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Abstract

We prove that Haag duality holds for cones in the toric code model.
That is, for a cone Λ, the algebra RΛ of observables localized in Λ and
the algebraRΛc of observables localized in the complement Λc generate
each other’s commutant as von Neumann algebras. Moreover, we show
that the distal split property holds: if Λ1 ⊂ Λ2 are two cones whose
boundaries are well separated, there is a Type I factor N such that
RΛ1

⊂ N ⊂ RΛ2
. We demonstrate this by explicitly constructing N .

1 Introduction

For a finite group G, Kitaev introduced a quantum mechanical model with
excitations described by the representation theory of a certain Hopf algebra,
the quantum double of G [12]. In recent work we studied the superselection
structure of the toric code model (where G = Z2) considered on a plane [14],
in the spirit of the Doplicher-Haag-Roberts program in algebraic quantum
field theory [9]. Haag duality is an important tool in this framework. In the
model we consider here, the appropriate formulation is as follows. Consider
a cone-like region Λ, and write RΛ for the von Neumann algebra gener-
ated by the observables localized in Λ (in the GNS representation obtained
from the ground state). One can then consider all observables localized in
the complement Λc of Λ, generating an algebra RΛc . By locality, i.e. the
property that observables localized in disjoint regions commute, one has the
inclusion RΛc ⊂ R′

Λ, where the prime denotes the commutant. Haag duality
is the statement that the reverse inclusion also holds.

As far as the author is aware, currently no general conditions implying
Haag duality are known. However, there are proofs in specific cases, for
example for certain quantum spin chain models [11, 13] or in the setting of
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algebraic quantum field theory [2, 6]. The proofs in the quantum spin chain
case make use of the split property, a stronger condition than the distal split
property we consider in this note. In the context of quantum spin systems
on a lattice, the split property can be formulated as the condition that the
ground state ω is quasi-equivalent to the state ωΛ⊗ωΛc for a cone Λ, where
ωΛ is the state ω restricted to the C∗-algebra A(Λ) of observables localized
in the cone Λ. This, however, does not hold, as can be seen in the proof
of [14, Thm. 5.1].

In studying commutation problems of von Neumann algebras, a natural
tool is Tomita–Takesaki modular theory. In algebraic quantum field theory
this theory is relevant because of the Reeh-Schlieder Theorem, according
to which the vacuum vector is cyclic and separating for the observables
localized in a double cone, i.e., the intersection of a forward and backward
light cone. Indeed, this has been used to prove duality results, e.g. in [2, 6].
In contrast, in the model we are considering, the ground state vector Ω is
not cyclic for the algebra of observables localized in a cone, hence we cannot
directly apply these techniques. Our strategy, therefore, is to restrict the
algebras to a subspace HΛ of the representation space H, such that Ω is
cyclic for (the restriction of) RΛ. One can also restrict RΛc to this subspace,
and using a theorem of Rieffel and van Daele [15] one can prove that these
restrictions generate each other’s commutant as subalgebras of B(HΛ). The
final step is to extend this to the algebras acting on H.

Once Haag duality has been obtained, one can prove the distal split prop-
erty, which says that if Λ1 ⊂ Λ2 are two cones whose boundaries are suffi-
ciently well separated, then there is a Type I factor RΛ1

⊂ N ⊂ RΛ2
[14].

The split property has been studied in a general operator algebraic frame-
work [8] and has important consequences in the context of algebraic quantum
field theory (see e.g. [5]).

The distal split property can be interpreted as a strong statistical inde-
pendence of the regions Λ1 and Λc

2. For if it holds, and if normal states ϕ1

(resp. ϕ2) of RΛ1
(resp. R′

Λ2
) are given, then there is a normal state ϕ of

RΛ1
∨R′

Λ2
such that ϕ(AB) = ϕ1(A)ϕ2(B). In other words, one can prepare

a state in the region Λ1 independently of the state in Λc
2. In this note we

present a new proof of the distal split property by explicitly constructing an
appropriate Type I factor N .

In the next section we recall the toric code model as considered on a
plane, and fix our notations. Section 3 contains a proof of the main result:
Haag duality for cones. In the last section, the distal split property is shown
to hold by constructing an interpolating Type I factor explicitly, in contrast
with results algebraic quantum field theory where the existence follows from
abstract arguments.
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2 The model

We first recall the main features of Kitaev’s toric code model [12], considered
in the C∗-algebraic framework for quantum lattice systems [1, 14]. Consider
a square Z2 lattice. On each bond of the lattice (an edge between two vertices
of distance 1), there is a spin-1/2 degree of freedom. That is, at each bond
b the local state space is H{b} = C

2, with observables A({b}) = M2(C).
The set of bonds will be denoted by B. If Λ ⊂ B is a finite set, A(Λ) is the
algebra of observables living on the bonds of Λ. It is the tensor product of the
observable algebras acting on the individual bonds of Λ. If Λ1 ⊂ Λ2 there
is an obvious inclusion of corresponding algebras, obtained by identifying
HΛ2

∼= HΛ1
⊗ HΛ2\Λ1

. This defines a local net of algebras with respect
to the inclusion A(Λ1) →֒ A(Λ2) for Λ1 ⊂ Λ2. Define the algebra of local
observables,

Aloc =
⋃

Λf⊂B

A(Λf ),

where the union is over the finite subsets Λf of B. The algebra A of quasi-
local observables is the completion of Aloc in the norm topology, turning it
into a C∗-algebra. Equivalently, one can see it as the inductive limit of the
net Λ 7→ A(Λ) in the category of C∗-algebras. Note that A is a uniformly
hyperfinite (UHF) algebra [3]. The algebra of observables localized in an
arbitrary subset Λ of B is defined as

A(Λ) =
⋃

Λf⊂Λ

A(Λf )
‖·‖

,

where the union is again over finite subsets. An operator A is said to have
support in Λ, or to be localized in Λ, if A ∈ A(Λ). The set supp(A) ⊂ B is
the smallest subset in which A is localized.

The Hamiltonian of Kitaev’s model is defined in terms of plaquette and
star operators, each supported on four bonds (see Figure 1). If s is a point
on the lattice, star(s) denotes the star based at s. Similarly, plaq(p) is the
set of bonds enclosing a plaquette p. The corresponding star and plaquette
operators are given by

As =
⊗

j∈star(s)

σx
j , Bp =

⊗

j∈plaq(p)

σz
j ,

where the tensor product is understood as having Pauli matrices σx (resp.
σz) in places j, and unit operators in all other positions. It is then straight-
forward to check that for all stars s and plaquettes p, we have

[As, Bp] = 0.
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Figure 1: The Z
2 lattice. The gray bonds each carry a spin-1/2 degree of

freedom. A star (dashed lines) and plaquette (thick lines) are shown.

These operators are used to define the local Hamiltonians. If Λf ⊂ B is
finite, the associated local Hamiltonian is

HΛf
= −

∑

star(s)⊂Λf

As −
∑

plaq(p)⊂Λf

Bp.

The model with dynamics described by these Hamiltonians has a unique
ground state ω, and in the corresponding GNS representation the dynamics
is implemented by a Hamiltonian with gap [1, 14]. This ground state is de-
termined by the condition ω(As) = ω(Bp) = 1 for any star (resp. plaquette)
operator As (resp. Bp). The following Lemma, can be used to compute the
value of the ground state on other operators.

Lemma 2.1. Let ω be a state on a C∗-algebra A, and suppose X = X∗ such
that X ≤ I and ω(X) = 1. Then ω(XY ) = ω(Y X) = ω(Y ) for any Y ∈ A.

This lemma follows from the Cauchy-Schwarz inequality (see [1, §2.1.1]
for a proof).

We write (π,Ω,H) for the GNS representation obtained from the ground
state ω. An easy calculation shows that ω((As − I)∗(As − I)) = 0 for any
star s. A similar result holds for the plaquette operators Bp, hence

π(As)Ω = Ω, π(Bp)Ω = Ω. (2.1)

This relation will be useful later.
We are mainly interested in (quasi)local observables localized in certain

unbounded cone-like regions. An example is provided in Figure 2. The
precise definition is given below.
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Figure 2: Example of a cone (bold bonds). The shaded region is the area
bounded by two rays emanating from a point.

Definition 2.2. Consider a point on the lattice Z2, with two rays emanating
from it, such that the angle between those rays is positive but smaller than
π. These two rays bound a convex subset of R2. A cone Λ ⊂ B consists of
all bonds that intersect the interior of this convex area.

Next we consider paths. Let x, y be two points in the lattice Z2. One can
consider finite paths consisting of bonds between these points. Similarly, one
can consider two plaquettes, or equivalently, two points on the dual lattice.
A dual path is a path on the dual lattice between two points. We identify
such a dual path ξ̂ with the bonds b ∈ B that are crossed by this dual path.
Corresponding with such paths there are string operators.1

Definition 2.3. Suppose ξ (resp. ξ̂) is a finite path on the lattice (resp.
dual lattice). We define the corresponding string operators by

Fξ :=
⊗

i∈ξ

σz
i , F

ξ̂
:=

⊗

i∈ξ̂

σx
i .

We will usually not distinguish between string operators corresponding
to paths and those corresponding to dual paths. Note that by the properties
of Pauli matrices, it is clear that string operators are self-adjoint, and that
if F1, F2 are string operators, they either commute or anti-commute.

As we will see later, we will investigate excitations that appear near the
edges of a cone Λ. Recall that a cone is described by two rays. These lines
allow us to define what exactly is the boundary of a cone.

1Note that we use notation different from Ref. [14].
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Definition 2.4. A vertex v lies on the boundary of Λ if and only if either
v lies on one of the two rays or v lies outside the convex area bounded by
the two rays and is one of the endpoints of a bond b ∈ Λ. A plaquette p is
at the boundary of Λ if and only if some, but not all, bonds that enclose the
plaquette are contained in Λ. The boundary of the complement Λc of a cone
is defined to be equal to the boundary of Λ.

Now suppose that ξ is a path that does not intersect itself. Then one sees
that Fξ commutes with all star operators As, except for those corresponding
to the star based at the endpoints of ξ. Clearly Fξ commutes with all
plaquette operators. Considering the definition of the local Hamiltonians,
FξΩ can be interpreted as a state vector describing a pair of excitations
at the endpoints of ξ. A similar argument holds for paths on the dual
lattice, where the excitations are located at plaquettes, and we have anti-
commutation with the corresponding plaquette operators.

Recall that if ξ is a closed path, the corresponding operator Fξ can
be written as a product of plaquette operators [14], hence ω(Fξ) = 1 by
Lemma 2.1. Similarly, if ξ is a closed dual path, Fξ is a product of star
operators. From this it follows that π(Fξ)Ω = Ω for closed paths ξ. As
an easy consequence, consider two paths ξ and ξ′ with the same endpoints.
Then we have ω((Fξ − Fξ′)

∗(Fξ −Fξ′)) = 0, because the cross-term FξFξ′ is
precisely the string operator corresponding to the loop formed by ξ and ξ′.
Hence π(Fξ)Ω = π(Fξ′)Ω. In physical terms this means that the excitations
created do not depend on the path ξ, but only on its endpoints.

3 Haag duality

Recall that π is the GNS representation defined by the ground state. Sup-
pose that Λ is a cone. We can consider the von Neumann algebra generated
by the observables localized in this cone, RΛ := π(A(Λ))′′, and similarly the
algebra RΛc := π(A(Λc))′′ generated by observables localized in the com-
plement of Λ. From locality it follows that RΛ ⊂ R′

Λc . Haag duality is the
statement that the reverse inclusion is also true, i.e.

π(A(Λ))′′ = π(A(Λc))′. (3.1)

Our main result is that this is the case for the toric code model.

Theorem 3.1. Let Λ be a cone. Then in the ground state representation
we have Haag duality, π(A(Λ))′′ = π(A(Λc))′.

The basic idea behind the proof is to first reduce the problem to one of
algebras acting on a Hilbert space HΛ ⊂ H. This Hilbert subspace can be
interpreted as the space of states with excitations localized in Λ. Before we
proceed, first note that π is a representation of a UHF (and hence simple)
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algebra, from which it is clear that π is faithful. This makes it possible to
identify π(A) with A, for A ∈ A, and we will do so from now on.

Definition 3.2. Let Λ be a cone. If ξ is a path on the lattice, we say that
it is contained in Λ if ξ ⊂ Λ. A path ξ on the dual lattice is contained in Λ
if each bond that intersects the dual path is in Λ. With this convention, we
define

FΛ = {Fξ : ξ is a path (or dual path) in Λ},

and similarly for FΛc.

The operators in FΛ create excitations in Λ. Since Λ ∪ Λc = B, one
would expect that the operators in FΛ and FΛc generate H by acting on the
ground state vector Ω. This is indeed the case:

Lemma 3.3. The closure of span{F1 · · ·FmF̂1 · · · F̂nΩ : Fi ∈ FΛ, F̂j ∈ FΛc}
is equal to H.

Proof. Let b ∈ B and consider the path ξ = {b} and the dual path ξ̂ of
length one crossing this bond. Then I, Fξ , Fξ̂

and FξFξ̂
span the algebra

M2(C) acting on this bond. By considering more bonds, one sees that all
local operators can be obtained in this way, from which the statement follows
since the local operators are dense in A, and Ω is cyclic for π(A) by the GNS
construction.

Next we consider the Hilbert space of all excitations localized in Λ.

Definition 3.4. Consider the closure of span{F1 · · ·FkΩ : Fi ∈ FΛ} and let
PΛ be the projection onto this subspace of H. We write HΛ for the Hilbert
space HΛ = PΛH.

Lemma 3.5. We have A(Λ)HΛ ⊂ HΛ. In fact, A ∈ A(Λ)′′ is completely
determined by its restriction to HΛ.

Proof. The algebra A(Λ)loc is generated by operators Fξ for paths (and dual
paths) ξ contained in Λ. Such operators clearly map the linear subspace
spanned by vectors of the form F1 · · ·FkΩ (Fi ∈ FΛ) into itself. Since this
space is dense in HΛ, and A(Λ)loc is dense in A(Λ), the first claim follows.

The second claim follows from the fact that if AB = 0 for A ∈ R with
R a factor, and B ∈ R′, then either A or B is zero [10, Thm. 5.5.4]. Since
A(Λ)′′ is a factor [14] and PΛ ∈ A(Λ)′ by the previous part, the result follows.
There is also an easy direct proof. We give it here since we will use a similar
argument later on. Let A1, A2 ∈ A(Λ) and suppose that A1ξ = A2ξ for every
ξ ∈ HΛ. Now consider η = F̂1 · · · F̂mF1 · · ·FnΩ ∈ H, where again Fi ∈ FΛ

and F̂j ∈ FΛc . Then we have

A1η = F̂1 · · · F̂mA1F1 · · ·FnΩ = F̂1 · · · F̂mA2F1 · · ·FnΩ = A2η.
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Since vectors of this form are dense in H, the claim follows. If A ∈ A(Λ)′′,
the statement follows in precisely the same way, since by locality we have
A(Λ)′′ ⊂ A(Λc)′.

Consider now the algebra A(Λc) of observables localized in the comple-
ment of Λ. We want to show Haag duality, i.e. equation (3.1), so A(Λc)′

should map HΛ into itself. This is indeed the case, as the following lemma
demonstrates.

Lemma 3.6. We have that A(Λc)′HΛ ⊂ HΛ.

Proof. Let B′ ∈ A(Λc)′. Suppose ζ = F1 · · ·FnΩ with Fi ∈ FΛ and let
η = F̂1 · · · F̂kFΩ, where F̂i ∈ FΛc and F is a product of operators in FΛ.
We will show that (η,B′ζ) = 0 if η ∈ H⊥

Λ . Since the span of such vectors
ζ (resp. η) is dense in HΛ (resp. H), the claim will follow. Now suppose
that there is star s such that s ⊂ Λc and such that As anti-commutes with
F̂1 · · · F̂k. Then, by locality and equation (2.1),

(η,B′ζ) = (η,B′Asζ) = (Asη,B
′ζ) = −(η,B′ζ),

hence η is orthogonal to B′ζ. A similar argument works for plaquette oper-
ators Bp ∈ A(Λc).

The case remains where no such plaquette or star operator exists. We
claim that in this case, in fact η ∈ HΛ. First of all, note that any loops
formed by the paths ξ̂i (corresponding to F̂i) can be eliminated. Indeed, if
ξ1, . . . ξk forms a loop, then F̂1 · · · F̂k is a product of either star or plaquette
operators (see the end of Section 2). By commuting them with the other
operators, and using equation (2.1), these can be eliminated, possibly at the
expense of an overall minus sign. Similarly, if some of the paths ξ̂i can be
combined to a bigger path, we might as well replace the string operators
with the string operator of the bigger path.

Arguing like this, without loss of generality we can assume that the F̂i

all correspond to different paths with mutually disjoint endpoints. It follows
that the star and plaquette operators based at these endpoints anti-commute
with F̂1 · · · F̂k. By the assumption on η, this implies that all endpoints must
lie on the boundary of Λ. So suppose that ξ̂i is a path with endpoints on the
boundary of Λ. Then there is a path ξ′i inside Λ with the same endpoints.

If Fi′ is the corresponding string operator, then F̂iΩ = Fi′Ω. Continuing in
this manner, it follows that η = FFk′ · · ·F1′Ω. Hence η ∈ HΛ, completing
the proof.

Since the lemma implies that PΛ ∈ A(Λc)′′, we obtain the following
corollary.

Corollary 3.7. The projection PΛ is contained in RΛc.
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We now consider ∗-algebras AΛ and BΛ acting on HΛ. Any operator
A ∈ A(Λ)′′ restricts to an operator on HΛ by Lemma 3.5. Define an algebra
AΛ by restricting the operators of A(Λ)′′ to HΛ. This is in fact a von
Neumann algebra, that is, AΛ = A′′

Λ (as subalgebras of B(HΛ)). This can
be argued, for example, as in the proof of Prop. II.3.10 of Ref. [16].

The algebra BΛ is defined in a similar way: the operators in PΛRΛcPΛ

leave HΛ invariant, hence we can restrict PΛRΛcPΛ to a ∗-algebra acting on
HΛ. This algebra will be denoted by BΛ and is a von Neumann algebra by
the proposition cited above. Note that bothAΛ and BΛ act non-degenerately
on HΛ and that Ω is cyclic for AΛ.

2 The self-adjoint part of AΛ (resp. BΛ)
is denoted by AΛ,s (resp. BΛ,s). The following Lemma is the crucial step in
the proof of Haag duality.

Lemma 3.8. The set AΛ,sΩ+ iBΛ,sΩ is dense in HΛ.

Proof. First we observe that since As and Bs are real vector spaces, it is
sufficient to show that vectors of the form FΩ and iFΩ, where F is a product
of operators in FΛ, are contained in AΛ,sΩ+ iBΛ,sΩ. So suppose that F =
F1 · · ·Fn with Fi ∈ FΛ. Note that F ∗

i = Fi, and that Fi, Fj either commute
or anti-commute. But this means that F ∗ = ±F . If F ∗ = F , clearly
F ∈ AΛ,s. In the other case iF is self-adjoint, hence iF ∈ AΛ,s.

Now suppose that there is either a star operator As ∈ AΛ or a plaquette
operator Bp ∈ AΛ that anti-commutes with F . In the case that F = F ∗, it
follows that iAsF (or iBpF ) is self-adjoint. But iAsFΩ = −iFAsΩ = −iFΩ,
so that we can obtain real linear combinations of iFΩ. In the case that
F ∗ = −F , one can use the fact that AsF is self-adjoint to obtain real
multiples of FΩ. Combining these results, we obtain vectors of the form
λFΩ, with λ ∈ C.

One issue remains: operators As or Bp (contained in AΛ) that anti-
commute with F need not exist. But if this is the case, then FΩ can only
have excitations at the boundary of Λ, by the same reasoning as in the
proof of Lemma 3.6. By the same proof, note that there is F̂ ∈ BΛ such
that F̂Ω = FΩ. One also sees that if F = F ∗, then also F̂ = F̂ ∗, arguing as
follows. Let F1, F2 be the string operators corresponding to paths ξ1, ξ2 in
Λ, with endpoints at the boundary of Λ. Now choose corresponding paths
ξ′1 and ξ′2 in Λc with path operators F1′ and F2′ . If the paths ξ1, ξ2 are of
the same type, F1 and F2 commute, and so will F1′ and F2′ . If they are
of different type, they commute if and only if ξ1 and ξ2 intersect an even
number of times. Otherwise they will anti-commute. Note that ξ1 ∪ ξ′1 is a
loop, and similarly for ξ2 ∪ ξ′2. But a loop on the lattice and a loop on the
dual lattice always intersect an even number of times. From this it follows
that if ξ1 and ξ2 intersect an even (odd) number of times, the same is true for
ξ′1 and ξ′2. It follows that F1 and F2 (anti-)commute if and only if F1′ and F2′

2In fact, one can show that Ω is separating for BΛ, but we will not need this fact.
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do so. In other words, if F1F2 (resp. iF1F2) is self-adjoint, then so is F1′F2′

(resp. iF1′F2′). Continuing in this way, it is clear that complex multiples of
FΩ are contained in AΛ,sΩ+ iBΛ,sΩ, which finishes the proof.

We are now in a position to prove the main theorem.

Proof of Theorem 3.1. As was mentioned before, using locality one obtains
the inclusion π(A(Λ))′′ ⊂ π(A(Λc))′. To prove the reverse inclusion, we
first note that AΛ and B′

Λ generate each other’s commutant (in B(HΛ)), by
Lemma 3.8 and a result of Rieffel and van Daele [15, Thm. 2], which says
in fact that the claim on the commutants is equivalent to the statement in
Lemma 3.8. In other words, AΛ = B′

Λ as von Neumann algebras acting on
HΛ.

In order to prove π(A(Λc))′ ⊂ π(A(Λ))′′, first note that BΛ is the reduced
von Neumann algebra (RΛc)PΛ

, obtained by restricting PΛRΛcPΛ to HΛ.
Consider an element B′ ∈ R′

Λc . By [16, Prop. II.3.10], the commutant of
BΛ is equal to R′

Λc restricted to HΛ. Write B′
Λ for the restriction of B′

to HΛ. Then B′
Λ ∈ B′

Λ = A′′
Λ = AΛ. By Lemma 3.5 and the remarks

following Corollary 3.7, there is a unique Â ∈ RΛ such that Â|HΛ
= B′

Λ. Let

ξ = F̂FΩ ∈ H, where F̂ (resp. F ) is a product of operators in FΛc (resp.
FΛ). Then

B′ξ = F̂B′FΩ = F̂B′
ΛFΩ = F̂ ÂFΩ = ÂF̂FΩ = Âξ,

so that Â = B′ and hence B′ ∈ π(A(Λ))′′ = RΛ.

4 Distal split property

If Λ is a cone, the von Neumann algebra RΛ is a factor of Type II∞ or Type
III [14]. If we have two cones Λ1 ⊂ Λ2, then clearly RΛ1

⊂ RΛ2
. The distal

split property then says that if the boundaries of the cones Λ1 and Λ2 are
well separated, then there is in fact a Type I factor N sitting between these
two algebras, RΛ1

⊂ N ⊂ RΛ2
. To make this precise, we recall the following

definition [14]:

Definition 4.1. For two cones Λ1 ⊂ Λ2, write Λ1 ≪ Λ2 if any star or
plaquette in Λ1 ∪ Λc

2 is either contained in Λ1 or in Λc
2. We say that ω

satisfies the distal split property for cones if for any pair of cones Λ1 ≪ Λ2

there is a Type I factor N such that RΛ1
⊂ N ⊂ RΛ2

.

For the toric code model we are considering, the distal split property in
fact follows from Haag duality [14, Thm. 5.2]. Here we give another, more
direct proof. For the remainder of this section, fix two cones Λ1 ≪ Λ2. The
idea is to use a unitary operator U to write H as a tensor product of three
Hilbert spaces, in such a way that URΛ1

U∗ acts on the first tensor factor.
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Similarly, URΛc
2
U∗ acts on the second tensor factor, and from this one can

find an interpolating Type I factor.
There is some redundancy in the description of the Hilbert space H as

the linear span of vectors obtained by acting with path operators on the
ground state vector Ω. For example, as mentioned before, Fξ1Ω = Fξ2Ω if ξ1
and ξ2 are paths with the same endpoints. This is rather inconvenient when
defining operators acting on H, and therefore we will find a more economical
description.

To achieve this, we will have to choose certain paths in Λ0 := B\(Λ1∪Λ
c
2).

Note that this set is non-empty, since Λ1 ≪ Λ2. Choose a point in the
lattice on the boundary of Λ1, one on the boundary of Λ2, and a path
ξb1 ⊂ Λ0 between these points. Similarly, choose plaquettes on the boundary
of Λ1, respectively Λ2, and a dual path ξb2 ⊂ Λ0 between these plaquettes.
Label the vertices and plaquettes in the interior of Λ0 (i.e. those vertices
and plaquettes not on the boundary of Λ1 or Λc

2) by a set I. If I is non-
empty, fix a vertex v and a plaquette p in I. Let ξv and ξp be paths in Λ0

from v (resp. p) to the boundary of Λ1. For each i ∈ I \ {v, p}, choose a
path inside Λ0 from i to either v or p. Thus we have obtained a collection
Γ := {ξb1, ξ

b
2}∪{ξi : i ∈ I} of paths. For each ξ ∈ Γ there is the corresponding

path operator F̂ξ.

Definition 4.2. Let {F̂ξ}ξ∈Γ be as above and set F0 = {Fξ1 · · ·Fξk : ξi ∈ Γ}.
The Hilbert space H0 is defined as the closure of spanF0Ω.

The dimension of H0 depends on the number of stars and plaquettes
there are in the region Λ2 ∩ Λc

1. In general this means that H0 is infinite
dimensional. However, one can consider, for example, a cone Λ2 based in
the origin and bounded by the lines y = x and y = −x (any of the four
possibilities will do). If one chooses Λ1 to be the cone with parallel edges
such that the distance between the two apexes is one, then Λ1 ≪ Λ2 and
Λ2∩Λ

c
1 contains no stars or plaquettes. In this case, H0 is finite-dimensional:

F0 consists of I and the operators corresponding to the chosen path and dual
path (and their product). Hence H0 has dimension four.

The construction of H0 is perhaps somewhat involved, but it suggests a
convenient description of H. Analogously to F0, we define the set FΛ1

by
FΛ1

= {F1 · · ·Fn : Fi ∈ FΛ1
} and in the same way FΛc

2
.

Lemma 4.3. The set spanFΛ1
F0FΛc

2
Ω is dense in H.

Proof. By Lemma 3.3, vectors of the form Fξ1 · · ·FξnΩ span a dense subset
of H. Note that we can permute the order of the operators Fξi , possibly at
the expense of an overall sign. But this implies that it is enough to show that
for a path ξ, FξΩ is of the desired form. Suppose for the sake of argument
that ξ is a path on the lattice. If both endpoints of the path — call them
v1 and v2 — are in either Λ1 or Λc

2, the claim is clear. If v1 is in Λ0 and
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v2 in Λ1 or Λc
2, consider the path ξv1 ∪ ξv from v1 to the boundary of Λ1.

If v2 is in Λ1, choose a path ξ̃ from this boundary point to v2. Then we
have FξΩ = F̂ξv1

F̂ξvFξ̃
Ω, which is of the desired form. If v2 is in Λc

2 then
one can form the following path: first go from v1 to the boundary of Λ1 as
above. Then choose a path in Λ1 from the endpoint of ξv to the endpoint
of either ξb1 or ξb2 and use this path to go to Λc

2. From there one can choose
a path from the boundary to v2 and we are done. The remaining cases can
be handled in a similar way.

The proof actually implies that every vector of the form Fξ1 · · ·FξnΩ can

be written (up to an overall sign) as F1F̂F2Ω. We say that a vector is in
canonical form if it is represented in this way. The point is that some of
the redundancy in the description is removed: if F1F̂ F2Ω = ±F ′

1F̂
′F ′

2Ω for

F1, F
′
1 ∈ FΛ1

, F2, F
′
2 ∈ FΛc

2
and F̂ , F̂ ′ ∈ F0 then in fact F̂ = ±F̂ ′.

Lemma 4.4. Suppose that Λ1 ≪ Λ2 are two cones. If F1F̂F2Ω is in canon-
ical form, define

UF1F̂F2Ω = F1Ω⊗ F2Ω⊗ F̂Ω. (4.1)

Then U extends to a unitary operator H → HΛ1
⊗HΛc

2
⊗H0, where HΛ1

,HΛc
2
,

and H0 are the Hilbert spaces defined above.

Proof. We first prove that U defines an isometry, from which it is clear
that U is well-defined. Suppose that η1 = F1F̂F2Ω and η2 = F ′

1F̂
′F ′

2Ω are
in canonical form. It is enough to show that (η1, η2) = (Uη1, Uη2). First
suppose that F̂ 6= ±F̂ ′. Then there is some star or plaquette operator
that commutes with F̂ , but anti-commutes with F̂ ′ (or vice-versa), hence
ω(F̂ ∗F̂ ) = 0, and therefore (Uη1, Uη2) = 0. We claim that in this case
(η1, η2) = 0. If there is a vertex or plaquette in the interior of Λ0 where
F̂ creates an excitation but F̂ doesn’t (or vice versa), this equality is clear
since then there is a star (or plaquette) operator that commutes with RΛ1

and RΛc
2
, but anti-commutes with either F̂ or F̂ ′. So suppose that this is

not the case. Then Fξb
1

or Fξb
2

is necessarily a factor in either F̂ or F̂ ′, say

F̂ . But then F1F̂F2Ω has an odd number of excitations localized in Λ1 or
at its boundary. The same holds for Λc

2. On the other hand, F ′
1F̂

′F ′
2Ω has

an even number of excitations it both these regions. So there must be at
least one place where one vector has an excitation and the other one does
not. But this implies that (η1, η2) = 0 as before.

Hence without loss of generality we can assume that F̂ = F̂ ′ and the
problem reduces to showing that ω(F ∗

1 F
′
1F

∗
2 F

′
2) = ω(F ∗

1 F
′
1)ω(F

∗
2 F

′
2). This

equality can be obtained as follows: if there is a star or plaquette operator
that anti-commutes with any of the operator Fi, F

′
i and commutes with the

others, both sides are zero by the same reasoning as used before. If this is
not the case, this implies that F ∗

1 F2 and F̂ ∗
1 F̂2 correspond to products of

path operators of closed loops, and it follows that both sides are equal to
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plus or minus one. The sign has to be equal at both sides, since F1, F
′
1 and

F2, F
′
2 commute. The range of U is clearly dense in HΛ1

⊗HΛc
2
⊗H0, hence

U extends to a unitary operator.

This unitary gives the desired decomposition of H as a tensor product of
Hilbert spaces. The proof of the main theorem of this section now amounts
to showing that RΛ1

and RΛ2
act on this tensor product in the desired way.

Theorem 4.5. Suppose that Λ1 ≪ Λ2 and let U be the unitary defined as
above. If N = U∗ (B(HΛ1

)⊗ I ⊗ I)U , then N is a Type I factor such that
RΛ1

⊂ N ⊂ RΛ2
.

Proof. It is clear that N is a Type I factor, hence it remains to show the
inclusions. We will show that URΛ1

U∗ = RΛ1
PΛ1

⊗ I ⊗ I and similarly
UR′

Λ2
U∗ = I ⊗ R′

Λ2
PΛc

2
⊗ I, where RΛ1

PΛ1
is the von Neumann algebra

RΛ1
restricted to HΛ1

. It follows that RΛ1
⊂ N . For the second inclusion,

note that

UR′′
Λ2
U∗ = (I ⊗R′

Λ2
PΛc

2
⊗ I)′ = B(HΛ1

)⊗ PΛc
2
R′′

Λ2
PΛc

2
⊗B(H0),

and hence N ⊂ R′′
Λ2

= RΛ2
.

Note that if η ∈ HΛ1
and F ∈ FΛc

2
, F̂ ∈ F0 then F̂Fη ∈ H and by

definition UF̂Fη = η ⊗ FΩ ⊗ F̂Ω and similarly for η ∈ HΛc
2
. To finish the

proof, first recall that by Lemma 3.5, RΛ1
HΛ1

⊂ HΛ1
. In a similar way one

shows that R′
Λ2

= RΛc
2
maps HΛc

2
into itself. Now, suppose that A ∈ RΛ1

and η := F1Ω⊗F2Ω⊗ F̂Ω ∈ HΛ1
⊗HΛc

2
⊗H0. By locality A commutes with

F2 and F̂ . One then finds

UAU∗η = UAF1F̂F2Ω = UF̂F2AF1Ω = UF̂F2PΛ1
APΛ1

F1Ω

= A|Λ1
F1Ω⊗ F2Ω⊗ F̂Ω = (A|Λ1

⊗ I ⊗ I) η.

Since vectors of the form η span a dense set, the claim for URΛ1
U∗ follows.

A similar argument then shows the corresponding claim for R′
Λ2
, which

concludes the proof.

One can in fact set N1 := N and N2 := U∗(B(HΛ1
)⊗ I ⊗B(H0))U and

it follows that RΛ1
⊂ N1 ⊂ N2 ⊂ RΛ2

. This inclusion of two Type I factors
is also found in the case of the free neutral massive scalar field in algebraic
quantum field theory, discussed by Buchholz [4, Corr. 2.4].

Note that in the case that RΛ1
and RΛ2

are semi-finite, the construction
here is an explicit example of the construction in the proof of [7, Cor. 1(iv)].
Indeed, consider RΛ1

⊗R′
Λ2
. Then there is an amplification RΛ1

⊗R′
Λ2

⊗ I

acting on the Hilbert space H ⊗ H ⊗ H. Let P0 be the projection onto
H0. If one reduces the amplification by the projection PΛ1

⊗ PΛc
2
⊗ P0 ∈

R′
Λ1

⊗RΛ2
⊗B(H) and conjugates with the unitary U , one obtains a normal

faithful representation of RΛ1
⊗R′

Λ2
onto RΛ1

∨R′
Λ2
.
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