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Abstract. An efficient procedure for the computation of the coefficients of
Legendre expansions is here presented. We prove that the Legendre coefficients
associated with a function f(x) can be represented as the Fourier coefficients of
an Abel–type transform of f(x). The computation of N Legendre coefficients
can then be performed in O(N logN) operations with a single Fast Fourier
Transform of the Abel–type transform of f(x).

1. Introduction

The efficient computation of the coefficients of Legendre expansions is a very im-
portant problem in numerical analysis and applied mathematics with a wide range
of applications including, just to mention a few, approximation theory, solution
of partial differential equations and quadratures. Recently its relevance emerged
also in connection with the computation of spectra of highly oscillatory Fredholm
integral operators, which play an important role in laser engineering [2].

The difficulty of the problem lies essentially in the fact that these coefficients are
represented by integrals whose integrands oscillate rapidly for large values of the
index of the polynomials. Using standard quadrature procedures for the calculation
of N Legendre coefficients leads only to slow O(N2) algorithms (see, e.g., Ref. [5]).
More efficiently, in Ref. [1] (see also [13, 14]) the Legendre coefficients are obtained
by a suitable transformation of the corresponding Chebyshev coefficients, which
yields faster O(N(logN)2) algorithms. Recently this problem has been also clearly
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discussed in a paper by A. Iserles [10], in which an algorithm for the computation
of the Legendre coefficients, which is certainly fast and brilliant, is presented.

In this paper we present an alternative procedure. The basic idea of our method
consists in exploiting the Dirichlet–Murphy integral representation of the Legendre
polynomials. Next, we prove that the coefficients of the Legendre expansion of a
function f(x) are connected with a subset of the Fourier coefficients (the ones with
nonnegative index) of an Abel–type transform of f(x).

The numerical implementation of the algorithm follows straightforwardly and is
very efficient. The aforementioned Fourier coefficients (which represent the searched
Legendre coefficients) can be computed in O(N logN) operations by a single Fast
Fourier Transform after the evaluation of the Abel–type integral by means of stan-
dard quadrature techniques.

2. Connection of Legendre expansions to Fourier series

The standard form of the Legendre expansion reads:

(2.1) f(x) =

∞∑

n=0

cn Pn(x) x ∈ [−1, 1],

where Pn(x) are the Legendre polynomials, which can be defined by the generating
function [6]:

(2.2)

∞∑

n=0

Pn(x) t
n =

(
1− 2xt+ t2

)
−

1

2 ,

and the coefficients {cn}
∞

n=0 are given by:

(2.3) cn =

(
n+

1

2

)∫ 1

−1

f(x)Pn(x) dx (n > 0).

The conditions to be satisfied by f(x) to guarantee the uniform convergence of
the series in (2.1) are discussed in [8]. However, for our purpose of computing the
Legendre coefficients cn it is sufficient to assume that f(x) be summable in the
interval [−1, 1].

We can now state the following theorem.

Theorem 1. The coefficients {an}
∞

n=0, defined as an
.
= cn

(2n+1) , coincide with the

Fourier coefficients (with n > 0) of an Abel–type transform of f(x), that is:

(2.4) an
.
=

cn
(2n+ 1)

=

∫ π

−π

f̂(y) einy dy (n > 0),

where the 2π-periodic function f̂(y) is defined by

(2.5) f̂(y) =
1

2πi
ε(y) ei

y

2

∫ 1

cos y

f(x)

[2(x− cos y)]
1

2

dx (y ∈ R),

ε(y) being the sign function.

Proof. Plugging the Dirichlet–Murphy integral representation of the Legendre poly-
nomials [15, Ch. III, §5.4]:

(2.6) Pn(cosx) = −
i

π

∫ (2π−x)

x

e i(n+ 1

2
)y

[2(cosx− cos y)]
1

2

dy,



LEGENDRE COEFFICIENTS 3

into equality (2.3) (after the change of variable x → cosx), we have:

(2.7) 2πi an =

∫ π

0

dx f(cosx) sinx

∫ (2π−x)

x

e i(n+ 1

2
)y

[2(cosx− cos y)]
1

2

dy.

Interchanging the order of integration in (2.7) we have:

2πi an =

∫ π

0

dy e i(n+ 1

2
)y

∫ y

0

f(cosx)
sinx

[2(cosx− cos y)]
1

2

dx

+

∫ 2π

π

dy e i(n+ 1

2
)y

∫ (2π−y)

0

f(cosx)
sinx

[2(cosx− cos y)]
1

2

dx.

(2.8)

Next, if we make the change of variables: y → y − 2π and x → −x, the second
integral on the r.h.s. of (2.8) becomes:

(2.9) eiπ
∫ 0

−π

dy e i(n+ 1

2
)y

∫ y

0

f(cosx)
sinx

[2(cosx− cos y)]
1

2

dx.

Finally, we obtain:

2πi an =

∫ π

0

dy e i(n+ 1

2
)y

∫ y

0

f(cosx)
sinx

[2(cosx− cos y)]
1

2

dx

+ eiπ
∫ 0

−π

dy e i(n+ 1

2
)y

∫ y

0

f(cosx)
sinx

[2(cosx− cos y)]
1

2

dx,

(2.10)

which, after the change of variable cosx → x into the integrals on the r.h.s., yields:

(2.11) an =

∫ π

−π

f̂(y) einy dy (n > 0),

with f̂(y) given by (2.5). �

It is easy to check from (2.5) that f̂(y) satisfies the following symmetry relation:

(2.12) f̂(y) = −eiy f̂(−y).

This latter, along with formulae (2.4) and (2.5), allows us to write the Legendre
coefficients cn in the following form:

(2.13) cn =
2

π

(
n+

1

2

)∫ π

0

φ(y) sin

[(
n+

1

2

)
y

]
dy,

where

(2.14) φ(y) =

∫ 1

cos y

f(x)

[2(x− cos y)]
1

2

dx.

The numerical implementation of the algorithm first requires the computation of

the Abel–type integral f̂(y) defined in (2.5) (or, equivalently, of the function φ(y)
in (2.14)). The integrand presents a weak algebraic singularity at the end point of
the domain of integration, which can be effectively handled by means of a proper
nonlinear change of variable. This technique, along with the use of a standard
quadrature formula (e.g., the Gauss-Legendre one), allows obtaining high accuracy
with a small number of nodes [12].
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Table 1. True and computed Legendre coefficients cn for the
function f(x) = |x|3/2.

n True cn Computed cn Error

0 0.40000000000000000000 0.40000000000268187694 2.68−12

2 0.66666666666666666666 0.66666666671084839901 4.42−11

4 -0.09230769230769230769 -0.09230769246022409169 1.53−10

6 0.03921568627450980392 0.03921568630769028951 3.32−11

8 -0.02197802197802197802 -0.02197802226184656509 2.84−10

10 0.01411764705882352941 0.01411764762633771833 5.68−10

12 -0.00985221674876847290 -0.00985221698441776129 2.36−10

14 0.00727272727272727272 0.00727272772068757959 4.48−10

16 -0.00559179869524697110 -0.00559179938291245667 6.88−10

18 0.00443458980044345898 0.00443458980116155730 7.18−13

20 -0.00360360360360360360 -0.00360360382001508440 2.16−10

22 0.00298656047784967645 0.00298656131882347585 8.41−10

24 -0.00251572327044025157 -0.00251572347582495201 2.05−10

26 0.00214822771213748657 0.00214822836757538881 6.55−10

28 -0.00185586142901330034 -0.00185586305079012375 1.62−09

30 0.00161943319838056680 0.00161943394840411781 7.50−10

Finally, formula (2.4) makes it possible to take full advantage of the computa-
tional efficiency of the Fast Fourier Transform both in terms of speed of computation
and of accuracy [3, 9]. The calculation of the first N coefficients of the expansion
can consequently be accomplished in O(N logN) operations.

The algorithm described has been implemented in double precision arithmetics
using the open source GNU Scientific Library (GSL) [7], and its performance has
been tested on a variety of functions.

First, feasibility and accuracy of the algorithm have been verified by direct com-
parison of the obtained numerical results with the true Legendre coefficients for the
function f(x) = |x|3/2, whose Legendre coefficients are known to be [4, p. 78]:

(2.15) cn =





0 if n odd,

(α + 1)−1 if n = 0,

(2n+ 1)α (α − 2) · · · (α− n+ 2)

(α+ 1)(α+ 3) · · · (α + n+ 1)
otherwise,

where α = 3/2. Values of the computed Legendre coefficients along with the abso-
lute error are given in Table 1.
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The increment of performances, with respect to the computation of the Legendre
coefficients cn by ordinary quadrature, has been verified in terms of speed of com-
putation at (nearly) equality of precision. All accuracies have been determined by
comparing the results of the algorithm with the reference values of cn, computed
with 20 significant figures by standard quadrature with Mathematica [11]. For
these tests we used various functions (many of them have been already used in
previous works), including polynomials, exponential/hyperbolic functions, rational
functions (e.g., f(x) = 1+x

γ2+x2 with γ = constant). All the results have confirmed

the enormous increase of computational speed (the expected improvement ratio be-
ing proportional to N/ logN). Such an increase of performances will become even
more crucial for the efficient evaluation of multivariate Legendre transform [2] and
expansions in Gegenbauer (alias Ultraspherical Legendre) polynomials, which will
be the subject of a forthcoming paper.
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