
 1

Algorithm xxx: computing the Faddeyeva and Voigt
functions

Mofreh R. Zaghloul and Ahmed N. Ali

Department of Physics, College of Sciences, United Arab Emirates University,

P.O.B. 17551, Al-Ain, UAE.

Abstract

We present a MATLAB function for the numerical evaluation of the Faddeyeva function
w(z). The function is based on a newly developed accurate algorithm. In addition to its
higher accuracy, the software provides a flexible accuracy vs efficiency trade-off through
a controlling parameter that may be used to reduce accuracy and computational time and
vice versa. Verification of the flexibility, reliability and superior accuracy of the
algorithm is provided through comparison with standard algorithms available in other
libraries and software packages.

 2

1. Introduction

The value and significance of the scaled complementary error function for
complex variables, also known as the Faddeyeva function or the plasma dispersion
function, is well recognized in the literature for its applications in several fields of
physics [1-17]. Plasma spectroscopy, nuclear physics, radiative heat transfer, and nuclear
magnetic resonance are a few examples of the fields for which efficient and accurate
evaluation of this function is required. Some of these applications require a small number
of evaluations of the function where accuracy is more important than the computational
time while other applications require enormous numbers of function evaluations, which
imposes tight restrictions on the computational time. Accordingly, computational
accuracy and computational time are issues of interest that should be critically addressed
and investigated in developing any successful algorithm for the computation of this
function.

Motivated by its practical importance and a lack of closed form expressions for
the calculation of the Faddeyeva function, numerical evaluation of the function has been
the focus of research over many decades [1-17, 20]. As a result, a wide variety of
algorithms for the calculation of this function have been developed and presented in the
literature. However, as it is shown in this study, most of these algorithms lose accuracy in
some regions of the computational domain.

 We introduce a new algorithm for the calculation of the Faddeyeva function
which provides flexibility, reliability and superior accuracy. In section 2 we present the
definition of the function and briefly summarize some relevant fundamental mathematical
relations. Then, in section 3, we establish the analytical basis of the algorithm while
numerical analysis and computational details are discussed in section 4. A short
description of the Matlab function is given in section 5. Verification of the algorithm and
comparisons with other competitive codes in the literature are provided in section 6.

2. Definition and Fundamental Mathematical Relations

For a complex variable z=x+iy, the Faddeyeva (plasma dispersion) function,

w(z), the real Voigt function, V(x,y), the imaginary Voigt function, L(x,y), the complex
error function, erf(z), the imaginary error function, erfi(z) and the Dawson’s integral F(z)
are all closely related to each other. One can summarize these relations as

()

0yforyx,Liyx,V

zF
π
i2e

zie

ize

izeizez

2

2

2

22

z

z

z

zz

>+=

+=

+=

+=

−=−−=

−

−

−

−−

)()(

))erfi((1

))erf((1

)erfc())erf((1)(w

 (1)

In the above relations, 1i −= , erfc(z) is the complementary error function, erfi(z) is
the imaginary error function which is related to the error function by erfi(z)= - i erf(iz).

 3

As can be seen from the last line in (1), the real and imaginary Voigt functions are
just the real and imaginary parts of the Faddeyeva function for y>0, respectively. The
evaluation of all of these functions can, therefore, be performed through the error
function.

The error function of a complex variable z can be regarded as a line integral in the
complex plane given by

∫ −=
z

t dtez
0

22)(erf
π

 (2)

Different paths can be taken to perform this line integral in the complex plane. For
example, one may choose a linear path between the initial point (origin) and the final
point z which gives an expression for the complex error function of the form

∫ −=
1

0

222)(erf dtezz tz

π
 (3)

An alternative path can be followed through the line segments [0, 0→ iy] and [0→ x, iy]
which gives, for the complex error function the expression,

−+= ∫∫∫ −−

x
t

yy
t

x
t

y

dtyteedteidtyteez
000

)2sin(22)2cos(2)(erf
2

2
22

2

πππ
 (4)

In addition to the above paths, another simple and useful path from the initial to the final
points can be taken through the line segments [0→ x, iy=0] and [x, 0→ iy] which results
in

∫∫∫ −−− ++=
y

tx
y

tx
x

t dtxteeidtxteedtez
000

)2cos(2)2sin(22)(erf
22222

πππ
 (5)

The first term on the right hand side of (5) is the definition of the error function of the
real variable x. Equation (5) is the basis of the present algorithm for the calculation of the
Faddeyeva function as shown below.

For some limiting values of the parameters x and y, analytical formulae do exist
for the real and imaginary parts of the Faddeyeva function

() []
() []

2

)0,(

)()1()(

)()1()(

0),0(
)(erfcx),0(

2222

2222

xeyxV

yxxyxL

yxyyxV

yxL
yyxV

−→→±

+→∞→+

+→∞→+

→→
→→

π

π (6)

where)(erfc)(erfcx
2

yey y= is the scaled complementary error function of the real
argument y. When y→ 0, the imaginary part of the Faddeyeva function cannot be
expressed as simply, however, it can be expressed in terms of Dawson’s integral of x (the
real part of z) where

)(2)0,(xFyxL π→→± (7)
and F(x) has well reported asymptotic expressions for limiting values of x [1].

Following Salzer 1951 [18], we can write

 4

1))2(cosh21(
2222

1
≤±+≅ ∑

∞

=

− aeEanteae t

n

nat

π
 (8)

where the relative error ∑
∞

=

−=
1

/)/2cos(2
222

n

an atneE ππ is of the order of
22 /2~ aeE π− .

Table 1 presents some representative values of the relative error E corresponding to some
values of the parameter a.

Table 1: Relative error, E, of the representation of
2te given by Eq. (8) as a function of the

parameter a.

a 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.36

E 1.03×10-4 1.02×10-5 4.01×10-7 3.58×10-9 2.48×10-12 1.43×10-17 3.25×10-27 1.69×10-33

3- Analytical Basis of the Algorithm

Replacing
2te in (5) by its representation given in (8), we get, for the real and

imaginary parts of erf(z), the following expressions

[])2(sin)2(sinh)2(cos)2(cosh
44

8))2(cos1()erf()][erf(Re

1
222

22

22

yxynanayxynaxx
xna

e

e
π
axye

xπ
axz

n

na

xx

+−
+

×

+−+=

∑
∞

=

−

−−

 (9)

[])2(cos)2(sinh)2(sin)2(cosh
44

8)2(sin)4(4)][erf(Im

1
222

1

22

22

yxynanayxynax
xna

e

e
π
ayxxe

π
az

n

na

xx

+
+

×

+=

∑
∞

=

−

−−−

 (10)

The error in the expressions in (9) and (10) for the real and imaginary parts of the
complex error function is controllable through the parameter a as indicated in Table 1.
Both expressions, however, reduce to the formulae given by Salzer [18] and Abramowitz
and Stegun [19] with a relative error less than the floating point relative accuracy, ε, on a
16 digit computational platform, by setting a equal to 1/2. An expression for the
Faddeyeva function,)(erfc)](Im[)](Re[)(

2

izezizz z −=+= −www , can be obtained by
substituting (9) and (10) into (1). The resulting expressions for the real and imaginary
parts of the Faddeyeva function are then given by

)]2(cos)2(cosh[
44

8

])()(sin[)(sin2)2(cos)(erfcx)]([Re

1
222

22
2

22

yxxna
yna

ee
π

ya

xyxye
π

xyxaxyyez

n

na
x

xx

−
+

+

+=

∑
∞

=

−
−

−−w

 (11)

 5

)]2(sinh)2(sin[
44

8

])2()2(sin[2)2(sin)(erfcx)]([Im

1
222

22
2

22

xnanaxyy
yna

ee
π
a

xyxye
π

xaxyyez

n

na
x

xx

+
+

+

+−=

∑
∞

=

−
−

−−w

 (12)

Some comments on the above expressions may be useful at this stage

1- The series in (11) and (12) have an infinite number of terms and need to be
truncated for practical use. The effect of such a truncation on the accuracy of the
computations is predictable and can be controlled for a converging series,

2- While the exponential factors in the series are decaying with the index, n, they are
multiplied by growing hyperbolic functions and one cannot directly determine
where to truncate the infinite sums for practical use,

3- There is a limitation on the evaluation of the hyperbolic functions (related to the
largest positive floating point number, Rmax, available on the computational
platform). Since the argument of these hyperbolic functions is (2anx), this will
impose a strict restriction on the number of terms to be included in the sums for a
given value of x with possible catastrophic consequences on both accuracy and
reliability,

4- In writing the above expressions, the scaled complementary error function of a
real variable is used to reduce rounding error associated with the term (1-erf(y)),
however, special care is needed for the evaluation of the erfcx(y) function to avoid
overflow problems illustrated in [20]. At present, many software packages have
well-behaved algorithms for computing the scaled complementary error function
of a real variable, erfcx, and algorithms for accurate and efficient computation of
this function are available in the literature,

5- The evaluation of the quantity exp(-x2) common to all of the above terms, can
suffer underflow problems for large values of x. These problems can be avoided
by combining this quantity with other large quantities wherever possible.

To overcome the above-stated concerns and restrictions, the expressions in (11) and (12)
are rewritten in the forms

 ++−+

+= −−

321 22
)2cos(2

])()sin([)sin(2)2cos()(erfcx)]([Re
22

ΣΣΣ
π

π
yyxyya

xyxyexyxaxyyez xxw

 (13)

and

 +−+

+−= −−

541 2
1

2
1)2sin(2

)]2/()2[sin(2)2sin()(erfcx)]([Im
22

ΣΣΣ
π

π

xyya

xyxyexaxyyez xxw

 (14)

where

 6

)(

1
2221

2221 xna

n
e

yna
+−

∞

=
∑

+

=Σ (15)

2)(

1
2222

1 xna

n

e
yna

+−
∞

=
∑

+

=Σ (16)

2)(

1
2223

1 xna

n

e
yna

−−
∞

=
∑

+

=Σ (17)

2)(

1
2224

xna

n
e

yna
an +−

∞

=
∑

+

=Σ (18)

2)(

1
2225

xna

n
e

yna
na −−

∞

=
∑

+

=Σ (19)

The convergence of the series (15)-(19) can be verified by applying the simple ratio-test
[21]. In addition, in all of the above expressions (15)-(19), the pre-exponential factors
(fractions in brackets) of the arguments of the summations assume values less than 1 for
n>1/a. For a=1/2 (which is sufficient to express

2te by the expression given in (8) to
machine accuracy on a 16-digit computational platform, see Table 1) the pre-exponential
factors will always assume values less than or equal to one for n≥ 2.

For values of n≥ 2, the terms in the series Σ1, Σ2 and Σ4 decrease monotonically
with n while for relatively large values of x the terms Σ3 and Σ5 increase with n from one
to a certain limit when they start decaying monotonically with n. The fact that all
exponential factors in the above summations eventually decay with increasing n provides
us with the possibility of obtaining a truncated series of practical use and computational
efficiency as shown in the next section. It is understood, however, that all of the above
summations are to be performed using a single loop for computational efficiency. The
loop specifications can be determined once a cutoff scheme for the series in (15)-(19) is
established. Moreover the computation of the exponentials in these series can be reduced
to the computation of a single exponential and products using a single computational
loop. This reduces the dependence on using the intrinsic function to calculate these
exponentials within the loop and can save a significant amount of computational time.

As the real part of the Faddeyeva function is even in x and its imaginary part is
odd in x, we need only consider the right half of the complex plane (x≥0) since the
even/odd properties of the real and imaginary parts of the function can be used to find the
corresponding values in the left half of the plane. In addition, the values of)(zw in the
lower half of the complex plane can be obtained from values in the upper half using the
relationship

)(2)(
2

zez z ww −=− − (20)
which is equivalent to the symmetry relations

),()2sin(2),(

),()2cos(2),(
22

22

yxLxyeyxL

yxVxyeyxV
yx

yx

−−−−=

−−−=
+−

+−

 (20’)

 7

Thus we do not lose generality by considering the evaluation of the function in just the
first quadrant, however, we note that (20) requires the subtraction of two values which
leads to a loss of accuracy in the lower half.

The practical usefulness of the calculation of the partial derivatives of the real and
imaginary parts of the Faddeyeva function has been pointed out by many authors
[10,13,15]. Once the Faddeyeva function has been calculated accurately one can calculate
these partial derivatives with relative simplicity using the expressions

)],(),([2)]([Re2),(yxVxyxLyzz
x

yxV
−=−=

∂
∂

w (21)

ππ
2)],(),([22)]([Im2),(

−+=−=
∂

∂ yxVyyxLxzz
y

yxV
w (22)

in conjunction with the relations

y
yxV

x
yxL

x
yxV

y
yxL

∂
∂

−=
∂

∂
∂

∂
=

∂
∂),(),(&),(),((23)

Schreier [10] reports numerical problems that can arise when subtracting two numbers of
approximately equal magnitudes (when 0~xV ∂∂). Letchworth and Benner [15] use a
special algorithm to calculate these partial derivative (to accuracy <0.5%) but this
increases the computational time by about 70%.

4- Numerical Analysis and Machine Limitations
4.1. High accuracy computations

Due to the finite number of decimal digits available to store a real number in
floating-point arithmetic, there are machine limitations on the evaluation of the above
summations. The floating-point relative accuracy, ε, and the smallest positive floating-
point number, Rmin, in the used computational platform impose restrictions on the
accuracy and cause practical machine-truncation of the sums. At any stage during the
computation of the sums, the new accumulated sum after adding the term αn+1 of the
series can be written as

())(111
n

nnnn
∆ΣαΣΣ +×=+= ++

, (24)

where
nnn Σα∆ 1)(+= .

(24) implies that the sum of n+1 terms will not differ from the sum of n terms (i.e.
the series will be effectively machine-truncated) if the term

nnn Σα∆ 1)(+= becomes
less than the floating-point relative accuracy, ε, or if αn+1 <Rmin. For computational
efficiency (shorter computational time) we need to specify these internally truncated
terms and exclude them from the computational loop.

Starting with the sum Σ1 and considering the possibility of machine-truncation of
the sum due to the underflow of the terms αn+1, a simple safe estimation for the last value
of the index n to be included in the evaluation of the sum, 1Σ

cutn , can be derived based on
the underflow of the exponential factors only (since the pre-exponential factor is already
less than unity)

2)ln(1
1

min,
xR

a
n minRcut

−−≈Σ (25)

 8

It is implicitly understood that (25) implies rounding to the nearest integer towards
infinity. Similarly, the terms of the sums, Σ2 and Σ4, have the same exponential
dependence, while both of the pre-exponential factors will have values less than or equal
to unity for a/1n ≥ . In such a case, the term αn+1 in both sums will reach values <Rmin if
the exponential factor becomes ≤Rmin which gives

 []xR
a

n minRcut −−≈)ln(1
42

min

,
,
ΣΣ (26)

Both (25) and (26) indicate that, for)ln(minRx −≥ , no terms from the
arguments of the sums Σ1, Σ2 and Σ4 will be effective in the computations and that the
values of these sums will be effectively truncated. We note, however, that machine-
truncation of these sums due to the Rmin limitation would also imply machine-truncation
due to machine accuracy (i.e, ∆(n)≤ε) as seen in (24). For computational efficiency, this
later condition may be used to break the computational loop as additional cycles of the
computations or additional terms of the series will not change the values of the sums.

Furthermore, we can also make the computations of the sums Σ3 and Σ5 very
efficient. As pointed out above, the values of the terms of these two series grow initially
with n up to a certain value (peak) and then decay continuously as n increases. Simple
investigation of these two sums shows that this peak is in the vicinity of n=x/a.
Accordingly, if one starts calculating these sums from around n=x/a and proceeds in both
directions, the values of the terms will decrease until they get machine-truncated. For
each value of the index n used in the calculation of the terms of the sums Σ1, Σ2 and Σ4
we can add to each of the sums Σ3 and Σ5 two terms by marching one step in each
direction. The sums are truncated when the sum of the newly added two terms relative to
the value of the previously accumulated sum becomes less than the machine accuracy.
Handling the computation of the sums, Σ3 and Σ5 this way leads to a significant saving in
execution time by dramatically reducing the number of terms requiring evaluation which,
in turn, leads to a smaller number of loop cycles. The asymptotic expression in the first
line of (6) is used for values of x<Rmin.

4.2. Accuracy vs efficiency trade-off

With 16-digit floating-point arithmetic and for values of the parameter a > ½, the
expansion in (8) becomes less accurate and its accuracy will be governed by the
corresponding value of the relative error, E, as shown in Table 1. It is not necessary,
therefore, to keep the strict condition for truncating the sums, i.e., ∆(n)<ε since the
accuracy of the computations will be governed principally by the relative error E.
Recalling that the relation between a and E can be written as E ~ 2 e− π

2 /a2
 it seems more

appropriate to choose E (named tiny in the code) instead of ε to test for the convergence
of the sums. That way we can reduce the number of terms included in the sums by
excluding terms that will not effectively enhance the accuracy and thus achieve
reasonable acceleration of the computations and reduce the computational time. Noting
that, changing the value of a changes E (tiny) and vice versa, we could choose either a or
tiny as the free parameter for controlling the accuracy and efficiency of the computations.
This free parameter will be used as an argument of the function. We have chosen to use

 9

tiny and we calculate a internally from the above relation as tiny gives a better
indication of the accuracy of the computations.

This allows flexibility for accuracy vs efficiency trade-offs while maintaining the
ability to run the code for high accuracy.

4.3. Calculation of the exponentials and other numerical considerations

The central part of the present algorithm depends on the evaluation of the sums
(15)-(19) which all have exponential terms. The evaluation of intrinsic functions like the
exponential function is known to be slower than other simple mathematical operations
such as multiplication and/or division. A naïve computation of these sums would require
three exponential evaluations per computational loop. This would be computationally
expensive. However, we may reduce this to just one exponential evaluation in each cycle
of the loop. For the case of)ln(minRx −< we have some flexibility in evaluating the

term
2xe− either separately or by combining it with other terms. In such a case one can

write all of the exponentials in (15)-(19) in terms of the exponential
22nae− where

222222)(xnaxna eee −−+− ×= (27)

∏ −−−+− ××=
n

axxnaxna eeee
1

2)(2222

 (28)

∏××= −−−−
n

axxnaxna eeee
1

2)(2222

 (29)

In the above expressions
2xe− , axe 2− and axe2 are calculated once outside the loop, for each

value of x, and the products are simply performed using multiplies inside the
computational loop. For)ln(minRx −≥ only Σ3 and Σ5 (which have the same
exponential factor) contribute to the calculation of the real and imaginary parts of the
Faddeyeva function. However, due to the nature of the computation of these terms, the
exponential factor needs to be computed twice; once for the step to the right of n0
=ceil(x/a) and once on the left wing where “ceil” indicates rounding to the nearest integer
towards infinity. The indices for these two factors are related to the loop index, n, by n3-

plus = n0+(n-1) and n3-minus = n0 - n if n3-minus ≥1, respectively. When n3-minus <1, only the
term on the right wing is included. The exponential factors for the terms on the left and
right wings are related by

∏ −−−+−−−− ××= −−

n
aaxnanaaxaxnaxna eeee plus3minus

1

)244()22()()(2
0

2
0

2222
3 (30)

Clearly the second exponential factor on the right hand side of (30) and the argument of
the product may be calculated once outside the loop, for each value of x, thus reducing
the number of exponential function evaluations to only one per cycle. The product can be
evaluated using just multiplies inside the loop, thus reducing the computational time.

A few more important computational points are related to the calculation of the
imaginary part of the Faddeyeva function using (14). Firstly, for values of x<<1, the two
sums Σ4 and Σ5 become very close to each other and the subtraction of these two sums
could significantly affect the accuracy in regions of the computational domain where

 10

these two terms are the dominant terms in calculating the imaginary part of the
Faddeyeva function. However, this problem can be simply overcome by expressing the
sum of these two terms (for x<<1) in its original form as in (12), i.e. in terms of
sinh(2anx). The first three terms in the series expansion of sinh(x) will be sufficient to
express sinh(x) to the machine accuracy for x≤10-2 and since 2an is usually <20 in the
present computations then this is satisfactorily for x≤5×10-4.

The second important point in the calculation of the imaginary part of the
Faddeyeva function using (14) is related to the calculation of the sum of the first three
terms on the right hand side of the equation, for)ln(minRx −< , which can be written
safely in the form

+
++− ∑

∞

=

−
−

1
2221

21)()(sin
22

2

n

na
x

yna
e

y
ay2xye
π

erfcx (31)

The terms in the curly brackets are only dependent on y and for y ≥5 we have found that
this sum is zero to machine accuracy. Using this prevents rounding errors affecting the
accuracy of computations. Note that for very small values of x the result of the whole
expression (31) is O(yx) while the total of -Σ4 + Σ5 is O(x), the significance of rounding
errors is thus clear for small values of x and relatively large values of y.

5. The MATLAB Function Faddeyeva.m

The function Faddeyeva(z,tiny) returns, in general, an array of complex values for
the Faddeyeva function of the same size as the input array for the complex variable z. The
input z is usually an array (with one or two dimensions) but can be a single scalar as well.
When z contains only imaginary values z=iy, the function returns the real values
calculated from the MATLAB built-in function “erfcx(y)”. The function is set for the
calculation for the whole complex domain. However, for negative values of y and exp(y2-
x2) greater than the largest floating point number in the computational platform,
Faddeyeva cannot calculate the Faddeyeva function due to inescapable overflow
problems. The function checks for acceptable values and issues an error message for any
points outside this domain.

The value of the scalar free parameter “tiny” can be chosen by the user within the

range tinymin≤tiny≤10-4 to control the accuracy and computational time. The value of
tinymin is a value close to but less than the floating-point relative accuracy, ε. For
example, for a 16 digit computational platform, tinymin can be taken roughly to be
~1.43×10-17 (the value of E corresponding to a=1/2 in Table 1) while for a 32-digit
computational platform tinymin can be taken to be roughly 10-33. The maximum value of
tiny=10-4 corresponds to a=1 (the maximum value for a for which the expansion in (8)
can be used). Increasing the value of tiny within its above mentioned range will decrease
the computational time at the expense of the computational accuracy and vice versa.

Choosing a value of tiny<tinymin will just increase the run time without any
improvement in the accuracy of computations which will then be governed solely by the
machine characteristics. Values of tiny<tinymin or tiny>10-4 result in tiny being reset to
tinymin or 10-4 respectively; a warning message is returned in both cases.

 11

It is to be noted that tiny<ε is used only for the calculation of the corresponding
value of the parameter a and not for the truncation of the sums since the calculations
cannot be claimed to be performed for relative accuracy less than the machine accuracy
epsilon, ε, in any case. Accordingly, for the truncation of the sums, the maximum of tiny
and ε is used.

6. Algorithm Verification and Efficiency
6.1. High accuracy computations

Three different independent computational techniques are used to investigate the
accuracy of the present algorithm

1- Mathematica [22] provides the imaginary error function erfi(z) as a special
function which can be evaluated and then used in conjunction with the relation given in
(1); that is))(erfi1()(

2

ziez z += −w , to calculate the Faddeyeva function [23]. The
arbitrary-precision arithmetic used in Mathematica allows us to obtain highly accurate
values for the function erfi(z) although these calculations are very expensive
computationally. This is only generally suitable for applications where the speed of
arithmetic is not a restrictive factor, or where precise results for a small number of
evaluations are required. We can, however, generate highly accurate values of the
function erfi(z) using Mathematica by using large numbers of digits of precision,

2- the simple proper integral given in reference [20] can be used to calculate the real
Voigt function (real part of the Faddeyeva function), and

3- the Algorithm 680 [7], which is widely used in the literature and is implemented in
many software packages and libraries, calculates the Faddeyeva function to a claimed
accuracy of 14 significant digits.

The relatively long computational time associated with the first two methods
makes them inefficient for use in applications requiring a large number of function
evaluations. For this reason, Algorithm 680 is regarded as the competitive highly accurate
algorithm due to its computational speed and claimed accuracy.

Table 2 presents sample results calculated using these three methods with the

results from the present algorithm. The values of the complex variable z used in the
computations in this table have been selected to allow some conclusions to be drawn in
addition to establishing confidence and reliability in the present code. The value of the
relative error in the calculation of the Faddeyeva function proposed here is given in Table
3 and compared with the other approaches, taking the values of w calculated using the
function erfi(z) from Mathematica with high number of digits of accuracy as reference
values.

Looking closer into the values given in these two tables we conclude that;
a) compared to calculating the Faddeyeva function using erfi(z) from

Mathematica, the present algorithm is more reliable since we failed to calculate
erfi(z) using Mathematica for values of x>3.9×104 and y>2.8×104 while the
present algorithm does not suffer such a limitation. Note that for this domain
Mathematica cannot be used as reference, and therefore, no comparison was
performed for this range in Table 3.

 12

b) for the whole domain of computations, the present algorithm shows very high
accuracy as shown in Table 3, while the Algorithm 680 suffers a catastrophic loss
of accuracy in the vicinity of x=6.3 as well as for small values of y signified by
bold-face numbers in Tables 2 and 3. The relative error for the real part of the
Faddeyeva function from Algorithm 680 in this region of the first quadrant goes
up to 100%. It has to be noted that x=6.3 is one of the built-in values in Algorithm
680.

 To investigate the effectiveness of the present algorithm compared to Algorithm 680,
we calculated the Faddeyeva function using both algorithms for 2,840,710 points of
the complex variable z distributed over the upper half of the complex plane using the
grid y=logspace(-20, 4, 71) and x=linspace(-200, 200, 40001) where y=logspace(-20,
4, 71) generates a row vector of 71 logarithmically equally spaced points between 10-

20 and 104 and x=linspace(-200, 200, 40001) generates a row vector of 40001 linearly
equally spaced points between -200 and 200. Using Matlab 7.9.0.529 (R2009b), the
computational time taken by the present algorithm was found to be <8.0% of that
taken by Algorithm 680, which represents a significant time saving.

Figures (1-a) and (1-b) show surface plots of the absolute relative error

refrefV VVVδ /−= and refrefL LLLδ /−= in the results obtained from the present algorithm
using results from Algorithm 680, which is available in Matlab, as reference values. As
can be clearly seen from these figures, the results from the present algorithm show high
agreement (around 13 significant digits) over the chosen computational domain except
for the region in the vicinity of x=6.3 and small values of y where Algorithm 680 badly
loses its accuracy as indicated above. The above findings provide the necessary
verification and confirm the high accuracy as well as the reliability of the present
algorithm.

 13

Figure 1-a Absolute relative error refrefV VVVδ /−= in the calculations of the real part of the

Faddeyeva function from the present algorithm using the results from Algorithm 680 as reference
values.

Figure 1-b Absolute relative error refrefL LLLδ /−= in the calculations of the imaginary part of the

Faddeyeva function from the present algorithm using the results from Algorithm 680 as reference
values.

 14

6.2. Efficient computations with lower accuracies

Table 4 below shows values of the free variable tiny used in the calling argument

of our Matlab function and the corresponding relative accuracy refrefV VVVδ /)(−= and

refrefL LLLδ /)(−= in the calculations, using values calculated with the highest accuracy
obtainable from the present algorithm as reference values. The need to quantify the
efficiency improvements obtainable when using the accuracy vs efficiency trade-off
capability of the present algorithm is the reason of using the highest accuracy
computations from the present algorithm as reference values. The run times required to
calculate the function for 2,840,710 points generated using the grid y=logspace(-20, 4,
71) and x=linspace(-200, 200, 40001) relative to the run time required to perform the
same computations using the highest accuracy computations from the present algorithm
are also included in the table. As can be seen from the table, running the present
algorithm at lower accuracy improves the efficiency of the computations and decreases
the computational time by up to 45%. Compared to other efficient and low-accuracy
algorithms in the literature [4,5,8,9,11,12], the present algorithm seems to be more
reliable even at low-accuracy. In addition, other algorithms fail in some regions of the
computational domain, particularly near the real axis (very small values of y); for
example, the Poppe and Wijers algorithm [8], known for its accuracy, fails in this region,
returning results for the real part of the Faddeyeva function that are several orders of
magnitude away from the correct values.

Figure 2 shows a comparison between the calculations of the partial derivative
xyx,V ∂∂)(using the present algorithm (run at the lowest accuracy) and calculations

from Algorithm 680, for y=10-20, in the region x=[6.1-6.5]. Here we see that the results
from the present algorithm (even when run at the lowest accuracy) seem to be more
accurate and more reliable than computations from Poppe and Wijers algorithm in this
region, where the latter loses its accuracy and fails to produce the correct behavior
of xyx,V ∂∂)(.

 15

Figure 2 ∂V(x,y)/∂x as calculated, from the present algorithm (tiny=10-4) and from Poppe and Wijers
algorithm, using (21), for y=10-20.

Figure 3 shows a surface plot of the relative error refrefV VVVδ)/(−= for the
results obtained from Hui’s algorithm [4] using results from the present algorithm as
reference values. We note that the Matlab version of Hui’s algorithm (cerf.m [4])
employed in this comparison, uses the p=5 rational approximation where p is the degree
of nominator polynomial. As is clear from the plot, the relative errors in the results of
Hui’s algorithm are very large for small values of y and reach 14 order of magnitude for
medium values of x when y=10-20.

In addition to the large errors for medium values of x and small values of y, Hui’s
algorithm produces negative values for the Voigt function (real part of the Faddeyeva
function) for example, for y=10-5 and x=4. The Voigt function is positive over the whole
first quadrant.

 16

Figure 3 Absolute relative error,

refrefV VVVδ)/(−= , in the calculations of the real part of the

Faddeyeva function from Hui’s algorithm using results from the present algorithm (tiny=tinymin) as
reference values.

Figure 4 shows a comparison between the calculations of the partial derivative

xyx,V ∂∂)(using the present algorithm (run at the lowest accuracy) and calculations
from Hui’s algorithm, using (21), for y=10-20, in the region x=[7,15]. As we see from the
figure, calculations from the present algorithm seem to be more accurate and more
reliable than Hui’s algorithm which fails to produce the correct behavior
(negative xyx,V ∂∂)() or the correct order of magnitude of xyx,V ∂∂)(in this region
of the computational domain.

We note that the error contours given in [4] were presented either for the modulus
of the complex error function or for the absolute value of the Voigt function V(x,y). That
was, probably, the reason why such failures were not clear from their paper.

Although Hui’s algorithm takes about 10% of the computational time taken by the
present algorithm (for tiny=10-4) and about 5% of the computational time taken by the
present algorithm for the highest-accuracy computations, the fact that it fails to produce
the correct values or correct signs of the function or even its correct behavior, in this
region of the computational domain, poses important questions about its reliability.

 17

Figure 4 ∂V(x,y)/∂x as calculated, from the present algorithm (tiny=10-4) and from Hui’s algorithm,
using (21), for y=10-20.

Humlíček [1982] reported that any rational approximation suffers inevitable

failure near the real axis and he attempted to overcome this failure in his algorithm, w4.
However, investigating the results of Humlíček’s algorithm we found that it also suffers
complete failure near the real axis in the vicinity of x=5.5. The results for y=10-20 show
that Humlíček’s algorithm underestimates the real part of the Faddeyeva function by 8
orders of magnitude and by 3 orders of magnitude for y=10-15. Figure 5 shows a surface
plot of the relative error in the calculation of V(x,y) using Humlíček’s algorithm taking
the results from the present algorithm as reference.

Table 5 shows that the computational time using the Humlíček’s original code is
almost three times that used by the present algorithm (for the highest-accuracy
computations). Even using a more efficient version of Humlíček’s code, modified by the
present authors, we note that the computational time taken by Humlíček’s algorithm is
still longer than that taken by the present algorithm (for the highest-accuracy
computations).

Figure 6, on the other hand, shows a comparison between the calculations of the

partial derivative xyx,V ∂∂)(using (21) from the present algorithm (run at the lowest
accuracy) and those calculations from Humlíček’s algorithm, for y=10-20, in the region
x=[5.4,6.4]. This shows that Humlíček’s algorithm does not produce the correct behavior
of xyx,V ∂∂)(in this domain.

 18

Figure 5 Absolute relative error, refrefV VVVδ /)(−= , in the calculations of the real part of the

Faddeyeva function from Humlíček’s algorithm using results from the present algorithm
(tiny=tinymin) as reference values.

Figure 6 ∂V(x,y)/∂x as calculated, from the present algorithm (tiny=10-4) and from Humlíček’s
algorithm, using (21), for y=10-20.

 19

As with Hui’s algorithm, Weideman’s algorithm [12] also produces negative
values for the real part of the Faddeyeva function near the real axis. The negative values
for the Voigt function calculated from Weideman’s algorithm appear for all values of the
parameter N (number of terms in the rational series) for y=10-20. A surface plot of the
relative error in the calculations of the real part of the Faddeyeva function using
Weideman’s algorithm with N=256 taking the results of the present algorithm as a
reference is shown in Figure 7. The figure shows that the errors resulting from
Weideman’s algorithm are catastrophic for small values of y and that the computed
magnitude of V(x,y) is overestimated by up to 6 orders of magnitude for y=10-20. The
situation becomes even worse for smaller values of N. Table 5 shows that the run time of
the present algorithm at highest accuracy is shorter than the run time of Weideman’s
algorithm with N=256.

Figure 7 Absolute relative error, refrefV VVVδ /)(−= , in the calculations of the real part of the

Faddeyeva function from Weideman’s algorithm, N=256, using results from the present algorithm
(tiny=tinymin) as reference values.

Figures (8-a) and (8-b) show comparisons between the calculations of the partial
derivative xyx,V ∂∂)(using the present algorithm (run at the lowest accuracy) and
Weideman’s algorithm with N=128 and N=32, respectively. The calculations shown in
the figure are for the region x=[6,15] and y=10-20 in Figure (8-a) and y=10-10 in Figure (8-
b). From these figures, we see that Weideman’s algorithm does not reproduce the correct
behavior for xyx,V ∂∂)(in the regions shown.

 20

Figure 8-a ∂V(x,y)/∂x as calculated, from the present algorithm (tiny=10-4) and from Weideman’s
algorithm with N=128, using (21), for y=10-20.

Figure 8-b ∂V(x,y)/∂x as calculated, from the present algorithm (tiny=10-4) and from Weideman’s
algorithm with N=32, using (21), for y=10-20.

 21

Other competitive algorithms in the literature also show loss of accuracy in some
regions of the computational domain. For example, the algorithm by Shippony and Read
[11] exhibits the same failure in calculating the real part of the Faddeyeva function near
the real axis. In particular we detected the same loss of accuracy suffered by Poppe and
Wijers algorithm for very small values of y near x=6.3. In addition, the Shippony and
Read algorithm produces negative values for V(x,y) and/or L(x,y) in several regions of the
computational domain. Just for example we refer to the points at x=1.5 and y=1.5, 2.0,
2.5, 3.0, 3.5, 4.0, 5.0 etc. It has to be noted that these failures have been obtained even
with the use of the correction provided by Shippony and Read in [24].
The situation is no better with the Letchworth and Benner’s algorithm [15] where similar
failures and loss of accuracy are obtained for very small values of y and values of x
greater than but close to x=5.76. For x=5.76 and y=10-20 Letchwoth and Benner’s
algorithm returns, for the real part of Faddeyeva function the value
V=1.783900323491466×10-22 while the value returned from the present algorithm is
V=3.900779639194698×10-15 and that returned from using the function erfi(z) from
MathematicaTM is 3.900779639194697×10-15. The algorithm in [20] returns
3.900779639194698×10-15. Figure 9 shows a similar comparison between the
calculations of the partial derivative xyx,V ∂∂)(using the present algorithm (with
tiny=10-4) and calculations from Letchworth and Benner algorithm, in (21), for y=10-20.
The failure of Letchworth and Benner’s algorithm for values of x greater than but close to
x=5.76 can be easily recognized from the figure.

It has to be emphasized here that these "competitive codes" were (probably) not
designed for such extreme values of y and the tests presented here are more a
demonstration of the "superior accuracy" of our software even for extreme values.

Figure 9 ∂V(x,y)/∂x as calculated, from the present algorithm (tiny=10-4) and from Letchworth &
Benner’s algorithm, using (21), for y=10-20.

 22

7. Conclusions

An algorithm accompanied by a computer code, in the form of a MATLABTM
function, for the numerical evaluation of the Faddeyeva function w(z) is presented. The
algorithm is more accurate and avoids failures discovered in other competitive published
algorithms. In addition to its superior accuracy, the present algorithm and computer code
allow a flexible accuracy vs efficiency trade-off through controlling a free parameter tiny.
By adjusting the value of this parameter the function can be run with a lower accuracy
and shorter computational time or high accuracy and longer computational time. Even
when run at its lowest accuracy, the present algorithm avoids major problems suffered by
other competitive codes. For all levels of accuracy the present code is safer and more
reliable since it does not return negative values for real and/or imaginary parts of the
Faddeyeva function nor does it suffer from the loss of accuracy exhibited by some of the
other competitive codes. The present algorithm can, therefore, be safely used and
implemented in personal and commercial libraries.

 23

Table 2: Results from algorithms in the literature in comparison with results from the present algorithm for some selected values of z
z MathematicaTM Algorithm 680 Ref. [20] Present algorithm

x y V L V L V V L
6.3e-002 1.0e-020 9.960388660702479e-001 7.090008726353683e-002 9.960388660702479e-001 7.090008726353685e-002 9.960388660702479e-001 9.960388660702479e-001 7.090008726353669e-002
6.3e-002 1.0e-014 9.960388660702367e-001 7.090008726353558e-002 9.960388660702367e-001 7.090008726353560e-002 9.960388660702366e-001 9.960388660702366e-001 7.090008726353543e-002
6.3e-002 1.0e-012 9.960388660691284e-001 7.090008726341133e-002 9.960388660691284e-001 7.090008726341135e-002 9.960388660691284e-001 9.960388660691284e-001 7.090008726341118e-002
6.3e-002 1.0e-010 9.960388659583033e-001 7.090008725098674e-002 9.960388659583034e-001 7.090008725098676e-002 9.960388659583034e-001 9.960388659583033e-001 7.090008725098659e-002
6.3e-002 1.0e-006 9.960377466254799e-001 7.089996176278113e-002 9.960377466254800e-001 7.089996176278113e-002 9.960377466254802e-001 9.960377466254801e-001 7.089996176278086e-002
6.3e-002 1.0e-002 9.849424862549036e-001 6.965909657459020e-002 9.849424862549037e-001 6.965909657459021e-002 9.849424862549038e-001 9.849424862549039e-001 6.965909657459005e-002
6.3e-002 1.0e+001 5.613881832823887e-002 3.502232333332985e-004 5.613881832823888e-002 3.502232333332986e-004 5.613881832823887e-002 5.613881832823886e-002 3.502232333332973e-004
6.3e-002 1.2e+001 4.685295149211636e-002 2.442987772965768e-004 4.685295149211637e-002 2.442987772965769e-004 4.685295149211637e-002 4.685295149211637e-002 2.442987772965766e-004
6.3e-002 1.5e+001 3.752895161491573e-002 1.569287266610685e-004 3.752895161491574e-002 1.569287266610686e-004 3.752895161491573e-002 3.752895161491574e-002 1.569287266610681e-004
6.3e-002 2.0e+002 2.820912377324508e-003 8.885651855627418e-007 2.820912377324509e-003 8.885651855627419e-007 2.820912377324511e-003 2.820912377324508e-003 8.885651855627396e-007
6.3e-002 1.0e+005 Fails to evaluate erfi 5.641895835193230e-006 3.554394375816296e-012 5.641895835475324e-006 5.641895835193228e-006 3.554394375816285e-012

6.3e+000 1.0e-020 5.792460778844102e-018 9.072765968412736e-002 1.478934492449188e-022 9.072765968412733e-002 5.792312885394871e-018$ 5.792460778844116e-018 9.072765968412679e-002
6.3e+000 1.0e-014 1.536857621303171e-016 9.072765968412736e-002 1.478934492449189e-016 9.072765968412733e-002 1.536857621303171e-016 1.536857621303163e-016 9.072765968412679e-002
6.3e+000 1.0e-012 1.479513723737762e-014 9.072765968412736e-002 1.478934492449189e-014 9.072765968412733e-002 1.479513723737762e-014 1.479513723737753e-014 9.072765968412679e-002
6.3e+000 1.0e-010 1.478940284762108e-012 9.072765968412736e-002 1.478934492449189e-012 9.072765968412733e-002 1.478940284762108e-012 1.478940284762099e-012 9.072765968412679e-002
6.3e+000 1.0e-006 1.478934493028413e-008 9.072765968412492e-002 1.478934492449148e-008 9.072765968412488e-002 1.478934493028413e-008 1.478934493028404e-008 9.072765968412433e-002
6.3e+000 1.0e-002 1.478930389133942e-004 9.072741516349275e-002 1.478930389133851e-004 9.072741516349273e-002 1.478930389133943e-004 1.478930389133934e-004 9.072741516349218e-002
6.3e+000 1.0e+001 4.040671157393860e-002 2.527577277549421e-002 4.040671157393860e-002 2.527577277549422e-002 4.040671157393859e-002 4.040671157393835e-002 2.527577277549405e-002
6.3e+000 1.2e+001 3.684277239564821e-002 1.923808857910893e-002 3.684277239564821e-002 1.923808857910892e-002 3.684277239564818e-002 3.684277239564798e-002 1.923808857910881e-002
6.3e+000 1.5e+001 3.194834330452624e-002 1.336797114261604e-002 3.194834330452625e-002 1.336797114261605e-002 3.194834330452623e-002 3.194834330452605e-002 1.336797114261596e-002
6.3e+000 2.0e+002 2.818116555672224e-003 8.876845457496914e-005 2.818116555672223e-003 8.876845457496911e-005 2.818116225691620e-003 2.818116555672206e-003 8.876845457496856e-005
6.3e+000 1.0e+005 Fails to evaluate erfi 5.641895812802784e-006 3.554394361710315e-010 5.641895813084879e-006 5.641895812802746e-006 3.554394361710292e-010

6.3e+002 1.0e-020 1.421495882582394e-026 8.955401496757104e-004 1.421495882582395e-026 8.955401496757104e-004 1.421490510324405e-026 1.421495882582395e-026 8.955401496757105e-004
6.3e+002 1.0e-014 1.421495882582394e-020 8.955401496757104e-004 1.421495882582395e-020 8.955401496757104e-004 1.421490510324405e-020 1.421495882582395e-020 8.955401496757105e-004
6.3e+002 1.0e-012 1.421495882582394e-018 8.955401496757104e-004 1.421495882582395e-018 8.955401496757104e-004 1.421490510324405e-018 1.421495882582395e-018 8.955401496757105e-004
6.3e+002 1.0e-010 1.421495882582394e-016 8.955401496757104e-004 1.421495882582395e-016 8.955401496757104e-004 1.421490510324405e-016 1.421495882582395e-016 8.955401496757105e-004
6.3e+002 1.0e-006 1.421495882582394e-012 8.955401496757104e-004 1.421495882582394e-012 8.955401496757104e-004 1.421490510324405e-012 1.421495882582395e-012 8.955401496757105e-004
6.3e+002 1.0e-002 1.421495882224241e-008 8.955401494500753e-004 1.421495882224242e-008 8.955401494500753e-004 1.421490509966257e-008 1.421495882224242e-008 8.955401494500755e-004
6.3e+002 1.0e+001 1.421137820009847e-005 8.953145713915760e-004 1.421137820009848e-005 8.953145713915762e-004 1.421132452261351e-005 1.421137820009847e-005 8.953145713915762e-004
6.3e+002 1.2e+001 1.705176395541706e-005 8.952153529445874e-004 1.705176395541707e-005 8.952153529445876e-004 1.705169956622711e-005 1.705176395541707e-005 8.952153529445874e-004
6.3e+002 1.5e+001 2.131035743074597e-005 8.950327582962093e-004 2.131035743074598e-005 8.950327582962093e-004 2.131027699897097e-005 2.131035743074598e-005 8.950327582962094e-004
6.3e+002 2.0e+002 2.582702147491469e-004 8.135493143556982e-004 2.582702147491469e-004 8.135493143556982e-004 2.582694362772975e-004 2.582702147491469e-004 8.135493143556982e-004
6.3e+002 1.0e+005 Fails to evaluate erfi 5.641671917237129e-006 3.554253307503979e-008 5.641671917519157e-006 5.641671917237128e-006 3.554253307503980e-008

1.0e+000 1.0e-020 3.678794411714423e-001 6.071577058413937e-001 3.678794411714423e-001 6.071577058413937e-001 3.678794411714423e-001 3.678794411714423e-001 6.071577058413938e-001
5.5e+000 1.0e-014 7.307386729528773e-014 1.043674364367812e-001 7.308245082486227e-014 1.043674364367812e-001 7.307386729528773e-014∗ 7.307386729528773e-014 1.043674364367812e-001
3.9e+004 1.0e+000 Fails to evaluate erfi 3.709333226385424e-010 1.446639957339204e-005 3.709333222727304e-010 3.709333226385423e-010 1.446639957339204e-005
1.0e+000 2.8e+004 Fails to evaluate erfi 2.014962794529686e-005 7.196295685569928e-010 2.014962795814739e-005 2.014962794529686e-005 7.196295685569929e-010

* This is the correct value as calculated using (4) in reference [20]. The value given in Table 4 in the same reference is calculated using the
asymptotic expression for y→0
$ Calculated using the asymptotic expression for y→0

 24

Table 3: Values of the relative errors refrefV VVVδ /)(−= & refrefL LLLδ)/(−= in
calculating the Faddeyeva function by different codes using values of the function
calculated using erfi(z) from Mathematica as reference values.

z Algorithm 680 Ref. [20] Present algorithm

x y V L V V L Maximum no.
 of series terms

6.3e-002 1.0e-020 0 2.0e-016 0 0 2.0e-15 12
6.3e-002 1.0e-014 0 2.0e-016 1.1e-016 1.1e-016 2.1e-15 12
6.3e-002 1.0e-012 0 2.0e-016 0 0 2.1e-15 12
6.3e-002 1.0e-010 1.1e-016 2.0e-016 1.1e-016 0 2.1e-15 12
6.3e-002 1.0e-006 0 0 2.2e-016 1.1e-016 3.7e-15 12
6.3e-002 1.0e-002 1.1e-016 2.0e-016 2.3e-016 3.4e-016 2.2e-15 12
6.3e-002 1.0e+001 2.5e-016 1.6e-016 0 1.2e-016 3.6e-15 13
6.3e-002 1.2e+001 3.0e-016 2.2e-016 3.0e-016 3.0e-016 8.9e-16 13
6.3e-002 1.5e+001 3.7e-016 6.9e-016 0 5.5e-016 2.6e-15 13
6.3e-002 2.0e+002 3.1e-016 1.2e-016 1.1e-015 0 2.4e-15 13

6.3e+000 1.0e-020 1.0e-000 3.1e-016 2.6e-005 2.4e-015 1.2e-016 13
6.3e+000 1.0e-014 3.8e-002 3.1e-016 0 5.3e-015 1.2e-016 13
6.3e+000 1.0e-012 3.9e-004 3.1e-016 0 6.2e-015 1.2e-016 13
6.3e+000 1.0e-010 3.9e-006 1.5e-016 0 6.1e-015 1.2e-016 13
6.3e+000 1.0e-006 3.9e-010 4.6e-016 0 6.0e-015 1.2e-016 13
6.3e+000 1.0e-002 6.2e-014 3.1e-016 7.3e-016 5.3e-015 2.4e-016 13
6.3e+000 1.0e+001 0 4.1e-016 3.4e-016 6.2e-015 2.4e-016 13
6.3e+000 1.2e+001 0 5.4e-016 9.4e-016 6.2e-015 0 13
6.3e+000 1.5e+001 2.2e-016 7.8e-016 4.3e-016 6.1e-015 1.2e-016 13
6.3e+000 2.0e+002 3.1e-016 3.1e-016 1.2e-007 6.3e-015 0 13

6.3e+002 1.0e-020 6.1e-016 0 3.8e-006 6.1e-016 1.2e-016 13
6.3e+002 1.0e-014 8.5e-016 0 3.8e-006 8.5e-016 1.2e-016 13
6.3e+002 1.0e-012 6.8e-016 0 3.8e-006 6.8e-016 1.2e-016 13
6.3e+002 1.0e-010 6.9e-016 0 3.8e-006 6.9e-016 1.2e-016 13
6.3e+002 1.0e-006 0 0 3.8e-006 5.7e-016 1.2e-016 13
6.3e+002 1.0e-002 7.0e-016 0 3.8e-006 7.0e-016 2.4e-016 13
6.3e+002 1.0e+001 7.2e-016 2.422e-016 3.8e-006 0 2.4e-016 13
6.3e+002 1.2e+001 6.0e-016 2.422e-016 3.8e-006 6.0e-016 0 13
6.3e+002 1.5e+001 4.8e-016 0 3.8e-006 4.8e-016 1.2e-016 13
6.3e+002 2.0e+002 0 0 3.0e-006 0 0 13

1.0e+000 1.0e-020 0 0 0 0 1.8e-016 13
5.5e+000 1.0e-014 1.2e-004 0 0 0 0 13

 25

Table 4: Accuracy vs efficiency trade-off of the present algorithm (computations are performed
on an array of 2,840,710 points generated using the grid y=logspace(-20, 4, 71) and x=linspace(-
200, 200, 40001) using Matlab 7.9.0.529 (R2009b)).

tiny minmin
/ tinytinytinymaxV, VVV −=δ

minmin
/ tinytinytinymaxL, LLL −=δ Run time (s)

0.06447×ε
1.0e-15
1.0e-14
1.0e-12
1.0e-10

 1.0e-09
1.0e-08
1.0e-07
1.0e-06
1.0e-05
1.0e-04

 0
 4.6e-013
 4.6e-013
 2.8e-012
 2.7e-010
 2.6e-009
 2.5e-008
 2.4e-007
 2.3e-006
 2.2e-005
 2.1e-004

0
 4.6e-013
 1.2e-013
 8.9e-011
 6.8e-009
 5.8e-008
 4.9e-007
 4.2e-006
 3.5e-005
 3.1e-004
 3.1e-003

8.42
8.01
7.74
7.10
6.53
6.27
5.83
5.56
5.46
5.06
4.66

Table 5: Running times of the present algorithm (for three values of the parameter tiny)
compared with other competitive algorithms (computations are performed on an array of
2,840,710 points generated using the grid y=logspace(-20, 4, 71) and x=linspace(-200, 200,
40001) using Matlab 7.9.0.529 (R2009b))*

Algorithm Run time (s) Comments
Faddeyeva, tiny=0.06447×ε
Faddeyeva, tiny=1e-8
Faddeyeva, tiny=1e-4

 8.42
 6.27
 4.66

Poppe & Wijers [1990] 107.43 Large error in the vicinity of x=6.3 & very
small values of y

Humlicek [1982] (original)
Humlicek [1982] (modified)

 23.21
 9.87

 Large error and loss of accuracy in the vicinity
of x=5.6 and very small values of y

Weidemann [1994], N=16
Weidemann [1994], N=32
Weidemann [1994], N=64
Weidemann [1994], N=128
Weidemann [1994], N=256

 1.78
 2.57
 6.88
 7.09
 12.7

 Negative values for V(x,y) near x-axis
 Incorrect behavior and order of magnitude of
∑V(x,y)/∑x for very small values of y.

Hui et al [1978] 0.42 Large error for small values of y
 Negative values for V(x,y) (e.g. at y=10-5&

x=4)
 Incorrect behavior and order of magnitude of
∑V(x,y)/∑x for very small values of y.

* Timing results depend on both hardware and the version of the software used and can change
significantly.

 26

Acknowledgments

The authors would like to acknowledge valuable comments and suggestions received from the
reviewers. In particular the comments and suggestions received from the associate editor,
algorithm editor and the fourth anonymous referee were extremely helpful and insightful. We
would like also to thank Prof. C. Benner from College of William and Mary, Williamsburg, VA,
USA, for sending us a copy of Letchworth & Benner’s computer code.

REFERENCES

1- ARMSTRONG, B.H. 1967. Spectrum Line Profiles: The Voigt Function. J. Quant.

Spectrosc. & Radiat. Transfer, Vol. 7, 61-88
2- GAUTSCHI, W. 1967. Algorithm 363-Complex error function,” Commun. ACM 12, 635.
3- GAUTSCHI, W. 1970. Efficient Computation of the Complex Error Function. SIAM J.

Numer. Anal., Vol. 7, 187-198
4- HUI, A.K., ARMSTRONG, B.H. AND WRAY, A.A. 1978. Rapid Computation of the Voigt

and Complex Error Functions. J. Quant. Spectrosc. & Radiat. Transfer, Vol. 19, 509-516.
http://www.hmet.net/software/matlab/astrolib/math/cerf.m

5- HUMLÍČEK J. 1982. Optimized Computation of the Voigt and Complex Probability
Functions. J. Quant. Spectrosc. & Radiat. Transfer, Vol. 27, No. 4, 437-444.

6- DOMINGUEZ, H.J., LLAMAS, H.F. PRIETO, A.C. AND ORTEGA, A.B. 1987. A Simple
Relationship between the Voigt Integral and the Plasma Dispersion Function. Additional
Methods to Estimate the Voigt Integral. Nuclear Instruments and Methods in Physics
Research A. Vol. 278, 625-626.

7- POPPE, G.P.M. AND C. WIJERS, M. J. 1990. More Efficient Computation of the Complex
Error Function. ACM Transactions on Mathematical Software, Vol. 16, No. 1, 38-46.

8- POPPE G.P.M. AND WIJERS, C.M.J. 1990. Algorithm 680, Evaluation of the Complex
Error Function. ACM Transactions on Mathematical Software, Vol. 16, No. 1, 47.

9- LETHER F.G. AND WENSTON P.R. 1991. The numerical computation of the Voigt
function by a corrected midpoint quadrature rule for (-∞, ∞). Journal of Computational &
Applied Mathematics Vol. 34, 75-92.

10- SCHREIER, F. 1992. The Voigt and Complex Error Function: A Comparison of
Computational Methods. J. Quant. Spectrosc. & Radiat. Transfer, Vol. 48, No. 5/6, 743-762.

11- SHIPPONY Z. AND READ W.G. 1993. A highly accurate Voigt function algorithm. J.
Quant. Spectrosc. & Radiat. Transfer, Vol. 50, 635-646.

12- WEIDEMAN, J.A.C. 1994. Computation of the Complex Error Function. SIAM J. Numer.
Anal. Vol. 31, No. 5, 1497-1518.

13- WELLS, R.J. 1999. Rapid Approximation to the Voigt/Faddeeva Function and its
Derivatives. J. Quant. Spectrosc. & Radiat. Transfer, Vol. 62, 29-48.

14- LUQUE, J. M. CALZADA, M. D. AND SAEZ, M. 2005. A new procedure for obtaining the
Voigt function dependent upon the complex error function. J. Quant. Spectrosc. & Radiat.
Transfer, Vol. 94, 151-161.

15- LETCHWORTH K.L. AND BENNER D.C 2007. Rapid and accurate calculation of the
Voigt function. J. Quant. Spectrosc. & Radiat. Transfer, Vol. 107, 173-192.

16- ABRAROV S.M., QUINE B.M. AND JAGPAL R.K. 2010. Rapidly convergent series for
high-accuracy calculation of the Voigt function. J. Quant. Spectrosc. & Radiat. Transfer,
Vol. 111, 372-375.

 27

17- ABRAROV S.M., QUINE B.M. AND JAGPAL R.K. 2010. High-accuracy approximation of
the complex probability functions by Fourier expansion of exponential multiplier. Computer
Physics Communications, Vol. 181, 876-882

18- SALZER, H.E. 1951. Formulas for calculating the error function of a complex variable.
Math. Tables and Other Aids to Computation 5, 67-70.

19- ABRAMOWITZ M. AND STEGUN, I. A. 1972. Handbook of mathematical functions,
Dover Publications, Inc., New York.

20- ZAGHLOUL, M. R. 2007. On the calculation of the Voigt Line-Profile: A single proper
integral with a damped sine integrand. Mon. Not. R. Astron. Soc., Vol. 375, No. 3, 1043-
1048.

21- BOAS M.L. 2006. Mathematical Methods in the Physical Sciences, Third Edition. John
Wiely & Sons, Inc. NJ, USA.

22- WOLFRAM RESEARCH, INC., 2008. Mathematica, Version 7.0, Champaign, IL.
23- ZAGHLOUL, M. R. 2008. Comment on: A fast method of modeling spectral lines. J. Quant.

Spectrosc. & Radiat. Transfer, Vol. 109, 2895-2897.
24- SHIPPONY Z. AND READ W.G. 2003. A correction to a highly accurate Voigt function

algorithm. J. Quant. Spectrosc. & Radiat. Transfer, Vol. 78, 2, 255.

