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TRANSITIONS IN ACTIVE ROTATOR SYSTEMS:

INVARIANT HYPERBOLIC MANIFOLD APPROACH

GIAMBATTISTA GIACOMIN, KHASHAYAR PAKDAMAN, XAVIER PELLEGRIN,
AND CHRISTOPHE POQUET

Abstract. Our main focus is on a general class of active rotators with mean field
interactions, that is globally coupled large families of dynamical systems on the unit
circle with non-trivial stochastic dynamics. The dynamics of each isolated system is
dψt = −δV ′(ψt) dt+ dwt, where V

′ is a periodic function, w is a Brownian motion and δ
is an intensity parameter. It is well known that the interacting dynamics is accurately de-
scribed, in the limit of infinitely many interacting components, by a Fokker-Planck PDE
and the model reduces for δ = 0 to a particular case of the Kuramoto synchronization
model, for which one can show the existence of a stable normally hyperbolic manifold
of stationary solutions for the corresponding Fokker-Planck equation (we are interested
in the case in which this manifold is non-trivial, that happens when the interaction is
sufficiently strong, that is in the synchronized regime of the Kuramoto model). We use
the robustness of normally hyperbolic structures to infer qualitative and quantitative
results on the |δ| ≤ δ0 cases, with δ0 a suitable threshold: as a matter of fact, we obtain
an accurate description of the dynamics on the invariant manifold for δ 6= 0 and we link
it explicitly to the potential V . This approach allows to have a complete description of
the phase diagram of the active rotators model, at least for |δ| ≤ δ0, thus identifying for
which values of the parameters (notably, noise intensity and/or coupling strength) the
system exhibits periodic pulse waves or stabilizes at a quiescent resting state. Moreover,
some of our results are very explicit and this brings a new insight into the combined
effect of active rotator dynamics, noise and interaction. The links with the literature on
specific systems, notably neuronal models, are discussed in detail.

2000 Mathematics Subject Classification: 37N25, 82C26, 82C31, 92B20

Keywords: Active rotator model, Coupled excitable systems, Interacting diffusions, Fokker-

Planck PDE, Normally hyperbolic manifolds, Pulsating waves, Neuronal models

1. Introduction

1.1. Coupled excitable systems. There are diverse examples of threshold phenomena
in natural systems. Dynamics of excitable systems, as exemplified by neuronal membranes
(to which we restrict for sake of conciseness), constitute one of the common forms of
threshold behavior. Excitable systems are characterized by their nonlinear response to
perturbations. In the absence of inputs, they remain at a resting state. This state is
locally stable in the sense that the system returns rapidly to it after small perturbations.
However, for inputs beyond a critical range, the response of the system takes on a very
different form, before regaining the resting state. In the phase portrait of the system,
subthreshold responses correspond to monotonic returns to the stable equilibrium while
suprathreshold ones appear as excursions that take the system transiently away from the
stable equilibrium. Excitability is one of the key neuronal properties at the heart of
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signal processing and transmission in nervous systems. Motivated by their ubiquity and
numerous experimental observations attesting to their functional importance, there has
been a characterization of various forms of excitability in terms of the geometry of the
phase portrait of dynamical systems [9].

Excitable systems are particularly sensitive to noise because such random signals contain
consecutive sub and suprathreshold segments that occur in an unpredictable manner. The
interplay between the nonlinearity inherent in the threshold mechanisms and the noise
induced fluctuations can produce a large variety of dynamics in excitable systems, some of
which are reviewed in [12]. In this paper, we consider one of these, namely, noise induced
synchronous coherent oscillations in assemblies of coupled excitable systems.

Noisy excitable systems display irregular repetitive suprathreshold excursions hence-
forth referred to as firing. In ensembles of such units receiving independent noise, the
firings of the units remain independent from one another as long as there are no inter-
connections between them. Coupling the units with one another introduces correlations
between their firings. Synchrony is the extreme form of such correlations when the units
fire almost simultaneously. However, synchronous firings can be irregular. One of the sur-
prising effects of noise in assemblies of interacting excitable systems is that for some range
of coupling strength and noise intensity, units fire synchronously and regularly. The wide
occurrence of these noise induced coherent dynamics and their underlying mechanisms are
well documented as explained below. Their putative functional role in nervous systems is
to participate in rhythm generation in the absence of pacemaker units (see for instance
[10]). Despite the large number of numerical explorations devoted to this phenomenon, it
has not been analyzed from a mathematical standpoint. The purpose of the present paper
is to deal with this aspect.

Two key elements are at play in the occurrence of noise induced regular synchronous
firing in assemblies of interacting excitable units, one is that interacting excitable units act
globally like a single excitable system at the population level, the other is that noise driven
excitable systems undergo coherence resonance [17]. How the combination of these two
phenomena leads to noise induced regularly synchronous firing has been first highlighted
in an analysis of networks of an elementary neuronal model [18, 19], see also [5, 20].

The important point is the generality of this mechanisms. It neither relies on the refined
properties of specific classes of excitable systems nor on the types of coupling. In fact,
noisy assemblies of all common neuronal models, irrespective of the type of excitability,
and whether coupled diffusively or through excitatory pulses or synapses, readily produce
noise induced regular synchronous firing. To our knowledge, one of the earliest reports of
this phenomenon goes back to the explorations of MacGregor and Palasek of randomly
connected populations of neuromimes incorporating a large array of individual neuronal
properties [13]. More recent examples include the description of the same phenomenon
in common neuronal models such as the Hodgkin-Huxley [30], the FitzHugh-Nagumo
[29], the Morris-Lecar [5], the Hindmarsch-Rose [4] and others implementing detailed
biophysical properties [10]. In these references, besides differences in the models there are
also differences in coupling and network architecture: in some the units are diffusively
coupled, in others they are coupled through excitatory pulses; in some connectivity is all-
to-all, while others deal with random networks. Our enumeration, which does not intend
to be exhaustive, illustrates the ease with which assemblies of excitable units generate
noise-induced synchronous regular activity, irrespective of model and network details.

The ubiquity of the phenomenon strongly supports investigating its key characteristics
through the mathematical analysis of a minimal model that captures its essence. The
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model we consider is a general version of the so-called active rotator (AR) which is repre-
sentative of the so-called class I excitable systems [9].

1.2. Active rotator models. The AR is a variant of the Kuramoto model for excitable-
oscillatory systems that evolve on a unit circle [1]. Precisely, the AR model can be intro-
duced via the stochastic equations

dψj(t) = −δV ′ (ψj(t)) dt−
K

N

N∑

i=1

sin (ψj(t)− ψi(t)) dt+ σ dwj(t) , (1.1)

where j = 1, . . . , N , N is a (large) integer, K, σ, and δ are non-negative constants, the
wj ’s are IID standard Brownian motions and V is a smooth function (in the applications
the case in which V ′ is a trigonometric polynomial will play an important role, so me may
as well think of this case). We look at ψj as an element of S := R/2πZ, that is ψj is a
phase, and, of course we have to supply an initial condition for (1.1): for example we can
take {ψj(0)}j=1,...,N to be independent identically distributed random variables.

This set of equations defines a diffusion on S
N describing the evolution of N noisy

interacting phases: note that since K ≥ 0 the interaction has a tendency to synchronize

the ψj’s and let us stress from now that such an N -dimensional diffusion reduces for δ = 0
to a dynamics that is reversible with respect to the Gibbs measure with Hamiltonian given
by −K

N

∑
i,j cos(ψi − ψj) and inverse temperature σ−2. Such a Gibbs measure goes under

the name of “mean field classical XY model”: we refer to [3] for more details, but we point
out that for δ > 0 (of course the case δ < 0 is absolutely analogous), unless V is a periodic
function (which we do not assume: consider for example V ′(ψ) = 1), the dynamics is not
reversible. Nevertheless, it is well known that the large N behavior of such a system can
be described in terms of the Fokker-Planck or McKean-Vlasov PDE (the literature on this
issue is very vast: see for example the references in [3]):

∂tp
δ
t (θ) =

σ2

2
∂2θp

δ
t (θ)− ∂θ

[
pδt (θ)(J ∗ pδt )(θ)

]
+ δ∂θ

[
pδt (θ)V

′(θ)
]
, (1.2)

where J(·) := −K sin(·) and θ ∈ S. To be precise, pδt (·) is a probability density and it

captures theN → ∞ limit of the empirical (probability) measure 1
N

∑N
j=1 δψj(t)( dθ), where

δa is the Dirac delta measure on a. Actually, one can even describe with great accuracy
(as N → ∞) the dynamics of each unit system (in interaction!): it evolves following a non-
local diffusion equation, called at times non-linear diffusion. The non-locality comes from
the fact that ψj is subject not only to the force field V ′, but also to the field corresponding
to the interaction with all other unit systems, and it all boils down to

dψ(t) = −δV ′(ψ(t)) dt+ (J ∗ pδt )(ψ(t)) dt+ σ dw(t) , (1.3)

with w a standard Brownian motion, and it turns out that the probability distribution of
ψ(t) is precisely pδt if ψ(0) has distribution p

δ
0.

In mathematical terms, the question that we want to tackle is: what is the relation
between the simple deterministic one dimensional dynamics ψ̇ = −V ′(ψ) (Isolated Deter-
ministic System: IDS) and the behavior of the associated N dimensional diffusion, for N
large? The question is actually twofold. First, given a potential V for the IDS, what is the
collective dynamic of the N large limit (1.2)? Conversely, what are the possible collective
dynamics of (1.2)? In order to be more concrete let us ask the following sharper questions:
is it possible that
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• the IDS has only one stable point, for example if V (ψ) = ψ − a cos(ψ) for a > 1,
but the N → ∞ system exhibits stable periodic behavior, that is there is a stable
periodic solution to (1.2)?

• the IDS has only periodic solutions, but the N → ∞ system has stable stationary
solutions?

The fact that the answer to these questions is positive is, to a certain extent, known.
Notably, in their numerical investigations of the dynamics of coupled noisy ARs, Shi-
nomoto and Kuramoto reported the existence of collective periodic oscillations, the same
phenomenon we have referred to as noise induced regular synchronous activity [26]. They
also performed numerical explorations of the transitions to and from this coherent state.
The key ingredient in such analyses has been to consider the bifurcations of the associated
Fokker-Planck equation (we anticipate that our results make rigorous some of their pre-
dictions, see Section 3). To clarify how noise generates such time-periodic global activity
in coupled excitable ARs, Kurrer and Schulten approximated the solutions of the nonlin-
ear Fokker-Planck equations by Gaussian distributions [11]. Under this assumption, they
obtained closed ordinary differential equations for the mean and variance of the distribu-
tion and used the bifurcation diagram of these to investigate the regimes where the model
generates periodic oscillations. Related work can be found for example in [6, 14], where
finite N analysis has been performed, or in [15, 16, 27], where variants of the model have
been considered.

However, from a mathematical viewpoint this phenomenon is only very partially under-
stood. We are aware of the contributions [21, 22, 23, 28] that are somewhat close in spirit
to what we are doing: these references deal with periodic behavior in nonlinear Markov
processes and, more generally, with the effect of the noise on (mean field) interacting dy-
namical systems. We also deal with nonlinear Markov processes – the evolution equation
(1.3) contains the law of the process itself – even if this aspect is not emphasized in the
remainder of the paper. In particular, Scheutzow [22] provides examples of mean-field type
systems in which periodic behavior arises in the N → ∞ system, even if it is not present
in absence of noise. The ingenious model set forth in [22] is however rather particular: for
example the author plays with some stochastic differential equations of nonlinear Markov
type that admit also Gaussian solutions and the analysis boils down to studying the be-
havior of the expectation and covariance of these solutions. This is close to the approach
taken by Touboul, Hermann and Faugeras [28], who extensively exploit the preservation

of the Gaussian character that holds for certain nonlinear Markov processes and they do
so for models that aim at describing neural activity. We stress that in their approach the
IDS dynamics is linear, while for us the nonlinearity of the IDS is a key feature. Rybko,
Shlosman and Vladimirov in [21] study a connected network of servers that behaves in a
periodic fashion in the infinite volume limit, when there are sufficiently many customers
per server (load per server): in this regime there is an effective synchronization between
servers and the load per server plays a role which is similar to the parameter K in our
work, cf. (1.1).

1.3. Informal presentation of approach and results. The purpose of this work is
to show that for general AR systems one can systematically (at least for some range of
the parameters) and quantitatively exhibit the relation between the IDS and the infinite
system. This is done by showing that the (infinite-dimensional!) AR system does behave
like a one dimensional AR, and the latter can be throughly analyzed. We obtain such a
drastic reduction of dimension by exploiting the fact that for the δ = 0 case of (1.2) one
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can perform a rather detailed analysis (due to the fact that it is the grandient flow of a
free energy functional [3]). In that case and when K > Kc := σ2, stationary solutions of
(1.2) are the constant 1

2π which is unstable, and a circle M = {q(·− θ0) : θ0 ∈ S}, which is
a manifold of non-constant invariant solutions: these solutions describe the synchronized
state of the oscillators that have a tendency to be close to θ0. The function q : S → (0,∞)
is explicitly known and one can show that M is stable. In fact it has been shown that
M is stable in the sense that it is a stable normally hyperbolic manifold for the δ = 0
evolution (See Section 2.1). A deep result in dynamical systems theory guarantees the
robustness of normal hyperbolicity under suitable perturbations [8], see also [2, 24]: this
means that, if δ > 0 is not too large, there exists an invariant manifold Mδ which is stable
and normally hyperbolic for the evolution (1.2), and Mδ is a smooth deformation of M .
In particular, for small enough δ, Mδ is still a one dimensional manifold diffeomorphic to
a circle, and the phase along this manifold plays the role of the natural phase ψ ∈ S of
the IDS ψ̇ = −V ′(ψ). This makes clearly a direct link between the (one dimensional) IDS
and the N = ∞ system (1.1), which is an infinite dimensional dynamical system.

The type of results that we obtain is well exemplified in the most basic of the active
rotator models, namely the one in which we take V (ψ) = ψ − a cos(ψ) (without loss of
generality: a ≥ 0): note that, for a < 1, the IDS describes just a rotation on the circle,
while for a > 1 the IDS has a stable point (ψ = − arcsin

(
1
a

)
), to which it is driven, unless

sitting on the unstable stationary point ψ = arcsin
(
1
a

)
+ π. Let us keep in mind that Mδ

is close to M , which is a circle, so that also the dynamics on Mδ can be reduced to the
dynamics of a phase (see Fig. 1). We are going to show in particular that

(1) there exists (in fact, we give it explicitly) a0 > 1 such that for a ∈ (1, a0) (so the
IDS has a stable stationary point!) there exist K−,K+ > 1, with K− < K+ such
that for K ∈ (K−,K+), and δ > 0 sufficiently small (1.2) has a stable periodic
solution – a pulsating wave – which corresponds to the fact that the dynamics on
Mδ is periodic. For K ∈ (1,K−) or K > K+ instead the dynamics on the manifold
Mδ has (only) one stable stationary point, so (1.2) has a stable stationary solution
(like the IDS).

(2) for every a ∈ (0, 1), that is the IDS is rotating, one can find K0 > 1 (sufficiently
close to 1) such that whenever K ∈ (1,K0) for δ sufficiently small the dynamics
on Mδ has (only) one stable stationary point.

Actually, these examples are just instances of results that we will establish for general
potentials V . For example we will show that for any V such that V ′ changes sign (so
the IDS has a stable point), for K large enough, the dynamics on the invariant curve
stabilizes at an equilibrium for small δ. Or that for any V such that V ′ > 0 (so the IDS
is rotating), but with nonzero first harmonic coefficient(s), for K close to 1 the dynamics
on the invariant curve stabilizes at an equilibrium for small δ.

Finally, regarding the inverse problem, that is the range of possible dynamics, we show
that given a noise and a coupling strength such that the δ = 0 system exhibits synchroniza-
tion, any (phase) dynamics can be produced on Mδ, for δ sufficiently small, by a suitable
choice of the IDS dynamics (that is, of V ) and the relation between these two dynamics
is explicit.
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p(·)

p(·)
qψ(·)

qψ(·)

ψ

θ π−π 0

Figure 1. For δ sufficiently small the solutions of (1.2) with an initial condition in a
L2-neighborhood of M (in the figure on the left M is drawn by a dashed line), that is an
initial condition close to a qψ(·) = q(· + ψ), stay close to M for all times. In fact, they
are attracted by a manifold Mδ (solid line, still on the left) that is a small (and smooth)
deformation of M . For every function qψ(·) in M one associates only one function p(·)
on Mδ. While the image on the right stresses the function viewpoint, the one on the left
stresses the geometric viewpoint: M is a circle and it is hence parametrized just by one
parameter (the phase ψ), but Mδ can also be reduced simply to ψ. The dynamics on the
two manifolds is hence reduced to the dynamics of ψ, with the substantial difference that
even if the dynamics for δ = 0 is trivial in the sense that M is a manifold of stationary
solutions of (1.2) with δ = 0, for δ > 0 the dynamics on Mδ can be non-trivial. As a
matter of fact, we are going to show that by playing on the choice of V (·) essentially any

phase dynamics can be observed on Mδ, and this for every K and σ such that K > σ2.

2. Mathematical set-up and main results

2.1. On the reversible Kuramoto PDE. Let us first sum up a number of results about

∂tp
0
t (θ) =

1

2
∂2θp

0
t (θ)− ∂θ

[
p0t (θ)(J ∗ p0t )(θ)

]
, (2.1)

where J(θ) := −K sin(θ). Note that we have set σ = 1: there is of course no loss of
generality in doing this. We start by introducing the weighted H−1 spaces that are going
to play an important role in the sequel.

Given a positive smooth function w : S → (0,∞) we define the Hilbert space H−1,w as
the closure of the set of smooth functions S → R such that

∫
S
u = 0 with respect to the

squared norm ‖u‖2−1,w :=
∫
S
wU2, where U = Uw is the primitive of u such that

∫
S
wU = 0.

The alternative way to introduce such a space is in terms of rigged Hilbert spaces can be
found in [3]. When w(·) ≡ 1 we simply write H−1. Let us remark immediately that

‖u‖2−1,w1
=

∫

S

w1

(
Uw2

−
∫
S
w1Uw2∫
S
w1

)2

≤
∫

S

w1U2
w2

≤
∥∥∥∥
w1

w2

∥∥∥∥
∞

‖u‖2−1,w2
, (2.2)

so that the the norms we have introduced are all equivalent. We will also use the affine
space

H̃−1 :=

{
1

2π
+ u : u ∈ H−1

}
, (2.3)

provided with the H−1 distance. The companion space H̃1, defined in the analogous way,
will also appear later on.
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Basic features and the stationary solutions of the reversible Kuramoto PDE. The reversible
Kuramoto PDE has a number of features that we recall here. First of all, the reversible
Kuramoto PDE has strong regularizing properties [7], so that we can safely talk about
classical smooth solutions for all positive times, for example whenever the initial condition
is in L2. In particular, (2.1) defines an L2-semigroup. Actually, the conservative character
of the dynamics and the fact that we are dealing with probability distributions naturally
lead to work on the affine space

L2
1 := {f ∈ L2 :

∫
f = 1} , (2.4)

with the L2 distance. One of the main feature of (2.1), directly inherited from being the
limit of a reversible stochastic dynamics, is that it is the gradient flow of a free energy
(which is therefore a Lyapunov functional for the evolution). These properties underlie
what follows but we do not directly use them, and so we refer to [3], see also [7] for related
results.

What plays a direct role in our analysis is the fact that all the stationary solutions of
(2.1) can be written as

1

Z
exp(2Kr cos(· − ψ)) , (2.5)

where ψ ∈ S (this accounts for the rotation invariance of (2.1)), Z is the normalization
constant (fixed by the requirement of working with probability densities) and r ≥ 0 is a
solution of the fixed point problem

r = Ψ(2Kr) with Ψ(x) :=

∫
S
cos(θ) exp(x cos(θ)) dθ∫

S
exp(x cos(θ)) dθ

. (2.6)

Ψ(0) = 0, so that r = 0 is a solution of the fixed point problem and 1
2π is a stationary

solution. Moreover Ψ(·) is increasing and concave on the positive semi-axis, so that there
exists at most one positive fixed point r and such a fixed point exists if and only if
K > Kc = 1 (see [3] and references therein). So for K > 1 (that we assume from now on)
there is a manifold, in fact a curve, of stationary solution, besides the constant solution:

M := {qψ(·) = q0(· − ψ) : ψ ∈ S} with q0(θ) :=
exp (2Kr cos(θ))∫

S
exp (2Kr cos(θ)) dθ

, (2.7)

where r = r(K) is the positive fixed point of (2.6). We will come back to the manifold
structure of M , but we point out that the main result in [3] means that M is a stable

normally hyperbolic manifold ([24, p. 494]: we are going to detail this just below): we
stress that M is actually a manifold of stationary solutions and not only an invariant
manifold. The key point is that if p0t = q ∈M the linearized evolution operator

− Lqu :=
1

2
u′′ − [uJ ∗ q + qJ ∗ u]′ , (2.8)

with domain {u ∈ C2(S,R) :
∫
S
u = 0} is symmetric in H−1,1/q and its closure, that we

still call Lq, is a self-adjoint operator operator with compact resolvent, hence the spectrum
is discrete. Actually the spectrum is in [0,∞): Lqq

′ = 0 and q′ generates the whole kernel
of Lq: the spectral gap is therefore positive and it will be denoted λK (see [3] for a proof
of all these facts and for an explicit lower bound on λK).
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In such a framework it is useful to take advantage of some of the interpolation spaces
associated to Lq. For us the (Hilbert) spaces Vq and V

2
q with norms

‖v‖Vq :=
∥∥∥
√

1 + Lq v
∥∥∥
−1,1/q

and ‖v‖V 2
q

:= ‖(1 + Lq) v‖−1,1/q , (2.9)

will play an important role. In [3] it is shown that if v ∈ L2
0 := {v ∈ L2 :

∫
S
v = 0}

cK‖v‖2 ≤ ‖v‖Vq ≤ c−1
K ‖v‖2 , (2.10)

where here (and below) cK denotes a suitable positive constant that depends only on K
(it will not keep the same value through the text: in particular, in this case it is the same
for every q ∈ M). Note that if v ∈ R(Lq), R(·) denotes the range of ·, the spectral gap
guarantees that

‖v‖2Vq ≤
(
1 +

1

λK

)∥∥∥
√
Lq v

∥∥∥
2

−1,1/q
. (2.11)

At this point it is also worth observing also that, by (2.2), there exists cK > 0 such that
for every ψ1, ψ2 ∈ S we have

cK‖v‖−1,1/qψ1
≤ ‖v‖−1,1/qψ2

≤ c−1
K ‖v‖−1,1/qψ1

. (2.12)

Of course, we have the analogous estimates in the case in which 1/qψ2
, or 1/qψ1

, is replaced
by 1.

Stable normally hyperbolic manifolds. We now quickly review the notion of stable normally

hyperbolic manifold, in the L2
1 set-up, because it will play a central role in our results. For

this we need a dynamics: what we have in mind is (2.20) but for the moment let us just
think of an evolution semigroup in L2

1 that gives rise to {ut}t≥0, with u0 = u, to which
we can associate a linear evolution semigroup {Φ(u, t)}t≥0 in L2

0, satisfying ∂tΦ(u, t)v =
A(t)Φ(u, t)v and Φ(u, 0)v = v, where A(t) is the operator obtained by linearizing the
evolution around ut.

For us a stable normally hyperbolic manifold M ⊂ L2
1 (in reality we are interested only

in 1-dimensional manifolds, that is curves, but at this stage this does not really play a role)
of characteristics λ1, λ2 (0 ≤ λ1 < λ2) and C > 0 is a C1 compact connected manifold
which is invariant under the dynamics and for every u ∈M there exists a projection P o(u)
on the tangent space of M at u, that is R(P o(u)) =: TuM , which, for v ∈ L2

0, satisfies the
properties

(1) for every t ≥ 0 we have

Φ(u, t)P o(u0)v = P o(ut)Φ(u, t)v , (2.13)

(2) we have

‖Φ(u, t)P o(u0)v‖2 ≤ C exp(λ1t)‖v‖2 , (2.14)

and, for P s := 1− P o, we have

‖Φ(u, t)P s(u0)v‖2 ≤ C exp(−λ2t)‖v‖2 , (2.15)

for every t ≥ 0;
(3) there exists a negative continuation of the dynamics {ut}t≤0 and of the linearized

semigroup {Φ(u, t)P o(u0)v}t≤0 and for any such continuation we have

‖Φ(u, t)P o(u0)v‖2 ≤ C exp(−λ1t)‖v‖2 , (2.16)

for t ≤ 0.
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As an example – for us a crucial example – let us show that M is a stable normally
hyperbolic manifold for the L2

1-semigroup associated to (2.1) (in Section 2.2 we give some
details on this semigroup in the general case). As we have seen,M is an invariant manifold:
it is in fact a set of stationary solutions, so that the dynamics has a (trivial) negative
continuation, and it is easy to provide an explicit atlas, compatible with the L2 topology,
for which M is a C∞ manifold and TqM0 = {aq′ : a ∈ R} = R(P oq ). The projection P o

we choose is defined by

P o(q)v = P oq v :=
(v, q′)−1,1/q q

′

(q′, q′)−1,1/q
, (2.17)

and, since Lqq
′ = 0 for every q ∈ M , we see that λ1 can be chosen equal to zero and any

value C ≥ 1 will do. Moreover if we set vt := Φ(q, t)P sq v ∈ R(P sq ) then

‖vt‖2 ≤ cK‖vt‖Vq ≤ cK
√

1 + 1/λK

∥∥∥
√
Lq vt

∥∥∥
−1,1/q

≤ cK
√

1 + 1/λK exp (−λKt) ‖
√
Lq v0‖−1,1/q ≤ c′K exp (−λKt) ‖v‖2 , (2.18)

where we have used (2.12), then (2.11), then the spectral gap and finally (2.10). Therefore
λ2 can be chosen equal to λK , C ≥ c′K , and therefore M is a stable normally hyperbolic
manifold in L2 for the reversible Kuramoto evolution, with characteristics 0, λK and
C = max(c′K , 1).

For the sequel we observe also that u 7→ P ou , a map from M to the bounded linear
operators on L2

0, is C
∞ as it can be easily verified by using for v ∈ L2

0 the formula

(
v, q′ψ

)
−1,qψ

=

∫

S

V −
∫
S
V/qψ∫
1/q0

, (2.19)

where, like before, V(θ) :=
∫ θ
0 v, so that V : S → R is (Hölder) continuous and ψ 7→

(v, q′ψ)−1,qψ is C∞.

2.2. The full evolution equation. The type of limit evolution equations we are inter-
ested in can be cast into the form

∂tp
δ
t (θ) =

1

2
∂2θp

δ
t (θ)− ∂θ

[
pδt (θ)(J ∗ pδt )(θ)

]
+ δG[pδt ](θ) , (2.20)

where δ ≥ 0 and for G we assume

(1) p 7→ G[p] is a function from L2
1 to H−1;

(2) there exists η > 0 such that G is C1(L2
1,H−1) for every p at L2 distance at most

η of M and the derivative DG is uniformly bounded (in the η-neighborhood of M
that we consider).

Note that p 7→ (pJ ∗ p)′ is also in C1(L2
1,H−1), in fact even in C∞, so that the evolution

equation can be cast in the abstract form ∂pδt = Apδt +F [pδt ] + δG[pδt ]. A complete theory
of this type of equations can be found in [24, Ch. 4], in particular for pδ0 ∈ L2

1 such that
dL2(pδ0,M) < η there exists of a unique mild solution in C0([0, T ), L2

0), for some T > 0.

Examples include:

(1) the AR case, that is (1.2), with G[p](θ) = ∂θ[p(θ)U(θ)] and ‖U‖∞ <∞;
(2) the case of

G[p](θ) = ∂θ[p(θ)J̃ ∗ p(θ)] (2.21)

with J̃ ∈ L∞;
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(3) the case of

G[p](θ) = ∂θ[p(θ)

∫

S

h(θ, θ′)p(θ′)] , (2.22)

with h ∈ L∞, as well as generalizations like ∂θ[p(θ)
∫
S
h(θ, θ′, θ′′)p(θ′)p(θ′′)] and so

on.

In all these examples actually one can prove global well-posedness for arbitrary initial
condition in L2

1. But the key point of our analysis is that if the initial condition is suffi-
ciently close to M , then for δ smaller than a suitable constant, the solution will stay in a
neighborhood of M for all times. More precisely, our approach is based on the following
result, that is essentially contained in [24, Main Theorem, p. 495]. We say essentially

because the result we need is more explicit for what concerns the various small constants

that are involved: in Section 5 we detail this issue.

Theorem 2.1. There exists δ0 > 0 such that if δ ∈ [0, δ0] there exists a stable normally
hyperbolic manifold Mδ in L2

1 for the perturbed equation (2.20). Moreover we can write

Mδ = {qψ + φδ (qψ) : ψ ∈ S} , (2.23)

for a suitable function φδ ∈ C1(M,L2
0) with the properties that

• φδ(q) ∈ R(Lq);
• there exists C > 0 such that supψ(‖φδ (qψ) ‖2 + ‖∂ψφδ(qψ)‖2) ≤ Cδ.

We are now interested in the dynamics on Mδ , which is a curve and, given the mapping
φδ, the position on the manifold is identified by the phase ψδt . A more detailed description
demands information on nδt := φδ(qψδt ): of course ψ

0
t = ψ0

0 and n0t ≡ 0 for every t.

We have the following:

Theorem 2.2. For δ ∈ [0, δ0] we have that t 7→ ψδt is C1 and

ψ̇δt + δ

(
G[qψδt

], q′
ψδt

)
−1,1/q

ψδ
t

(q′, q′)−1,1/q

= O(δ2) , (2.24)

with O(δ2) uniform in t. Moreover if we call nψ the unique solution of

Lqψnψ = G[qψ]−

(
G[qψ], q

′
ψ

)
−1,1/qψ

(q′, q′)−1,1/q

q′ψ and
(
nψ, q

′
ψ

)
−1,1/qψ

= 0 , (2.25)

we have
sup
ψ

‖φδ(qψ) − δnψ‖H1
= O(δ2) . (2.26)

A sharper control on the dynamics on Mδ can be obtained, under a slightly stronger
assumption on the perturbation G: it all boils down to go beyond (2.24) and for this note
that the left-hand side can be written as Rδ(ψδt ) where

Rδ(ψ) :=

(
[φδ(qψ)J ∗ φδ(qψ)]′ + δ (G [qψ + φδ(qψ)]−G [qψ]) , q

′
ψ

)
−1,1/qψ

(q′, q′)−1,1/q
. (2.27)

It is clear that Rψ is C1, since φδ is C1.
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Theorem 2.3. Under the same assumptions of the previous theorem and assuming in ad-
dition that DG (recall that G ∈ C1(L2

1;H−1)) is uniformly continuous in a L2-neighborhood
of M0, we have that there exists δ 7→ ℓ(δ), with ℓ(δ) = o(1) as δ ց 0, such that

sup
ψ∈S

|R′
δ(ψ)| ≤ δ ℓ(δ) . (2.28)

3. Dynamics on Mδ: analysis of the active rotators case

Let us use the results of the previous section to tackle the questions we have raised in
the introduction for the active rotators case and that, ultimately, boil down to: what is the
relation between the Isolated Deterministic one dimensional System ψ̇ = −V ′(ψ) (IDS)
and the behavior of the associated N dimensional diffusion, for N large? So we focus on
(2.20) with G[p] = (pV ′)′ and regularity assumptions on V ′ are going to appear along the
way. Theorem 2.1 tells us that if ‖V ′‖∞ <∞, at least when δ is small enough, the N → ∞
limit system – ruled by (2.20) – is described by a dynamics on a one dimensional smooth
and compact manifold Mδ equivalent to a circle and, via Theorem 2.2 and Theorem 2.3,
we have a sharp control on this dynamics.

In order to be precise on this issue let us speed up time by 1/δ in (2.24). If we keep
just the leading terms we are dealing with the dynamics

ψ̇ = −f(ψ) , (3.1)

where f is

f(ψ) :=

(
G[qψ], q

′
ψ

)
−1,1/qψ

(q′, q′)−1,1/q

. (3.2)

We say that f ∈ C1(S,R) – not necessarily the f in (3.2) – is generic, or hyperbolic,
if it has a finite number of zeroes on S and all of them are simple, i.e. for all ψ for
which f(ψ) = 0, we have f ′(ψ) 6= 0. Notice that the set of generic functions is open
in C1(S,R) and dense: if the C1 distance of f and g is less than (a constant times) ǫ,
we say that the dynamics generated by f and g are ǫ-close. Note that if ǫ is sufficiently
small then the two dynamics are topologically equivalent. By this we mean that there
exists a homeomorphism h : S → S such that {h(ψ(ψ0, t)) : t ∈ R}, where ψ(ψ0, ·) solves
ψ̇ = −f(ψ) and ψ(ψ0, 0) = ψ0 , coincides with {(φ(h(ψ0), t) : t ∈ R}, where φ(φ0, ·)
solves φ̇ = −g(φ) and φ(φ0, 0) = φ0. Moreover we require that h(·) preserves the time
orientation, that is for a > 0 sufficiently small and t, |s| ∈ (0, a] we have that ψ(ψ0, t) 6= ψ0

and h(ψ(ψ0, t)) = φ(h(ψ0), s) imply s > 0.
Theorem 2.2 and Theorem 2.3 guarantee therefore that for δ sufficiently small the phase

dynamics on the Mδ manifold speeded up by δ−1

d

dt
ψδt/δ = −f(ψδt/δ) +

1

δ
Rδ(ψ

δ
t/δ) , (3.3)

is δ-close to the dynamics generated by f(·).
The layout of the remainder of this section is, first, to show that even if we fix K > 1, by

playing on the choice of V ′(·), one can generate arbitrary generic phase dynamics on Mδ.
In this part we will make also more explicit the link between V ′ and f . Afterwards, we will
work out in detail a few particular cases and expose some a priori surprising behaviors,
notably that IDS with periodic behavior (active state) may lead to a N → ∞ dynamics
that settles down to a fixed point (quiescent state) or that IDS without periodic behavior
may give origin to periodic N → ∞ behaviors.
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3.1. Noise and interaction induce arbitrary generic dynamics. It is practical and
sufficient to work with V ′(·) that is a trigonometric polynomial, that is

V ′(θ) = a0 +

n∑

j=1

(aj cos(jθ) + bj sin(jθ)) . (3.4)

Theorem 3.1. For any generic dynamics on the circle ψ̇t = −f(ψt) with f ∈ C1(S;R)
and for any value of K > 1 there exists a trigonometric polynomial V ′(·) (see Remark 3.2
for an explicit expression) such that for δ small enough, the phase dynamics on Mδ (3.3)

is δ-close to ψ̇ = −f ′(ψ).

Proof. Let f be a generic function in C1. By the Stone-Weierstrass Theorem, for every
ε > 0 there exists a trigonometric polynomial P (·) such that ‖f ′ − P‖∞ ≤ ε. If c0 is such

that
∫ 2π
0 (P − c0) = 0 then, since

∫ 2π
0 f ′ = 0, |c0| ≤ ε. Thus if we define the trigonometric

polynomial Q(ψ) := f(0) +
∫ ψ
0 (P (θ)− c0) dθ we have

‖Q− f‖C1
= ‖Q− f‖∞+ ‖P − c0 − f ′‖∞ ≤ (2π+1)‖P − c0 − f ′‖∞ ≤ (4π+2)ε , (3.5)

so it suffices to consider functions f which are trigonometric polynomials:

f(θ) = A0 +

n∑

k=1

(Ak cos(kθ) +Bk sin(kθ)) . (3.6)

Now we observe that if V ′(·) is of the form (3.4) then a straightforward calculation gives
(
G[qψ], q

′
ψ

)

−1,1/qψ

(q′, q′)−1,1/q

= a0 +
I0

I20 − 1

n∑

k=1

(Ikak cos(kψ) + Ikbk sin(kψ)) , (3.7)

where

Ik = Ik(2Kr(K)) :=
1

2π

∫ 2π

0
cos(kθ)e2Kr(K) cos(θ)dθ . (3.8)

Therefore by making the choice a0 := A0 and for k = 1, 2, . . . , n

ak :=
I20 − 1

I0Ik
Ak and bk :=

I20 − 1

I0Ik
Bk , (3.9)

we obtain the function V ′(·) we were after. �

Remark 3.2. The link between f and V ′ can be made more explicit. In fact from (3.8)
and (3.9) and the fact that the Fourier series of q0 is

q0(ψ) =
1

2πI0(2Kr)
e2Kr cos(ψ) =

1

2π
+

1

π

+∞∑

j=1

Ij(2Kr)

I0(2Kr)
cos(jψ) , (3.10)

one directly extracts that

f = a0 +
I0(2Kr(K))2

I0(2Kr(K))2 − 1

(
q0 ∗ V ′ − a0

)
= a0 +D(K)q0 ∗ (V ′ − a0) , (3.11)

where we have set

D(K) :=
I20 (2Kr(K))

(I20 (2Kr(K))− 1)
, (3.12)



TRANSITIONS IN ACTIVE ROTATOR SYSTEMS 13

and (3.11) can be applied also in the case in which f is not a trigonometric polynomial. It
tells us that, for δ small, the effective force that drives the N → ∞ system is, in a sense,
obtained by smearing V ′ via the probability kernel q0. To be precise, V ′ − a0 is smeared
and multiplied by D(K), while the 0th order Fourier coefficient is left unchanged. This is
telling us that the effect of noise and interaction, to leading order, boil down to the size of
D(K) and to the smearing effect of the probability kernel q0(·) (that depends on K too!).

While (3.11) is quite explicit, it is not always straightforward to read off it the qualitative
properties of f . We start by analyzing the case of K very large and the case of K close to
one, before moving to treating in detail some particular cases.

The K → ∞ limit. It is straightforward to see that the probability density q0(·) con-
verges to the Dirac delta measure at the origin. Moreover limK→∞D(K) = 1, since
limK→∞ r(K) = 1 and limx→∞ I0(x) = ∞. Therefore f and V ′ get closer and closer as
K becomes large. More precisely one has that for every s ∈ N and every trigonometric
polynomial V ′(·) there is C such that

‖f − V ′‖Cs ≤ C√
K
. (3.13)

The proof can be obtained for example by using (3.9) that, with (3.12), tells us that Aj/aj ,
as well as Bj/bj , that is the ratio of the (non-vanishing) sine and cosine Fourier coefficients
of f and V ′, is

D(K)
Ij(2Kr(K))

I0(2Kr(K))
, (3.14)

so that by using (Ij(x)/I0(x)) − 1
x→∞∼ j2

2x (j = 1, 2, . . .) and limK→∞D(K) = 1 we

readily obtain that the jth-Fourier coefficients of f(·) are, to leading order, j2aj/(4K) and
j2bj/(4K). Since we are just dealing with trigonometric polynomials and the estimate of
the L2 norm of arbitrary derivatives of f − V ′, via Parseval formula, is straightforward,
we get to (3.13). This means in particular that given a potential V such that V ′ has sign
changes (so that the IDS has stable points), for any K large enough, the N → ∞ system
has stable stationary solutions, for δ small enough. We will encounter this phenomenon
in the particular cases that we treat below.

The K ց 1 limit. This time we use r(K)
Kց1∼

√
2(K − 1) and we derive, first of all,

that D(K) ∼ (4(K − 1))−1, since I0(x) − 1
xց0∼ x2/4. Once again we analyze the Fourier

coefficients of f , via (3.14), and we use for j = 1, 2, . . .

Ij(x)

I0(x)

xց0∼ Ij(x) ∼ xj

2jj!
, (3.15)

so that for j = 1, 2, . . .

Aj
aj

=
Bj
bj

Kց1∼ (K − 1)−1+(j/2)

22−(j/2)j!
. (3.16)

Notably, the first Fourier coefficients of f are enhanced with respect to the corresponding
coefficients of V ′ by a factor that diverges like (K−1)−1/2. The second Fourier coefficients
of f are (asymptotically) just proportional to the ones of V ′, while higher coefficients in
the K ց 1 limit are depressed passing from IDS to N → ∞ behavior (recall that the
0th-order coefficient is unchanged). A quantitative estimate in the spirit of (3.13) is easily
established from these estimates.
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What we retain from this K ց 1 analysis is that if the first Fourier coefficients are
present, that is |a1| + |b1| > 0, then for K sufficiently close to one f(ψ) = 0 has two
solutions and the dynamics will eventually settle to a fixed point (quiescent state). If
instead |a1|+ |b1| = 0, then it depends on the relative size of a0 and a2 or b2 whether the
system is in an activated or quiescent regime. But if also a2 = b2 = 0 (and a0 6= 0) then
for K sufficiently close to one we have that f(ψ) is close to a0 and therefore f(ψ) 6= 0 for
all ψ, so that the dynamics is periodic. Again, we will discuss in more detail these issues
below, in specific examples.

Remark 3.3. The analysis for K large and close to one is helpful to get an idea on the
relation between f and V ′, but the reader should keep in mind that the δ-closeness of the
dynamics holds for fixed K, that is for δ < δ0(K). Quantitative estimates on how δ0(K)
behaves for extreme values of K is an interesting issue that we do not approach here.

3.2. Active rotators with V (θ) = θ − a cos(θ). Without loss of generality we assume
a ≥ 0. Let us start the analysis by making a remark on the a = 0 case: the potential
becomes just a straight line, and (2.20) reads

∂tp
δ
t (θ) =

1

2
∂2θp

δ
t (θ)− ∂θ

[
pδt (θ)(J ∗ pδt )(θ)− δpδt (θ)

]
. (3.17)

In this case pδt (θ − δt) solves (2.1), thus Mδ = M and the dynamics on Mδ is a rotation
for all δ.

If a > 0 we exploit the analysis we have developed for Theorem 3.1 that tells us that
the N → ∞ phase dynamics is lead by the effective force

f(ψ) = −
(
1 +

a

ac(K)
sin(ψ)

)
, with ac(K) :=

I20 − 1

I0I1
. (3.18)

Therefore if a < ac(K), then the dynamic onMδ is periodic for δ small enough ( depending
on K ) and if a > ac(K), there are two fixed points. From this observation and the graph
of ac(·) (see Figure 2) we draw the following conclusions (see also Figure 3):

• Set âc := maxK ac(K)(> 1). If a > âc then for every K we have that f(θ) = 0 has
two solutions, so that the phase dynamics has two stationary hyperbolic point: one
is stable and the other is unstable. In this case the dynamics of the IDS resembles
to the phase dynamics of the N → ∞ system.

• If a ∈ (1, âc) then ac(K) = a has two solutions K−(a) < K+(a) and for K ∈
(K−(a),K+(a)) we have a < ac(K), that is f(θ) < 0 for every θ, and the motion
is periodic: in this case the dynamics of the IDS, that has two fixed points, differs
from the N → ∞ phase dynamics. For K > K+(a) and for K < K−(a) instead
the phase dynamics is driven to a (unique) stable fixed point (unless it starts from
the unstable fixed point).

• If a ≤ 1 instead ac(K) = a has only one solution K(a) and the periodic behavior
sets up for K > K(a), otherwise (K < K(a)) the system eventually settles on a
fixed point: this second case is another instance in which the dynamics of the IDS
and the N → ∞ system differ.

When the phase dynamics is periodic we can explicitly integrate the evolution equation
(3.1) and compute the first order approximation the period Tδ(a,K) of the dynamics on
Mδ:

Tδ(a,K) =
τ(a,K)

δ
+O(1) , where τ(a,K) :=

2π√
1− (a/ac(K))2

. (3.19)
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Figure 2. The graph of ac(·). For K → ∞ we have ac(K) = 1 + 1/(8K) + O(K−2),

while for K ց 1 we have ac(K) ∼
√

32(K − 1).

Actually, it is possible to replace in this formula O(1) with O(δ): in fact it is possible to
show by induction that the phase speed on Mδ admits an expansion in (integer) powers of
δ to any order (but with coefficients less explicit than the first order one), and it is easy

to see that ψ̇δ is an odd function of δ. We have tested numerically this approximation and
we report the result in Table 1.

ac(K) a0

Figure 3. A sketch of the phase behavior for V (θ) = θ − a cos(θ): for a > K there
are two fixed points, one attractive and one repulsive, while for a < ac(K) the force is
bounded away from zero and the motion is periodic.
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Table 1. We have simulated (1.2) with V (θ) =
θ − a cos(θ) for a = 1.1 and K = 2. In this
case our estimates ensure the existence of peri-
odic solutions for δ sufficiently small and the pe-
riod given in (3.19) (in fact, τ := τ (1.1, 2) =
18.0779 . . .). The simulation, that has been
performed via Fourier decomposition (50 modes
kept), gives c = 0.333 . . ., for the constant c such
that (δTδ(1.1, 2)/τ (1.1, 2))− 1 ∼ cδ2.

δ Tδ(1.1, 2) τ(1.1, 2)/δ
0.005 3615.59 3615.62
0.010 1807.79 1807.85
0.020 903.89 904.01
0.040 451.94 452.19
0.080 225.97 226.45
0.160 112.98 113.96
0.320 56.49 58.51
0.640 28.24 33.02

3.3. Active rotators with V (θ) = θ−a cos(jθ)/j, j = 2, 3, . . .. In this case the N → ∞
phase dynamics is lead by

f(ψ) = −
(
1 + a

I0Ij
I20 − 1

sin(jψ)

)
, (3.20)

and the behavior differs substantially from the j = 1 case (and the j = 2 case is different
from the j ≥ 3 case). In this case the crucial function is

ac,j(K) :=
I20 − 1

I0Ij
. (3.21)

Note that ac,1 = ac. The criterion to have periodic behavior is, like for the j = 1 case,
a < ac,j(K), while a > ac,j(K) leads to two fixed points. Figure 4 and its caption describes
the (relatively surprising) phenomenology of the j = 2 and j = 3 cases (the case j > 3 is
qualitatively the same as the case j = 3).

1.0 1.5 2.0 2.5 3.0

1
2

3
4

5

1.0 1.5 2.0 2.5 3.0

0
5

10
15

20
25

30

KK

a
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(K

)

a
c,
3
(K

)

Figure 4. For V (θ) = θ − a cos(jθ)/j, j ≥ 2, the N → ∞ dynamics is always periodic
for a ≤ 1 (and δ sufficiently small), unlike the j = 1 case (recall that a < ac,j(K)
corresponds to periodic motion, while a > ac,j(K) corresponds to two fixed points: see
the text). Moreover, for j = 2 and a > 4 the dynamics has just two fixed points, but for
j ≥ 3 for arbitrarily large values of a one can observe periodic motion if K is sufficiently
close to 1 (and, of course, δ sufficiently small).
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Remark 3.4. Theorem 3.1 already tells us that one can produce arbitrary dynamics,
so a very large variety of phenomena is observed. Here is a case that can be of some
interest since it shows that playing on only one parameter one can produce three different
dynamics (and the reader will directly infer how to induce arbitrarily many): if V (θ) =
θ − a(cos(θ) + cos(2θ)) the N → ∞ phase dynamics is lead by

f(ψ) = 1 + a
I0

I20 − 1
(I1 sin(ψ) + 2I2 sin(2ψ)) , (3.22)

and in this case there can be two transitions as a varies. For example for K = 2 we have
periodic behavior for a < 0.600 . . ., two fixed points if a ∈ (0.600 . . . , 2.107 . . .) and four
fixed points (of course two stable and two unstable ones) if a > 2.107 . . ..

4. Perturbation arguments

In this section we assume that δ ∈ (0, δ0] (cf. Theorem 2.1) and that we are on the
invariant manifoldMδ of (2.20), that is p

δ
t ∈Mδ for every t. The result [24, Main Theorem,

p. 495] actually contains also some estimates on the regularity of the semigroup onMδ and

notably that t 7→ pδt belongs to C
0(R; H̃1) and that it is (strongly) differentiable as a map

from R to H̃−1. One directly sees that ‖u − v‖H1
= ‖u′′ − v′′‖−1, so that the right-hand

side in (2.20) is C0(R;H−1) and, in turn, t 7→ pδt is C
1(R, H̃−1).

Since we are working in a neighborhood of M it is useful to introduce from now a
parametrization of this region that will be particularly useful in the next section, but that
we are going to use from now. The following facts are proven in Lemma 5.1: for every u
in a sufficiently small H−1 neighborhood of M there exists a unique q = v(u) ∈ M such
that (

u− q, q′
)
−1,1/q

= 0 . (4.1)

Furthemore v ∈ C1(H̃−1, H̃−1) with differential

Dv(u) = P ov(u) . (4.2)

Theorem 2.1 is telling us in particular that

v (q + φδ (q)) = q . (4.3)

For the arguments that follow it is practical to use the notation introduced right after
Theorem 2.1 and write

pδt = qψδt
+ nδt , (4.4)

where qψδt
= v(pδt ) and n

δ
t := φδ

(
qψδt

)
.

Proof of Theorem 2.2. Since the evolution on Mδ is C1(R, H̃−1), then t 7→ qψδt
is

C1(R, H̃−1) too. This implies that, with f1 and f2 respectively sine and cosine, ψ 7→∫
S
qψ(θ)fi(θ) =: ai(t) is C1. Since fi(ψt) = ai(t)/

√
a21(t) + a22(t), we see that t 7→ ψδt is

C1. The fact that pδt and ψ
δ
· are C1 directly implies that t 7→ nδt is C

1(R;H−1) (actually,
since φδ is C

1 we have even nδ· ∈ C1(R;L2
0)).

Notice furthermore that

− ψ̇δt q
′
ψδt

= P oq
ψδ
t

∂tp
δ
t . (4.5)

This follows by taking the time derivative of both sides of the equality qψδt
= v(pδt ) and by

using (4.2).
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Using (2.20) and the fact that qψ is a stationary solution of (2.1), we rewrite (4.5) as

− ψ̇δt q
′
ψδt

= P oq
ψδ
t

(
−∂θ

[
nδt (J ∗ nδt )

]
+ δG

[
qψδt

+ nδt

])
. (4.6)

Recall that
∥∥nδt
∥∥
2
≤ Cδ (cf. Theorem 2.1): by

‖
[
nδtJ ∗ nδt

]′
‖−1 ≤ ‖J‖2‖nδt‖22 ≤ C2‖J‖22δ2 , (4.7)

and by the hypothesis on G that implies that
∥∥∥G
[
qψδt

+ nδt

]
−G

[
qψδt

]∥∥∥
−1

≤ cGCδ , (4.8)

from (4.6) we see that ∥∥∥ψ̇δt q′ψδt + δG
[
qψδt

]∥∥∥
−1

≤ cδ2 , (4.9)

with c independent of t and of ψδ0. To obtain (2.24) just take the H−1,q
ψδ
t

scalar product

of q′
ψδt

and the expression inside the norm in the left-hand side of (4.9).

For (2.26) rewrite (2.20) as

− ψ̇δt q
′
ψδt

− ∂tn
δ
t = −Lq

ψδ
t

nδt −
[
nδtJ ∗ nδt

]′
+ δG

[
qψδt

+ nδt

]
. (4.10)

Note that for the second term on the left hand side we have

‖∂tnδψδt ‖−1 ≤ cK‖∂tnδψδt ‖2 ≤ cKCδ|ψ̇δt | , (4.11)

where we have use
∂tn

δ
t = ψ̇δt ∂ψφδ (qψ)

∣∣
ψ=ψδt

, (4.12)

and the bound on the derivative of φδ given in Theorem 2.1.
Now plug (2.24) into (4.10) and use (4.7), (4.8) and (4.11) to obtain

sup
t,ψδ

0

∥∥∥∥∥∥∥∥
Lq

ψδ
t

nψδt − δ


G

[
qψδt

]
−

(
G
[
qψδt

]
, q′
ψδt

)
−1,1/q

ψδ
t

(q′, q′)−1,1/q

q′
ψδt




∥∥∥∥∥∥∥∥
−1

= O(δ2) . (4.13)

Since ψδ0 can be chosen arbitrarily on S, we can replace ψδt with ψ and take the supremum
over ψ (and, by (2.2), we can freely switch between H−1 and H−1,1/qψ norms). Therefore

(recall (2.25))

sup
ψ

∥∥∥Lqψ
(
nδψ − δnψ

)∥∥∥
−1,1/qψ

= O(δ2) . (4.14)

There result we are after, that is (2.26), follows from the equivalence of H1 and V 2
q (recall

(2.9)) norms, which is proven in Appendix A. �

Proof of Theorem 2.3. It is of course sufficient to estimate the numerator in the right-hand
side of (2.27). It is the sum of two terms: the first one can be rewritten as

T1(ψ) :=

∫

S

φδ(qψ)J ∗ φδ(qψ)
(
1− 2π/qψ∫

S
1/q

)
, (4.15)

and, by derivating and using the two L2-estimates on φδ(·) and Dφδ(·) in Theorem 2.1, it
is straightforward to see that there exists c > 0 such that for δ ∈ [0, δ0]

sup
ψ∈S

|T ′
1(ψ)| ≤ cδ2 . (4.16)
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Let us turn to the second term, that is

T2(ψ) =

∫

S

(
1− 2π/qψ(θ)∫

1/q

)∫ θ

0

(
G[qψ(θ

′) + φδ(qψ(θ
′))]−G[qψ(θ)]

)
dθ′dθ . (4.17)

For this we write
H[y] = G[y + φδ(y)]−G[y] . (4.18)

We have
DH[y] = DG[y + φδ(y)]−DG[y] +DG[y + φδ(y)]Dφδ(y) (4.19)

and thus, using the estimates of theorem 2.1 and the fact that DG is uniformly continuous
on a neighborhood of M , we get that

sup
ψ∈S

|T ′
2(ψ)| ≤ l(δ) . (4.20)

with l(δ) = o(δ) when δ → 0.
�

5. On the persistence of normally hyperbolic manifolds

In this section we prove theorem 2.1. The proof in a more general case can be found in
[24] but we pay more attention on the relation between the various small parameters that
enter the proof. We first give a lemma which defines a parametrisation in a neighbourhood
of M using the scalar structure given by the operators Lq. The proof of this lemma is in
[24, p. 501].

Lemma 5.1. There exists a σ > 0 such that for all p in the neighborhood

Nσ := ∪q∈MBL2(q, σ) , (5.1)

of M there is one and only one q = v(p) ∈M such that (p− q, q′)−1,1/q = 0. Furthermore

the mapping p 7→ v(p) is in C∞(L2
1, L

2
1), and

Dv(p) = P ov(p) . (5.2)

Moreover, the analogous statement holds if Nσ is replaced by ∪q∈MBH−1
(q, σ) and this

time p 7→ v(p) is in C∞(H̃−1, H̃−1).

For the proof we look for conditions on δ in order to get a manifold, which is invariant
for for (2.20), at distance ε from M : the condition in the end is going to be that δ needs
to be smaller than a suitable constant times ε (and ε sufficiently small too), so that the
invariant manifold is in a neighborhood of order δ of M . To simplify notations, we will
write F [u] = ∂θ(uJ ∗ u), and (2.20) becomes:

∂tpt =
1

2
∂2θpt − F [pt] + δG[pt] . (5.3)

We will consider solutions with initial condition p0 satisfying ‖p0 − v(p0)‖2 6 ε. We need
asumptions on ε and δ such that the solution stays in Nσ for a sufficiently long time. If q
is in M , wt := pt − q satisfies

wt = e−tLqw0 +

∫ t

0
e−(t−s)Lq (F [ws] + δG[q + ws]) ds , (5.4)

and we get

‖wt‖2 6 ‖w0‖2 +
∫ t

0
‖e−(t−s)Lq‖L(H−1,L2)(‖F [ws]‖H−1

+ δ‖G[q +ws]‖H−1
) ds . (5.5)
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Define

t0 = sup{t > 0 : ‖ws‖2 6 σ for every s 6 t} . (5.6)

Because of the continuity of wt, t0 > 0 if we suppose ε < σ. If t 6 t0, using the spectral
properties of Lq and the regularity of F and G, we get the bounds

‖e−(t−s)Lq‖L(H−1,L2) 6 CL(1 + (t− s)−1/2) , (5.7)

‖G[q + ws]‖H−1
6 CG(1 + ‖ws‖2) , (5.8)

and

‖F [ws]‖H−1
6 CF ‖ws‖22 , (5.9)

and thus for all t1 < t0

‖wt1‖2 6 (ε+CGCL(t1+2
√
t1)δ)+CL(CFσ+CGδ)

∫ t1

0

(
1 +

1√
t1 − s

)
‖ws‖2 ds . (5.10)

We need the following lemma, that is a version of the Gronwall-Henry inequality

Lemma 5.2. Let t 7→ yt be a non-negative and continuous function on [0, T ) satisfying
for all t ∈ [0, T )

yt 6 η0 + η1

∫ t

0

(
1 +

1√
t− s

)
ys ds . (5.11)

Then for all t ∈ [0, T )

yt 6 2η0e
αt , (5.12)

with α = 2η1 + 4η21
(
Γ
(
1
2

))2
where Γ(r) =

∫∞
0 xr−1e−x dx.

Proof of lemma 5.2 We consider the time

t∗ = sup{t > 0, ys 6 2η0e
αs for all s 6 t} . (5.13)

We have to show that t∗ = T . But if t∗ < T , then

yt∗ 6 η0

(
1 + 2η1

∫ t∗

0

(
1 +

1√
t∗ − s

)
eαsds

)

6 η0

(
1 +

2η1
α

[eαt
∗ − 1] +

2η1√
α
Γ

(
1

2

)
eαt

∗

)
< 2η0e

αt∗ , (5.14)

which contradicts t∗ < T since y· is continuous. �

Using Lemma 5.2 and (5.10) we get :

‖wt‖2 6 C(t1)(δ + ε) , (5.15)

where

C(t1) = max(1, CGCL(t1 + 2
√
t1))e

(2η(σ,δ)+4πη(σ,δ)2)t1 , (5.16)

η(σ, δ) = CL(CFσ + CGδ) . (5.17)

For T > 0, if we choose ε and δ such that C(2T )(ε + δ) 6 σ, then pt lies in Nσ for
t ∈ [0; 2T ]. Take now T such that

CP se
−λ1T/2 6

1

16
, (5.18)

eλ1T/2 > 4CL , (5.19)
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where we recall that λ1 is the spectral gap of Lq and we set

CP s = max
q∈M

‖P sq ‖L(L2
0
,L2

0
) , (5.20)

and P sq is a compact notation for P s(q) (defined just below (2.14)) and it is the orthogonal
projection of the range of Lq (the scalar product is the one of H−1,1/q). Define also

C1 = C(2T ), C2 = eλ1T/2 and ε0 =
σ

2C1
. (5.21)

For now we will take max{ε, δ} 6 ε0, so that pt ∈ Nσ for t ≤ 2T . We will use the following
notations:

pi := p(t, pi0) , (5.22)

is the solution of (5.3) and
vi := vi(t, pi0) := v(pi) , (5.23)

is given by Lemma 5.1. Moreover we set

ni = pi − vi , ∆p := p1 − p2 , ∆v := v1 − v2 , ∆n := n1 − n2 . (5.24)

In the following lemma we compare the quantites we have just introduced with the initial
conditions. It corresponds to Lemma 74.7 (page 507) in [24]. We remark that is in this
lemma ε and δ play the same role and we stress that these are just preliminary estimates:
some of them are going to be refined later on.

Lemma 5.3. For all α > 0, there exist C0 = C0(T ) and ε1 6 ε0 such that if ε 6 ε1 and
δ 6 ε1 we have the following properties:

(1) if ‖p0 − v0‖2 6 ε then for all t ∈ [0, 2T ]

max

(
‖p(t, p0)− v0‖2 , ‖v(t, p0)− v0‖2 ,

1

2
‖n(t, p0)‖2

)
6 C0(ε+ δ) ; (5.25)

(2) if ‖pi0 − vi0‖2 6 ε and ‖∆v(0)‖2 6 αε, then for all t ∈ [0, 2T ]

max (‖∆p(t)‖2 , ‖∆v(t)‖2 , ‖∆n(t)‖2) 6 C2‖∆p(0)‖2 , (5.26)

with C2 given in (5.21);
(3) if ‖pi0 − vi0‖2 6 ε and ‖∆p(0)‖2 6 2‖∆v(0)‖2, then for all t ∈ [0, 2T ]

1

2
‖∆v(0)‖2 6 ‖∆v(t)‖2 6

3

2
‖∆v(0)‖2 . (5.27)

Proof of Lemma 5.3 For what concerns part (1) note that the first of the three inequalities
in (5.25) is given above (see (5.15) with t0 = 2T ). The other inequalities come from the
fact that the mapping q 7→ v(q) of Lemma 5.1 is Lipschitz, taking, if necessary, a bigger
value for C0.

For part (2)notice that, since v20 ∈M , we can write the evolution in mild form around
v20, that is

∆p(t) = e−tLv20∆p(0)

+

∫ t

0
e−(t−s)Lv20 (F [p1(s)− v20]− F [p2(s)− v20] + δ(G[p1(s)]−G[p2(s)])) ds , (5.28)

and thus

‖∆p(t)‖2 6 CL‖∆p(0)‖2+CL
(
CF (αε+C0(ε+ δ)+CGδ

) ∫ t

0

(
1 +

1√
t− s

)
‖∆p(s)‖2 ds .

(5.29)
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Here we used the preceding point, (5.7) and the bounds

‖G[p1(s)]−G[p2(s)]‖−1 6 CG‖p1(s)− p2(s)‖2 , (5.30)

‖F [p1(s)]− F [p2(s)]‖−1 6 CF (αε+ C0(ε+ δ))‖p1(s)− p2(s)‖2 , (5.31)

(5.31) is obtained by applying the mean value inequality to F and DF and using the fact
that DF (0) = 0: the constants CG and CF have a larger value than in (5.8) and (5.9).
Applying Lemma 5.2 to (5.29), we obtain

‖∆p(t)‖2 6 2CLe
(2η1(ε,δ)+4πη1(ε,δ)2)2T ‖∆p(0)‖2 (5.32)

with

η1(ε, δ) = CL

(
CF (αε+ 2C0(ε+ δ)) + CGδ

)
, (5.33)

Choose ε1 6 ε0 such that (it is possible because of (5.19))

2CLe
(2η1(ε1,ε1)+4πη1(ε1,ε1)2)2T 6 eλ1T/2 . (5.34)

The two other points come directly from the Lipschitz property of the mapping q 7→ v(q)
taking, if necessary, a smaller value for ε1.

For part (3) we prove first that for all r > 0, there exists ε2(r) such that for all ε 6 ε2(r)
and δ 6 ε2(r) we have for all t ∈ [0, 2T ]

1

2
6

‖∆v(t)‖2
‖∆v(0)‖2

6
3

2
(5.35)

if ‖∆v(0)‖2 > r. In fact, in this case, using Lemma 5.1 :
∣∣∣∣
‖∆v(t)‖2 − ‖∆v(0)‖2

‖∆v(0)‖2

∣∣∣∣ 6
| ‖∆v(t)‖2 − ‖∆v(0)‖2 |

r

6
‖∆v(t)−∆v(0)‖2

r
(5.36)

6
‖v1(t)− v1(0)‖2 + ‖v2(t)− v2(0)‖2

r

6
2C0(δ + ε)

r
.

We can choose ε2(r) = min(ε1, r/8C0). Now it is sufficient to prove that, for ‖∆v(0)‖2 6 r0
with a certain r0,

‖∆v(t)−∆v(0)‖2 6
1

2
‖∆v(0)‖2 (5.37)

for all t ∈ [0, 2T ]. Suppose that ‖∆v(0)‖2 6 r with r 6 α. We use the following decom-
position

∆v(t)−∆v(0) =∆v(t)− P ov2∆p(t)−∆v(0) + P ov20∆p(0) (5.38)

+ (P ov2 − P ov20)∆p(t) + P ov20(∆p(t)−∆p(0)) .

From Lemma 5.1 , part (2) and the hypothesis ‖∆p(0)‖2 6 2‖∆v(0)‖2, we get

‖∆v(t)− P ov2∆p(t)‖2 = ‖v(p1)− v(p2)−Dvv2(p1 − p2)‖2
6 2Cv(r + 2C0(δ + ε))‖∆v(0)‖2 (5.39)

‖∆v(0) − P ov20∆p(0)‖2 = ‖v(p10)− v(p20)−Dvv20(p10 − p20)‖2
6 4Cvr‖∆v(0)‖2 (5.40)
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where Cv is the maximum of the second derivate of q 7→ v(q) in Nσ. Since P o is C1 on
M , there exits LP o such that (By using part (1) and the hypothesis and defining LP o the
maximum of the norme of DP on M , we get

‖(P ov2 − P ov20)∆p(t)‖2 6 LP oC0(δ + ε)‖∆v(0)‖2 (5.41)

For the last term, we write

∆p(t)−∆p(0) = (e−tLv20 − I)∆p(0) +

∫ t

0
e−(t−s)Lv20 (F [p1s − v20]− F [p2s − v20]

+G[p1s]−G[p2s])ds . (5.42)

Notice that P ov20(e
−tLv20 − I)∆p(0) = 0. From (5.7), (5.31) and (5.30) it comes

‖P ov20(∆p(t)−∆p(0))‖2 6 4CP oCLC2

(
CF (r + 2C0(δ + ε)) + CGδ

)
(T +

√
2T )‖∆v(0)‖2

(5.43)
where CP o is the maximum of the norms ‖P oq ‖L(L2

0
,L2

0
) for q ∈ M . In conclusion there

exists a constant C3 such that for all t ∈ [0, 2T ]

‖∆v(t)−∆v(0)‖2 6 C3(r + ε+ δ)‖∆v(0)‖2 . (5.44)

To end the proof choose r = r0 := min
(
α, C3

3

)
and reduce if nececessary the value of ε1

to have ε1 6 min(ε2(r0), r0).
�

We now move to the main body of the proof which is based on introducing a family of
transformations of the manifold M by using the full dynamics and we aim at identifying
the transformation that maps M to the manifold that is stable for the full dynamics
and this is achieved by applying the Banach fixed point Theorem in a relevant space of
functions.

Define the set C(M,L2
0) of continuous functions from M to L2

0 provided with the norm

‖f‖∞ = sup{‖f(v)‖L2 , v ∈M} (5.45)

and consider the subset F(ε, l) of C(M,L2
0) of functions f satisfying :

(1) ‖f‖∞ 6 ε
(2) f is Lipschitz on M with Lipschitz constant l 6 1
(3) (f(q), q′)−1,1/q = 0 for all q in M

Notice that F(ε, l) is a complete subset of C(M,L2
0). We will now define a set of mappings

{Xt}t∈[T,2T ] : F(ε, 1) 7→ C(M,L2
0) and show that

(1) for all τ ∈ [T, 2T ]

Xτ (F(ε, 1)) ⊂ F
(
ε,

1

4C2

)
(5.46)

(recall that C2 = eλ1T/2 and thus 1
4C2

6 1)

(2) XT is a contraction on F(ε, 1):

‖XT (f1)−XT (f2)‖∞ 6
1

2
‖f1 − f2‖∞ (5.47)

for all f1, f2 ∈ F(ε, 1).
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Notice that the third point of (5.3) and an argument of connexion ( see [24] page 513 )
show that for all f ∈ F(ε, 1) and t ∈ [0, 2T ], the mapping q 7→ gt,f (q) := v(t, f(q)) is a
bijection of M . So we can define the mappings

Xτ (f)(u) : M → L2
0

u 7→ n
(
τ, (id + f) ◦ g−1

τ,f (u)
)

(5.48)

It is easy to see that for all τ ∈ [T, 2T ] and f ∈ F(ε, 1), Xτ (f) is the unique mapping
satisfying for all q ∈M

Xτ (f)(v(τ, p0)) = n(τ, p0) = p(τ, p0)− v(τ, p0) = P sv(τ,p0)(p(τ, p0)− v(τ, p0)) (5.49)

where p0 = q + f(q). We can see Xt(f) as the distance (in the sense of (5.1)) of the
trajectory pt from M , starting at the time 0 at a distance f from M .

In the following, we will first prove that (5.46) and (5.47) imply that there exists an
invariant manifold Mε for (5.3) at distance ε of M . Then we will prove (5.46) and (5.47)
in three lemmas, paying attention on the relations between the different parameters.

Suppose that the mappings Xτ satisfy (5.46) for τ ∈, [T, 2T ] and that XT satisfies (5.47).
Then XT has a unique fixed point in F(ε, 1), which will be noted f0. Define φε = id+ f0
on M and Mε = φ0(M). Since f0 is a fixed point of XT , if p0 ∈ M0, then pkT ∈ M0 for
all k ∈ N. Then to prove that Mε is an invariant manifold of (5.3), it is sufficient to prove
that for all t ∈ (0, T ), the functions ft defined by ft = Xt(f0) are equal to f0. Using the
property of semi-group and XT (f0) = f0 it is easy to see that ft = XT+t(f0), and thus
(5.46) implies that ft ∈ F(ε, 1). But the same arguments show that ft is a fixed point of
XT for all t ∈ (0, T ). In conclusion, Mε is invariant for (5.3).

Now we prove (5.46) and (5.47) in the three following lemmas, which correspond to
Lemmas 74.8, 74.9 and 74.10 in [24].

Lemma 5.4. There exists a ε3 6 ε1 such that if ε 6 ε3, there exists a δ3(ε) of the form
min(Cε, ε3) such that if δ 6 δ3(ε), we have for all τ ∈ [T, 2T ] and f ∈ F(ε, 1)

‖Xτ (f)‖∞ 6 ε (5.50)

Proof Let v0 ∈M , p0 = v0 + f(v0). We write (see (5.49))

Xτ (f)(v(τ)) = P sv(τ)(p(τ)− v0)− P sv(τ)(v(τ) − v0) . (5.51)

The first term can be written as

P sv(τ)(p(τ) − v0) = P sv(τ)

(
e−τLv0 (p0 − v0) +

∫ τ

0
F [p(s)− v0] +G[p(s)]ds

)
. (5.52)

Using the spectral gap, we bound the linear term

‖P sv(τ)e−τLv0 (p0 − v0)‖2 6 CP se
−λ1τε (5.53)

and the remaining term of (5.52) can be bounded in the same way as (5.43). Furthemore
the second term of (5.51) is quadratic in ε and δ, using a Taylor argument as in (5.40).
Finaly, we get

‖Xτ (f)(vτ )‖2 6 C4

(
(δ + ε)2 + δ)

)
+ CP se

−λ1τε . (5.54)

We supposed CP se
−λ1T 6 1

16 , thus we can choose

ε3 = min

(
ε1,

1

12C4

)
and δ3(ε) = min

(
ε1, ε,

1

3C4
ε

)
. (5.55)
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�

Lemma 5.5. There exists ε4 6 ε3 such that if ε 6 ε4, there exists a δ4(ε) of the form

min(Cε, ε4) such that if δ 6 δ4(ε), then for all f ∈ F(ε, 1) we have Xτ (f) ∈ F
(
ε, 1

4C2

)

for all τ ∈ [T, 2T ].

Proof It is sufficient to prove that Xτ (f) is Lipschitz with Lipschitz constant 1
4C2

on all

M ∩B2(q, ρ0) with ρ0 = 8C2ε. Indeed in this case, if ‖q1 − q2‖2 > ρ0, then

‖Xτ (f)(q1)−Xτ (f)(q2)‖2 6
2ε

ρ0
‖q1 − q2‖2 6

1

4C2
‖q1 − q2‖2 . (5.56)

Take u1, u2 ∈ M such that ‖u1 − u2‖2 6 ρ0 and f with Lipschitz constant l 6 1. There
exists v10, v20 ∈ M such that ui = v(τ, pi0) with pi0 = vi0 + f(vi0). Our goal is to show
that under the hypothesis

‖Xτ (f)(u1)−Xτ (f)(u2)‖2
‖u1 − u2‖2

=
‖Xτ (f)(v1(τ)) −Xτ (f)(v2(τ))‖2

‖v1(τ)− v2(τ)‖2
=

‖∆n(τ)‖2
‖∆v(τ)‖2

6
1

4C2
.

(5.57)
We use the decomposition

∆n(τ) = e−τLv20P sv20∆n(0) + ∆n(τ)− e−τLv20P sv20∆n(0)

= e−τLv20P sv20∆n(0) + ∆p(τ)−∆v(τ)− e−τLv20P sv20∆p(0) + e−τLv20P sv20∆v(0)

= e−τLv20P sv20∆n(0) + ∆p(τ)− P ov20∆p(t) + P ov20∆p(t)−∆v(τ)− e−τLv20P sv20∆p(0)

+ e−τLv20P sv20∆v(0)

=
[
e−τLv20P sv20∆n(0)

]
+
[
(P sv2(τ) − P sv20)∆p(τ)

]
+
[
P sv20(∆p(τ)− e−τLv20∆p(0))

]

+
[
e−τLv20P sv20∆v(0)

]
+
[
P ov2(τ)∆p(τ)−∆v(τ)

]
.

We bound the first term using the spectral gap of Lv20 , the second term using the smooth-
ness of P s and Lemma 5.3, and the third term in a similar way as (5.43). We use a Taylor
decomposition for the two last terms, as in (5.40). Then we get (recall (5.20))

‖∆n(τ)‖2 6

(
CP se

−λ1T l + C5(ρ0 + δ + ε)
)
‖∆v(0)‖2 . (5.58)

Since f is Lipschitz with Lipschitz constant l 6 1 we have ‖∆p(0)‖2 6 2‖∆v(0)‖2. Then
using the part (3) of Lemma 5.3 we deduce

‖∆v(0)‖2 6 2‖∆v(τ)‖2 . (5.59)

Furthemore we have chosen T such that CP se
−λ1T/2 6 1

16 , and thus CP se
−λ1T 6 1

16C2

(recall that C2 = eλ1/2). We obtain

‖∆n(τ)‖2
‖∆v(τ)‖2

6
1

8C2
l + 2C5((1 + 8C2)ε+ δ) . (5.60)

Finally choose

ε4 = min

(
ε3,

1

32C2C5(1 + 4C2)

)
and δ4(ε) = min (ε4, δ3(ε)) , (5.61)

and the proof is complete. �
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Lemma 5.6. There exists ε5 6 ε4 such that if ε 6 ε5, there exists a δ5(ε) of the form

min(Cε, ε5) such that for all fi ∈ F
(
ε, 1

4C2

)
:

‖XT (f1)−XT (f2)‖∞ 6
1

2
‖f1 − f2‖∞ . (5.62)

Proof This time take v10 = v20 = v0 and pi0 = v0 + fi(v0). With the same decomposition
as in Lemma 5.5 (with fewer terms, since v10 = v20) we get

‖∆n(T )‖2 6

(
CP se

−λ1T + C6(δ + ε)
)
‖∆p(0)‖2 . (5.63)

We choose

ε5 = min

(
ε4,

1

16C6

)
and δ5(ε) = min (ε5, δ4(ε)) , (5.64)

and in this case we get

‖∆n(T )‖2 6
1

4
‖f1 − f2‖∞ . (5.65)

Now notice that

‖(XT (f1)−XT (f2))(v2(T ))‖2 6 ‖∆n(T )‖2+‖XT (f1)(v1(T ))−XT (f1)(v2(T ))‖2 , (5.66)
and since XT (f1) is Lipschitz with Lipschitz constant 1

4C2
, we get, using Lemma 5.1

‖XT (f1)(v1(T ))−XT (f1)(v2(T ))‖2 6
1

4C2
‖∆v(T )‖2 6

1

4
‖f1 − f2‖∞ . (5.67)

�

Proof of Theorem 2.1. In these three lemmas, we see that if ε is small enough, we can take
δ proportional to ε, thus adding a perturbation of type δG[pt] to (2.1) creates an invariant
manifold Mδ situated at a distance O(δ) from M . It is proven in [24, (theorem 74.15,
p. 531)] that the manifold Mδ is C

1 in L2
1 and normally hyperbolic. Remark furthermore

that
(
φδ
)−1

(p) = v(p) for all p ∈ Mδ . So to prove that φδ is C1, it suffices to prove
that v satisfies the hypothesis of the local inverse theorem between manifolds, that is Dv
is a bijection between the tangent spaces of de two manifolds. Since the manifold is of
dimension one, this property is implied by the lipschitz property of φδ. Furthermore we
can estimate the differential of φδ : (5.60) for φδ gives an inequality for the local Lipschitz
constant lδ of φδ on all neighborhoodsM ∪B2(q, ρ0) (ρ0 is introduced right before (5.56)):

lδ 6
1

8C2
lδ +C7δ , (5.68)

and we get that for a C8 > 0

lδ 6 C8δ , (5.69)

which yields the bound we claim on the differential of φδ. �

Appendix A. On a norm equivalence

The goal is to prove that the norms ‖ · ‖H1
and ‖ · ‖V 2

q
are equivalent, with

− Lqu :=
1

2
u′′ − [uJ ∗ q + qJ ∗ u]′ (A.1)

and

‖u‖V 2
q

:= ‖(C + Lq)u‖−1,1/q (A.2)
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with C > 0. Remark that by changing the constant C we get an equivalent norm. Since
the norms ‖ · ‖−1,1/q and ‖ · ‖−1 are equivalent, we will study ‖(C + Lq)u‖−1. We write

u(θ) =
∑

ane
inθ . (A.3)

J ∗ q is of the type αeiθ − αe−iθ, thus we can write

uJ ∗ q(θ) = α
(∑

ane
i(n+1)θ −

∑
ane

i(n−1)θ
)
. (A.4)

Furthermore

J ∗ u(θ) = −Ka1
2i

eiθ +
Ka−1

2i
e−iθ . (A.5)

So if we denote
q(θ) =

∑
cqne

iθ (A.6)

then

qJ ∗ u = −Ka1
2i

∑
cqne

(n+1)θ +
Ka−1

2i

∑
cqne

(n−1)θ . (A.7)

Consequently

‖(C + Lq)u‖−1 =

∑
(1 + n2)−1

∣∣∣∣Can + n2an − iαn(an−1 − an+1) + n
Ka1
2
cqn−1 − n

Ka−1

2
cqn+1

∣∣∣∣
2

. (A.8)

Suppose now that u ∈ H1. It is easy to see that there exists c > 0 such that ‖u‖V 2
q
6 c‖u‖H1

.

Thus
∑
n2|an|2 < ∞ implies that ‖(C + Lq)u‖−1 < ∞ and so H1 ⊂ V 2

q . By expanding
(A.8) and using Cauchy-Schwartz inequality we get

‖(C + Lq)u‖−1 >
∑

(1 + n2)−1
(
C2 + n4 + 2Cn2 − α1n

3 − α2Cn
)
|an|2 (A.9)

where α1, α2 > 0 do not depend on u. It is clear that for C big enough ( depending on α1

and α2 ) we have

C2

2
+ n4 − α1n

3 >
1

2
n4 (A.10)

C2

2
+ 2Cn2 − α2Cn > 0 (A.11)

and thus ‖(C + Lq)u‖−1 > 1
4‖u‖H1

. We have shown that there exist c > 0 such that for
all u ∈ H1,

c−1‖u‖V 2
q

6 ‖u‖H1
6 c‖u‖V 2

q
. (A.12)

But H1 is dense in V 2
q (consider the finite sums of fourier series). If v ∈ V 2

q , there exists a

sequence vn in H1 such that vn → v for the V 2
q norm. Then vn is a Cauchy sequence for

the H1 norm, and since H1 is complete, v ∈ H1. In conclusion V 2
q and H1 have the same

elements.

Remark A.1. By replacing (1 + n2)−1 by (1 + n2)k, we can prove in the same way that

‖(C +Lq)u‖Hk is equivalent to ‖u‖Hk+2
. Thus ‖u‖V nq = ‖(1 +Lq)

n/2u‖−1,1/q is equivalent

to ‖u‖Hn−1
.
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