we thus observe that (A.6)
is a consequence of (A.5) and (A.7). �

The next lemma is just a special case of [15, Lemma 3.6].

Lemma A.4. For all bounded F ∈ C∞(R3
x,R) such that |∇F | 6 a 6 1/2, the

bound (2.6) holds true.

Proof. A straightforward computation yields
[
e−F , [RA(iy) , e

F ]
]
= RA(iy) iα · ∇F

{
RF

A(iy) +R−F
A (iy)

}
iα · ∇F RA(iy) .

Together with (A.2) and (A.3) this permits to get
∣∣〈DA ϕ

∣∣ [e−F , [SA , e
F ]
]
ψ
〉∣∣

6

∫R ∥∥DARA(iy)
∥∥ ‖∇F‖2∞

(
‖RF

A(iy)‖+ ‖R−F
A (iy)‖

)
‖RA(iy)‖

dy

π

6 C ‖∇F‖2∞
∫R dy

〈y〉2 ,

for all normalized ϕ ∈ D(DA) and ψ ∈ H . �

The last lemma of this appendix again presents a variant of a bound obtained
in [15, Lemma 3.5]. In order to prove it we recall some technical tool introduced
in [15]. First, we put

(A.10) Ȟf := Hf +K , Tν := [Ȟ−ν
f ,α ·A] Ȟν

f on D ,

and recall the bound ‖Tν‖ 6 C(e,Λ)/K1/2, for ν > 1/2 and K > 1; see [15,
Lemma 3.1]. In view of (A.2) it shows that, for a sufficiently large choice
of K > 1, the Neumann series ΞF

ν (y) :=
∑∞

ℓ=0{−RF
A(iy) T ν}ℓ converges and
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satisfies, say, ‖ΞF
ν (y)‖ 6 2, for all ν > 1/2, y ∈ R, and F ∈ C∞(R3

x,R) with
|∇F | 6 1/2. Moreover, it is easy to verify the following useful intertwining
relation [15, Corollary 3.1],

Ȟ−ν
f RF

A(iy) = ΞF
ν (y)R

F
A(iy) Ȟ

−ν
f .(A.11)

Lemma A.5. Let ν > 1/2 and χ, F , and G be as in Lemma A.3. Then

(A.12)
∥∥(Hf + 1)−ν [χ eG , SA] e

F−GHν
f

∥∥ 6 C(e,Λ)ν ‖(∇χ+ χ∇G) eF‖∞ .

Proof. We define Ȟf by (A.10), for some sufficiently large K > 1 such that the
remarks preceding the statement are applicable. By means of (A.3), (A.8), and
(A.11) we then obtain

∣∣〈ϕ
∣∣ Ȟ−ν

f [χ eG, SA] e
F−GHν

f ψ
〉∣∣

6

∫R ∣∣〈ϕ ∣∣ Ȟ−ν
f RA(iy) iα · (∇χ + χ∇G) eF RG−F

A (iy)Hν
f ψ

〉∣∣ dy
π

6

∫R ∣∣〈ϕ ∣∣Ξ0
ν(y)RA(iy) iα · (∇χ+ χ∇G) eF ×

× ΞG−F
ν (y)RG−F

A (iy) Ȟ−ν
f Hν

f ψ
〉∣∣ dy

π

6 C sup
y∈R{‖Ξ0

ν(y)‖ ‖ΞG−F
ν (y)‖} ‖Hν

f Ȟ
−ν
f ‖ ‖(∇χ+ χ∇G) eF‖∞

∫R〈y〉−2dy

6 C ′ ‖(∇χ+ χ∇G) eF‖∞ ,

for all normalized ϕ, ψ ∈ D . This implies (A.12) since ‖(Hf + 1)−νȞν
f ‖ 6 Kν ,

where our choice of K depends only on e and Λ. �
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