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A physical interpretation of the two-sheeted space, the most fundamental ingredient of noncom-
mutative spectral geometry proposed by Connes as an approach to unification, is presented. It is
shown that the doubling of the algebra is strictly related to dissipation. As a consequence, the
doubling of the algebra is intimately related to the gauge structure of the theory. In a regime of
completely deterministic dynamics, dissipation seems also to play a key rôle in the quantization
of the theory, following ’t Hooft’s conjecture. It is thus argued that Connes’ classical construction
carries implicit in its feature of the doubling of the algebra the seeds of quantization.
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I. INTRODUCTION AND MOTIVATION

Noncommutative Spectral Geometry [1, 2] is a rich
mathematical theory which combines notions of Non-
Commutative Geometry (NCG) with spectral triples, a
mathematical tool conceived by Alain Connes. Within
this context, Connes and collaborators built a model
which offers a purely geometric explanation for the Stan-
dard Model (SM) of electroweak and strong interactions
— the most successful model of particle physics today
at hand — compatible with right-handed neutrinos and
neutrino masses [3]. This model succeeds at finding a
way to merge the diffeomorphism invariance which gov-
erns General Relativity, with the local gauge invariance
which governs Gauge Theories upon which the SM is
based. The noncommutative spectral geometry model
has also been used to derive supersymmetric extensions
to the SM [4].

This unification model lives by construction at high en-
ergy scales (namely at unification scale), thus providing a
natural environment to address unresolved issues of early
universe cosmology [5–12]. Various criticisms have how-
ever been raised. One may for instance argue that since
the model is at present purely classical, strictly speaking
one cannot employ it within the context of the early uni-
verse since then the energy scales were so high that quan-
tum corrections could no longer be neglected. Or one
may oppose that since the action functional is obtained
through a perturbative approach in inverse powers of the
cut-off scale, it ceases to be valid at lower energy scales
relevant for astrophysical studies. Note that the original
approach may a priori also be treated nonperturbatively,
however it is very difficult to compute exactly the spec-
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tral action in its nonperturbative form. Another criti-
cism that a physicist may have is that while the model is
naturally developed in Euclidean signature, any physical
studies must be performed in Lorentzian signature.

The aim of this paper is twofold: firstly, to address
the intimate connection between gauge theories and the
algebra doubling and offer a simple physical insight to
this rich mathematical theory; secondly, to reply to some
of the above mentioned criticisms.

In what follows, after a short introduction to noncom-
mutative spectral geometry in Section II, we show in
Section III how the algebra doubling, which is a crucial
mathematical feature of Alain Connes’ construction, is
intimately related to the gauge structure of the theory.
We introduce the notion of dissipation within this con-
text, which in Section IV will lead to the quantum aspect
of the noncommutative spectral geometry and the notion
of temperature. In our discussion we will resort to the
proposal by ’t Hooft [13–15], according which quantum
features and behaviors in a theory would result from a
more fundamental deterministic scenario due to a pro-
cess of information loss. In other words, according to
’t Hooft’s proposal, quantum mechanics emerges from
an underlying deterministic classical dynamics acting at
an energy scale much higher than the one of our obser-
vations, provided dissipation has occurred. This means
that Alain Connes’ “classical” construction, holding at
high energy scales, may carry in itself the seeds for quan-
tum behavior, provided in the same construction there
is room for dissipation. In the following, we argue that
this is indeed the case, since, as we show, the character-
izing feature of the algebra doubling is strictly related
to dissipation, which in turn can be described in terms
of gauge fields. Thus the two-sheeted space selected by
Alain Connes is related to gauge theories, as well as to
dissipation and to quantization. We summarize our phys-
ical interpretation of Alain Connes’ purely gravitational
approach to unification in our conclusions.

http://arxiv.org/abs/1106.4164v1
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II. ELEMENTS OF NONCOMMUTATIVE

SPECTRAL GEOMETRY

For the reader’s convenience we summarize very briefly
some of the basic features of NCG in the present section.
In the context of NCG, one is not interested in the

properties of a set of points, but on the algebraic prop-
erties of functions on the spaces, instead. To capture the
effect of the SM on the continuous four-dimensional man-
ifold, Alain Connes considered a model of a two-sheeted
space, made from the product of a four-dimensional
smooth compact Riemannian manifold M with a fixed
spin structure, by a discrete noncommutative space F
composed by only two points. In Alain Connes’ ap-
proach, the SM of electroweak and strong interactions is
seen as a phenomenological model, which however speci-
fies the geometry of space-time in such a way so that the
Maxwell-Dirac action functional leads to the SM action.
Following this proposal, the geometric space is defined
as the tensor product of a continuous geometry M for
space-time by an internal geometry F for the SM.
A main difference between noncommutative spectral

geometry and other approaches of quantizing gravity is
that here one is searching for a hidden signature of space-
time geometry within the functional of gravity coupled
to SM at present energy scales, instead of postulating the
geometry around the Planck scale which necessitates an
extrapolation by many orders of magnitude.
The noncommutative nature of the discrete space F

is given by a spectral triple (A,H,D), where A is an
involution of operators on the finite-dimensional Hilbert
space H of Euclidean fermions, and D is a self-adjoint
unbounded operator in H. Spectral triples are analogous
to Fourier transform in commutative spaces and are in-
troduced in order to create a link with experimental data,
which are all of a spectral nature. It is worth noting that
the spectral nature approach is intrinsic to the noncom-
mutative spectral geometry. In the product noncommu-
tative space M ×F , the algebra of smooth functions is
abelian, whereas the derivative in the discrete direction
is a finite difference quotient.
The Hilbert space H is the Hilbert space L2(M, S)

of square integrable spinors S on M and the algebra A
is the algebra A = C∞(M) of smooth functions on M
and acts in H by multiplication operators. The alge-
bra A, related to the gauge group of local gauge trans-
formations, is the algebra of coordinates. Within NCG
all information about space is encoded in the algebra
of coordinates A. The operator D is the Dirac opera-
tor ∂/M =

√
−1γµ∇s

µ (where ∇s is the spin connection)
on the spin Riemannian manifold M. The operator D
corresponds to the inverse of the Euclidean propagator
of fermions, and is given by the Yukawa coupling matrix
which encodes the masses of the elementary fermions and
the Kobayashi–Maskawa mixing parameters.
The product geometry is specified by the rules:

A = A1 ⊗A2 , H = H1 ⊗H2 , (1)

and hence for M×F the rules read:

A = C∞(M)⊗AF = C∞(M,AF) ,

H = L2(M, S)⊗HF = L2(M, S ⊗HF ) ,

D = ∂/M ⊗ 1 + γ5 ⊗DF ; (2)

γ5 is the chirality operator in the four-dimensional case.
Geometry is described by focusing on the Dirac oper-

ator D, instead of the metric tensor gµν used for spaces
with commuting coordinates. The familiar geodesic for-
mula

d(x, y) = inf

∫

γ

ds , (3)

where the infimum is taken over all possible paths con-
necting x to y, used to determine the distance d(x, y)
between two points x and y within Riemannian geome-
try, is then replaced by

d(x, y) = sup{|f(x)− f(y)| : f ∈ A, ||[D, f ]|| ≤ 1} . (4)

Within the noncommutative spectral geometry D plays
the rôle of the inverse of the line element ds.
Assuming the algebra A constructed in the geometry

M×F is symplectic-unitary, it must be of the form [16]

A =Ma(H)⊕Mk(C) , (5)

with k = 2a and H being the algebra of quaternions. The
field of quaternionsH plays an important rôle in this con-
struction and its choice remains to be explained. To ob-
tain the SM one assumes quaternion linearity. The first
possible value for the even number k is 2, correspond-
ing to a Hilbert space of four fermions, but this choice is
ruled out from the existence of quarks. The next possible
value is k = 4 leading to the correct number of k2 = 16
fermions in each of the three generations. Note that if
new particles are discovered at the Large Hadron Col-
lider (LHC), one may be able to accommodate them by
considering a higher value for the even number k.
Let us just mention that another basic ingredient of

Alain Connes’ approach is to consider the Dixmier trace
— a noncommutative analogue of integration on a com-
pact n-dimensional Riemannian spin manifold — as the
fundamental functional to define the action of the theory.
Alain Connes connected the Dixmier trace with residues
of zeta functions.
The noncommutative spectral geometry model is based

upon the spectral action principle stating that, within the
context of a product noncommutative geometry, the bare
bosonic Euclidean action is given by the trace of the heat
kernel associated with the square of the noncommutative
Dirac operator and is of the form

Tr(f(D/Λ)) , (6)

where f is a cut-off function and Λ fixes the energy scale;
D and Λ have physical dimensions of a mass and there is
no absolute scale on which they can be measured. This
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action can be seen à la Wilson as the bare action at the
mass scale Λ. The fermionic term can be included in the
action functional by adding (1/2)〈Jψ,Dψ〉, where J is
the real structure on the spectral triple and ψ is a spinor
in the Hilbert space H of the quarks and leptons.

In this approach, the fermions of the Standard Model
provide the Hilbert space of a spectral triple for the al-
gebra, while the bosons (including the Higgs boson) are
obtained through inner fluctuations of the Dirac operator
of the product geometry.

For the four-dimensional Riemannian geometry, the
trace Tr(f(D/Λ)) is expressed perturbatively in terms of
the geometrical Seeley-deWitt coefficients an, which are
known for any second order elliptic differential operator,
as [17–20]

Tr(f(D/Λ)) ∼ 2Λ4f4a0 + 2Λ2f2a2 + f0a4 + · · ·
+Λ−2kf−2ka4+2k + · · · , (7)

where the smooth even cut-off function f , which decays
fast at infinity, appears through its momenta fk given by:

f0 ≡ f(0)

fk ≡
∫ ∞

0

f(u)uk−1du , for k > 0 ,

f−2k = (−1)k
k!

(2k)!
f (2k)(0) .

Moreover, since its Taylor expansion at zero vanishes, the
asymptotic expansion Eq. (7) reduces to

Tr(f(D/Λ)) ∼ 2Λ4f4a0 + 2Λ2f2a2 + f0a4 . (8)

In conclusion, the cut-off function f plays a rôle only
through its three momenta f0, f2, f4, which are three real
parameters in the model; they are intimately related to
the coupling constants at unification, the gravitational
constant, and the cosmological constant. In this four-
dimensional Riemannian manifold (one brane of the two-
sheeted space), the term in Λ4 gives a cosmological term,
the term in Λ2 gives the Einstein-Hilbert action func-
tional, and the Λ-independent term yields the Yang-Mills
action for the gauge fields corresponding to the internal
degrees of freedom of the metric.

The computation of the asymptotic expression for the
spectral action functional results to the full Lagrangian
for the Standard Model minimally coupled to gravity,
with neutrino mixing and Majorana mass terms. Thus,
this approach leads to a geometric explanation of the SM;
in particular, the vacuum expectation value of the Higgs
field is related to the noncommutative distance between
the two sheets. The Higgs field is found to be conformally
coupled to the Ricci scalar. The generalized Einstein-
Hilbert action contains in addition a minimally coupled
massless scalar field σ related to the distance d between
the two sheets by d ∝ e−σ(y), with y an element of the
product noncommutative space.

III. NONCOMMUTATIVE SPECTRAL

GEOMETRY, THE ALGEBRA DOUBLING AND

THE GAUGE STRUCTURE

In Ref. [1] Alain Connes considers the work of Heisen-
berg establishing, in the early years of Quantum Mechan-
ics (QM), the matrix mechanics — where physical quan-
tities are governed by noncommutative algebra — and he
discusses how close such a discovery is to experimental
reality and how strict is its relation to the observed dis-
cretization of the energy of the atomic levels and of angu-
lar momentum. In this section our aim is twofold: Firstly,
we show that one central ingredient in NCG, namely the
“doubling” of the algebra A → A1 ⊗ A2 acting on the
“doubled” space H = H1 ⊗ H2 (cf., Eq. (1)), is also
present in the standard QM formalism of the density ma-
trix and the associated Wigner function. We then show
that the doubling of the algebra is implicit even in the
classical theory when considering the Brownian motion
of a particle and it is strictly related to dissipation. Sec-
ondly, in Subsection IIIA we show that the doubling of
the algebra and the dissipation are related to the gauge
structure of the theory.
For the first part of our discussion, let us start by ob-

serving that in the formalism of the density matrix and
the Wigner function, the coordinate x(t) of a quantum
particle is split into two coordinates x+(t) (going forward
in time) and x−(t) (going backward in time). Indeed, the
Wigner function has the standard expression [21],

W (p, x, t) (9)

=
1

2π~

∫

ψ∗

(

x− 1

2
y, t

)

ψ

(

x+
1

2
y, t

)

e−i py
~ dy ,

where

x± = x± 1

2
y . (10)

The associated density matrix is

W (x+, x−, t) ≡ 〈x+|ρ(t)|x−〉 = ψ∗(x−, t)ψ(x+, t) , (11)

and the mean value of a quantum operator A, computed
using the density matrix, is given by

Ā(t) = 〈ψ(t)|A|ψ(t)〉

=

∫ ∫

ψ∗(x−, t) 〈x−|A|x+〉ψ(x+, t)dx+dx−

=

∫ ∫

〈x+|ρ(t)|x−〉〈x−|A|x+〉dx+dx− . (12)

The forward and the backward in time evolution of the
density matrix W (x+, x−, t) is then described by “two
copies” of the Schrödinger equation:

i~
∂ψ(x+, t)

∂t
= H+ψ(x+, t) , (13)

− i~
∂ψ∗(x−, t)

∂t
= H−ψ

∗(x−, t) , (14)
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respectively, i.e.,

i~
∂〈x+|ρ(t)|x−〉

∂t
= H〈x+|ρ(t)|x−〉 , (15)

where H is given in terms of the two Hamiltonian oper-
ators H± as

H = H+ −H− . (16)

The connection with Alain Connes’ discussion of spec-
troscopic experiments, noncommutative matrix algebra,
energy level discretization and the algebra doubling is
thus evident: the density matrix and the Wigner func-
tion require the introduction of a “doubled” set of co-
ordinates (x±, p±) (or (x, px) and (y, py)) and of their
respective algebras. Using the two copies of the Hamil-
tonian H± operating on the outer product of two Hilbert
spacesH+⊗H− has been implicitly required in QM since
the very beginning of the theory. Use of Eqs. (15), (16)
shows immediately that the eigenvalues of H are directly
the Bohr transition frequencies hνnm = En −Em, which
was the first hint towards an explanation of spectroscopic
structure.
We now show that the need to double the degrees of

freedom is implicit even in the classical theory when con-
sidering the Brownian motion. We closely follow Ref. [22]
where the results here summarized are derived.
We recall that in the classical Brownian theory one has

the equation of motion

mẍ(t) + γẋ(t) = f(t) , (17)

where f(t) is a random (Gaussian distributed) force obey-
ing

< f(t)f(t′) >noise= 2 γ kBT δ(t− t′) . (18)

Equation (17) can be derived from a Lagrangian in a
canonical procedure by employing a delta functional clas-
sical constraint representation as a functional integral.
By averaging over the fluctuating force f , one indeed ob-
tains [22]

< δ[mẍ+ γẋ− f ] >noise (19)

=

∫

Dy < exp[
i

~

∫

dt Lf(ẋ, ẏ, x, y)] >noise ,

where

Lf (ẋ, ẏ, x, y) = mẋẏ +
γ

2
(xẏ − yẋ) + fy . (20)

Note that ~ is introduced solely for dimensional reasons.
We thus see that the constraint condition at the classical
level introduced a new coordinate y, and the standard
Euler-Lagrange equations are obtained, namely

d

dt

∂Lf

∂ẏ
=
∂Lf

∂y
;

d

dt

∂Lf

∂ẋ
=
∂Lf

∂x
, (21)

i.e.,

mẍ+ γẋ = f , mÿ − γẏ = 0 . (22)

We remark that the Lagrangian system Eqs. (20)-(22)
were obtained in a completely classical context in the
search aimed to build up a canonical formalism for dissi-
pative system [23–25]. The x-system is an open system.
In order to set up the canonical formalism it is required
to close the system; this is the rôle of the y-system. The
{x − y} system appears as a closed system (in the x-
system there is damping, in the y system there is am-
plification: the y-system is the time-reversed copy of the
x-system). We thus see that doubling of the algebra and
dissipation are intimately related.
We also remark that the exact expression for the imag-

inary part of the action reads [26, 27]

ImS[x, y] = 1

2~

∫ tf

ti

∫ tf

ti

dt dsN(t− s) y(t) y(s) , (23)

where N(t− s) denotes the quantum noise in the fluctu-
ating random force given by the Nyquist theorem [27].
The meaning of Eq. (23) is that nonzero y yields an

“unlikely process” in the classical limit “~ → 0”, in view
of the large imaginary part of the action. At quantum
level, instead, nonzero y may allow quantum noise effects
arising from the imaginary part of the action [27]. This
sheds some light on the rôle played by the doubled de-
grees of freedom in the interplay between classical and
quantum. We thus see that the second sheet cannot be
neglected: in the perturbative approach one may drop
higher order terms in the action functional expansion,
since they correspond to unlikely processes at the clas-
sical level. However, these terms may be responsible for
quantum corrections (dissipation) and therefore, in order
to not preclude the quantization effects, one should keep
them.

A. The gauge structure

Let us now show how the doubling of the degrees of
freedom is strictly related to the gauge structure of the
theory. Our subsequent discussion will thus unveil the in-
timate relation between the two-sheeted space in Connes’
construction and the gauge structure of the theory.
We consider the equation of the classical one-

dimensional damped harmonic oscillator

mẍ+ γẋ+ kx = 0 , (24)

with time independent m, γ and k, which is a simple
prototype of dissipative systems.
As we have seen, to set up the canonical formalism for

dissipative systems, the doubling of the degrees of free-
dom is required in such a way as to complement the given
dissipative system with its time-reversed image, thus ob-
taining a globally closed system for which the Lagrangian
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formalism is well defined. The doubling of the x degree
of freedom leads to consider the damped harmonic oscil-
lator in the doubled y coordinate

mÿ − γẏ + ky = 0 . (25)

The system of damped harmonic oscillator Eq. (24) and
its time-reversed (γ → −γ) image Eq. (25) is then
a closed system described by the Lagrangian density
Eq. (20) where we put f = kx. The canonically con-
jugate momenta px and py can now be introduced as
customary in the Lagrangian formalism:

px ≡ ∂L

∂ẋ
= mẏ−γ

2
y , py ≡ ∂L

∂ẏ
= mẋ+

γ

2
x , (26)

and the dynamical variables {x, px; y, py} span the new
phase-space.
It is convenient to use the coordinates x1(t) and x2(t)

obtained through the (canonical) transformation

x1(t) =
x(t) + y(t)√

2
, x2(t) =

x(t) − y(t)√
2

, (27)

in terms of which the motion equations can be rewritten
as

mẍ1 + γẋ2 + kx1 = 0 , (28a)

mẍ2 + γẋ1 + kx2 = 0 , (28b)

and p1 = mẋ1+(1/2)γx2 ; p2 = −mẋ2− (1/2)γx1 . The
Hamiltonian is then found to be

H = H1 −H2

=
1

2m
(p1 −

γ

2
x2)

2 +
k

2
x21

− 1

2m
(p2 +

γ

2
x1)

2 − k

2
x22 . (29)

Following Refs. [28–31] we can now introduce the vector
potential as

Ai =
B

2
ǫijxj (i, j = 1, 2) , (30)

with

B ≡ c

e
γ , ǫii = 0 , ǫ12 = −ǫ21 = 1 . (31)

We realize that Hi (with i = 1, 2) in Eq. (29) describe
two particles with opposite charges e1 = −e2 = e in the
(oscillator) potential Φ ≡ (k/2/e)(x1

2 − x2
2) ≡ Φ1 − Φ2

with Φi ≡ (k/2/e)xi
2 and in the constant magnetic field

B defined as B = ∇×A = −B3̂, namely:

H = H1 −H2

=
1

2m
(p1 −

e1
c
A1)

2 + e1Φ1

− 1

2m
(p2 +

e2
c
A2)

2 + e2Φ2 . (32)

Using Eq. (30) the Lagrangian of the system can be writ-
ten in the familiar form

L =
1

2m
(mẋ1 +

e1
c
A1)

2 − 1

2m
(mẋ2 +

e2
c
A2)

2

− e2

2mc2
(A1

2 +A2
2)− eΦ

=
m

2
(ẋ21 − ẋ22) +

e

c
(ẋ1A1 + ẋ2A2)− eΦ . (33)

Remarkably, we have the Lorentzian-like (pseudoeu-
clidean) metric in Eq. (33) (cf. also Eqs. (16), (32) and
(41) below). The “minus” sign, not imposed by hand,
but required by the doubling of the degrees of freedom,
is crucial in our derivation (and in Connes’ construction).
In conclusion, the doubled coordinate, e.g., x2 acts as

the gauge field component A1 to which the x1 coordinate
is coupled, and vice versa. The interpretation is recov-
ered of the gauge field as the bath or reservoir in which
the system is embedded. The gauge structure appears
intrinsic to the doubling procedure. Let us see then how
such a conclusion can be also reached in the case of a
fermion field.
For brevity we discuss the simple case of the massless

fermion 1 and the U(1) local gauge transformation group.
We will see how in this case the doubling of the algebra
A → A1 ⊗ A2 acting on the outer product space H =
H1⊗H2 is related with the gauge structure of the theory.
We consider the classical (pre-quantum) theory. The

Lagrangian of the massless free Dirac field is:

L = −ψγµ∂µψ . (34)

Under the U(1) local gauge transformation,

ψ(x) → exp [igα(x)]ψ(x) , (35)

L transforms as

L→ L′ = L− ig∂µα(x)ψ(x)γµψ(x) . (36)

It is well known that in order to make L invariant under
the local gauge transformation Eq. (35), the coupling of
the current jµ = iψγµψ with the gauge vector field Aµ

has to be introduced in L in such a way that, when ψ(x)
transforms as in Eq. (35), jµ(x)Aµ(x) transforms as

jµ(x)Aµ(x) → jµ(x)Aµ(x) + jµ(x)∂µα(x) , (37)

i.e.,

Aµ(x) → Aµ(x) + ∂µα(x) . (38)

The Lagrangian L modified by the coupling gjµAµ leads
to the lagrangian Lg defined as

Lg = −ψγµ∂µψ + igψγµψAµ , (39)

1 Extension to the massive fermion case, the boson case and non-
Abelian gauge transformation groups is possible, see Refs. [30,
31].
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which is by construction invariant under the U(1) lo-
cal gauge transformations Eqs. (35), (38), namely Lg →
L′
g = Lg. As usual, in order for Aµ to be a dynami-

cal field, the term −(1/4)FµνFµν has to be added to the
modified Lagrangian Lg. Moreover, the Lorentz gauge
condition

∂µAµ(x) = 0 , (40)

has to be adopted in order to ensure that only trans-
verse modes of the Aµ field enter physical states. As
said in the Introduction, these are represented by square
integrable (spinor) functions in the Hilbert space H =
L2(M, S) where the algebra acts by multiplication op-
erators. Equation (40) expresses the restriction to the
physical states in H where the gauge constraint is sat-
isfied, which we will denote by 〈∂µAµ(x)〉 = 0, where
〈...〉 stands for expectation values in the physical states
〈phys|...|phys〉.
Now, let us go back to the Lagrangian Eq. (34) for a

classical fermion field and show how the doubling of the
fermion degrees of freedom is related, under convenient
constraints, to the local gauge invariance.
The field algebra is doubled by introducing the fermion

tilde-field ψ̃(x). The tilde-system is a “copy” (with the
same spectrum and couplings) of the ψ-system. The La-
grangian is written now as

L̂ = L− L̃ = −ψγµ∂µψ + ψ̃γµ∂µψ̃ . (41)

We assume, for simplicity, that in L̂ there is no coupling
term of the field ψ(x) with the tilde field ψ̃(x). The

Hamiltonian for the system is of the form Ĥ = H−H̃ (to
be compared with Eq. (16)), which in terms of creation

and annihilation operators of the ψ(x) and ψ̃(x) fields is

given by Ĥ =
∑

k
~ωk(a

†
k
ak−ã†kãk). Let the zero energy

eigenstate of Ĥ be denoted by |0(θ)〉 2. The space of

states Ĥ = H⊗H̃ is constructed out of |0(θ)〉 by repeated

applications of creation operators of ψ(θ;x) and ψ̃(θ;x)
and is called the θ-representation {|0(θ)〉} [26, 30, 31].
In the following we consider the subspaceHθ ⊂{|0(θ)〉}

made of all the states |a〉θ, including |0(θ)〉, such that the
θ-state condition

[a†
k
ak − ã†

k
ãk]|a〉θ = 0 , for any k, (42)

holds for any |a〉θ in Hθ. This condition can be shown to
be the realization in Hθ of the Lorentz gauge condition
Eq. (40) 3. We have

〈jµ(x)〉θ = 〈j̃µ(x)〉θ , (43)

2 In other words, |0(θ)〉 is the vacuum with respect to the fields
ψ(θ; x) and ψ̃(θ; x) obtained from ψ(x) and ψ̃(x), respectively,
by means of the Bogoliubov transformation [26, 32].

3 Equation (42) turns out to be equivalent to the Gupta-Bleurer
condition in quantum electrodynamics [26, 30, 31].

where 〈...〉θ denotes matrix elements in Hθ. We will
denote equalities between matrix elements in Hθ, say
〈A〉θ = 〈B〉θ, by A ∼= B and call them θ-weak equal-

ities. Since they are equalities among c-numbers, they
are classical equalities.
Now, the key point is that, due to Eq. (43), the matrix

elements in Hθ of the Lagrangian Eq. (41) (as well as of
a more general Lagrangian than the simple one presently
considered) are invariant under the simultaneous local

gauge transformations of ψ and ψ̃ given by Eq. (35) and

ψ̃(x) → exp [igα(x)] ψ̃(x) , (44)

respectively, i.e.,

〈L̂〉θ → 〈L̂′〉θ = 〈L̂〉θ , in Hθ, (45)

under the gauge transformations Eqs. (35), (44).
We thus realize that a crucial rôle in the θ-weak gauge

invariance of L̂ under Eqs. (35), (44) is played by the

tilde term ψ̃γµ∂µψ̃ since it transforms in such a way as
to compensate the local gauge transformation of the ψ
kinematic term, i.e.,

ψ̃(x)γµ∂µψ̃(x) → ψ̃(x)γµ∂µψ̃(x) + g∂µα(x)j̃µ(x). (46)

This suggests to introduce the vector field A′
µ by

gjµ̄(x)A′
µ̄(x)

∼= ψ̃(x)γµ̄∂µ̄ψ̃(x) , µ̄ = 0, 1, 2, 3 . (47)

Here and in the following, the bar over µ means no sum-
mation over repeated indices. Equation (46) implies that
A′

µ transforms as

A′
µ(x) → A′

µ(x) + ∂µα(x) , (48)

when Eqs. (35), (44) are implemented. This suggests
to identify, in Hθ, A

′
µ with the conventional U(1) gauge

vector field and to introduce it in the original Lagrangian
through the usual coupling term igψγµψA′

µ.
We remark that provided we restrict ourselves to the θ-

weak equalities, i.e., to matrix elements inHθ, matrix ele-
ments of physical observables, which are solely functions
of the ψ(x) field, are not changed by Eq. (47). More-
over, observables turn out to be invariant under gauge
transformations. Next, one can show that the conserva-
tion laws derivable from L̂, namely in the simple case of
Eq. (41) the current conservation laws:

∂µjµ(x) = 0 , ∂µj̃µ(x) = 0 , (49)

are also preserved as θ-weak equalities when Eq. (47) is
adopted. One may also show that

∂νF ′
µν(x)

∼= −gjµ(x) , ∂νF ′
µν(x)

∼= −gj̃µ(x) , (50)

inHθ. In the Lorentz gauge, from Eq. (50) we also obtain
the θ-weak relations

∂µA′
µ(x)

∼= 0 ,

∂2A′
µ(x)

∼= gjµ(x) . (51)
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In conclusion, our discussion shows the intrinsic gauge
properties of the “doubling” procedure: we have obtained
that in Hθ the “doubled algebra” Lagrangian Eq. (41) for

the field ψ and its “double” ψ̃ can be substituted by the
Lagrangian:

L̂g
∼= −1

4
F ′µνF ′

µν − ψγµ∂µψ + igψγµψA′
µ , (52)

which is indeed the standard U(1) local gauge invari-
ant Lagrangian for the fermion field ψ. Remarkably, the
tilde-kinematical term is replaced, in a θ-weak sense, by
the gauge field-current coupling. The second equation
in Eq. (50), shows that the variations of the gauge field
tensor F ′

µν have their source in the current j̃µ, which sug-
gests that the tilde field plays the rôle of a “reservoir”.
Such an interpretation in terms of a reservoir, may thus
be extended also to the gauge field A′

µ, which indeed acts
in a way to “compensate” the changes in the matter field
configurations due to the local gauge freedom.
Finally, in the case an interaction term is present in the

Lagrangian Eq. (41), L̂tot = L̂ + L̂I, L̂I = LI − L̃I, the
above conclusions still hold provided Hθ is an invariant
subspace under the dynamics described by L̂tot.
The state |0(θ)〉 can be shown to be a finite tempera-

ture state, which means that the algebra doubling leads
to a thermal field theory [25, 26]. It can be also shown
that in the formalism of the algebra doubling a relevant
rôle is played by the noncommutative q-deformed Hopf
algebra [33], pointing to a deep physical meaning of the
noncommutativity in Alain Connes’ construction.

IV. ALGERA DOUBLING, DISSIPATION AND

QUANTIZATION

We have considered till now the doubling of the al-
gebra such as the one occurring in Alain Connes’ NCG
construction and have shown that such a doubling is re-
lated to the gauge structure of the theory. We have done
this by considering essentially classical systems and have
mentioned in several points features of such systems at
a quantum level. We have also stressed that the dou-
bling of the system degrees of freedom, say x, amounts
to consider the fact that the system is embedded in some
environment which is indeed described by the doubled y
coordinate. The doubling of the algebra thus underlies
the openness of the system under study. As a specific
case we have considered the classical damped harmonic
oscillator, which is a simple prototype of open systems
whose evolution is characterized by energy dissipation.
In a series of papers [13–15] ’t Hooft has discussed

classical, deterministic, dissipative models and has con-
jectured that, provided some specific energy conditions
are met and some constraints are imposed, loss of in-
formation might lead to a quantum evolution. In this
section, following Refs. [34, 35], we show that in agree-
ment with ’t Hooft’s conjecture, dissipation in a regime

of completely deterministic dynamics appears to be re-
sponsible of the system’s quantum mechanical evolution.
Our conjecture is then that Alain Connes’ classical con-
struction carries implicit in its feature of the doubling of
the algebra the seeds of quantization.
In order to be specific, we consider the classical

damped harmonic x-oscillator described by Eq. (24) and
its time–reversed image, the y-oscillator Eq. (25). It is
also convenient to put [29] x1 = r coshu, x2 = r sinhu,
and

C =
1

4Ωm

[(

p21 − p22
)

+m2Ω2
(

x21 − x22
)]

, (53)

J2 =
m

2

[

(ẋ1x2 − ẋ2x1)− Γr2
]

, (54)

where C is taken to be positive and

Γ =
γ

2m
, Ω =

√

1

m
(κ− γ2

4m
) , with κ >

γ2

4m
.

Using z = r2 and the canonical transformation:

q1 =

∫

dz mΩ
√

4J2
2 + 4mΩCz −m2Ω2z2

,

q2 = 2u+

∫

dz

z

2J2
√

4J2
2 + 4mΩCz −m2Ω2z2

,

p1 = C ,
p2 = J2 , (55)

the system’s Hamiltonian Eq. (29) can be rewritten as

H =

2
∑

i=1

pi fi(q) , (56)

with f1(q) = 2Ω, f2(q) = −2Γ. Note that {qi, pi} = 1,
and the other Poisson brackets are vanishing.
The Hamiltonian Eq. (56) belongs to the class of

Hamiltonians considered by ’t Hooft. There, the fi(q) are
nonsingular functions of the canonical coordinates qi and
the equations for the q’s, namely q̇i = {qi, H} = fi(q)),
are decoupled from the conjugate momenta pi. It then
exists a complete set of observables, called beables, which
Poisson commute at all times. The meaning of this is that
the system admits a deterministic description even when
expressed in terms of operators acting on some functional
space of states |ψ〉, such as the Hilbert space [14]. We
stress that such a description in terms of operators and
Hilbert space, does not imply per se quantization of the
system. As we will see, quantization is achieved only as
a consequence of the dissipation of information.
Thus we see that J2 and C are beables (it can be seen

from the Hamiltonian Eq. (56) that q1 and q2 are also
beables). Next we put H = H

I
−H

II
, with

H
I
=

1

2ΩC (2ΩC − ΓJ2)
2 , H

II
=

Γ2

2ΩC J
2
2 (57)

and impose the constraint

J2|ψ〉 = 0 , (58)
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which defines physical states and guaranties that H is
bounded from below.
Due to the constraint Eq. (58) we can then write

H |ψ〉 = H
I
|ψ〉 = 2ΩC|ψ〉 =

(

1

2m
p2r +

K

2
r2
)

|ψ〉 , (59)

with K ≡ mΩ2. We thus realize that H
I
reduces to

the Hamiltonian for the two-dimensional “isotropic” (or
“radial”) harmonic oscillator r̈ +Ω2r = 0.
The physical states are invariant under time-reversal

(|ψ(t)〉 = |ψ(−t)〉) and periodical with period τ = 2π/Ω.
The generic state |ψ(t)〉H can be written as

|ψ(t)〉H = T̂

[

exp

(

i

~

∫ t

t0

2ΓJ2dt
′

)]

|ψ(t)〉H
I
, (60)

where T̂ denotes time-ordering and the constant ~, with
dimension of an action, is needed for dimensional reasons.
The states |ψ(t)〉H and |ψ(t)〉H

I
satisfy the equations:

i~
d

dt
|ψ(t)〉H = H |ψ(t)〉H , (61)

i~
d

dt
|ψ(t)〉H

I
= 2ΩC|ψ(t)〉H

I
. (62)

Note that H
I
= 2ΩC has the spectrum Hn

I
= ~Ωn, n =

0,±1,±2, ...; since our choice has been that C is positive,
only positive values of n will be considered.
Let us now exploit the periodicity of the physical states

|ψ〉. Following Ref. [36], one may generally write

|ψ(τ)〉 = exp

(

iφ− i

~

∫ τ

0

〈ψ(t)|H |ψ(t)〉dt
)

|ψ(0)〉

= exp (−i2πn) |ψ(0)〉 , (63)

i.e.,

〈ψ(τ)|H |ψ(τ)〉
~

τ − φ = 2πn , n = 0, 1, 2, . . . .

Using τ = 2π/Ω and φ = απ leads to

Hn
I,eff ≡ 〈ψn(τ)|H |ψn(τ)〉 = ~Ω

(

n+
α

2

)

. (64)

The index n has been introduced to exhibit the n depen-
dence of the state and the corresponding energy. We see
that Hn

I,eff
gives the effective nth energy level of the phys-

ical system, namely the energy given by Hn
I
corrected by

its interaction with the environment. We conclude that
the dissipation term J2 of the Hamiltonian is responsible
for the zero point (n = 0) energy: E0 = (~/2)Ωα.
We remark that in Quantum Mechanics the zero point

energy is formally due to the nonzero commutator of the
canonically conjugate q and p operators: the zero point
energy is the “signature” of quantization. Our discussion
thus shows that dissipation manifests itself as “quantiza-
tion”. In other words, the (zero point) “quantum contri-
bution” E0 to the spectrum of physical states signals the
underlying dissipative dynamics.

Let us consider further the dynamical rôle of J2. Using
u(t) = −Γt, Eq. (60) can be rewritten as

|ψ(t)〉H = T̂

[

exp

(

i
1

~

∫ u(t)

u(t0)

2J2du
′

)]

|ψ(t)〉H
I
, (65)

and we have that

− i~
∂

∂u
|ψ(t)〉H = 2J2|ψ(t)〉H . (66)

Thus, 2J2 induces translations in the u variable and
in operatorial notation one can write pu = −i~(∂/∂u).
Equation (58) thus defines families of physical states,
representing stable, periodic trajectories. Note that 2J2
implements transitions from family to family, according
to Eq. (66). Equation (61) can be then rewritten as

i~
d

dt
|ψ(t)〉H = i~

∂

∂t
|ψ(t)〉H + i~

du

dt

∂

∂u
|ψ(t)〉H . (67)

The contribution to the energy due to dissipation is thus
described by “translations” in the u variable.
Consider the defining relation for temperature in ther-

modynamics (with kB = 1)

∂S

∂U
=

1

T
. (68)

Using S ≡ (2J2/~) and U ≡ 2ΩC, Eq. (56) gives T = ~Γ.
Provided S is identified with the entropy, ~Γ can be re-
garded as the temperature. Thus, the “full Hamiltonian”
Eq. (56) plays the rôle of the free energy F , and 2ΓJ2 rep-
resents the heat contribution in H (or F). Note that the
statement that 2J2/~ behaves as the entropy is not sur-
prising since it controls the dissipative (thus irreversible)
part of the dynamics.
It is worth noting that the thermodynamical picture

outlined above is also consistent with the results on the
canonical quantization of dissipative systems in quantum
field theory [25].

V. NONCOMMUTATIVE GEOMETRY AND

THE DISSIPATIVE INTERFERENCE PHASE

We have seen that doubling of the algebra amounts to
consider the system, its environment and their recipro-
cal interaction, which in turn determines the dissipative
character of the dynamics ruling the time evolution. The
strict relation which exists in Alain Connes’ construction
between the doubling of the algebra and the noncom-
mutative geometry, finds a realization in the strict and
immediate relation between dissipation and noncommu-
tative geometry in the plane of the doubled coordinates
(x1, x2). The reason is that dissipation implies the ap-
pearance of a “dissipative interference phase”, a notion
which we will clarify in the present section.
Although in the following we consider the example of

the damped harmonic oscillator and of its time-reversed
image, our conclusions also apply to more general cases.



9

Since we will consider paths in the doubled coordinate
plane, it is convenient to work with the (x+, x−) coordi-
nates, introduced in Section III (which slightly differ in
their definition from the (x1, x2) coordinates).
We remark that H given by Eq. (29) does not

change its form when x1, x2, p1, p2 are replaced by
x+, x−, p+, p−, respectively. The components in the
(x+, x−) plane of forward and backward in time veloc-
ity v± = ẋ± are then obtained as

v± =
∂H

∂p±
= ± 1

m

(

p± ∓ γ

2
x∓

)

, (69)

and they do not commute

[v+, v−] = i~
γ

m2
. (70)

It is thus impossible to fix these velocities v+ and v− as
being identical [37]. By putting mv± = ~K±, Eq. (70)
gives

[K+,K−] =
iγ

~
≡ i

L2
, (71)

and a canonical set of conjugate position coordinates
(ξ+, ξ−) may be defined by ξ± = ∓L2K∓ so that

[ξ+, ξ−] = iL2. (72)

The commutation relation Eq. (72) characterizes the non-
commutative geometry in the plane (x+, x−).
We now show that an Aharanov–Bohm-type phase in-

terference can always be associated with the noncommu-
tative (X,Y ) plane where

[X,Y ] = iL2 ; (73)

L denotes the geometric length scale in the plane [37].
Consider a particle moving in the plane along two

paths, P1 and P2, starting and finishing at the same
point, in a forward and in a backward direction, respec-
tively. Let A denote the resulting area enclosed by the
paths. We will show that the phase interference ϑ may
be written as

ϑ =
A
L2

. (74)

A phase space action integral

S(P) =

∫

P

pidq
i , (75)

may be associated with each path P (in phase space) for
motion at fixed energy. The phase interference ϑ between
the two paths P1 and P2 is given by the difference

ϑ =
1

~

∫

P1

pidq
i − 1

~

∫

P2

pidq
i =

1

~

∮

P=∂Ω

pidq
i , (76)

with P the closed path going from the initial point to
the final point via path P1 and returning back to the

initial point via P2. It constitutes the boundary of a
two-dimensional surface Ω: P = ∂Ω. Then, due to Stokes
theorem, i.e.,

ϑ =
1

~

∮

P=∂Ω

pidq
i =

1

~

∫

Ω

(dpi ∧ dqi) , (77)

the phase interference ϑ between two alternative paths
turns out to be proportional to the “area” A of the sur-
face Ω in phase space (p1, . . . , pf ; q

1, . . . , qf ).
Equation (73) in the noncommutative plane can be

written as

[X,PX ] = i~ where PX =

(

~Y

L2

)

, (78)

and Eq. (77) then reads

ϑ =
1

~

∫

Ω

(dPX ∧ dX) =
1

L2

∫

Ω

(dY ∧ dX), (79)

which proves Eq. (74), i.e., the quantum phase interfer-
ence between two alternative paths in the plane is de-
termined by the noncommutative length scale L and the
enclosed area A.
Notice that the existence of a phase interference is con-

nected to the zero point fluctuations in the coordinates;
indeed Eq. (73) implies a zero point uncertainty relation
(∆X)(∆Y ) ≥ L2/2 .
For Eq. (71) in the dissipative case, i.e.,

L2 =
~

γ
, (80)

we then conclude that, provided x+ 6= x−, the quan-
tum dissipative phase interference ϑ = A/L2 = Aγ/~ is
associated with the two paths P1 and P2 in the noncom-
mutative plane.

VI. CONCLUSIONS

We have considered the implications of the central in-
gredient in Alain Connes’ noncommutative spectral ge-
ometry construction — which provides a purely geomet-
ric explanation of the Standard Model — namely the
doubling of the algebra A = A1⊗A2 acting on the space
H = H1⊗H2. Firstly, we have shown that the doubling of
the algebra is strictly related to dissipation and the gauge
field structure. As a result, the two-sheeted geometry
must not be considered as just a simple almost commu-
tative space, which is the simplest generalization beyond
commutative geometries, but instead, the construction
which can lead to gauge fields, required to explain the
Standard Model. To be more precise, the two-sheeted
space is not an assumption but a requirement so that
gauge fields can be naturally accommodated. Secondly,
by exploiting ’t Hooft’s conjecture, according which loss
of information within the framework of completely deter-
ministic dynamics, might lead to a quantum evolution,
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we have argued that dissipation, implied by the algebra
doubling, may lead to quantum features. We have thus
suggested that Alain Connes’ classical construction car-
ries implicit in the doubling of the algebra the seeds of
quantization.
We have shown that in Alain Connes’ two-sheeted con-

struction, the doubled degree of freedom is associated
with “unlikely processes” in the classical limit. Thus,
in the perturbative approach one may drop higher order
terms in the expansion, since they correspond to unlikely
processes at the classical level. However, since the higher
order terms in the expansion are the ones responsible for
dissipation (quantum corrections), the second sheet can-
not be neglected at the classical level, if one does not
want to preclude quantization effects. Put it differently,
the second sheet — representing gauge fields — cannot be
neglected once the universe entered the radiation domi-
nated era. However, at the Grand Unified Theories scale,
when inflation took place, the effect of gauge fields, in
other words the discrete space of two points, is fairly
shielded.
At the end of Section III we have mentioned that in

the formalism of the algebra doubling the deformed Hopf
algebra plays a relevant rôle. Let us close with a final
comment on this point. One central ingredient of Hopf al-
gebras is the operator doubling implied by the coalgebra.
The mapA → A1⊗A2 in Eq. (1) is just the Hopf coprod-
uct map A → A⊗1+1⊗A ≡ A1⊗A2 which duplicates
the algebra. We have also recalled in Section III that the
doubled space of statesH = H1⊗H2 is constructed out of
the zero energy eigenstate |0(θ)〉 of the doubled Hamilto-
nian system by repeated application of the creation oper-
ators of the fields ψ(θ;x) and ψ̃(θ;x) obtained from ψ(x)

and ψ̃(x), respectively, by means of the Bogoliubov trans-
formation of “angle” θ. We now remark that Bogoliubov
transformations are known to be obtained by convenient
combinations of the deformed coproduct operation of the

form ∆a†q = a†q ⊗ q1/2 + q−1/2 ⊗ a†q, where q ≡ q(θ)

is the deformation parameters and a†q are the creation
operators in the q-deformed Hopf algebra [33]. These
deformed coproduct maps are noncommutative and the
deformation parameter is related to the system life-time
in its dissipative evolution or to the condensate content
of |0(θ)〉 (constrained by the θ-state condition Eq. (42)).
In this connection it is interesting to observe that the q-
derivative is a finite difference derivative, which has to be
compared with the fact that in Alain Connes’ construc-
tion the derivative in the discrete direction is a finite
difference quotient, as mentioned in Section II.

A relevant point is that the deformation parameter
labels the θ-representations {|0(θ)〉} and, for θ 6= θ′,
{|0(θ)〉} and {|0(θ′)〉} are unitarily inequivalent represen-
tations of the canonical (anti-)commutation rules. This
is a characteristic feature of quantum field theory [26, 32].
Its physical meaning is that an order parameter exists,
which assumes different θ-dependent values in each of the
representations. In other words, the deformed Hopf alge-
bra structure induces the foliation of the whole Hilbert
space into physically inequivalent subspaces where sym-
metry breakdown occurs, the broken symmetry vacuum
being characterized by the specific value of the order pa-
rameter. Variations in the order parameter (derivatives
in the deformation parameter, or, in the language of Sec-
tion IV, translations in the u parameter clasasifying ’t
Hooft families of states) thus describe phase transitions
in the system evolution. We thus see how the basic in-
gredient of the doubling of the algebra in Alain Connes’
construction has built in, not only the seed of quantiza-
tion, but also the noncommutative deformation of Hopf
algebra, and has the far reaching physical consequence
of the spontaneous breakdown of symmetry, as in fact
observed and crucial in the Standard Model.
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