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Abstract

We present a generalization of the master solution to the quantum Yang-Baxter equation
(obtained recently in arXiv:1006.0651) to the case of multi-component continuous spin variables
taking values on a circle. The Boltzmann weights are expressed in terms of the elliptic gamma-
function. The associated solvable lattice model admits various equivalent descriptions, including
an interaction-round-a-face formulation with positive Boltzmann weights. In the quasi-classical
limit the model leads to a new series of classical discrete integrable equations on planar graphs.
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1 Introduction

There are solvable lattice models of statistical mechanics with only a pair interaction between
neighbouring spins, i.e, where two spins interact only if they are connected by an edge of the
lattice. The Yang-Baxter equation for these models usually takes the form of the “star-triangle
relation” [1]. The most notable discrete-spin models in this class include the Kashiwara-Miwa [2] and
chiral Potts [3–5] models (both of them also contain the Ising model [1] and Fateev-Zamolodchikov
ZN -model [6] as particular cases) see [7] for a review. There are also important continuous spin
models, including Zamolodchikov’s “fishing-net” model [8], which describes certain planar Feynman
diagrams in quantum field theory, and the Faddeev-Volkov model [9], connected with quantization
[10] of discrete conformal transformations [11,12].

Recently [13] we have found a new solution of the star-triangle relation which contains as special
cases all the discrete- and continuous-spin solutions mentioned above1, and also leads to new ones.
This “master solution” is expressed through elliptic gamma-functions and contains two temperature-
like variables. It defines an exactly solvable lattice models with continuous spin variables taking
values on a circle. Its connection to the theory of elliptic hypergeometric functions is discussed
in [14]. From an algebraic point of view the model is related to the modular double [15, 16] of
the Sklyanin algebra [17]. The latter is an elliptic deformation of the quantum group Uq(sl(2)),
connected with the R-matrix of the eight-vertex model [18].

In this paper we extend the main results of [13] to the case related to the sl(n) algebra with
n ≥ 3. The generalized model has multi-component continuous spin variables taking values on a
circle. Similarly to the n = 2 case of [13] the model contains two temperature-like parameters. The
Boltzmann weights satisfy the so-called star-star relation [19,20] (see Eq.(26) below), which ensures
the integrability of the model. Currently, we claim this relation as a conjecture, however, we expect
that a complete proof could be obtained by a rather straightforward generalization of the results
of [20–24] devoted to discrete-spin models connected with the sl(n) algebra.

It should be noted, that apart from the n = 2 case previously considered in [13], the two-spin
Boltzmann weights are not real and positive. Fortunately, this is not an indication that the model
is unphysical. It can be reformulated as an “interaction-round-a-face” (IRF) model and then there
exist a domain of parameters, where the IRF-type Boltzmann weights become real and positive, see
Section 3.

The quasi-classical (or low-temperature) limit of the model is considered in Section 4. A sta-
tionary spin configuration which gives the leading contribution to the partition function in this
limit is described by new classical discrete integrable equations for multi-component fields assigned
to lattice sites. These equations can be thought as a generalization of the Laplace-type equation
associated with the famous Q4 system [25,26] to the multi-component case.

In Conclusion we summarize the results and discuss their connections with some other integrable
systems in two and three dimensions.

2 Formulation of the model

We start with the definition of the elliptic gamma-function [16,27–29]. Let q, p be two elliptic nomes
(they play the role of the temperature-like parameters),

p = eiπσ , q = eiπτ , Imσ > 0, Im τ > 0 . (1)

1To be more precise, it only contains the solutions, which have a single one-dimensional spin at each lattice site.
For this reason, it cannot contain the D ≥ 2 fishing-net model which has multi-dimensional spins.

2



In principle, these parameters can be arbitrary (apart from the requirements |p| < 1 and |q| < 1),
however, in the following we will often refer to special regimes when p and q are either real or
complex conjugate to each other,

(i) p∗ = p, q∗ = q, (ii) p∗ = q . (2)

Note that in both of these cases the “crossing parameter”

η = −iπ(σ + τ)/2 , (3)

is real and positive. Define the elliptic gamma-function2

Φ(z) =
∞
∏

j,k=0

1− e2izq2j+1p2k+1

1− e−2izq2j+1p2k+1
= exp







∑

k 6=0

e−2izk

k(qk − q−k)(pk − p−k)







, (4)

where the product formula is valid for all z, while the exponential formula is only valid in the strip

− Re η < Im z < Re η . (5)

The function (4) possesses simple periodicity and “reflection” properties

Φ(z + π) = Φ(z) , Φ(z)Φ(−z) = 1 . (6)

Moreover, it satisfies the following difference equation

Φ
(

z − πσ
2

)

Φ
(

z + πσ
2

) =

∞
∏

n=0

(1− e2izq2n+1)(1 − e−2izq2n+1) = ϑ4(z | τ) , (7)

and a similar equation obtained by interchanging τ and σ. Here

ϑj(z | τ) =
1

G(τ)
ϑj(z | τ), G(τ) =

∞
∏

k=1

(1− q2k), q = eiπτ , (8)

where ϑj(z|τ), j = 1, 2, 3, 4, stand for the standard elliptic theta-functions of the periods π and
πτ , as defined in [30]. Note also, than in the regimes (2) the function (4) has a simple complex
conjugation property,

Φ(z)∗ = Φ(−z∗) . (9)

Next, we want to introduce a new two-dimensional solvable edge-interaction model. The model
can be formulated on rather general planar graphs, however, for the purposes of this presentation
it is convenient to take a regular square lattice. Consider the square lattice, drawn diagonally as in
Fig. 1. The edges of the lattice are shown with bold lines and the sites are shown with either open
or filled circles in a checkerboard order. In this Section we will not distinguish the two type sites;
their difference will be important in Sect. 3. At each lattice site place a n-component continuous
spin variable

x = {x1, . . . , xn} ∈ R
n, 0 ≤ xj < π,

n
∑

j=1

xj = 0 (mod π) . (10)

2Our function Φ(z) coincides with Γ(e−2i(z−η); p2, q2) in the notation of ref. [16]. The definition (4) differs slightly
from that of ref. [13], where the RHS of (4) is denoted as Φ(2z).
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v v v

u

u

Figure 1: The square lattice shown with bold sites and bold edges drawn diagonally. The associated medial
lattice is drawn with thin and dotted horizontal and vertical lines. The lines are oriented and carry rapidity

variables u, u′, v and v′.

Note that due to the restriction on the total sum, there are only (n − 1) independent variables xj.
For further reference define the integration measure

∫

dx =

∫ π

0
· · ·

∫ π

0
dx1 · · · dxn−1 , 1 =

∫

|x〉dx〈x| . (11)

Fig. 1 also shows an auxiliary medial graph whose sites lie on the edges of the original square
lattice. The medial graph is drawn with alternating thin and dotted lines. The lines are directed
as indicated by arrows. To each horizontal (vertical) line on the medial graph assign a rapidity
variable u (v). In general these variables may be different for different lines. However, a convenient
level of generality that we shall use here is to assign the same rapidity u to all thin horizontal lines
and the same variable u′ to all dotted horizontal lines. Similarly, assign the variables v and v′ to
thin and dotted vertical lines as indicated in Fig. 1.

u v′

x y

Wu−v′ (x,y)

u vy

x

Wu−v(y,x)

u′ v

y x

Wu′
−v(x,y)

u′ v′x

y

Wu′
−v′ (y,x)

Figure 2: Four different types of edges and their Boltzmann weights.

Two spins interact only if they are connected with an edge. The corresponding Boltzmann weight
depends on spins at the ends of the edge and on two rapidities passing through the edge. There are
four types of edges differing by orientations and types of the directed rapidity lines passing through
the edge. They are assigned with different Boltzmann weights as shown in Fig.2. The weights are
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defined as

Wα(x,y) = κn(α)
−1

n
∏

j,k=1

Φ(xj − yk + iα), Wα(x,y) =
√

S(x)S(y)Wη−α(x, y) , (12)

where the single-spin function S is given by

S(x) = κ
−1
s

∏

j 6=k

{

Φ(xj − xk + iη)
}−1

= κ
−1
s

∏

j<k

{

eη/2 ϑ1(xj − xk | τ)ϑ1(xj − xk |σ)
}

, (13)

and

κs = n!

(

π

G(τ)G(σ)

)n−1

. (14)

Here the indices j, k run over the values 1, 2, . . . , n; the functions ϑ(x | τ) and G(τ) are defined in
(8). The normalization factor

κn(α) = exp







∑

k 6=0

e2nkα

k (pk − p−k)(qk − q−k)

pkqk − p−kq−k

pnkqnk − p−nkq−nk







, (15)

has the meaning of the partition function per edge for unnormalized Boltzmann weights (i.e., when
the factor κn(α) in (12) is omitted). It solves a pair of functional equations

κn(α)κn(−α) = 1, κn(η − α)κn(η + α) = Φ(iη − inα)Φ(iη + inα) . (16)

The weights (12) satisfy two inversion relations:

Wα(x,y)W−α(y,x) = 1 ,

∫

dxWα(x,z)W−α(z,y) =
1

n!

∑

σ̂

δ(x, σ̂(y)) (17)

where the sum is taken over n! permutations σ̂ of components of the vector y = {y1, . . . , yn} and
the δ-function is understood with respect to the measure (11). The first of these relations is a trivial
corollary of the definition (12) and the reflection property of the elliptic gamma function Φ(z). The
second relation is a particular case of a more general relation stated in Theorem 11 in ref. [16].

Note that for any permutation σ̂ one has

W(x,y) = Wα(σ̂(x),y) = W(x, σ̂(y)) , S(x) = S(σ̂(x)) , (18)

as a trivial consequence of the definitions (12) and (13). Under the complex conjugation the weights
transform as

Wα(x,y)
∗ = Wα∗(y,x) = Wα∗(−x,−y) , S(x)∗ = S(x) . (19)

provided the nomes p and q belong to either of the regimes, defined in (2) (remind that the spin
variables are always assumed to be real; see (10)). When n = 2 the weights W and S are real
and positive [13]. Correspondingly, the weights Wα(x,y) and Wα(x,y) are symmetric under an
exchange of the spins x and y. However, for n > 2 this symmetry is lost. As a particular consequence
of this fact the above description of the associated lattice model required two types of the rapidity
lines.

The square lattice in Fig. 1 can be formed by periodic translations of the “box diagram” shown
in Fig. 3. The Boltzmann weight of this box can be conveniently associated with an R-matrix,

〈x,y|Ruv|x
′,y′〉 = Wu−v(y,x

′)Wu′−v′(y
′,x)Wu′−v(x

′,y′)Wu−v′(x,y) , (20)
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v
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v′

u′

y

y′

x x′

Figure 3: Pictorial representation of the R-matrix 〈x,y|Ruv|x
′,y′〉.

where u = [u, u′] and q = [v, v′] stand for the pairs of rapidities in horizontal and vertical directions.
The partition function is defined as

Z =

∫

∏

boxes

〈x,y |Ruv |x
′,y′〉

∏

sites

dx, (21)

where the first product is taken over all boxes and x,y,x′,y′ are the spins at the corners arranged
as in Fig. 3. The integral is taken over all configurations of the spin variables on the internal
lattice sites. The boundary spins are kept fixed. Note that due to periodicity (6) the definition
(21) only contains closed contour integrals (the contours can be deformed into the complex plane,
if necessary).

3 Yang-Baxter equations and star-star relations

The R-matrix (20) can be regarded as a kernel of an integral operator acting on a pair of (multi-
component) continuous spin variables (10). We claim that it satisfies the Yang-Baxter equation of
the form

∫

dx′dy′dz′〈x,y|Ruv|x
′,y′〉〈x′,z|Ruw|x

′′,z′〉〈y′,z′|Rvw|y
′′,z′′〉 =

∫

dx′dy′dz′〈y,z|Rvw|y
′,z′〉〈x,z′|Ruw|x

′,z′′〉〈x′,y′|Ruv|x
′′,y′′〉 ,

(22)

where the integration measure is defined in (11), and the symbols u = [u, u′], v = [v, v′] and
w = [w,w′] stand for the rapidity pairs. With the standard conventions the last equation can be
written in an operator form

Ruv Ruw Rvw = Rvw Ruw Ruv . (23)

The R-matrix (20) was derived as a unique intertwiner for two different sets of Lax operators serving
the modular double [15,16] of the sl(n) analog of the quadratic Sklyanin algebra [17,31]. The details
of calculations will be published elsewhere.

According to the terminology of the Baxter’s book [32], Eq.(21) defines a vertex model. It is
easy to see that to within boundary effects the same model can be equivalently reformulated as an
interaction-round-a-face (IRF) model. Indeed, the lattice in Fig. 1 can also be formed by periodic
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translations of a four-edge star (consisting of four edges meeting at the same site), instead of the
box diagram of Fig. 3. A little inspection shows that there are only two different types of such
stars shown in Fig. 4. Recall that there are types of sites, shown with open and filled circles. We
will refer to them as to “white” or “black” sites, respectively. There are white-centred stars (i.e.,
centred around a white sites) and black-centred ones. Applying the rules shown in Fig. 2 one can

v

u

v′

u′

x

a

c

b

d

v′

u′

v

u
y

a

c

b

d

Figure 4: Two types of four-edge stars: a white-centred star V(1) (left) and a black-centred V(2) (right)

write IRF-type Boltzmann weights corresponding to these stars

V
(1)
uv

(

a b

c d

)

=

∫

dxWu−v(c,x)Wu′−v′(b,x)Wu′−v(x,a)Wu−v′(x,d) , (24)

and

V
(2)
uv

(

a b

c d

)

=

∫

dyWu−v(y, b)Wu′−v′(y, c)Wu′−v(d,y)Wu−v′(a,y) , (25)

where the bold symbols u and v has the same meaning as in (22). The above two expressions are
connected by the so-called star-star relation [19,20], which in our case reads

Wv′−v(d, c)Wu′−u(d, b) V
(1)
uv

(

a b

c d

)

= Wv′−v(b,a)Wu′−u(c,a) V
(2)
uv

(

a b

c d

)

. (26)

Apparently this is the simplest relation for the Boltzmann weights which ensures the integrability
of the considered model3. Currently, we claim this relation as a conjecture, however, we expect
that a complete proof could be obtained by a rather straightforward generalization of the results
of [20–24], devoted to discrete-spin models connected with the sl(n) algebra. We have verified this
relation in a few orders of perturbation theory in the temperature-like variables (see Appendix B)
and made extensive numerical checks for n = 3, 4.

It is worth noting that the Yang-Baxter equation (22) for the composite “box R-matrix” (20)
is a simple corollary of the star-star relation (26). The same relation also implies yet another
Yang-Baxter equation for the IRF-type weights

∫

dh Vuv

(

c h

e d

)

Vuw

(

h b

d f

)

Vvw

(

c g

h b

)

=

∫

da Vvw

(

e a

d f

)

Vuw

(

c g

e a

)

Vuv

(

g b

a f

)

(27)

3For n = 2 the star-star relation (26) is just a consequence of the star-triangle relation, Eq.(1.5) of [13], which is
equivalent to the elliptic beta integral [14,29]. However, for n ≥ 3 the corresponding star-triangle relation apparently
does not exist (at least it is not known to the authors) and the star-star relation (26) seems to be the simplest relation
of this type.
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where

Vuv

(

a b

c d

)

=

{

Wv′−v(d, c)Wu′−u(d, b)
Wv′−v(b,a)Wu′−u(c,a)

}
1
2

V
(1)
uv

(

a b

c d

)

=

{

Wv′−v(b,a)Wu′−u(c,a)
Wv′−v(d, c)Wu′−u(d, b)

}
1
2

V
(2)
uv

(

a b

c d

)

.

(28)

The partition function (21) can be re-written using either of the weights (24), (25) or (28). For
example, it easy to see that, up to boundary effects,

Z =

∫

∏

(white stars)

Vuv

(

a b

c d

)

∏

(black sites)

dx, (29)

where the first product is taken over all white-centred stars and a, b, c,d denote the corresponding
outer spins, arranged as in Fig. 4. The integral is taken over the spin variables on black internal
sites (the integration over the spins on white sites is included through the definitions (28) and (24)).
As before, the boundary spins are kept fixed. Note that the weights (24), (25) and (28) differ from
each other by equivalence transformations which leave the partition function (29) unchanged (up
to boundary contributions).

There are two alternative forms for the RHS in (28), which coincide by virtue of the star-star
relation (26). This fact allows one to understand the behaviour of the IRF-weight (28) under the
complex conjugation. Consider any of the regimes defined in (2) and assume that the rapidity
variables obey the relations

u∗ = u′ , v∗ = v′ , and 0 < Re(u′ − v′, u− v, . . . ) < η . (30)

Note that these relations allow a homogeneous case u = u′, v = v′, when u and v are real. Taking
(30) into account and using (19) one can easily check that the complex conjugation just interchanges
the two equivalent forms of (28). It follows then that the IRF weight (28) is real. Further, one can
show that there must exist a region for the parameters p and q where this weight is non-negative,

[

Vuv

(

a b

c d

)]∗

= Vuv

(

a b

c d

)

≥ 0 , (31)

for all values of the spin variables. First of all note, that in the regimes (2) the single-spin weight
(13) is real and non-negative

S(x) ≥ 0 . (32)

It vanishes only then at least two components of x coincide. Next, the definition (12) for Wα(x,y)
contains square roots of S(x) and S(y) and therefore there is an ambiguity in choosing signs.
However, it is easy to see that these signs cancel out for all internal sites and therefore can be
chosen arbitrarily. For definiteness we assume that S(x)

1
2 = |S(x)

1
2 | ≥ 0.

Consider the limit when p, q → 0 and the ratio p/q is finite. It is convenient to parametrize the
rapidity variables as

u =
η

2
+ α+

i

2
(γ − β), v = −

i

2
(γ + β),

u′ =
η

2
+ α−

i

2
(γ − β), v′ = +

i

2
(γ + β)

(33)
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where the variables α, β and γ are real. Moreover, assume that

|Reα| ≪ η , (34)

which means that e2α = O(1), when p, q → 0. The relations (30) are automatically satisfied. The
weights (12) and (13) can be expanded in powers of p and q

Wα(x,y) = 1 +O(pq) + . . . ,

Wη/2+α(x,y) = 1 +O((pq)
1
2 ) +O(pq) + . . . ,

πn−1n! S(x)
∏

j<k

(

2 sin(xj − xk)
)−2

= 1 +O(p2 + q2) + . . . .

(35)

Explicit form of the coefficients to within the forth order is given in Appendix B (the fractional

powers arise due to the relation e−η = (pq)
1
2 ). It is convenient to define sums of exponents of the

spin variables, entering the IRF weight (28)

A1 =
n
∑

j=1

e2iaj , B1 =
n
∑

j=1

e2ibj , C1 =
n
∑

j=1

e2icj , D1 =
n
∑

j=1

e2idj , (36)

Using the above expansions one obtains

∣

∣

∣
S(b)−

1
2 S(c)−

1
2

∣

∣

∣
Vuv

(

a b

c d

)

= 1 + pq P +O((pq)
3
2 ) + . . . (37)

where P ≥ 0, denotes the following expression

P =
(

e2iβ A1 + e−2iβ D1

) (

e2iγ B∗
1 + e−2iγ C∗

1

)

+
(

e−2iβ A∗
1 + e2iβ D∗

1

)(

e−2iγ B1 + e2iγ C1
)

, (38)

which depends on spins and rapidity variables. A few more terms of the expansion is given in
Appendix B. They are all manifestly real and thereby confirm the validity of the star-star relation
(26) in perturbation theory. Note that the leading term in (37) is strictly positive. The coefficients
of the expansions in (35) are analytic functions of the spin variables, thus the integrals over central
spins in the star weight (28) are non-singular in every order of the expansion. It follows then that
the coefficients in front of powers of p and q in the RHS of (37) are analytic function of the external
spins. Therefore, there exists a finite domain of the parameters p and q in the vicinity of p = q = 0,
where the RHS of (37) is strictly positive for all values of the external spins a, b, c,d. We will call
this domain a physical regime. It would certainly be interesting to investigate exact boundaries of
this domain.

In the physical regime the considered lattice model becomes a well defined model of statistical
mechanics and Euclidean lattice field theory. Using the standard arguments based on the commu-
tativity of transfer matrices and functional equations for the partition function per edge [33–35],
we deduced that for a large number of sites N (in the thermodynamic limit) the bulk free energy
of the model vanishes,

lim
N→∞

N−1 logZ = 0 , (39)

provided that the normalization (15) in (12) is taken into account.
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4 Quasi-classical limit

4.1 Asymptotics of the Boltzmann weights

Let us now consider the quasi-classical limit of our model, when one of the nomes is real and fixed,
while the other one tends to unity,

q = eiπτ = real, p = eiπσ → 1, σ → 0 . (40)

It convenient to use a rescaled parameter

~ = −iπσ → 0 , (41)

which plays the role of the Planck constant from the point of view of Euclidean field theory (or the
temperature from the point of view of classical statistical mechanics). Introduce a new function

λ4(z | τ) = −i

∫ z

0
dw log ϑ4(z | τ) , (42)

where ϑj(z | τ) is defined in (8). In the limit (40) the elliptic gamma-function (4) and the factor
(15) become

log Φ(z) = −
1

~
λ4(z | τ)/~+O(~0) , log κn(α) = −

1

~
λ4(inα |nτ) +O(~0), (43)

moreover

logG(σ) = −
π2

12~
−
1

2
log ~+O(~0), log ϑ1(x |σ) = −

1

~

{

x2−πx+
π2

6

}

+O(~0), 0 < x < π , (44)

where G(σ) is defined in (8). In writing quasi-classical expansions of the Boltzmann weights it is
convenient to employ the permutation symmetry (18). Below we will assume that components of
spin variables are always arranged such that

x = (x1, x2, . . . , xn) , −
π

2
≤ Re(x1) < Re(x2) < · · · < Re(xn) <

π

2
. (45)

The leading quasi-classical asymptotics of the weights (12) reads

logWα(x,y) = −
1

~
Λα(x,y) +O(~0) , (46)

logWα(x,y) = −
1

~
Λα(x,y)−

(n− 1)

2
log ~+O(~0) , (47)

where

Λα(x,y) = −λ4(inα |nτ) +
∑

j,k

λ4(xj − yk + iα | τ) , (48)

Λα(x,y) = Λη0−α(x,y) +
1

2
C(x) +

1

2
C(y) , η0 = −iπτ/2. (49)

Eqs.(48) and (49) are trivial corollaries of the definition (12) and the expansions (43). The function
C(x) is determined by the asymptotics of the single-spin weight

log S(x) = −
1

~
C(x)−

(n− 1)

2
log ~ +O(~0) , (50)

10



defined in (13). Using (44) one obtains

C(x) =
(n2 − 1)π2

12
+ n

n
∑

j=1

x2j − 2π

n
∑

j=1

j xj . (51)

provided the variables xj are arranged as in (45). Finally, taking into account that q is assumed
real, one deduces that under the complex conjugation

(

Λα(x,y)
)∗

= Λα∗(y∗,x∗) , (52)

where x∗ = (x∗1, x
∗
2, . . . , x

∗
n) and similarly for y∗.

4.2 Classical star-star relation

Consider now the quasi-classical limit for the composite Boltzmann weights of the stars shown in
Fig. 4. To make equations more compact we will write the spin arguments a, b, c,d on the same line,
but assume the same spacial arrangement as in Fig. 4. Substituting (47) into (24) and calculating
the integral by the saddle point method, one gets

log
(

V
(1)
uv(a, b, c,d)

)

= −
1

~
L
(1)
u,v(X |a, b, c,d)−

(n− 1)

2
log ~+O(~0) , (53)

where
L
(1)
u,v (x |a, b, c,d) = Λu−v(c,x) + Λu′−v′(b,x) + Λu′−v(x,a) + Λu−v′(x,d) (54)

and X = (X1,X2, . . . ,Xn) is the saddle point, determined by the equations

( ∂

∂xk
−

∂

∂xk+1

)

L
(1)
u,v(x |a, b, c,d)

∣

∣

∣

x=X
= 0, k = 1, 2, . . . , n− 1 . (55)

Remind that x is the multi-component variable, x = (x1, x2, . . . , xn), whose components xk are
constrained by (10) and cannot be varied independently. That is why there are only (n − 1)
equations in (55), each containing a difference of two partial derivatives. Define new variables

α1 = u′ − v , α2 = η0 − u′ + v′ , α3 = η0 − u+ v ,

α4 = u− v′ , α5 = u′ − u , α6 = v′ − v ,
(56)

constrained by three relation

α1 + α2 + α3 + α4 = 2η0 , α5 = α1 + α3 − η0 , α6 = α1 + α2 − η0 . (57)

Below we will regard α1, α2, α3 as independent variables. Introduce a new function

ψ(X |a, b, c,d |α1, α2, α3, α4) = −i

n
∑

k=1

log
ϑ4(X − ak + iα1 | τ)ϑ4(X − dk + iα4 | τ)

ϑ4(ck −X + iα3 | τ)ϑ4(bk −X + iα2 | τ)
, (58)

which depend on a (single-component) variable X and four multi-component spin variables a, b, c,d
and the rapidity-type variables α1, α2, α3, α4 (it is also implicitly depends on the elliptic modular
parameter τ). Using (48), (49) and (51) one can write the variational equations (55) in the form

ψ(Xk+1 |a, b, c,d |α1, α2, α3, α4)− ψ(Xk |a, b, c,d |α1, α2, α3, α4) =

= +2π − 2n (Xk+1 −Xk) , k = 1, 2, . . . , n − 1 ,

(59)
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where the RHS comes from a variation of the function C(x) associated with the central spin in the
star (it enters the expression (49)). Similarly, for the second star in Fig. 4, one gets

log
(

V
(2)
uv(a, b, c,d)

)

= −
1

~
L
(2)
u,v(Y |a, b, c,d)−

(n− 1)

2
log ~+O(~0) , (60)

where
L
(2)
u,v (y |a, b, c,d) = Λu−v(y, b) + Λu′−v′(y, c) + Λu′−v(d,y) + Λu−v′(a,y) , (61)

and the saddle point Y = (Y1, Y2, . . . , Yn) is determined by the variational equations4

ψ(Yk+1 |a, b, c,d | −α4,−α3,−α2,−α1)− ψ(Yk |a, b, c,d | −α4,−α3,−α2,−α1) =

= −2π + 2n (Yk+1 − Yk) , k = 1, 2, . . . , n− 1 .

(62)

The quasi-classical expansion of the quantum star-star relation (26) leads an infinite number of
non-trivial relations — one relation for each order of the expansion in ~. In the leading order one
obtains,

L
(1)
u,v (X |a, b, c,d)−∆u,v(a, b, c,d) = L

(2)
u,v (Y |a, b, c,d) + ∆u,v(a, b, c,d) , (63)

where X and Y are determined by (59) and (62) and

∆u,v(a, b, c,d) =
1

2
(Λv′−v(b,a) + Λu′−u(c,a)− Λv′−v(d, c)− Λu′−u(d, b)) . (64)

We name the formula (63) a classical star-star relation.
For the weight function (28) one obtains

logVuv(a, b, c,d) = −
1

~
Lu,v(a, b, c,d)−

(n− 1)

2
log ~+O(~) , (65)

where the Lagrangian density Lu,v(a, b, c,d) coincides with the LHS (or the RHS) of the (63).
Writing it in full, one obtains

Lu,v(a, b, c,d) = Λu−v(c,X) + Λu′−v′(b,X) + Λu′−v(X,a) + Λu−v′(X,d)−∆u,v(a, b, c,d)

= Λu−v(Y , b) + Λu′−v′(Y , c) + Λu′−v(d,Y ) + Λu−v′(a,Y ) + ∆u,v(a, b, c,d) ,
(66)

where X and Y are determined by the variational equations (59) and (62).
Consider now the regime (30) with real q as in (40). Assume that the spins a, b, c,d are real.

Then one can show that if X solves (59) then Y = X∗ solves (62), where the star denotes the
complex conjugation. Having this in mind and using (52) it is easy to check that the complex
conjugation just interchanges two alternative expressions in (66). This means that the Lagrangian
density Lu,v(a, b, c,d) is real.

From (12) and (47) it follows that

Λα(a, b) + Λ−α(b,a) = 0 . (67)

4Notice different signs in the RHS of this equation with respect to (59).
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Figure 5: Graphical representation of the classical star-star relation (68).

Using this equality together with (49), substituting (54), (61) and (64) into the classical star-star
relation (63) and moving all terms there to one side, one obtains

Λα1(X,a) + Λα2(b,X) + Λα3(c,X) + Λα4(X ,d) + Λα6(d, c) + Λα5(d, b)

+Λ−α4(Y ,a) + Λ−α3(b,Y ) + Λ−α2(c,Y ) + Λ−α1(Y ,d) + Λ−α6(a, b) + Λ−α5(a, c)

+ C(X) − C(Y ) = 0 .

(68)

The terms of this relation can be conveniently associated with edges and vertices of an octahedron.
Consider a perfect octahedron shown in Fig. 5. Its edges are oriented, as indicated by arrows,
such that there are exactly two incoming and two outgoing edges at each vertex. The vertices are
assigned to the spin variables a, b, c,d,X,Y , as indicated. The edges carry rapidity-type variables
±α1,±α2, . . . ,±α6, shown near edges. A perfect octahedron contains six pairs of parallel edges.
The values of the α-variables on parallel edges are equal in absolute value, but differ in signs.
Moreover, the α-variables are constrained by the relations (57). Each edge corresponds to a Λ-term
in (68). For example, the edge directed from X to a and carrying the rapidity label α1 in Fig. 5
corresponds to the term Λα1(X,a) in (68). Similarly for all other edges. Further, according to
(57), the arithmetic sum of the α-variables on four edges meeting at the vertex X (regardless their
directions) is equal to +2π. This vertex contributes the term “+C(X)” to (68). Similarly, the sum
of α’s at the vertex Y is equal to −2π. This vertex contributes the term “−C(Y )”. Finally, thanks
to (57) the sum of α’s for each of the remaining four vertices a, b, c,d exactly vanishes. These
vertices do not contribute any C-terms into (68).

From mathematical point of view it is convenient to regard equations (59) and (62) as constrains
placed on six spin variables at the vertices of the octahedron. Interestingly, these constrains can be
re-written in two other equivalent forms. Differentiating (68) with respect to the spins a and d one
obtains






ψ(ak+1 | b,X ,Y , c | −α6,+α1,−α4,−α5)− ψ(ak | b,X,Y , c | −α6,+α1,−α4,−α5) = 0 ,

ψ(dk+1 | b,X,Y , c |+α5,+α4,−α1,+α6)− ψ(dk | b,X ,Y , c |+α5,+α4,−α1,+α6) = 0 ,

(69)
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where k = 1, 2, . . . , n−1. Here we have used the fact that the LHS of (68) is stationary with respect
to variations of X and Y by virtue of (59) and (62). Similarly, differentiating (68) with respect to
the spins b and c one obtains







ψ(bk+1 |X ,a,d,Y |+α2,−α6,+α5,−α3)− ψ(bk |X,a,d,Y |+α2,−α6,+α5,−α3) = 0 ,

ψ(ck+1 |X,a,d,Y |+α3,−α5,+α6,−α2)− ψ(ck |X ,a,d,Y |+α3,−α5,+α6,−α2) = 0 ,

(70)

where k = 1, 2, . . . , n− 1.

4.3 Discrete non-linear equations

In the limit (41) the partition function (29) develops a typical quasi-classical asymptotics. Substi-
tuting (65) into (29) and calculating the integral by the saddle point method one obtains,

logZ = −
1

~
A({y}) +O(~0) (71)

where the action
A({y}) =

∑

white stars

Lu,v(a, b, c,d) (72)

where the sum over all white-centred stars and a, b, c,d denote the corresponding outer spins
arranged as in Fig. 4. Here {y} denotes an equilibrium configuration of spins on the black sub-
lattice, which is determined by the Euler-Lagrange equations

δ

δy(~r)
A({y}) = 0 , (73)

where ~r is an integer two-dimensional vector numerating the internal sites on the black sub-lattice
(remind that the spins are varied subject to the constraints (10)). Using the first expression from
(66) one could bring these equations to the form

δ

δy
L
(2)
u,v (y |a, b, c,d) = 0 (74)

for every black site. The function L
(2)
u,v (y |a, b, c,d) is defined in (61) and the symbols y,a, b, c,d

denote the spins on a (black-centred) star, arranged as in Fig. 4 on the right side. The equations (74)
are explicitly presented in (62) in an expanded form. Further, the definition (66) for the Lagrangian
Lu,v(a, b, c,d), entering the action (72), involves the variational equations (55),

δ

δx
L
(1)
u,v (x |a, b, c,d) = 0 (75)

for every white site. These equations are explicitly presented in (59). Combining the equations (74)
and (75) (respectively, their expanded forms (59), (62)), one gets a system of non-linear difference
equations for all internal sites of the lattice (the boundary spins are fixed). Note, that each of these
equations involves variables on five sites, belonging to a four-edge star. These classical integrable
equations can be regarded as a generalization of the Laplace-type system associated with the Adler-
Bobenko-Suris Q4 equation [13,26] to the case of multi-component field variables. Their integrability
is inherited from the integrability of the quantum model. It could also be independently established
from the classical star-star relation (63) (in particular, the latter implies the existence of an infinite
set of local integrals of motion).
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It appears that for Dirichlet (fixed) boundary conditions solutions of the classical equation (59),
(62) possess the following property. We expect that in the bulk of a large lattice (i.e. away from
the boundary) all solutions converge to some constant solution, independent of the boundary values
of the spins. According to (39) it is reasonable to expect that the action (72) evaluated on this
constant solution should vanish. The corresponding solution could be easily found. Assume that
all spins on the lattice are equal to same vector

x(c) = (x1, x2, . . . , xn), xj =
π

n

(

j −
n+ 1

2

)

, j = 1, 2, . . . , n . (76)

Then it is easy to check that all equations (59), (62) are satisfied and that

Λα(x
(c),x(c)) = C(x(c)) = 0 . (77)

Therefore the action (72) exactly vanishes on this solution in complete agreement with (39). It
would be interesting to verify whether this it is an absolute minimum of the action and, more
generally, to study its global convexity properties.

As an illustration consider the case n = 2. The two-component spin variables in this case
contain only one independent continuous variable, so that it will be more convenient to use the
scalar argument x, assuming that the corresponding two-component spin is equal to x = (−x, x),
and similarly for all other spins. Eq. (48) and (51) simplify to

Λα(x, y) = −i

∫ x−y

0
dw log

ϑ4(w + iα | τ)

ϑ4(w − iα | τ)
− i

∫ x+y

π/2
dw log

ϑ4(w + iα | τ)

ϑ4(w − iα | τ)
, (78)

and

C(x) =
π2

4
+ 4x2 − 2π|x| , −

π

2
≤ x ≤

π

2
. (79)

Note that for n = 2 the function Λα(x, y) becomes symmetric upon interchanging x and y. Using
the above expressions in (49) and (66) one can bring the action (72) to the form

A({xs}) =
∑

〈rs〉

Λαrs
(xr, xs) +

∑

s

C(xs) (80)

where the first sum is over all edges 〈rs〉, while the second sum is over all sites s. The variables αrs

take one of the four values α1, α2, α3, α4, defined in (56), depending on the type of the edge 〈rs〉
and the values of rapidity variables passing through the edge. The variational equations (75) and
(59) for the white-centred stars, as in Fig. 4, reduce to

ϕα1(x, a) + ϕα2(x, b) + ϕα3(x, c) + ϕα4(x, d) = 2π − 8x (81)

where

ϕα(x, y) = ∂xΛa(x, y) =
1

i
log

ϑ4(x− y + iα)ϑ4(x+ y + iα)

ϑ4(x− y − iα)ϑ4(x+ y − iα)
(82)

Similarly, for the black-centred stars one gets

ϕα4(y, a) + ϕα3(y, b) + ϕα2(y, c) + ϕα1(y, d) = 2π − 8y (83)

where the spins are arranged as in Fig. 4. The constant solution (76) in this case reads

x(c) =
π

4
, (84)
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for all sites of the lattice. Observing that

Λα

(π

4
,
π

4

)

= C
(π

4

)

= 0 , (85)

one easily concludes that action (80) on this solution vanishes exactly A({x
(c)
j }) = 0. Let us show

that this is the minimum of the action5. Expanding the latter in the vicinity of this solution

xs =
π

4
+ εs, εs → 0 , (86)

one gets

A({xs}) =
∑

〈rs〉

(

ζ4(iαrs)− ζ3(iαrs)
)

(εr − εs)
2 + 2c

∑

s

ε2s +O(ε3), (87)

where

ζk(z) =
1

i

∂

∂z
log ϑk(z | τ) , k = 3, 4, (88)

and
c = 2 + ζ3(iα1) + ζ3(iα2) + ζ3(iα3) + ζ3(iα4). (89)

Remind that τ is assumed to be purely imaginary, Im τ > 0. Using the inequality

ζ4(iα) > 0 > ζ3(iα) > −
2α

π|τ |
, 0 < α < π|τ |/2 (90)

and remembering that the sum of α’s is constrained by (57), with η0 = −iπτ/2, one can check that

c > 0, 0 < αk < η0, k = 1, 2, 3, 4, (91)

and thus that (87) defines a positive-definite quadratic form. The constant solution (84) could
be though as an analog of the isoradial solution of the Hirota equations describing planar circle
patterns [11,36].

5 Conclusion

We formulated a new solvable edge-interaction model of statistical mechanics with multi-component
continuous spin variables taking values on a circle. The Boltzmann weights are given by Eqs. (12),
(13). The weights satisfy the star-star relation (26), which ensures the integrability of the model.
Currently, we claim this relation as a conjecture. We have verified this relation in a few orders
of perturbation theory in the temperature-like variables (see Appendix B) and made extensive
numerical checks for n = 3, 4. We expect that a complete proof could be obtained by a rather
straightforward generalization of the results of [20–24], devoted to discrete-spin models connected
with the sl(n) algebra.

The star-star relation (26) implies the validity of the Yang-Baxter equations in the vertex (22)
and IRF (27) forms. The partition function per edge of the lattice is calculated exactly in the
thermodynamic limit by means of the inversion relations [33–35]. The result is included into the
normalization of the Boltzmann weights given by (14), (15). With this normalization the bulk free
energy of model vanishes, see (39).

5Since the expression (79) is non-analytic for x = 0, one needs to check the case where all spins are vanishing
xs = 0. Careful considerations show that the value of the action for this configuration is greater than zero.
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In Section 4 we study the quasi-classical (or the low-temperature) limit when one of the elliptic
nomes tends to unity, p → 1, and obtain the classical version (Eqs.(63) and (68)) of the star-star
relation.

Here we have only formulated our model on a simple square lattice, but the latter can be replaced
with a rather general planar graph. The required construction is similar to that described in [13] with
some modifications accommodating the two types of rapidity lines shown in Fig. 2. The partition
function then will be invariant under certain deformations of the planar graph connected with the
star-star (26) and inversion (17) relations. This property is known as Baxter’s Z-invariance [37].
Evidently, this property continues to hold in quasi-classical limit. As a result the action of the
classical system (72) evaluated on the stationary configuration will be invariant under the “star-
star” transformations connected with the classical star-star relation (68). These moves are similar
to the “star-triangular” transformations for the classical action introduced in [10]. Remind that,
geometrically, the classical star-triangle relation can be associated with a tetrahedron formed by
a set of six face diagonals of a cube. By this reason the star-triangular moves are often referred
to as “cubic flips” of faces of a quadrilateral surface [38]. From this point of view the star-star
relation (68) could be associated with “rhombic-dodecahedral flips” of quadrilateral surfaces, since
the octahedron in Fig. 5, representing the various terms in (68), forms a set of face diagonals of a
rhombic dodecahedron.

As mentioned in the introduction, for n = 2 the model provides a master solution [13] of the
Yang-Baxter equation, which contains all known edge-interaction models with single-component
spins as particular cases. It turns out that for n > 2 the model also possesses a similar “master”
property. The Boltzmann weights (12) allow a large number of interesting limiting cases. For
example, one could consider a low-temperature limit when one of the nomes tends to a root of
unity,

p → eiπ/N , N = 2, 3, 4, . . . . (92)

This limit is similar, but more complicated than the quasi-classical limit considered in Section 4.
In this case one obtains a “hybrid” model which couples a classical integrable system, involving
continuous spin variables, and an Ising-type model of statistical mechanics with discrete multi-
component spins variable taking values in (ZN )n−1. The Boltzmann weights are expressed with
elliptic theta functions. In general, the emerging model is spatially inhomogeneous, since its Boltz-
mann weights depend on solutions of the classical equation of motion 6. In a particular homoge-
neous case connected to a constant classical solution (similar to (76)) this model reduces to the
sln-generalization [24] of the Kashiwara-Miwa model [2]. In the trigonometric limit this elliptic
model further reduces to the sln-generalized chiral Potts model [21,22], which is in its turn equiva-
lent to the N -state Zamolodchikov-Bazhanov-Baxter model [20,39] on a cubic lattice (the number n
becomes the size of the lattice in the “hidden” third dimension). We hope to consider all these limits
and connections in the future (the n = 2 case has been thoroughly studied in [13]). It would also
be interesting to explore possible connections of our results to the discrete-spin models considered
in [40].

6These classical equation of motion are very similar to Eqs.(75) and (74). Conceptually the hybrid model described
here is very much similar to a model of quantum field theory on a non-trivial classical background.
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Appendix A. Inversion relation

Theorem 11 from [16] (related to An−1 root system) can be re-written in our notations as

∫

dyWα(x,y)Wβ(y,z)
n
∏

j=1

Φ(σ − yj + inα)Φ(yj − σ + inβ) =

= Wα+β(x,z)
κn(η − α− β)Φ(iη − inα)Φ(iη − inβ)

Φ(iη − in(α+ β))κn(η − α)κn(η − β)

×
n
∏

j=1

Φ(σ − xj + iα)Φ(zj − σ + iβ)Φ(xj − σ + i(nβ − α))Φ(σ − zj + i(nα− β)) .

(A.1)

Taking the limit β → −α and using (16) and

Φ(z)Φ(−z) = 1 , lim
ǫ→0

Φ(iη − inǫ)

κn(η − ǫ)
= 1 , W0(x,z) =

1

n!

∑

σ̂

δ(x, σ̂(z)) , (A.2)

one obtains the inversion relation (17).

Appendix B. Series expansions of in powers of p and q

Define power sums of exponents of the spin variables, entering the star weight (24),

Ak =

n
∑

j=1

e2ikaj , Bk =
∑

j

e2ikbj , . . . , Xk =

n
∑

j=1

e2ikxj , k = 1, 2, . . . . (B.1)

Consider the physical regime (2), (30). Then rapidity variables can be parametrized as

u =
η

2
+ α+

i

2
(γ − β), v = −

i

2
(γ + β),

u′ =
η

2
+ α−

i

2
(γ − β), v′ = +

i

2
(γ + β)

(B.2)

where the parameters s α, β and γ are real. Moreover, assume

|Reα| ≪ η, p ∼ q → 0 , (B.3)

Using the product expression (4) for the elliptic gamma-function it is not difficult to obtain the
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following expansions for the Boltzmann weights (12) and (13),

κn(η/2 + α)Wη/2+α(a, b) = 1 + 1
2 (pq)

1
2 e2α A∗

1 B1 + pq e4α
{

(A∗
1)

2 (B1)
2 +A∗

2 B2

}

+ 1
6 (pq)

3
2 e6α

{

(A∗
1)

3 (B1)
3 + 2A∗

3 B3 + 3A∗
1 A

∗
2 B1B2

}

+ (pq)
1
2 (p2 + q2) e2α A∗

1 B1 − (pq)
3
2 e−2α A1 B

∗
1

+ 1
24 p

2 q2 e8α
{

(A∗
1)

4 (B1)
4 + 6 (A∗

1)
2 A∗

2 (B1)
2B2 + 3 (A∗

2)
2 (B2)

2 + 8A∗
1 A

∗
3 B1B3 + 6A∗

4 B4

}

+ pq (p2 + q2) e4α (A∗
1)

2 (B1)
2 − p2q2A∗

1A1 B
∗
1 B1 +O(p5) ,

(B.4)
where the order of the correction terms here and below is shown for p ∼ q,

κn(α)Wα(a, b) = 1 + pq (1 + p2 + q2)
{

e2αA∗
1 B1 − e−2αA1 B

∗
1

}

− p2q2A∗
1 A1 B

∗
1 B1

+ p2q2
{

cosh 4α (A∗
1)

2 (B1)
2 + sinh 4αA2 B

∗
2

}

+O(p6) ,

(B.5)

and

πn−1n! S(x)
∏

j<k

(

2 sin(xj − xk)
)−2

= 1− (p2 + q2)
{

X ∗
1X1 − 1

}

+ p2q2
{

X ∗
1X1 − 1

}2

+ 1
2 (p

4 + q4)
{

4− 4X ∗
1X1 + (X ∗

1 )
2(X1 )

2 −X ∗
2X2

}

+O(p6) .

(B.6)

From (15) one obtains
κ(η/2 + α) = 1 + (pq)

n
2 e2nα +O(pn+2) . (B.7)

The definition of the IRF weight (28) requires an evaluation of integrals over the central spin in
the star. The results depend on the value of n. Below we restrict ourselves to the case n = 3. For
any function f(x) of the spin variable x define the following integral

J
[

f(x)
]

=
1

πn−1n!

∫

(

∏

j<k

(2 sin(xj − xk))
2
)

f(x) dx, dx = dx1 dx2 · · · dxn−1 . (B.8)

Below we will need the following integrals

J [1] = J
[

X1X
∗
1

]

= 1,

J
[

(X1)
2(X ∗

1 )
2
]

= J [X2X
∗
2 ] = 2,

(B.9)

which are given for a general n and specific integrals

J [(X1)
3] = J [(X ∗

1 )
3] = 1,

J [X1X2] = J [X ∗
1X

∗
2 ] = −1,

(B.10)

valid for n = 3. Using the above expansions one obtains for the IRF weight for n = 3 (28)

∣

∣

∣
S(c)S(b)

∣

∣

∣

− 1
2
Vuv

(

a b

c d

)

= 1 + pq P + (pq)
3
2 Q

+ p2q2
(

1 + 1
8 P

2 + 1
4 R− S

)

+ 1
2 pq (p

2 + q2)P +O(p5)

(B.11)
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where we used the following notations

P =
(

e2iβ A1 + e−2iβ D1

) (

e2iγ B∗
1 + e−2iγ C∗

1

)

+
(

e−2iβ A∗
1 + e2iβ D∗

1

) (

e−2iγ B1 + e2iγ C1
)

Q = e6α
(

e−2iβA1D
∗
1 + e2iβA∗

1D1

)

+ e−6α
(

e2iγB1C
∗
1 + e−2iγB∗

1C1
)

R =
(

e4iβ A2 + e−4iβ D2

) (

e4iγ B∗
2 + e−4iγ C∗

2

)

+
(

e−4iβ A∗
2 + e4iβ D∗

2

) (

e−4iγ B2 + e4iγ C2
)

S =
(

e2iβ A1 + e−2iβ D1

) (

e−2iβ A∗
1 + e2iβ D∗

1

)

+
(

e−2iγ B1 + e2iγ C1
) (

e2iγ B∗
1 + e−2iγ C∗

1

)

(B.12)
All additional integrals (beyond (B.9) and (B.10)), required for (B.11) in the given order, exactly
vanish. Note all terms in (B.11) are manifestly real and thereby confirm the validity of the star-star
relation (26) in pertubation theory.
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