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We use the maximally permutation symmetric set of three-body coordinates, that consist of the

“hyper-radius” R =
√

ρ2 + λ2, the “rescaled area of the triangle”
√
3

2R2 |ρ × λ|) and the (braiding)

hyper-angle φ = arctan
(

2ρ·λ
λ2−ρ2

)

, to analyze the “figure-eight” choreographic three-body motion

discovered by Moore [2] in the Newtonian three-body problem. Here ρ,λ are the two Jacobi relative
coordinate vectors. We show that the periodicity of this motion is closely related to the braiding
hyper-angle φ. We construct an approximate integral of motion G that together with the hyper-
angle φ forms the action-angle pair of variables for this problem and show that it is the underlying
cause of figure-eight motion’s stability. We construct figure-eight orbits in two other attractive
permutation-symmetric three-body potentials. We compare the figure-eight orbits in these three
potentials and discuss their generic features, as well as their differences. We apply these variables
to two new periodic, but non-choreographic orbits: One has a continuously rising φ in time t, just
like the figure-eight motion, but with a different, more complex periodicity, whereas the other one
has an oscillating φ(t) temporal behavior.

PACS numbers: 45, 45.50.-j, 45.50.Jf, 5.45.-a

I. INTRODUCTION

The three-body problem is one of the oldest and most
challenging in classical mechanics [1]. Until recently only
a few periodic three-body solutions were known [1] in
Newton’s gravitational interaction potential. A new pe-
riodic, “figure eight”, trajectory was found in 1993 by
Moore [2] in the case of three equal masses and gravita-
tional −1/r potential, using numerical methods. Its ex-
istence and stability were later proven formally by way of
variational arguments [3], but no closed (analytic) form
of this solution has been shown as yet. Moreover, the
figure-eight solution has also been found in the general-
relativistic three-body dynamics [9], and its bifurcations
have been studied as a function of the mass asymmetry
[8]. Proofs of existence, as well as some properties of
figure-eight orbits in pairwise sums of −1/rα two-body
potentials with α 6= 1, have been studied in Refs. [6], [5],
[7]. Any new solution, and/or insight into the existing
ones should be of intrinsic interest.

Of course, the figure-eight orbit is highly symmetric,
but it is not immediately clear what is the underlying
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dynamical reason for this symmetry. It is an empiri-
cal fact, however, that all known figure-eight orbits exist
only in (three-body) permutation symmetric potentials.
Indeed, it is known that the figure-eight orbit bifurcates
into new, less symmetric orbits as one changes the mass
ratio(s) of the three particles, and thus breaks the per-
mutation symmetry, see Refs. [8], [18]. We explore this
connection between the permutation symmetry and the
figure-eight orbit and make it more explicit. In the pro-
cess we have found new solutions with lesser symmetry,
much like those in Ref. [18], and obtained new insights
into the role of permutation symmetry in the classical
three-body problem.

In this paper we report our studies of figure-eight or-
bits in three kinds of three-body potentials: 1) the New-
tonian gravity, i.e., the pairwise sum of −1/r two-body
potentials; 2) the pairwise sum of linearly rising r two-
body potentials (a.k.a. the ∆ string potential); 3) the
Y-junction string potential [15],[16] that contains both
a genuine three-body part, as well as two-body contri-
butions (this is the first time that the figure-eight has
been found in these string potentials, to our knowledge).
These three potentials share two common features, viz.
they are attractive and symmetric under permutations of
any two, or three particles [20].

A set of variables makes this permutation symme-
try manifest and we use them to plot the motion of
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a numerically calculated figure-eight orbit. As there
are three independent three-body variables, and there
can be at most two independent permutation-symmetric
three-body variables[21], the third variable cannot be
permutation-symmetric. In other words the third vari-
able must change under permutations. Moreover, it must
be a continuous variable and not be restricted only to
a discrete set of points, as is natural for permutations.
Thus it must provide a smooth interpolation between
(discrete) permutations. We identify here the third inde-

pendent variable as φ = arctan
(

2ρ·λ
λ2−ρ2

)

and show that

it grows/descends (almost) linearly with the time t spent
on the figure-eight trajectory and reaches ±2π after one
period T . Thus, φ is, for most practical purposes, inter-
changeable with the time variable t on the figure-eight
orbit. The hyper-angle φ is the continuous braiding vari-
able that interpolates smoothly between permutations
and thus plays a fundamental role in the braiding sym-
metry of the figure-eight orbits [2, 17].

Then we construct the hyper-angular momentum G3 =
1
2
(pρ · λ− pλ · ρ) conjugate to φ, the two forming an

(approximate) pair of action-angle variables for this pe-
riodic motion. Here we calculate numerically and plot
the temporal variation of φ, as well as that of the hyper-
angular momentum G3(t), the hyper-radius R(t) and
r(t). We show that the hyper-radius R(t) oscillates about
its average value R with the same angular frequency
(3φ) and phase, as the new (“reduced area”) variable
r(t). Thus, we show that φ(t) is, for most practical pur-
poses, interchangeable with the time variable t, in agree-
ment with the tacit assumption(s) made in Refs. [6],
[3], though the degree of linearity of this relationship de-
pends on the precise functional form of the three-body
potential, see Sect. III B.

As stated above, φ is not exactly proportional to time
t, but contains some non-linearities that depend on the
specifics of the three-body potential; consequently the
hyper-angular momentum G3 is not an exact constant
of this motion, but oscillates about the average value
G3, with the same basic frequency 3φ. Thus, the time-
averaged hyper-angular momentum G3 is the action vari-
able conjugate to the linearized hyper-angle φ

′

.

We use these insights to characterize two new planar
periodic, but not choreographic three-body motions with
vanishing total angular momentum. One of these orbits
corresponds to a modification of the figure-eight orbit
with φ(t) that also grows more or less linearly in time,
but has a more complicated periodicity pattern defined
by the zeros of the area of the triangle formed by the
three particles (also known as “eclipses”, “conjunctions”
or “syzygies”). Another new orbit has φ(t) that grows
in time up to a point, then stops and “swings back”.
We show that this motion, and the other two, can be
understood in view of the analogy between the three-
body hyper-angular (“shape space”) Hamiltonian on one
hand and a variable-length pendulum in an azimuthally
periodic in-homogeneous gravitational field, on the other.

This paper is divided into five parts: after the Intro-
duction in Sect. II we introduce a complete (maximal)
set of permutation symmetric three-body variables and
illustrate them with two examples: 1) the curves in the
“shape space” of triangles depicting those triangles with
one of its three angles equal to a particular value in the
range (π

3
, π); 2) the contour plots of the Newtonian grav-

ity, the Y-junction string and the ∆-string potentials. In
Sect. III we show the time dependence of the figure-eight
motion in Newton’s gravity and the Y-string potentials.
In Sect. IV we show and discuss the new solutions. Fi-
nally in Sect. V we summarize and draw conclusions.

II. PERMUTATION SYMMETRIC
THREE-BODY COORDINATES

As the static three-body potential depends on three in-
dependent scalar variables, e.g. the pairwise relative dis-
tances/separations, the choice of appropriate (relative)
variables is a crucial one. A number of three-body rela-
tive variables have been devised, starting with those in-
troduced by C.G. Jacobi in the 19th century [10], and
extending to the so-called hyper-spherical coordinates in-
troduced in the 1960’s [11], [12], [13]. These variables
were introduced in attempts at solving certain quantum
mechanical three-body problems, that demand special at-
tention to be paid to the permutation symmetry. Nev-
ertheless, only one, Ref. [11], of these sets is manifestly
permutation symmetric and yet it has not been widely
used.
Here we use the manifestly permutation symmet-

ric three-body variables, apparently first introduced by
Hopf: the hyper-radius R, the “scale-invariant area” of
the triangle

√
1− r2 = 2R−2|ρ × λ|, where, and find

as the hyper-angle φ = arctan
(

2ρ·λ
λ2−ρ2

)

, that is conju-

gate to the generalized hyper-angular momentum G3 =
1
2
(pρ · λ− pλ · ρ). One may relate these to the hyper-

spherical variables x
′

= 2ρ·λ
R2 and z

′

= λ2−ρ2

R2 that have
the circle with unit radius as their natural domain. Then
the area of the triangle

√
3
2
|ρ × λ| and the hyper-radius

R are related to the the new variables r, φ as follows

r2 =
(

x
′2 + z

′2
)

= 1−
(

2|ρ× λ|
R2

)2

(1)

φ = tan−1

(

x
′

z′

)

. (2)

The hyper-angle φ is zero at the (x = 0, z = 1) point
(“12 o’clock”) and increases as one moves clockwise.

A. The shape space of triangles

The natural domain of the permutation symmetric
variables is a circle with unit radius, see Fig. 1. The
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FIG. 1: (Color online) The curves/lines in shape space of tri-
angles depicting triangles with one fixed angle: a) the outer
blue (dashed) line, for the fixed angle equal to 109.5o, b)
blue (full straight) lines for the fixed angle equal to π

2
, as

functions of z
′

= z = cos 2χ (ordinate = vertical axis) and

x
′

= x
√
1− z2 = cos θ sin 2χ (abscissa = horizontal axis).

The domain of these variables is a magenta (dark gray) cir-
cle of radius unity. The two straight red (dashed) lines at
angles of ± 2π

3
, and the vertical axis are the symmetry axes,

i.e. s2 subgroups of the s3 permutation group, and of the
“constant angle curves” in shape space, as well. The three
collinear configurations in which one pair of particles has van-
ishing separation are denoted by big solid circles, and the
three collinear configurations in which one particle has equal
separations from the other two are denoted by small solid
circles.

points on the unit circle correspond to collinear configu-
rations (“triangles” with zero area).
The two straight lines at angles of ± 2π

3
, together with

the vertical axis are the three (reflection) symmetry axes;
these reflections correspond to the three “two-body per-
mutations”/transpositions in the s3 permutation group.
The two cyclic permutations of the s3 permutation group
correspond to the rotations through ± 2π

3
.

The six points where the symmetry axes cross the big
circle in Fig. 1 correspond to either a) three collinear
configurations (“shapes”) in which one pair of particles
has vanishing separation (big solid circles), i.e. “sits on
top of each other”, or b) three collinear configurations
(“shapes”) in which one particle has equal separation
from the other two, i.e. “sits in the middle between
the other two” (small solid circles). The center of the
circle corresponds to the equilateral triangle configura-
tion (“shape”), which turns into a point when the hyper-
radius R → 0.

B. Newton’s, ∆ and Y-string potentials

In Figs. 2,3,4 we show three attractive three-body po-
tentials that are either pairwise sums of two-body terms
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FIG. 2: (Color online) The equipotential contours for the cen-
tral Y-string potential, and the boundary between the central

Y-string and two-string potentials as functions of z
′

= z =

cos 2χ (vertical axis), and x
′

= x
√
1− z2 = cos θ sin 2χ (hor-

izontal axis). The blue (dashed) curve denotes the boundary
between the two-body and the three-body components of this
potential, see Ref. [15]. The rotation symmetry about the
axis pointing out of the plane of the figure should be visible
to the naked eye.

, viz. Newton’s

VNewton = −g

3
∑

i<j

1

|xi − xj |
, (3)

and the ∆-string

V∆ = σ∆

3
∑

i<j

|xi − xj |, (4)

or contain such a two-body component in a limited part
of the configuration (shape) space, such as the Y-string

VY = σY min
x

3
∑

i=1

|xi − x| = σY

3
∑

i=1

|xi − xT|, (5)

where the minimum of the sum occurs at the Torricelli
point x = xT, see Ref. [16]. Note that the Y-string
potential has perfectly concentric contour lines within a
pear-shaped region of shape space delineated by the blue
dashed line in Fig. 2. As shown in Ref. [14], that “hyper-
rotational” symmetry leads to a new constant of motion
in this part of shape space. A clear discrimination of the
Y-string from the ∆-string three-quark potentials had
been a problem in lattice QCD until Ref. [14] showed
that the two kinds of potentials have essentially different
hyper-angular dependencies. The separation of one kind
of three-body potential from another is facilitated by the
use of the new variables r and φ. Then the Y-string com-
ponent is manifested through the sole dependence on r,
whereas the ∆-string is manifested through the depen-
dence of the potential on the hyper-angle φ, within the
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FIG. 3: (Color online) Contour plot of the ∆-string potential

as a function of z
′

= z = cos 2χ (vertical axis) and x
′

=
x
√
1− z2 = cos θ sin 2χ (horizontal axis) for any fixed value

of the hyper-radius R. The rest of the legenda is as in Figs.
1 and 2. The center of the circle is the point with the highest
value of the potential.
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FIG. 4: (Color online) Contour plot of the logarithm of the

sum of Newton’s two-body potentials as a function of z
′

=

z = cos 2χ (vertical axis) and x
′

= x
√
1− z2 = cos θ sin 2χ

(horizontal axis) at any fixed value of the hyper-radiusR. The
rest of the legenda is as in Figs. 1 and 2. As one approaches
the two-body collision points (three large solid points on the
big circle), the equipotential contour lines become more and
more dense and parallel, finally reaching infinite density at
these points, due to the singularities/poles present.

confines of the “central potential” boundary in terms of
“old” variables (χ, θ)) [15].
Note that all three potentials in Figs. 2,3,4 have es-

sentially (topologically) the same form in the two hyper-
angular (“shape space”) variables:

V (r, φ) = V (r) + δV (r) cos(3φ) + . . . . (6)

This is a consequence of their permutation symmetry.
Any attractive permutation symmetric potential has its

highest value at the center of the circle (r = 0)and it
decreases monotonically as one moves radially towards
the r = 1 circle. Moreover, a permutation symmetric po-
tential is circularly symmetric at the center (δV (0) = 0)
and is increasingly broken by a periodic φ angular (“two-
body”) component δV (r) cos(3φ) as one moves radially
towards the r = 1 circle.
As a consequence of this “topological equivalence”

these potentials lead to certain kinds of orbits, such as
the “figure eight” one, that are essentially identical. The
hyper-radial part of the potential does not seem to be
very important, so long as it is attractive, because the
stability of the orbit is ensured by the approximate (dy-
namical) O(2) symmetry of these potentials. The details
of these potential differ, of course, and therefore lead to
different detailed properties of the amplitude and phase
variations, but not so for the qualitative properties of the
motion. Indeed, if the potential does not contain the peri-
odic φ-dependent “two-body” component near the “outer
edge” of the shape space circle (or near the equator of the
shape space hemisphere), then there is no “figure-eight”
orbit in that potential.

C. Approximate dynamical O(2) symmetry

The sum of Newton’s or ∆-string two-body potentials
is approximately symmetric under infinitesimal rotations
in the shape space, at least in the central (r ≃ 0) part of
the “shape space”, as can be seen in Figs. 3, 4, whereas
the Y-string is exactly symmetric in the same region, see
Fig. 2.
Of course, the two-body potentials are exactly in-

variant under the finite (“kinematic”) rotations through
φ = ± 2π

3
, that correspond to cyclic permutations, as well

as under reflections about the three symmetry axes, that
correspond to binary/two-body permutations (“transpo-
sitions”).
Independence of the potential on the variable φ is

equivalent to its invariance under (infinitesimal) “kine-
matic rotation” O(2) transformations

δx
′

= 2εz
′

(7)

δz
′

= −2εx
′

, (8)

or, in terms of the original Jacobi variables,

δρ = ελ (9)

δλ = −ερ. (10)

in the six-dimensional hyper-space. This invariance leads
to the new integral of motion G3 = 1

2
(pρ · λ− pλ · ρ),

associated with the dynamical symmetry (Lie) group
O(2) that is a subgroup of the (full hyper-spherical) O(6)
Lie group.
This O(2) symmetry transformation is an infinitesimal

version of the so-called “kinematic rotations”, see Ref.
[11], that operate in two, ordinarily different planes at



5

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

-1.5 -1 -0.5  0  0.5  1  1.5

Newton
Y

Y new
∆

FIG. 5: (Color online) Real space trajectories of the figure-
eight and one new solution that passes through the figure-
eight initial configuration for three different potentials. The
legenda are explicitly shown in the upper left-hand corner
of the figure: 1) Newtonian potential figure-eight: red (dark
gray solid) curve; 2) Y-string potential figure-eight: (dark
gray long dashed) curve; 3) Y-string potential new solution:
blue (gray medium-length dashed) curve; 4) ∆-string poten-
tial figure-eight: magenta (light gray short dashed) curve.

the same time[22]: 1) in the plane of Jacobi vectors ρ,λ,
and 2) in the plane of Jacobi momenta pρ − pλ (these
two planes need not coincide in general). It is only in
the special case of planar motions that these two planes
coincide, and it is only in the (even more special) case of
vanishing (total) angular momentum that the new con-
stant of motion has presently discernible consequences.
In the case of the sum of two-body potentials, such

as the Newtonian gravity, or the ∆ string potential, this
generalized hyper-angular momentum G3 is not an exact
integral of motion, but an approximate one. The precise
consequences of such an approximate symmetry depend
on the initial conditions of motion, as we shall see below.

III. FIGURE-EIGHT MOTION

A periodic “figure eight” orbit, Fig. 5, with vanishing
total angular momentum (L=0) has been found by Moore
[2] in the case of equal masses and gravitational potential.
It was shown in Ref. [5] that the hyper-radius R is close
to being constant along the figure-eight trajectory: it
only makes small-amplitude oscillations in lockstep, i.e.
with the same frequency and locked in phase, with the
area of the triangle and the hyper-angle φ, see below.

A. Time dependence of the hyper-angular motion

We take (rinit., φinit.) = (1, 1
3
π) as the initial condi-

tion, which is one of three identical configurations, up to
permutations. This is a collinear configuration with one
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FIG. 6: (Color online) The time dependence of the hyper-
angular radius r red (solid), and the hyper-angles α = sin−1 r
blue (long dashed) and φ gray (short dashed) of the figure-
eight solution in Newton’s potential. The legenda are explic-
itly shown below the figure.

particle in the middle of the other two. The initial veloc-
ities are such that the total angular momentum vanishes.

1. Newtonian gravity

In Fig. 6 we see that both hyper-angular variables
(r, φ) oscillate with the same frequency and locked in
phase along the figure-eight trajectory.

2. The Y- and ∆ string potentials

A similar situation is present in the other two poten-
tials: the hyper-radius R(t) is almost constant along this
trajectory: it makes small-amplitude oscillations in phase
with the area of the triangle, Fig. 7. Similarly for the ∆
string, see Fig. 8.

B. Hyper-angular φ dependence

One can see in Fig. 9 that the periodicity of the figure-
eight motion is determined by the braiding angle φ. Here
one can also see that the actual path in the shape space,
Fig. 9, taken by the Newtonian three-body system is
remarkably close to the Newtonian iso-potential lines in
Fig. 4. If this were true, then the hyper-radius would
be constant along the figure-eight orbit, but it is not:
R(t) and r(t) are periodic functions, with the same basic
frequency of 3φ(t) and locked in phase, i.e. they oscillate
about their average values as follows

φ = 〈φ̇〉t+ δφ sin(3φ) + . . .

r(φ) = r + δr sin(3φ) + . . .

R(φ) = R+ δR sin(3φ) + . . . . (11)
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FIG. 7: (Color online) The time dependence of the hyper-
angular radius r red (solid), and the hyper-angles α = sin−1 r
blue (long dashed) and φ gray (short dashed) of the figure-
eight solution in the Y-string potential. The legenda are ex-
plicitly shown below the figure.
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FIG. 8: (Color online) The time dependence of the hyper-
angular radius r red (solid), and the hyper-angles α = sin−1 r
blue (long dashed) and φ gray (short dashed) of the figure-
eight solution in the ∆-string potential. The legenda are ex-
plicitly shown below the figure.

This phase- and frequency locking provide an important
constraint that effectively reduces the number of inde-
pendent degrees of freedom to two. In other words φ
is the (approximate) cyclic, or “ignorable” variable of
the figure-eight periodic motion that may be integrated
out/ignored/. The conjugate action variable G3 is the
associated (approximate) integral of motion.

C. The action variable conjugate to φ

In order to find the appropriate action variable we look
at the (“kinematic”) hyper-angular momentum G3 that
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 0.8

 1
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1/r
Y

Y type I
∆

FIG. 9: (Color online) Trajectories of the figure-eight and one

new solution in three different potentials in terms of z
′

= z =

cos 2χ (vertical axis) and x
′

= x
√
1− z2 = cos θ sin 2χ (hori-

zontal axis). The legenda are explicitly shown in the middle
of the figure: 1) Newtonian potential figure-eight: red (dark
gray solid) curve; 2) Y-string potential figure-eight: (dark
gray long dashed) curve; 3) Y-string potential new solution:
blue (gray medium-length dashed) curve; 4) ∆-string poten-
tial figure-eight: magenta (light gray short dashed) curve; 5)
unit circle: magenta (dark gray solid).

reads

G3 =
m

4
(Rr)

2
φ̇ =

m

4
(R sinα)

2
φ̇ (12)

(with vanishing angular momentum L = 0) as a function
of permutation symmetric variables R, r = sinα and φ,
and oscillates as a periodic function of the hyper-angle
3φ. Hence it follows that G3 and φ̇ must be (almost)
constant in orbits with L = 0, R ≃const and r ≃ 1. In
other words, the angle φ grows (or decreases, depending
on the orientation of the motion) almost linearly in time,
which is confirmed by our numerical results.
The time/hyper-angle average G3

G3 =
1

T

∫ T

0

G3 dt =
1

T

∫ T

0

m

4
(Rr)

2
φ̇ dt

=
1

2π

∫ 2π

0

m

4
(Rr)

2
dφ (13)

is a non-vanishing constant on the figure-eight orbit, fur-
nishing the (approximate) action variable that goes to-
gether with the (linearized) hyper-angle φ for this peri-
odic motion. The approximate constancy ofG3 ≃ G3 6= 0
is the cause of dynamical stability of the figure-eight or-
bit: The vanishing angular momentum (L = 0) three-
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FIG. 10: (Color online) The time dependence of the hyper-
radiusR red (solid), and the hyper-angular momentumG gray
(dashed) of the figure-eight solution in Newton’s potential.
The legenda are explicitly shown below the figure.

body relative motion kinetic energy

Tkin =
m

2

(

Ṙ2 +

(

R

2

)2(
ṙ2

1− r2
+
(

r φ̇
)2
)

]

=
m

2

[

Ṙ2 +

(

R

2

)2(

α̇2 +
(

φ̇ sinα
)2
)

]

(14)

has the form of the single-particle kinetic energy in
polar coordinates, albeit with polar radius R

2
re-

duced by half in the “hyper-angular kinetic energy”

m
2

(

R
2

)2
[

α̇2 +
(

φ̇ sinα
)2
]

. This means that another

(hyper-) angular momentum-like three vector G is con-
served when the potential does not depend on the two
angles (α, φ).
In the case when the potential depends on α, but does

not depend on φ, or has only small variations with φ, then
the “azimuthal hyper-angular momentum” G3 = ∂Tkin

∂φ̇
is

approximately constant:

Ġ3 = −∂V (r, φ)

∂φ
= 3δV (r) sin(3φ) + . . . .

Then G3 ≃ G3 6= 0 provides a repulsive term
2G2

3

mR2

in the effective hyper-radial potential Veff(R) =
2G2

3

mR2 +
V3−body(R) that prevents the system from collapsing to
a point, just as the (ordinary) angular momentum L 6= 0
does in the two-body problem.

1. Newtonian gravity

The temporal variation of the hyper-radius R(t) and
the hyper-angular momentum G(t) in the Newtonian
gravitational potential are shown in Fig. 10.

 8.4
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 0  200  400  600  800  1000

R G/3

FIG. 11: (Color online) The time dependence of the hyper-
radius R red (solid), and one third of the hyper-angular mo-
mentum G/3 gray (dashed) of the figure-eight solution in the
Y-string potential. The legenda are explicitly shown below
the figure.

2. The Y- and ∆ string potentials

The temporal variation of the hyper-angular momen-
tum G(t) and R(t), the former reduced by factor three, so
as to emphasize the small variation of R in the Y-string
potential are shown in Fig. 11. Note the cut off peaks of
the sines (“flat tops”) of the hyper-angular momentum
G/3 due to the exact dynamical O(2) symmetry in that
part of the configuration space.

IV. NEW Y-STRING PERIODIC ORBITS

Note, moreover, that the permutation symmetric
three-body potential V3−body(sinα, φ) in the region of
the figure-eight orbit (i.e. on the outer fringes of the
(r = sinα, φ) circle) is attractive as a function of r =
sinα, with a minimum at the unit circle (r = 1), and a
strictly periodic function of the (triple) hyper-angle 3φ.
Then it should be no surprise that the figure-eight

motion of the three-body system, with its almost con-
stant hyper-radius R, has many similarities with that
of the spherical pendulum in an inhomogeneous (az-
imuthally periodic) gravitational field: figure-eight orbit
corresponds to rotations, but there are other qualitatively
different kinds of motions that we shall display and briefly
discuss in this section.
There is a small, yet pronounced non-linearity in

the figure-eight motion’s φ’s temporal dependence, par-
ticularly near the φ = 0,± 2π

3
points. These three

points/lines in the (r, φ) circle, see Fig. 9, correspond to
the configurations of closest two-body approach in real
space. Of course, the figure-eight orbit does not touch
the “unit circle” at these three values of φ, so there are
no two-body collisions in this type of orbit.
Yet, this suggests that there might be other, per-
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haps multiply periodic solutions with “trajectories” in
the (r, φ) plane that touch the r=1 circle at the hyper-
angle values other than φ = ±π

3
, π and/or approach the

unit circle (the equator of the shape hemisphere) even
closer to the two-body collision points. The latter fact
means that the corresponding trajectories in real space
are “narrower” than the figure-eight one.
We have studied this region more closely and found

several new periodic solutions with lesser symmetry than
the figure-eight one that pass through the “infinitesimal”
neighborhood of the initial state, but only in the Y-string
and the ∆-string potentials (i.e. not in Newton’s gravity,
as yet). We display two interesting new orbits below.
The initial conditions are given in Table I.

TABLE I: (Color online) The initial conditions for the solu-
tions shown in this paper: d is the value of the initial distance
between the outer left, or right particle and the middle one,
and the velocities (both are in dimensionless units where the
masses and the coupling constants have been set equal to
unity); the angle θ is in radians.

name d v θ(rad) potential
fig.8 6 1.37 1.205 Y-string
type I 6 1.32 1.437 Y-string
type II 6 4.53 1.40 Y-string
fig.8 1 0.6355 0.5736 Newton
fig.8 1 0.536 1.49287 ∆-string

A. Type I (“linear-in-φ”) reduced symmetry
solution

First note that the real-space trajectory of (“right-
hand-side”) particle number 2 in Fig. 13 is different from
the one of the (“central”) particle number 1 in Fig. 12
thus making it clear that this is a periodic, but not a
choreographic motion. In other words, this solution
is symmetric “merely” under the two-body permutation
group s2, rather than under the three-body permutation
group s3. Due to the reduced symmetry, one particle ex-
ecutes an “independent” motion, whereas the other two
move on orbits that are mirror images of each other, very
much like those in Ref. [18]. This means that this new
solution is probably a bifurcation of the figure-eight orbit
as a function of particle masses related to those found in
the Ref. [8], i.e. as a function of explicit s3 permutation
symmetry breaking.
The figure-eight orbit touches the unit circle at three

points of the equilateral triangle defined by φ = ± 1
3
π, π,

see Fig. 9, whereas this new solution touches it at only
one vertex of this equilateral triangle viz. φ = 1

3
π, and

“cuts corners” at the other two, only to touch the unit
circle at four other values of φ that are different from the
two-body collisions points 0,± 2

3
π. This is still a periodic

solution with a period of 8π, i.e. it takes four cycles of the
hyper-angle φ to complete one period, but with several
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FIG. 12: (Color online) Real space trajectory of particle num-
ber 1 of the type-I new solution that passes through the figure-
eight initial configuration. The trajectory of particle number
3 is a reflection about the line dividing this trajectory verti-
cally.
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FIG. 13: (Color online) Real space trajectory of particle num-
ber 2 of the type-I new solution that passes through the figure-
eight initial configuration.

different hyper-angular frequencies, instead of the single
basic frequency 3φ. This fact may not be immediately
visible to the naked eye, as these frequencies are close to
3φ, but shows up as “beats” in the time dependence of
the amplitudes.

The hyper-angle φ in this solution (still) grows (or de-
scends) indefinitely, so this solution also corresponds to
a kind of rotation of the pendulum, but with a chang-
ing angular velocity, see Fig. 14. The time derivatives
show the beats more clearly, see Fig. 15. The temporal
variation of the hyper-radius R(t) is shown in Fig. 16,
and that of the hyper-angular momentum G(t) is shown
in Fig. 17. Note the beats in the time evolution of R(t)
and G(t), as advertised.
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FIG. 14: (Color online) The time dependence of the hyper-
angular radius r red (solid), and the hyper-angles α =
sin−1 r blue (long dashed) and φ gray (short dashed) of the
type-I new solution in the Y-string potential that passes
through the figure-eight initial configuration. The legenda
are explicitly shown below the figure. Note that φ moving
from 0 to 2π corresponds to two segments between vertical
lines/discontinuities due to the numerical evaluation of in-
verse trigonometric functions. Note that one complete period
of the motion corresponds to eight such segments, i.e. to φ
changing from 0 to 8π, or to four complete revolutions around
the (r, φ) circle.
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FIG. 15: (Color online) The first derivatives of the time de-
pendence of the hyper-angular radius ṙ red (solid), and the

hyper-angles α̇ = d
dt

sin−1 r blue (long dashed) and φ̇ gray
(short dashed) of the type-I new solution in the Y-string po-
tential that passes through the figure-eight initial configura-
tion.

B. Type II (“oscillating φ”) reduced symmetry
solution

First note that the real-space trajectory of particle
number 2 in this solution, Fig. 18, is different from the
one of particle number 1, thus making it clear that this
is also a periodic, but not a choreographic motion. The
trajectory of particle number 3 (blue on-line) is a reflec-

 8
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R

FIG. 16: (Color online) The time dependence of the hyper-
radius R of the type-I new solution in the Y-string potential
that passes through the figure-eight initial configuration.
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G

FIG. 17: (Color online) The time dependence of the hyper-
angular momentum G of the type-I new solution in the Y-
string potential that passes through the figure-eight initial
configuration. Note the cut off peaks of the sines (“flat tops”).

tion of trajectory of particle number 1 about the origin.
At first, the aforementioned action-angle variables do not
seem appropriate for this new periodic orbit, indeed the
(formerly) linear increase/decrease of the hyper-angle φ
is now subject to substantial modifications: after ini-
tial rapid (hyper-) rotation in the clock-wise direction
starting from φ = 0, it slows down and stops around
φmin ≃ −0.764π, Fig. 19, then changes the direction of
motion and swings back yet again only to stop, this time
around φmax ≃ 1.431π, then repeating this cycle ad in-
finitum. Note that the maximal difference (twice the am-
plitude) of φ is numerically close to being a simple frac-
tion of π, i.e. ∆φ = φmax − φmin = 13.0001 1

6
π, whereas

the average value φ = 1
2
(φmax+φmin) is numerically close

to 1
3
π. We suspect that 13

6
π and 1

3
π are the exact val-

ues and that the deviations from our numerical values
are due to rounding-off errors. This resembles the os-
cillations of a variable-length pendulum. Indeed, Fig.19
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FIG. 18: (Color online) Real space trajectories of particle
number 1 red (solid), particle number 2 green (light gray
dashed) and particle number 3 blue (dark gray dashed) line in
the type-II new solution that passes through the figure-eight
initial configuration. The legenda are explicitly shown in the
lower right-hand side corner of the figure.
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FIG. 19: (Color online) The time dependence of the hyper-
radius R red (solid), and 10×φ gray (short dashed) in the
type-II “oscillating” solution in the Y-string potential. The
legenda are explicitly shown below the figure.

shows that the hyper-radius R(t) is oscillating with the
same frequency and phase as the hyper-angle φ(t), thus
extending the analogy with the variable-length pendulum
model.

V. CONCLUSIONS

We have studied the figure-eight motion in three differ-
ent three-body potentials in terms of permutation sym-
metric variables (R, r = sinα), and the braiding hyper-
angle φ. The existence of this orbit depends on the peri-
odic dependence of the potential on the braiding hyper-
angle φ that “guides” the figure-eight orbit(s) around the

two-body collision points.
The figure-eight orbits in the triangle shape space are

generally close to their iso-potential lines, though formal
arguments show that they cannot be exactly identical
[4]. Thus the exact analytic solutions ought to be sought
among (small) oscillations about the iso-potential lines,
with basic frequency 3φ.

The Hamiltonian of three identical particles in a per-
mutation symmetric potential with vanishing total an-
gular momentum has certain similarities with that of
a spherical pendulum in inhomogeneous azimuthally-
periodic potentials, which, in turn, suggests existence of
other types of solutions.

We have found two new periodic solutions in the Y-
string potential that pass through the figure-eight initial
state, but do not share its symmetry. One of these so-
lutions (type I) has a monotonically rising/descending
hyper-angle φ, just like the figure-eight orbit, but a dif-
ferent pattern of syzygies, whereas the second (type II)
new solution’s φ is oscillating about its average value of
π
3
, with the hyper-radius R following suit.

All of these orbits are clearly characterized by their
(R, r, φ) behaviors that display certain similarities, de-
spite their independent and seemingly random form of
trajectories in the configuration space. Thus we believe
this to be a good set of variables to mathematically sim-
plify and describe all periodic orbits of three identical
bodies.

A few words about the history of this subject and our
approach to it might be in order now. In our study Ref.
[14] of the so-called Y-junction and the ∆-string poten-
tials we found an integral of three-body motion, when
the three-body potential depends on only two, rather
than three, independent three-body variables, viz. the
hyper-radius (or the moment of inertia divided by the
quark/particle mass) and the area of the triangle defined
by the three bodies [23]. As the static three-body poten-
tial may depend on (at most) three independent scalar
variables, our observation naturally begged the question:
what is the third independent three-body variable in this
set? [24] It was an attempt to answer this question that
brought us to the present permutation symmetric vari-
ables. We are not the first ones to use them, however:
Chenciner and Montgomery have used these variables
(these authors call θ “our” variable φ) to parametrize
the triangle shape space in Ref. [3]. According to Ref.
[3], H. Hopf was the first one to introduce these variables,
Ref. [19].
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