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Preliminary group classification became prominent as an approach to symmetry analysis of
differential equations due to the paper by Ibragimov, Torrisi and Valenti [J. Math. Phys.
32(11), 2988–2995] in which partial preliminary group classification of a class of nonlinear
wave equations was carried out via the classification of one-dimensional Lie symmetry exten-
sions related to a fixed finite-dimensional subalgebra of the infinite-dimensional equivalence
algebra of the class under consideration. In the present paper we implement, up to both
usual and general point equivalence, the complete group classification of the same class using
the algebraic method of group classification. This includes the complete preliminary group
classification of the class and finding Lie symmetry extensions which are not associated with
subalgebras of the equivalence algebra. The complete preliminary group classification is
based on listing all inequivalent subalgebras of the whole infinite-dimensional equivalence
algebra whose projections are qualified as maximal extensions of the kernel algebra. The set
of admissible point transformations of the class is exhaustively described in terms of the par-
tition of the class into normalized subclasses. A version of the algebraic method for finding
the complete equivalence groups of a general class of differential equations is proposed.

1 Introduction

The method of preliminary group classification was first introduced in Ref. [1] and became well-
known due to Ref.r [18]. In the latter paper, partial preliminary group classification was carried
out for the class of equations of the form

utt = f(x, ux)uxx + g(x, ux), (1)

where f 6= 0. The essence of the approach applied in [18] is given by the classification of one-
dimensional extensions of the kernel algebra with respect to a fixed finite-dimensional subalgebra
of the infinite-dimensional equivalence algebra of the class studied.

The symmetry analysis of the same class was continued in a number of papers. The interest
to such studies is stimulated because equations of the form (1) are used as mathematical models
of different continuous media. They arise, e.g., in the theory of elasticity, in particular, in the
course of modeling of hyperelastic homogeneous rods [21].

Thus, in [13] the partial preliminary group classification of the class (1) with respect to
one-dimensional subalgebras of an infinite-dimensional subalgebra of the equivalence algebra
was considered. Second order differential invariants of the equivalence algebra were computed
in [19]. Another direction of investigation for the class (1) was initiated in [17]. Instead of
equations of the form (1), related systems of two equations, where the first derivatives of u play
the role of the dependent variables, were considered and mapped to the form vt = a(x, v)wx and
wt = b(x, v)vx. For the class of systems of this form, certain properties were investigated within
the framework of symmetry analysis, including the computation of the equivalence and kernel
algebras and the compatibility analysis of the determining equations for Lie symmetries. Upper
bounds for the dimension of Lie symmetry extensions were established for the two cases which
arose. This study was completed in [22] via exhaustive group classification of such systems by
the algebraic method.
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A comprehensive review of the literature on group analysis of different classes of (1 + 1)-
dimensional wave equations was presented in [27]. Some of these classes are contained in the
class (1) or nontrivially intersect it. In particular, the simple subclasses of (1) singled out by
the constraints fx = g = 0 and fx = gx = 0 were considered in [35] and [12], respectively. The
class (1) has also a subclass common with the class of nonlinear wave equations of the general
form utt = uxx + F (t, x, u, ux), whose Lie symmetries were exhaustively investigated by the
algebraic method in [27]. The intersection obviously consists of equations of the form (1) with
f = 1. Any equation of the form (1) is a potential equation for the wave equation of another
form, vtt = (f(x, v)vx + g(x, v))x, also called the nonlinear telegraph equation [7, 15].

Following the paper [18], several classes of differential equations were investigated within the
framework of preliminary group classification. Given a class of differential equations, this ap-
proach in its essence rests on computing optimal lists of inequivalent subalgebras of the associated
equivalence algebra and studying the Lie symmetry extensions induced by these subalgebras.
While in the majority of papers on this subject, including Ref. [18], only symmetry extensions by
means of inequivalent subalgebras of a fixed finite-dimensional subalgebra of a possibly infinite-
dimensional equivalence algebra are considered, we have shown in [11] that this restriction is in
fact not necessary. Stated in another way, there is no obstacle in studying extensions induced
by subalgebras of the whole (infinite-dimensional) equivalence algebra. This is, what we have
called the complete preliminary group classification in opposite to the various partial prelimi-
nary group classifications, which were carried out e.g. in [18, 48]. As an example, in [11] we have
solved the complete preliminary group classification problem for the class of nonlinear diffusion
equations of the general form ut = f(x, u)u2x + g(x, u)uxx.

Moreover, in case when the class is normalized (at least in the weak sense [40, 44]) the same
approach gives at once the complete group classification, cf. Section 3. This fact was implicitly
used in various instances. The most classical examples for this finding are Lie’s classifications
of second order ordinary differential equations [30] and of second order two-dimensional linear
partial differential equations [29]. For numerous modern examples see, e.g. [3, 26, 27, 28, 43, 52,
54] and references therein. The technique of group classification explicitly based on the notion
of normalized classes of differential equations was developed in [39, 40, 44] and then applied to
different classes of Schrödinger equations, generalized vorticity equations, generalized Korteweg–
de Vries equations, etc. All the above techniques can be interpreted as particular versions of the
algebraic method.

The purpose of the present paper is to systematically carry out the preliminary group clas-
sification of the class of differential equations (1) in a similar fashion as in [11] and thereby
to exhaustively solve the complete group classification problem for this class of nonlinear wave
equations using the partition into normalized subclasses. The version of the algebraic method
applied in the present paper differs from the Lahno–Zhdanov approach [3, 26, 27, 28, 54] as it
does not involve the classification of low-dimensional Lie algebras but is rather based on classi-
fications of all appropriate subalgebras of the corresponding equivalence algebra. Note that the
consideration is local throughout the paper.

In order to guarantee nonlinearity of equations of the form (1), we explicitly include the
nonvanishing condition

(fux , guxux) 6= (0, 0)

into the definition of the class to be studied. The reason why we are only concerned with the
nonlinear case here is that nonlinear and linear equations of the form (1) are not mixed by point
transformations (cf. Remark 7) and have quite different Lie symmetry properties. Moreover,
linear wave equations of the form (1) were already well investigated within the framework of
classical symmetry analysis in [6, 37].

The further organization of this paper is the following: Theoretical background of point
transformations in classes of differential equations is reviewed in Section 2. This includes the
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definitions and properties of a class of differential equations, its subclasses, the set of admissible
transformations, the usual equivalence group and algebra, different notions of normalized classes
of differential equations, etc. Section 3 contains a concise description of the group classification
problem together with a discussion on the theory of preliminary group classification and complete
group classification with the algebraic method. Group analysis of the class (1) is started in
Section 4 by studying the structure of the equivalence algebra of (1). The computation of the
determining equations for admissible transformations and the equivalence group of the class (1)
by the direct method is given in Section 5 and Section 2, respectively. The algebraic method
for the calculation of equivalence groups is first presented and then applied to the class (1)
in Section 7. Analysis of the determining equations for Lie symmetries of equations from the
class (1) is presented in Section 8. It gives the kernel algebra of this class and allows us to prove
that the major subclass of the class (1) is weakly normalized with respect to the equivalence
algebra of (1). The group classification of the complement of the subclass is also carried out.
Completing the study of admissible transformations by the direct method, in Section 9 we
partition the class (1) into two subclasses, which are respectively normalized and semi-normalized
with respect to the equivalence group of the entire class (1). In this way we prove that the
class (1) is semi-normalized. Both the equivalence algebra and the equivalence group are used
in Section 10 to classify subalgebras of the equivalence algebra that may be used for preliminary
group classification. The adjoint action of the equivalence group on the associated algebra is
computed using push-forwards of vector fields, as it was recently proposed in [11]. The final
calculations related to the complete group classification in the class (1) and the corresponding
list of inequivalent Lie symmetry extensions can be found in Section 11. In Section 12 we briefly
sum up the results of the present paper and make comparative analysis of partial preliminary
group classification, complete preliminary group classification and complete group classification
within the framework of the general algebraic method.

2 Point transformations in classes of differential equations

To make this paper self-contained, in this and in the next sections we restate some important
notions from the theory of group classification. More information on this subject can be found,
e.g. in [31, 36, 40, 44].

The central notion underlying the theory of group classification is an appropriate definition
of a class of (systems of) differential equations. In practice, the structure and properties of a
class of differential equations determines which methods of group classification (e.g. complete
vs. preliminary, direct vs. algebraic) are the most adapted for it. In short, the definition of a
class of differential equations comprises two ingredients.

The first ingredient is a system of differential equations Lθ: L(x, u(p), θ(q)(x, u(p))) = 0,

parameterized by the tuple of arbitrary elements θ(x, u(p)) = (θ1(x, u(p)), . . . , θ
k(x, u(p))), where

x = (x1, . . . , xn) is the tuple of independent variables and u(p) is the set of all dependent
variables u = (u1, . . . , um) together with all derivatives of u with respect to x up to the order p.
The symbol θ(q) stands for the set of partial derivatives of θ of order not greater than q with
respect to the variables x and u(p).

The second ingredient concerns possible values of the tuple of arbitrary elements θ. This tuple
is required to run through the solution set S of a joint system (also denoted by S) of auxiliary
differential equations S(x, u(p), θ(q′)(x, u(p))) = 0 and inequalities Σ(x, u(p), θ(q′)(x, u(p))) 6= 0, in
which both x and u(p) play the role of independent variables and S and Σ are tuples of smooth
functions depending on x, u(p) and θ(q′). The nonvanishing conditions Σ 6= 0 might be essential to
guarantee that each element of the class has some common properties with all other elements of
the same class, such as the same order p or the same linearity or nonlinearity properties. Thereby,
these inequalities can be the crucial factor in order to solve the given group classification problem
up to a certain stage. In spite of this, they are often omitted without any reason.
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Definition 1. The set {Lθ | θ ∈ S} denoted by L|S is called a class of differential equations
defined by the parameterized form of systems Lθ and the set S of the arbitrary elements θ.

An additional problem in defining a class of differential equations is that the correspondence
θ → Lθ between arbitrary elements and systems (treated not as formal algebraic expressions
but as real systems of differential equations or manifolds in the jet space J (p) which is the space
of the variables (x, u(p))) may not be injective. The values θ and θ̃ of arbitrary elements are
called gauge-equivalent if Lθ and Lθ̃ are the same system of differential equations, i.e., their
sets of solutions coincide. We formally consider Lθ and Lθ̃ as different representations of the
same system from L|S . For the correspondence θ → Lθ to be one-to-one in the presence of a
nontrivial gauge equivalence, the set S of arbitrary elements should be factorized with respect
to the gauge equivalence relation via changing the representation for the class L|S . If this is
not convenient, the gauge equivalence should be carefully taken into account when carrying out
symmetry analysis of the class L|S [20].

In the course of group classification of a complicated class of differential equations, it is often
helpful to consider subclasses of this class. A subclass is singled out from the class L|S by
attaching additional equations or nonvanishing conditions to the auxiliary system S.

Thus, for the class of equations of the general form (1) we have the single dependent variable u
of two independent variables t and x. The associated tuple of arbitrary elements consists of two
functions f and g whose domains are contained in the related second-order jet space, i.e., in
the space of t, x and u together with all derivatives of u up to the second order. The indicated
dependence of f and g only on x and ux means that the arbitrary elements of this class are
solutions of the auxiliary system of differential equations

ft = fu = fut = futt = futx = fuxx = 0,

gt = gu = gut = gutt = gutx = guxx = 0.

As we talk about wave equations, we should also impose the inequality f 6= 0. In the present
paper we study the subclass of equations of the form (1) that consists of only really nonlinear
equations and, therefore, is singled out from the entire class of equations of the general form (1)
by the additional nonvanishing condition (fux , guxux) 6= (0, 0). It is the set of equations which
is called the class (1) throughout the paper.

Several properties hold for subclasses of a class L|S . The intersection of a finite number of
subclasses of L|S is also a subclass in L|S , which is defined by the union of the additional auxiliary
systems associated with the intersecting sets. At the same time, the complement L|S′ = L|S′

of the subclass L|S′ in the class L|S is also a subclass of L|S only in special cases, e.g., if the
additional system of equations or the additional system of nonvanishing conditions is empty (cf.
Remark 2). Namely, if the subset S ′ of arbitrary elements is singled out from S by the system
S′
1 = 0, . . . , S′

s′ = 0 then the additional auxiliary condition for S ′ is |S′
1|
2 + · · · + |S′

s′ |
2 6= 0. If

S ′ is defined by the inequalities Σ′
1 6= 0, . . . , Σ′

σ′ 6= 0 then the additional auxiliary condition for
S ′ is Σ′

1 · · ·Σ
′
σ′ = 0.

A point transformation in a space is an invertible smooth mapping of an open domain in this
space into the same domain. Given a class L|S of differential equations, point transformations
related to L|S form different structures.

Let Lθ and Lθ̃ be elements of the class L|S . By T(θ, θ̃) we denote the set of point transfor-
mations in the space of the variables (x, u) mapping the system Lθ to the system Lθ̃. In this
notation, the maximal point symmetry (pseudo)group Gθ of the system Lθ coincides with T (θ, θ).
If T(θ, θ̃) 6= ∅, i.e. the systems Lθ and Lθ̃ are similar with respect to point transformations,

then T(θ, θ̃) = ϕ0 ◦Gθ = Gθ̃ ◦ ϕ
0, where ϕ0 is a fixed transformation from T(θ, θ̃).

Definition 2. The set of admissible transformations of the class L|S is given by T = T(L|S) =
{(θ, θ̃, ϕ)| θ, θ̃ ∈ S, ϕ ∈ T(θ, θ̃)}.
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If the number m of dependent variables is equal to one, instead of point transformations one
can consider more general contact transformations [36] in the same way.

The notion of admissible transformations [39, 44] is a formalization of the notion of form-
preserving [24, 25] or allowed [52] transformations. First descriptions of the sets of admissible
transformations for nontrivial classes of differential equations were given by Kingston and Sopho-
cleous [23] for a class of generalized Burgers equations and by Winternitz and Gazeau [52] for
a class of variable-coefficient Korteweg–de Vries equations. An infinitesimal analogue of the no-
tion of admissible transformations was proposed and studied by Borovskikh in [8]. In terms of
equivalence groups and normalization properties of subclasses (see Definitions 4 and 5), the sets
of admissible transformations were exhaustively described for a number of different classes of
differential equations which are important for application, such as nonlinear Schrödinger equa-
tions [43, 44], variable-coefficient diffusion–reaction equations [49, 50], generalized Korteweg–de
Vries equations including variable-coefficient Korteweg–de Vries and modified Korteweg–de Vries
equations [46], systems of (1+1)-dimensional second-order evolution equations [45], generalized
vorticity equations [40], etc.

Definition 3. The (usual) equivalence group G∼ = G∼(L|S) of the class L|S is the (pseudo)group
of point transformations in the space of (x, u(p), θ) which are projectable to the space of (x, u(p′))
for any 0 ≤ p′ ≤ p, are consistent with the contact structure on the space of (x, u(p)) and preserve
the set S of arbitrary elements.

Recall that a point transformation ϕ: z̃ = ϕ(z) in the space of the variables z = (z1, . . . , zk) is
called projectable on the space of the variables z′ = (zi1 , . . . , zik′ ), where 1 ≤ i1 < · · · < ik′ ≤ k,
if the expressions for z̃′ depend only on z′. We denote the restriction of ϕ to the z′-space as
ϕ|z′ : z̃

′ = ϕ|z′(z
′). A point transformation Φ in the space of (x, u(p), θ), which is projectable to

the space of (x, u(p′)) for any 0 ≤ p′ ≤ p, is consistent with the contact structure on the space
of (x, u(p)) if Φ|(x,u(p)) is the p-th order prolongation of Φ|(x,u).

Each transformation Φ from the equivalence group G∼ (i.e., an equivalence transformation
of the class L|S) induces the family of admissible transformations of the form (θ,Φθ,Φ|(x,u))
parameterized by the arbitrary elements θ running through the entire set S. Roughly speaking,
G∼ is the set of admissible transformations which can be applied to any θ ∈ S.

There exist several generalizations of the notion of equivalence group in the literature on
symmetry analysis of differential equations, in which restrictions for equivalence transformations
(projectability or locality with respect to arbitrary elements) are weakened [20, 32, 44, 49, 50].

The common part G∩ = G∩(L|S) =
⋂

θ∈S Gθ of all Gθ, θ ∈ S, is called the kernel of the
maximal point symmetry groups of systems from the class L|S [36]. The following folklore
assertion is true (see, e.g., [11, 44]).

Proposition 1. The kernel group G∩ of the class L|S is naturally embedded into the (usual)
equivalence group G∼ of this class via trivial (identical) prolongation of the kernel transforma-
tions to the arbitrary elements. The associated subgroup Ĝ∩ of G∼ is normal.

Properties of G∩ described in Proposition 1 were first noted in different works by Ovsiannikov
(see, e.g., [38] and [36, Section II.6.5]). Another formulation of this proposition was given in [31,
p. 52], Proposition 3.3.9.

As the study of point transformations of differential equations usually involves cumbersome
and sophisticated calculations, instead of finite point transformations one may consider their
infinitesimal counterparts. This leads to a certain linearization of the related problem which
essentially simplifies the whole consideration. In the framework of the infinitesimal approach,
a (pseudo)group G of point transformations is replaced by the Lie algebra g of vector fields on
the same space, which are generators of one-parametric local subgroups of G.

In particular, the vector fields in the space of (x, u) generating one-parametric subgroups of
the maximal point symmetry (pseudo)group Gθ of the system Lθ form a Lie algebra gθ called

5



the maximal Lie invariance algebra of the system Lθ. Analogously to symmetry groups, the
common part g∩ = g∩(L|S) =

⋂

θ∈S gθ of all gθ, θ ∈ S, is called the kernel of the maximal Lie
invariance algebras of systems from the class L|S . It is the Lie algebra associated with the kernel
group G∩.

The equivalence algebra g∼ is the Lie algebra formed by generators of one-parametric groups
of equivalence transformations for the class L|S . These generators are vector fields in the space of
(x, u(p), θ) which are projectable to the space of (x, u(p′)) for any 0 ≤ p′ ≤ p and whose projections
to the space of (x, u(p)) are the p-th order prolongations of the corresponding projections to the
space of (x, u).

An infinitesimal analogue of Proposition 1 is the following assertion.

Corollary 1. The trivial prolongation ĝ∩ of the kernel algebra g∩ to the arbitrary elements is
an ideal in the equivalence algebra g∼.

By definition, any element of the algebra ĝ∩ formally has the same form as the associated
element from g∩, but in fact is a vector field in the different space augmented with the arbitrary
elements.

It is convenient to characterize and estimate transformational properties of classes of differ-
ential equations in terms of normalization.

Definition 4. A class of differential equations L|S is normalized if its set of admissible transfor-
mations is induced by transformations of its equivalence group G∼, meaning that for any triple
(θ, θ̃, ϕ) from T(L|S) there exists a transformation Φ from G∼ such that θ̃ = Φθ and ϕ = Φ|(x,u).

Definition 5. A class of differential equations L|S is called semi-normalized if its set of ad-
missible transformations is induced by transformations from its equivalence group G∼ and the
maximal point symmetry groups of its equations, meaning that for any triple (θ, θ̃, ϕ) from
T(L|S) there exist a transformation Φ from G∼ and a transformation ϕ̃ from the maximal point
symmetry group Gθ of the system Lθ, such that θ̃ = Φθ and ϕ = Φ|(x,u) ◦ ϕ̃.

In other words, a class of differential equations is semi-normalized if arbitrary similar systems
from the class are related via transformations from the equivalence group of this class.

Normalized and semi-normalized classes of differential equations have a number of interesting
properties which essentially simplify the study of such classes. In particular, if the class L|S is
normalized in the usual sense, its kernel algebra g∩ is an ideal of the maximal Lie invariance
algebra gθ for each θ ∈ S. In general, this claim is not true even if the class is only semi-
normalized. See Example 1 in [11].

The above notion of normalization (resp. semi-normalization) relies on the finite admissible
transformations. A weaker version of normalization is defined in infinitesimal terms [40].

Definition 6. A class of differential equation L|S is weakly normalized if the union and, there-
fore, the span of maximal Lie invariance algebras gθ of all systems Lθ from the class is contained
in the projection of the equivalence algebra g∼ of the class to vector fields in the space of
independent and dependent variables, i.e.

⋃

θ∈S

gθ ⊂ Pg∼ (or 〈gθ | θ ∈ S〉 ⊂ Pg∼).

Here by P we denote the projection operator that acts on vector fields of the general form
Q = ξi(x, u)∂xi + ηa(x, u)∂ua + ϕs(x, u, θ)∂θs in the space of variables x, u and θ yielding the
vector fields of the form PQ = ξi∂xi +η

a∂ua , which are defined on the space of variables x and u.

It is obvious that any normalized class of differential equations is both semi-normalized and
weakly normalized.
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In general, the normalization of a class of differential equations can be checked by computing
the set of admissible transformations of the class and its equivalence group (e.g. using the direct
method) and testing whether the condition from Definition 4 is satisfied. It is often convenient
to begin with a normalized superclass and construct a hierarchy of normalized subclasses of the
superclass or a simple chain of such nested subclasses, which contain the class under consid-
eration [44, 45, 46]. The weak normalization property in turn can be verified by finding the
equivalence algebra of the class and an inspection of the determining equations for Lie symme-
tries of systems from the class (see the next section). As the computations related to checking
weak normalization involve solving of only linear partial differential equations (in contrast to the
computations using the direct method of finding equivalence and admissible transformations),
they can be realized in an algorithmic way even for quite cumbersome classes of multidimen-
sional partial differential equations. At the same time, the established presence of the usual
normalization property is more useful and allows one to obtain deeper results than involving its
weak infinitesimal analogue.

3 Algebraic method of group classification

Now that we have introduced necessary notions related to point transformations within classes
of differential equations, we can go on with the general discussion of the framework of group
classification in some more detail.

The solution of the group classification problem by Lie–Ovsiannikov for a class L|S of differ-
ential equations should include the construction of the following elements:

• the equivalence group G∼ of the class L|S ,

• the kernel algebra g∩ = g∩(L|S) =
⋂

θ∈S gθ of the class L|S , i.e., the intersection of the
maximal Lie invariance algebras of systems from this class,

• an exhaustive list of G∼-equivalent extensions of the kernel algebra g∩ in the class L|S ,
i.e., an exhaustive list of G∼-equivalent values of θ with the corresponding maximal Lie
invariance algebras gθ for which gθ 6= g∩.

More precisely, the classification list consists of pairs (Sγ , {gθ, θ ∈ Sγ}), γ ∈ Γ. For each γ ∈ Γ
L|Sγ is a subclass of L|S , gθ 6= g∩ for any θ ∈ Sγ and the structures of the algebras gθ are
similar for all θ ∈ Sγ . In particular, the algebras gθ, θ ∈ Sγ , have the same dimension or display
the same arbitrariness of algebra parameters in the infinite-dimensional case. Moreover, for any
θ ∈ S with gθ 6= g∩ there exists γ ∈ Γ such that θ ∈ Sγ mod G∼. All elements from

⋃

γ∈Γ Sγ
are G∼-inequivalent. Note that in all examples of group classification presented in the literature
the set Γ was finite.

The procedure of group classification can be supplemented by deriving auxiliary systems
of differential equations for the arbitrary elements, providing extensions of Lie symmetry, cf.
Remark 2. In other words, for each γ ∈ Γ one should explicitly describe the subset S̄γ of S
which is the union of G∼-orbits of elements from Sγ . Although this step is usually neglected, it
may lead to nontrivial results (see, e.g., [9]).

If the class L|S is not semi-normalized, the classification list may include equations similar
with respect to point transformations which do not belong to G∼. The knowledge of such
additional equivalences allows one to substantially simplify the further symmetry analysis of
the class L|S . Their construction can be considered as one further step of the algorithm of
group classification [20, 42, 50]. Often it can be implemented using empiric tools, e.g., the fact
that similar equations have similar maximal invariance algebras. A more systematical way is to
describe the complete set of admissible transformations.

In practice, the procedure of group classification within the Lie–Ovsiannikov approach can
be realized by implementing a few consecutive steps.
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Given a class L|S , it is convenient to start the procedure by the computation of the equivalence
algebra. This can be done either using the infinitesimal method [1, 36] or simply by deriving
the set of generators for the one-parametric groups of the equivalence group, provided that
the latter is known. Computing the equivalence algebra independently from the equivalence
group is important, as it gives a test and a tool for the calculation of the equivalence group. In
particular, often only the connected component of unity in the equivalence group is found using
the knowledge of the equivalence algebra. The equivalence algebra also plays a distinct role in
the course of applying the algebraic method of group classification.

The most powerful tool for the construction of the equivalence group, which is the next
step of the procedure, is the direct method involving finite point transformations. Such a
construction can be understood as the final stage in the preliminary investigation of the set
of admissible transformations of the class L|S and allows finding both continuous and discrete
equivalence transformations. Due to involving finite point transforms the related calculations
are cumbersome and lead to a nonlinear system of partial differential equations. An alternative
approach in order to at least restrict the form of point equivalence transformations is based
on the condition that any point equivalence transformation induces an automorphism of the
equivalence algebra, cf. Section 7.

The system of determining equations on the coefficients of Lie symmetry operators of a
system Lθ from the class L|S follows from the infinitesimal invariance criterion [6, 34, 36],
stating that

Q(p)L(x, u(p), θ(q)(x, u(p)))
∣

∣

Lp
θ
= 0

holds for any operator Q = ξi(x, u)∂xi + ηa(x, u)∂ua from gθ, where the arbitrary elements θ
play the role of parameters. In what follows we assume the summation for repeated indices.
The indices i and a run from 1 to n and from 1 to m, respectively. Q(p) denotes the standard
p-th prolongation of the operator Q,

Q(p) := Q+
∑

0<|α|6p

(

Dα1
1 . . . Dαn

n

(

ηa(x, u)− ξi(x, u)uai
)

+ ξiuaα,i

)

∂uaα .

Di = ∂i + uaα,i∂uaα is the operator of total differentiation with respect to the variable xi. The
tuple α = (α1, . . . , αn) is a multi-index, αi ∈ N∪{0}, |α|: = α1+ · · ·+αn. The variable u

a
α of the

jet space J (p) is identified with the derivative ∂|α|ua/∂xα1
1 . . . ∂xαn

n , and uaα,i := ∂uaα/∂xi. Some
determining equations do not involve the arbitrary elements and thus can be integrated imme-
diately. The remaining determining equations explicitly depending on the arbitrary elements
are referred to as the classifying equations.

Varying the arbitrary elements θ, we can split the determining equations with respect to
different derivatives of θ. The additional splitting results in equations for those symmetries
that are admitted for any value of the arbitrary elements and form the kernel of maximal Lie
invariance algebras.

The further analysis of the determining equations is usually much more intricate. The classi-
fying equations are inspected for specific values of the arbitrary elements θ, which give extensions
of the solution sets of the determining equations, associated with symmetry extensions of the
kernel algebra. The sets of values found for θ should be factorized with respect to the equiva-
lence relation requested. Still, it is the complexity of this analysis that led to the development
of a great variety of specialized techniques of group classification, which are conventionally
partitioned into two approaches.

The first method is the direct compatibility analysis and integration of the determining
equations up to the equivalence relation, that depends on the values of the arbitrary elements.
It is mostly suitable for classes with arbitrary elements that are constants or functions of single
arguments. Algorithms of group classification that are realized in present day’s computer algebra
packages for the calculation of Lie symmetries are based on this method [2, 10, 14, 51, 53].
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The other method is of algebraic nature. It is based on the following two properties: For each
fixed value of the arbitrary elements the solution space of the determining equations is associated
with a Lie algebra of vector fields. Additionally, if systems of differential equations are similar
with respect to a point transformation then its push-forward relates the corresponding maximal
Lie invariance algebras. This is why any version of the algebraic method of group classification
existing in the literature involves, in some way, the classification of algebras of vector fields up
to certain equivalence induced by point transformations. The key question is what set of vector
fields should be classified and what kind of equivalence should be used.

It is obvious that for each equation Lθ from the class L|S its maximal Lie invariance algebra
gθ is contained in the union g∪ =

⋃

θ∈S gθ. The definition of g∪ implies that this set consists
of vector fields for which the system of determining equations is consistent with respect to
the arbitrary elements with the auxiliary system of the class L|S . Therefore, the set g∪ can
be obtained at the onset of group classification, independently from deriving the maximal Lie
invariance algebras of equations from the class L|S . As it is not convenient to select linear
subspaces in the set g∪ in the general case, we can extend g∪ to its linear span g〈〉 = 〈gθ|θ ∈ S〉,
but fortunately we often have g∪ = g〈〉. Via push-forwarding of vector fields, equivalence (resp.
admissible) point transformations for the class L|S induce an equivalence relation on algebras
contained in g∪. Such an algebra is called appropriate if it is the maximal Lie invariance algebra
of an equation from the class L|S . We should classify, up to the above equivalence relation,
only appropriate algebras. They satisfy additional constraints. The simplest restriction for
appropriate subalgebras is that each of them contains the kernel algebra g∩. The condition that
the algebras are really maximal Lie invariance algebras for equations from the class L|S is more
nontrivial to verify.

Substituting the basis elements of each appropriate algebra obtained in the course of the
algebra classification into the determining equations gives a compatible system for values of the
arbitrary elements associated with Lie symmetry extensions within the class L|S . Solving the
last system completes the group classification within the most general framework of the algebraic
method. This whole construction is based on the following assertion:

Proposition 2. Let Si be the subset of S that consists of all arbitrary elements for which
the corresponding equations from L|S are invariant with respect to the same algebra of vector
fields, i = 1, 2. Then the algebras g∩(L|S1) and g∩(L|S2) are similar with respect to push-
forwards of vector fields by transformations from G∼ (resp. point transformations) if and only
if the subsets S1 and S2 are mapped to each other by transformations from G∼ (resp. point
transformations).

If the class L|S is weakly normalized, the union g∪ (resp. the span g〈〉) is well agreed with G∼-
equivalence. As a result, the algebraic method is appropriate for complete group classification of
the class L|S . This is not the case when the main part of g∪ does not lie in the projection Pg∼.
Then the approach of preliminary group classification [1, 18] is relevant to give a partial solution
of the group classification problem for the class L|S by the algebraic method. Preliminary group
classification essentially rests on the following two propositions (they were first formulated in [18]
in the particular case of the class (1); see [11] for their general formulation and proofs):

Proposition 3. Let a be a subalgebra of the equivalence algebra g∼ of the class L|S , a ⊂ g∼, and
let θ0(x, u(r)) ∈ S be a value of the tuple of arbitrary elements θ for which the algebraic equation
θ = θ0(x, u(r)) is invariant with respect to a. Then the differential equation Lθ0 is invariant with
respect to the projection of a to the space of variables (x, u).

Proposition 4. Let Si be the subset of S that consists of tuples of arbitrary elements for which
the corresponding algebraic equations are invariant with respect to the same subalgebra of the
equivalence algebra g∼ and let ai be the maximal subalgebra of g∼ for which Si satisfies this
property, i = 1, 2. Then the subalgebras a1 and a2 are equivalent with respect to the adjoint action
of G∼ if and only if the subsets S1 and S2 are mapped to each other by transformations from G∼.
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Roughly speaking, in the course of preliminary group classification of the class L|S we classify
subalgebras of g∼ instead of algebras of vector fields contained in g∪. Then the objects to be
classified (subalgebras of g∼) are well agreed with the equivalence relation used (G∼-equivalence).
If a proper subalgebra s of g∼ is fixed and then only subalgebras of s instead of the entire
algebra g∼ are classified up to the internal equivalence relation of subalgebras in s and used
within the framework of the algebraic method, we call this approach partial preliminary group
classification.

In view of Definition 6 and Proposition 3 the following assertion is obvious.

Corollary 2. For a class of differential equations that is weakly normalized, complete prelimi-
nary group classification and complete group classification coincide.

In fact, only certain subalgebras of the equivalence algebra g∼ whose projections are contained
in g∪ ∩ Pg∼ should be classified.

Definition 7. Within the framework of preliminary group classification, we will call a subal-
gebra a of the equivalence algebra g∼ appropriate if its projection Pa to the space of equation
variables is a maximal Lie invariance algebra of an equation from the class L|S .

Appropriate subalgebras of g∼ satisfy restrictions similar to those for appropriate algebras
contained in g∪. As the kernel is included in the maximal Lie invariance algebra of any equation
from the class, in view of Corollary 1 any appropriate subalgebra a of g∼ should contain, as
an ideal, the trivial prolongation ĝ∩ of the kernel algebra g∩ to the arbitrary elements. The
condition that the projection Pa of a is a Lie invariance algebra of a system from L|S can
be checked by two obviously equivalent ways: It is sufficient to prove that there exists a value
θ0(x, u(r)) ∈ S of the tuple of arbitrary elements θ for which the algebraic equation θ = θ0(x, u(r))
is invariant with respect to a. The other way is to study the consistence of the system DEa with
the auxiliary system of the class L|S with respect to the arbitrary elements. By DEa we denote
the system obtained by the substitution of the coefficients of each basis element of Pa into the
determining equations of the class L|S . Simultaneously we should verify the condition if the
projection Pa is really the maximal Lie invariance algebra for some systems from L|S .

Remark 1. Often the equivalence algebra can be represented as a semi-direct sum of the ideal
associated with the kernel algebra and a certain subalgebra. To obtain preliminary group classi-
fication in this case, we in fact need to classify only inequivalent subalgebras of the complement
of the kernel ideal. Projections of these subalgebras to the space of equation variables will give
all possible inequivalent extensions of the kernel. This was the case for the class of generalized
diffusion equations investigated in [11]. In the present paper, the situation will be different, see
Remark 9.

The importance of semi-normalization of a class of differential equations for the optimal
solution of the group classification problem for this class is connected with the following property
of semi-normalized classes.

Proposition 5. For a class of differential equations that is semi-normalized, the group classi-
fication up to equivalence generated by the corresponding equivalence group coincides with the
group classification up to general point equivalence.

In other words, in a semi-normalized class of differential equations there are no additional
equivalence transformations between cases of Lie symmetry extensions which are inequivalent
with respect to the corresponding equivalence group. This results in a clear representation of the
final classification list. As normalized classes of differential equations are both semi-normalized
and weakly normalized, it is especially convenient to carry out group classification in such classes
by the algebraic method. This is why the normalization property can be used as a criterion for
selecting classes of differential equations to be classified or for splitting of such classes into
subclasses which are appropriate for group classification.
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4 Equivalence algebra

The equivalence algebra of the entire class of equation of the general form (1) was already
computed in [18]. It coincides with the equivalence algebra of the class considered in the present
paper, which consists of purely nonlinear equations of the above form. This is why we only
represent generating elements of this algebra in a convenient form and refer the reader to [18]
for more details. The equivalence algebra g∼ of class (1) is generated by the vector fields

Du = u∂u + ux∂ux + g∂g, Dt = t∂t − 2f∂f − 2g∂g, Pt = ∂t,

D(ϕ) = ϕ∂x − ϕxux∂ux + 2ϕxf∂f + ϕxxuxf∂g,

G(ψ) = ψ∂u + ψx∂ux − ψxxf∂g, F1 = t∂u, F2 = t2∂u + 2∂g,

(2)

where ϕ = ϕ(x) and ψ = ψ(x) run through the set of smooth functions of x. The nonvanishing
commutation relations between the these vector fields are exhausted by

[G(ψ),Du] = G(ψ), [F1,Du] = F1, [F2,Du] = F2,

[Dt,F1] = F1, [Dt,F2] = 2F2,

[Pt,Dt] = Pt, [Pt,F1] = G(1), [Pt,F2] = 2F1,

[D(ϕ1),D(ϕ2)] = D(ϕ1ϕ2
x − ϕ1

xϕ
2), [D(ϕ),G(ψ)] = G(ϕψx).

In fact, in (2) we present only the projections of generating elements of g∼ to the space
of (t, x, u, ux, f, g) instead of the whole elements, which are vector fields in the space of
(t, x, u(2), f, g). The terms of generating vector fields, which are associated with derivatives
of u, can be computed via prolongation from the coefficients of ∂t, ∂x and ∂u and, therefore,
are not essential. However, it is necessary to include the terms with ∂ux in the representation
of these vector fields in order to ensure proper commutation relations between them. Moreover,
the derivative ux is a significant argument of the parameter-functions f and g and hence the
minimal space on which equivalence transformations can be correctly restricted is the space of
the variables (t, x, u, ux, f, g). This is why at least the projections to the same space should be
given for vector fields from g∼.

The form (3.16) of the equivalence algebra given in [18] differs from (2). Namely, the operators
G(1) and G(x) were singled out from the family {G(ψ)}. Additionally, we combined the operators
from [18] to separate scalings with respect to u, which gives simpler commutation relations
between generating vector fields.

In order to compute the complete equivalence group of class (1) by the algebraic method (cf.
Section 7) we need to know a set of megaideals of the equivalence algebra g∼ of this class.

Given a Lie algebra g, a megaideal i is a vector subspace of g that is invariant under any
transformation from the automorphism group Aut(g) of g [5, 41]. That is, we have Ti = i for a
megaideal i of g, whenever T is a transformation from Aut(g). Any megaideal of g is an ideal
and a characteristic ideal of g. Both the improper subalgebras of g (the zero subspace and g

itself) are megaideals of g. If i1 and i2 are megaideals of g then so are i1 + i2, i1 ∩ i2 and [i1, i2],
i.e., sums, intersections and Lie products of megaideals are again megaideals. If i2 is a megaideal
of i1 and i1 is a megaideal of g then i2 is a megaideal of g, i.e., megaideals of megaideals are
also megaideals. The centralizer of a megaideal is a megaideal. All elements of the derived,
upper and lower central series of a Lie algebra are its megaideals. In particular, the center
and the derivative of a Lie algebra are its megaideals. The radical r and nil-radical n (i.e., the
maximal solvable and nilpotent ideals, respectively) of g as well as different Lie products, sums
and intersections involving g, r and n ([g, r], [r, r], [g, n], [r, n], [n, n], etc.) are megaideals of g.

Here we only prove that, roughly speaking, the centralizer of a megaideal is a megaideal.

Proposition 6. If i is a megaideal of g then the centralizer Cg(i) of i in g is also a megaideal
of g.
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Proof. Consider an arbitrary T ∈ Aut(g), v ∈ i and w ∈ Cg(i). Then [Tw, v] = [Tw,TT−1v] =
T[w,T−1v] = 0 as T−1v ∈ i and hence [w,T−1v] = 0. This means that Tw ∈ Cg(i), i.e., Cg(i) is
a megaideal of g.

Let g = g∼. It is easy to compute the following megaideals of g∼:

g′ = 〈Pt,D(ϕ),G(ψ),F1 ,F2〉, g′′ = 〈D(ϕ),G(ψ),F1〉, g′′′ = 〈D(ϕ),G(ψ)〉,

Cg(g
′′′) = 〈Dt,Pt,G(1),F1,F2〉, Cg′(g

′′′) = 〈Pt,G(1),F1,F2〉,

Cg′(g
′′) = 〈G(1),F1,F2〉, Zg′′ = 〈G(1),F1〉, Zg′ = 〈G(1)〉,

Rg = 〈Du,Dt,Pt,G(ψ),F1 ,F2〉, Rg′′′ = 〈G(ψ)〉,

where a′, Ra, Za and Ca(b) denote the derivative, the radical and the center of a Lie algebra a

and the centralizer of a subalgebra b in a, respectively. We present proofs only for the last two
equalities.

The linear span s1 = 〈Du,Dt,Pt,G(ψ),F1 ,F2〉 obviously is a solvable ideal of g. Moreover,
it is the maximal solvable ideal of g. Indeed, suppose that s1 ( i and i is an ideal of g. Then
there exists a smooth function ζ of x which does not identically vanish such that the vector field
D(ζ) belongs to i. As i is an ideal of g, for an arbitrary smooth function ϕ of x the commutator
[D(ζ),D(ϕ)] = D(ζϕx−ζxϕ) belongs to i. If ζ is not a constant function, we define the following
series of operators:

R0k = k−1[D(ζ),D(ζk+1)], Rjk = k−1[Rj−1,1, Rj−1,k+1], j, k = 1, 2, . . . .

It is possible to prove by induction that Rj−1,k = D(ζk(ζζx)
2j−1) 6= 0, j, k = 1, 2, . . . . Moreover,

as R0k ∈ i, we have Rjk ∈ i(j), j, k = 1, 2, . . . , i.e., i(j) 6= {0} for any nonnegative integer j.
This means that the ideal i is not solvable. If ζ is a constant function, we can set ζ ≡ 1. We
choose any smooth function ϕ of x with ϕxx 6≡ 0 and denote ϕx by ζ̃. As the commutator
[D(1),D(ϕ)] = D(ζ̃) belongs to i, the consideration for the previous case again implies that the
ideal i is not solvable. Therefore, s1 is really the maximal solvable ideal of g, i.e., Rg = s1.

The linear span s2 = 〈G(ψ)〉 is an Abelian and, therefore, solvable ideal of g′′′. The maximality
of this solvable ideal is proved in the same way as for s1. Hence Rg′′′ = s2.

The same megaideals can be obtained in different ways. For example, 〈G(1)〉 = Zg′ = Zg′′′ .
To find more megaideals, we can calculate the automorphism group Aut(m) of a finite-

dimensional megaideal m and then determine megaideals of m as subspaces of m invariant with
respect to Aut(m). In the course of calculating the automorphisms we can use knowledge about
simple megaideals of m. Consider m = Cg(g

′′′) = 〈G(1),F1 ,F2,Pt,Dt〉. Then

m′ = 〈G(1),F1 ,F2,Pt〉, m′′ = 〈G(1),F1〉, Zm = 〈G(1)〉, Cm(m
′′) = 〈G(1),F1,F2〉.

The presence of the above set of nested megaideals is equivalent to that for any automorphism A
of m, its matrix in the basis {G(1),F1,F2,Pt,Dt} is upper triangular with nonzero diagonal
elements. In particular,

APt = a14G(1) + a24F
1 + a34F

2 + a44P
t,

ADt = a15G(1) + a25F
1 + a35F

2 + a45P
t + a55D

t,

where a44a55 6= 0. As [Pt,Dt] = Pt and A is an automorphism of m, we should have [APt, ADt] =
APt. Collecting coefficients of basis elements in the last equality, we derive a system of equations
with respect to a’s which implies, in view of the condition a44 6= 0, that a55 = 1, a34 = 0,
a24 = a44a35 and a14 = a44a25 − a45a24. As a result, we find one more megaideal 〈G(1),F1,Pt〉
of m and, therefore, g∼. We will use this megaideal in the course of the computation of the
complete equivalence group of class (1) by the algebraic method in Section 7.
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5 Preliminary study of admissible transformations

The infinitesimal invariance criterion allows finding of all continuous equivalence transformations
by means of solving a linear system of partial differential equations. In order to determine the
complete point equivalence group (including both continuous and discrete equivalence transfor-
mations) and the set of admissible transformations, it is necessary to apply the direct method.
We will start our consideration with a preliminary investigation of the set of admissible trans-
formations, which will give relevant information also on the equivalence group of the class (1).
That is, we directly seek for all point transformations

t̃ = T (t, x, u), x̃ = X(t, x, u), ũ = U(t, x, u), (3)

for which the Jacobian J = ∂(T,X,U)/∂(t, x, u) does not vanish, that map a fixed equation of
the form (1) to an equation of the same form,

ũt̃t̃ = f̃(x̃, ũx̃)ũx̃x̃ + g̃(x̃, ũx̃).

To carry out this transformation in practice, it is necessary to find the transformation rules for
the various derivatives of ũ with respect to t̃ and x̃. In order to obtain them we apply the total
derivative operators Dt and Dx, respectively, to the expression ũ(t̃, x̃) = U(t, x, u), assuming
t̃ = T (t, x, u) and x̃ = X(t, x, u). This gives

ũt̃DtT + ũx̃DtX −DtU = 0,

ũt̃DxT + ũx̃DxX −DxU = 0,

ũt̃t̃(DtT )
2 + 2ũt̃x̃(DtX)(DtT ) + ũx̃x̃(DtX)2 + ũt̃D

2
tT + ũx̃D

2
tX −D2

tU = 0,

ũt̃t̃(DxT )
2 + 2ũt̃x̃(DxX)(DxT ) + ũx̃x̃(DxX)2 + ũt̃D

2
xT + ũx̃D

2
xX −D2

xU = 0.

Solving the last two equations for utt and uxx, respectively, and substituting the results into (1),
we obtain

ũt̃t̃(DtT )
2 + 2ũt̃x̃(DtT )(DtX) + ũx̃x̃(DtX)2 + ũt̃V

tT + ũx̃V
tX − V tU

= f
(

ũt̃t̃(DxT )
2 + 2ũt̃x̃(DxT )(DxX) + ũx̃x̃(DxX)2 + ũt̃V

xT + ũx̃V
xX − V xU

)

− g(ũt̃Tu + ũx̃Xu − Uu),

(4)

where we use the notation V t = ∂tt + 2ut∂tu + u 2
t ∂uu and V x = ∂xx + 2ux∂xu + u 2

x ∂uu and
additionally have to set ũt̃t̃ = f̃ ũx̃x̃ + g̃ wherever it occurs. As the derivative ũt̃x̃ does not
appear in the transformed form of equations from the class (1), the associated coefficient in (4)
vanishes, i.e.

(Tt + Tuut)(Xt +Xuut) = f(Tx + Tuux)(Xx +Xuux). (5)

Eq. (5) involves only original (untilded) variables and is a polynomial in ut. Therefore, we can
split it with respect to ut by collecting the coefficients of different powers of this derivative.
(Note that we cannot as directly split Eq. (5) with respect to the derivative ux, which is an
argument of the function f .) As a result, we derive that

u2t : TuXu = 0, (6)

u1t : TuXt + TtXu = 0, (7)

u0t : TtXt = f(TxXx + (TuXx + TxXu)ux). (8)

Multiplying Eq. (7) by Tu (resp. Xu), we obtain in view of Eq. (6) that TuXt = 0 (resp.
TtXu = 0). We apply the trick with the multiplication by Tu (resp. Xu) also to Eq. (8) and
take into account the equations TuXu = 0, TuXt = 0 and TtXu = 0 already derived and the
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inequality f 6= 0. This gives equations which involve no arbitrary elements and hence can be
further split with respect to ux. Therefore, these equations are equivalent to the equations
TuXx = 0 and XuTx = 0, respectively. The system TuXt = 0, TuXx = 0, TuXu = 0 (resp.
XuTt = 0, XuTx = 0, XuTu = 0) implies that Tu = 0 (resp. Xu = 0) since otherwise the
Jacobian J of the point transformation (3) vanishes. The condition

Tu = Xu = 0

means that any admissible point transformation of the class (1) is fiber-preserving. In view of
this condition, Eqs. (6) and (7) are identically satisfied and the remainder of Eq. (8) is

TtXt = fTxXx. (9)

After substituting ũt̃t̃ = f̃ ũx̃x̃ + g̃, we can also split (4) with respect to ũx̃x̃, which gives, in
view of Tu = Xu = 0, the equation

f f̃T 2
t +X 2

t = f(f̃T 2
x +X 2

x ). (10)

Unfortunately, the direct splitting with respect to other derivatives in Eq. (4) is not possible.
The remaining part of (4) therefore is

g̃T 2
t + ũt̃Ttt + ũx̃Xtt − (Utt + 2Utuut + Uuuu

2
t )

= f(g̃T 2
x + ũt̃Txx + ũx̃Xxx − (Uxx + 2Uxuux + Uuuu

2
x)) + gUu.

(11)

The additional condition to keep in mind is the nondegeneracy of transformations (3), which in
view of the conditions Tu = Xu = 0 is reduced to the inequality Uu(TtXx−TxXt) 6= 0 and hence
(TtXx − TxXt) 6= 0 and Uu 6= 0.

6 Equivalence group

At this point, we continue the consideration by computing the equivalence group as it is needed
even for the analysis of the determining equations for coefficients of Lie symmetry operators and
the exhaustive description of admissible transformations. In the case of equivalence transforma-
tions, the arbitrary elements f and g should be varied. We can therefore split the equations (9),
(10) and (11) also with respect to the arbitrary elements. Eq. (9) and the nondegeneracy con-
straint TtXx − TxXt 6= 0 imply that either Xx = Tt = 0, Tx 6= 0 and Xt 6= 0 or Xt = Tx = 0,
Xx 6= 0 and Tt 6= 0.

For Xx = Tt = 0, Eq. (10) is simplified to X2
t = f f̃T 2

x . As the expression for the derivative ux
in the new variables is ux = (Txũt̃−Ux)/Uu, i.e., it does not involve ũx̃, the equality X

2
t = f f̃T 2

x

can be split into the two equations Tx = 0 and Xt = 0, which contradict the nondegeneracy
condition.

Therefore we necessarily have Xt = Tx = 0 and thus T = T (t), X = X(x), where Xx 6= 0
and Tt 6= 0. Then Eq. (10) is reduced to f̃T 2

t = fX2
x and the differentiation of this equation

with respect to t yields

2TtTttf̃ + f̃ũx̃
Utx + Utuux

Xx
= 0. (12)

Since Eq. (12) holds for all f̃ , we can split it and derive Ttt = 0, Uxt = 0 and Utu = 0. Collecting
coefficients of u2t in Eq. (11) we moreover find that Uuu = 0. Taking all the constraints derived
into account, Eq. (11) reads

g̃T 2
t − Utt = f

(

Uuux + Ux
Xx

Xxx − Uxx − 2Uxuux

)

+ gUu.
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Differentiating this equation with respect to u and t allows deriving that Uxu = 0 and Uttt = 0.
Collecting all the restrictions derived up to now, any equivalence transformation must satisfy

the following system of differential equations

Tu = Tx = Ttt = 0, Xu = Xt = 0,

Uuu = Utu = Uxu = Utx = Uttt = 0.
(13)

Integrating the above system in view of the nondegeneracy condition J 6= 0, we proved the
following theorem:

Theorem 1. The equivalence group G∼ of the class (1) consists of the transformations

t̃ = c1t+ c0, x̃ = ϕ(x), ũ = c2u+ c4t
2 + c3t+ ψ(x), ũx̃ =

c2ux + ψx
ϕx

,

f̃ =
ϕ2
x

c21
f, g̃ =

1

c21

(

c2g +
c2ux + ψx

ϕx
ϕxxf − ψxxf + 2c4

)

,

(14)

where c0, . . . , c4 are arbitrary constants satisfying the condition c1c2 6= 0 and ϕ and ψ run
through the set of smooth functions of x, ϕx 6= 0.

Comparing the equivalence algebra (2) and the equivalence group (14) the following corollary
is evident:

Corollary 3. The class of equations (1) admits three independent discrete equivalence trans-
formations, which are given by (t, x, u, f, g) 7→ (−t, x, u, f, g), (t, x, u, f, g) 7→ (t,−x, u, f, g) and
(t, x, u, f, g) 7→ (t, x,−u, f,−g).

Theorem 1 implies that any transformation T from G∼ of the class (1) can be represented
as the composition

T = Dt(c1)P
t(c0)D(ϕ)Du(c2)F

1(c4)F
2(c3)G(ψ),

where

Pt(c0) : t̃ = t+ c0, x̃ = x, ũ = u, ũx̃ = ux, f̃ = f, g̃ = g,

Dt(c1) : t̃ = c1t, x̃ = x, ũ = u, ũx̃ = ux, f̃ = c−2
1 f, g̃ = c−2

1 g,

D(ϕ) : t̃ = t, x̃ = ϕ, ũ = u, ũx̃ = ux/ϕx, f̃ = ϕ2
xf, g̃ = g + ϕxxuxf/ϕx,

Du(c2) : t̃ = t, x̃ = x, ũ = c2u, ũx̃ = c2ux, f̃ = f, g̃ = c2g,

F1(c3) : t̃ = t, x̃ = x, ũ = u+ c3t, ũx̃ = ux, f̃ = f, g̃ = g,

F2(c4) : t̃ = t, x̃ = x, ũ = u+ c4t
2, ũx̃ = ux, f̃ = f, g̃ = g + 2c4,

G(ψ) : t̃ = t, x̃ = x, ũ = u+ ψ, ũx̃ = ux + ψx, f̃ = f, g̃ = g − ψxxf,

are (families of) one-parameter equivalence transformations and the nondegeneracy requires that
c1c2ϕx 6= 0. These transformations are shifts and scalings in t, arbitrary transformations in x,
scalings of u, gauging transformations of u with square polynomials in t and arbitrary functions
of x.

7 Calculation of equivalence group by the algebraic method

It is well known that any point symmetry transformation T of a differential equation (resp. a
system of differential equations) L generates an automorphism of the maximal Lie invariance
algebra of L via push-forwarding of vector fields in the space of equation variables. This condi-
tion implies constraints for the transformation T which are then taken into account in further
calculations using the direct method [5, 16]. The set of transformations found in the way de-
scribed form the complete point symmetry group of the equation L including both continuous
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and discrete point transformations. The above algebraic method can be easily extended to the
framework of equivalence transformations. A basis for this is given by the following simple
proposition.

Proposition 7. Let L|S be a class of (systems of) differential equations, G∼ and g∼ the equiv-
alence group and the equivalence algebra of this class (of the same type, namely, either usual
or generalized ones). Any transformation T from G∼ generates an automorphism of g∼ via
push-forwarding of vector fields in the space of equation variables, appropriate derivatives and
arbitrary elements.

Proof. Consider an arbitrary vector field Q ∈ g∼. The local one-parameter transformation group
G = {exp(εQ)} associated with Q is contained in G∼. Then the one-parameter transformation
group G̃ = {T exp(εQ)T −1}, which is similar to G with respect to T and whose generator is
T∗Q, is also contained in G∼. This means that the vector field T∗Q belongs to g∼. An arbitrary
push-forward saves the Lie bracket of vector fields, [T∗Q,T∗Q

′] = T∗[Q,Q
′] for any Q,Q′ ∈ g∼.

Therefore, T∗ is an automorphisms of g∼.

Here we compute the usual equivalence group G∼ of class (1) by the algebraic method. The
purpose of this computation is dual: to test the results of the previous section and to present
an example of applying the algebraic method. The group G∼ consists of nondegenerate point
transformations in the joint space of variables t, x and u, the first derivatives ut and ux and the
arbitrary elements f and g, which are projectable to the variable space and whose components
for first derivatives are defined via the first prolongation of their projections to the variable
space. Thus, the general form of a transformation T from G∼ is

t̃ = T (t, x, u), x̃ = X(t, x, u), ũ = U(t, x, u),

ũt̃ = U t(t, x, u, ut, ux), ũx̃ = Ux(t, x, u, ut, ux),

f̃ = F (t, x, u, ut, ux, f, g), g̃ = G(t, x, u, ut, ux, f, g),

where U t and Ux are determined via T , X and U and the nondegeneracy condition should be
additionally satisfied. To obtain the constrained form of T , we will act by the push-forward T∗
induced by T on the vector fields (2) additionally including the terms with ∂ut and use megaideals
of the equivalence algebra g∼ of class (1) and restrictions on automorphisms of g∼ found in
Section 4. Note that the majority of these objects and properties of g∼ are related to the
finite-dimensional megaideal m = Cg(g

′′′) = 〈G(1),F1,F2,Pt,Dt〉. Megaideals which are sums
of other megaideals are not essential for the computation since they give weaker constraints than
their summands. For example, the megaideal g′′ is the sum of g′′′ and Zg′ and hence we do not
use it in the further consideration. It is sufficient to use the following equalities:

T∗G(1) = a11G̃(1), (15)

T∗F
1 = a12G̃(1) + a22F̃

1, (16)

T∗F
2 = a13G̃(1) + a23F̃

1 + a33F̃
2, (17)

T∗P
t = a14G̃(1) + a24F̃

1 + a44P̃
t, (18)

T∗D
t = a15G̃(1) + a25F̃

1 + a35F̃
2 + a45P̃

t + D̃t, (19)

T∗G(ψ̂) = G̃(ψ̃ψ̂), (20)

T∗D(ϕ̂) = G̃(ψ̃ϕ̂) + D̃(ϕ̃ϕ̂), (21)

where a’s are constants, a11a22a33a44 6= 0 and ψ̂ and ϕ̂ are arbitrary smooth functions of x.
The constants a’s completed with a55 = 1 and aij = 0, 1 6 i < j 6 5, form a matrix of
an automorphism of the megaideal m. Tildes over vector fields on the right hand sides of the
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above equations mean that these vector fields are written in terms of the transformed variables.

The parameter-functions ψ̃ψ̂, ψ̃ϕ̂ and ϕ̃ϕ̂ are smooth functions of x̃ whose values depend on
the values of ψ̂ or ϕ̂ which is indicated by the corresponding superscripts. We will derive
constraints for T , consequently equating coefficients of vector fields in conditions (15)–(21) and
taking into account constraints obtained in previous steps. As the coefficients of vector fields
and components of the transformation T associated with the derivatives ut and ux are defined
via first-order prolongation involving the similar values related to the variables t, x and u, the
coefficients of ∂ut and ∂ux give no essentially new equations in comparison with the coefficients
of ∂t, ∂x and ∂u. This is why we will not equate the coefficients of ∂ut and ∂ux . To have the
same representation of the final result as in Theorem 1, we will re-denote certain values in an
appropriate way.

Thus, Eq. (15) implies that Tu = Xu = 0, Uu = c2 and Fu = Gu = 0, where the nonvanishing
constant a11 is re-denoted by c2. Then we derive from Eq. (16) that tUu = a22T + a12, i.e.
T = c1t+ c0 where c1 = c2/a22 6= 0 and c0 = −a12/a22, and Fut = Gut = 0. The consequence
t2Uu = a33T

2+a23T+a13 of Eq. (17) gives only relations between a’s. In particular, a33 = c2/c
2
1.

The other consequences of Eq. (17) then are Fg = 0 and Gg = c2/c
2
1. The essential consequences

of Eq. (18) are exhausted by Xt = 0, Ut = a24T + a14 and Ft = Gt = 0. Therefore, X = ϕ(x)
and U = c2 + c4t

2 + c3t+ ψ(x), where ϕx 6= 0, c4 = a24c1/2 and c3 = a14 + a24c0.
As we have already derived the precise expressions for the components of T corresponding

to the variables (cf. Eq. (14)), at this point we can interrupt the computation of equivalence
transformations by the algebraic method and calculate the expressions for F and G by the
direct method. At the same time, all the determining equations for transformations from the
equivalence group G∼ of class (1) follow from restrictions for automorphisms of the equivalence
algebra g∼. This is not a common situation when the algebraic method is applied. Usually it
gives only a part of the determining equations simplifying the subsequent application of the direct
method. See, e.g., the computations of the complete point symmetry groups of the barotropic
vorticity equation and the quasi-geostrophic two-layer model in [5, Section 3] and [4, Section 4],
respectively. This is why we complete the consideration of the equivalence group G∼ within the
framework of the algebraic method.

From Eq. (19) we obtain in particular that tUt = a35T
2 + a25T + a15, fFf = F and fGf +

gGg = G− a35, where a35 = 2c4/c
2
1 in view of the first of these consequences.

Eq. (20) implies the equations

ψ̂Uu = ψ̃ψ̂, ψ̂xFux = 0, ψ̂xGux − ψ̂xxfGg = ψ̃ψ̂x̃x̃F. (22)

The first and second equations of (22) are equivalent to ψ̃ψ̂ = c2ψ̂ and Fux = 0. Then we can

express the derivative ψ̃ψ̂x̃x̃ via derivatives of ψ̂, ψ̃ψ̂x̃x̃ = c2ϕ
−3
x (ϕxψ̂xx − ϕxxψ̂x), substitute the

expression into the third equation of (22) and split with respect to the derivatives ψ̂x and ψ̂xx,
as the function ψ̂ is arbitrary. As a result, we obtain F = c−2

1 ϕx
2f and Gux = c2ϕ

−3
x ϕxxF , i.e.,

Gux = c2c
−2
1 ϕ−1

x ϕxxf . The expression for F coincides with the transformation component for f
presented in Theorem 1.

The last essential equation for G is given by Eq. (21). Collecting coefficients of ∂x, ∂u and
∂g in Eq. (21), we have that ϕ̃ϕ̂(x̃) = ϕxϕ̂, ψ̃

ϕ̂(x̃) = ψxϕ̂ and

ϕ̂Gx − ϕ̂xuxGux + 2ϕ̂xfGf + ϕ̂xxuxfGg = ϕ̃ϕ̂x̃x̃ũx̃F − ψ̃ϕ̂x̃x̃F, (23)

respectively. We proceed in a way analogous to the previous step. Namely, we express the
derivatives ϕ̃ϕ̂x̃x̃ and ψ̃ϕ̂x̃x̃ via derivatives of ϕ̂, substitute the expressions into Eq. (23) and split

with respect to derivatives of ϕ̂ because the function ψ̂ is arbitrary. Equating the coefficients of
ϕ̂x leads to the equation fGf = c−2

1 ϕ−1
x (c2ux + ψxϕxx − ψxxϕx).

The simultaneous integration of all the equations obtained for G precisely results in the
transformation component for g from Theorem 1.
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8 Determining equations for Lie symmetries

Suppose that the vector field Q = τ(t, x, u)∂t+ ξ(t, x, u)∂x+ η(t, x, u)∂u belongs to the maximal
Lie invariance algebra gmax of an equation L: L = 0 from the class (1), i.e. it is the generator of a
one-parameter Lie symmetry group of the equation L. The criterion for infinitesimal invariance
of L with respect to Q is implemented using the second prolongation of Q, which reads

Q(2) = Q+ ηt∂ut + ηx∂ux + ηtt∂ux + ηtx∂utx + ηxx∂uxx .

The coefficients ηt, ηx, ηtt, ηxx in Q(2) can be determined from the general prolongation formula
for vector fields, see, e.g. [6, 34, 36]. Using the second prolongation of Q, the infinitesimal
invariance criterion reads Q(2)L|L=0 = 0, where the notation |L=0 means that the condition
Q(2)L is required to hold only on equations of class (1). Applying the infinitesimal invariance
condition to the class (1) then yields

ηtt − (ξfx + ηxfux)uxx − fηxx − ξgx − ηxgux = 0 for utt = fuxx + g, (24)

where

ηx = Dx(η − τut − ξux) + τutx + ξuxx,

ηxx = D2
x(η − τut − ξux) + τutxx + ξuxxx,

ηtt = D2
t (η − τut − ξux) + τuttt + ξuttx,

Dt and Dx denote the operators of total differentiation with respect to t and x, respectively,
which in the present case of one dependent variable are given by

Dt = ∂t + ut∂u + utt∂ut + utx∂ux + · · · ,

Dx = ∂x + ux∂u + utx∂ut + uxx∂ux + · · · .

Expanding the infinitesimal invariance condition (24) we obtain

D2
t η − utD

2
t τ − uxD

2
t ξ − 2uttDtτ − 2utxDtξ

= f(D2
xη − utD

2
xτ − uxD

2
xξ − 2utxDxτ − 2uxxDxξ)

+ (ξfx + (Dxη − utDxτ − uxDxξ)fux)uxx + ξgx + (Dxη − utDxτ − uxDxξ)gux

(25)

where we have to substitute utt = fuxx+ g. The above equation can be split with respect to the
derivatives of utx, uxx and ut. Collecting the coefficients of utxut, utx and uxxut, we produce

ξu = 0, ξt = f(τt + τuux), 2fτu = (τx + τuux)fux.

Supposing that ξt = 0, it immediately follows from the second equation that τu = 0. Otherwise,
for ξt 6= 0 we can solve the second equation for f and substitute the obtained expression into
the third equation. After simplification we have that ξtτu = 0, i.e. τu = 0. Therefore, we always
have

ξu = 0, τu = 0, ξt = fτx, τxfux = 0.

Further splitting of Eq. (25) and taking into account the above restrictions gives

u2t : ηuu = 0

uxx : 2(τt − ξx)f + ξfx + (ηx + (ηu − ξx)ux)fux = 0

ut : 2ηtu − τtt + τxxf + τxgux = 0

Rest : ηtt − ξttux − (ηxx + (2ηux − ξxx)ux)f + (ηu − 2τt)g

− ξgx − (ηx + (ηu − ξx)ux)gux = 0.

(26)
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The equations ξu = 0, τu = 0 and ηuu = 0 neither involve the arbitrary elements f or g nor their
derivatives. This is why they can be immediately integrated and give restricting conditions on Lie
symmetries valid for all equations of the form (1). In particular, we have η = η1(t, x)u+η0(t, x).

In order to derive the kernel of Lie symmetries of class (1), we can further split the classi-
fying part of the determining equations (26) with respect to the arbitrary elements and their
derivatives. This immediately gives that the kernel algebra is

g∩ = 〈∂t, ∂u, t∂u〉, (27)

which is a realization of the three-dimensional (nilpotent) Heisenberg algebra. Consequently, the
Lie symmetries admitted by each equation from the class (1) are exhausted by transformations
of the form (t, x, u) 7→ (t+ ε1, x, u+ ε2 + ε3t), where ε1, ε2 and ε3 are arbitrary constants.

Up to this point the nonlinearity of the equations under consideration was of no impor-
tance. Only the general form (1) was essential. Now we should start to exploit the nonlinearity
condition (fux , guxux) 6= (0, 0), which is included in the definition of class (1).

First assume that fux = 0 and therefore guxux 6= 0. Differentiating the third equation of
system (26) with respect to ux, we then immediately find that τx = 0. In view of the equation
ξt = fτx we also have ξt = 0. Upon differentiating the second equation of (26) with respect to t
we obtain τtt = 0. The third equation of (26) then implies ηtu = 0. Finally, we differentiate the
last equation in (26) with respect to u and ux (resp. t and ux, resp. t). This gives ηxu = 0 (resp.
ηxt = 0, resp. ηttt = 0).

Now we assume that fux 6= 0. In this case, the equation ξt = fτx can be split to yield
ξt = τx = 0. The third equation of system (26) then implies 2ηtu = τtt. Differentiating the
second equation of (26) with respect to u we obtain ηxu = 0. The differentiation of the last
equation in (26) with respect to u then yields ηttu = 0. In view of the equation 2ηtu = τtt we
obviously have τttt = 0. Differentiating the second equation of (26) twice with respect to t leads
to ηttx = 0.

Collecting the results from the above two cases, for the class (1), whose definition includes
the condition (fux, guxux) 6= (0, 0), we always have

τu = τx = ξu = ξt = ηuu = ηxu = ηttx = τttt = 0, 2ηtu = τtt. (28)

Hence only the second and fourth equations of (26) essentially involve arbitrary elements and
are really classifying determining equations for the class (1). They must be solved up to the
equivalence relation induced by transformations from G∼. Also note that for fux 6= 0 and τtt = 0
we find by differentiating both these equations with respect to t that ηtx = 0 and ηttt = 0.

This completes the proof of the following proposition:

Proposition 8. For each equation from class (1), any symmetry operator Q with τtt = 0 lies
in the projection of the equivalence algebra g∼ to the space of equation variables, i.e. Q ∈ Pg∼.

It thus remains to investigate the case in which fux 6= 0 and the corresponding maximal
Lie invariance algebra gmax = gmax(f, g) contains a vector field Q̆ with τtt 6= 0. In view of
system (28) the general form of vector fields from gmax is

Q = (a2t
2 + a1t+ a0)∂t + ξ(x)∂x + ((a2t+ b1)u+ η0(t, x))∂u,

where the constants a0, a1, a2 and b1 and the functions ξ = ξ(x) and η0 = η0(t, x), where
η0ttx = 0, are additionally constrained in such a way that the coefficients τ = a2t

2 + a1t + a0,
ξ = ξ(x) and η = (t + b1)u + η0(t, x) also satisfy the second and last equations of system (26).
For convenience, we will mark the values of coefficients and parameters corresponding to the
vector field Q̆ by breve. As ă2 6= 0, by scaling of Q̆ we can set ă2 = 1. As the vector field ∂t
belongs to g∩, it necessarily is in gmax for any f and g. Therefore, the algebra gmax contains
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also the commutator [∂t, Q̆]. Linearly combining Q̆ with ∂t and Q̃ = [∂t, Q̆] we can also set
ă0 = ă1 = 0. Hence Q̃ = 2t∂t + (u+ η̆0t )∂u.

Substituting the coefficients of Q̃ into the second equation of system (26), we obtain the
equation 4f + (ux + β)fux = 0, where β = η̆0tx should be a smooth function depending at most
on x since η0ttx = 0 for any operator Q from gmax. The general solution of this equation is
f = α(x)(ux + β(x))−4, where α is an arbitrary function of x. Using transformations from
the equivalence group G∼ we can simplify f and set α = ±1 and β = 0. If we plug the form
f = ±u−4

x into the second equation of system (26), we obtain that τt− ξx = 2(ηu− ξx)+ 2ηxu
−1
x

for an arbitrary operator from gmax. From this condition, we can immediately conclude that
ηx = 0 and ξx = 2b1, i.e. ξ = 2b1x+ b0 for some constant b0.

As η̆0x = 0, the substitution of the coefficients of Q̃ into the last equation of system (26) gives
the equation uxgux + 3g = η̆0ttt with separated variables. Both the sides of this equation are
equal to a constant which can be set to zero by a transformation F2(c4) from G∼. The equation
uxgux +3g = 0 is equivalent to the representation g = µ(x)u−3

x , where µ is an arbitrary function
of x. For this expression of g the last equation of system (26) takes the form

η0tt − 2b1µu
−3
x − (2b1x+ b0)µxu

−3
x = 0

and the subsequent splitting with respect to ux implies that η0tt = 0 and (µ(2b1x + b0))x = 0.
We now distinguish the following cases for values of b0 and b1 depending on a value of µ:

0. µ is arbitrary. In this case b1 = b0 = 0.

1. µ is a nonzero constant. Then b0 is arbitrary and b1 = 0. Using an equivalence transfor-
mation, we can scale µ to one.

2. µ = νx−1 mod G∼, where ν is a nonzero constant. (A constant summand of x can be set
equal to 0 by a shift of x.) For this value of µ we have b0 = 0 and b1 is arbitrary.

3. µ = 0. This implies that b1 and b2 are arbitrary.

We denote by K the subclass of equations from the class (1), which are G∼-equivalent to
equations with f = ±u−4

x and g = µ(x)u−3
x and by K̄ the complement of this subclass in the

class (1). The above consideration shows that only equations from the subclass K admit Lie
symmetry operators that are not contained in Pg∼. In other words, the following theorem is
true:

Theorem 2. The subclass K̄ of class (1) that is singled out by the condition

(f, g) 6= (±u−4
x , µ(x)u−3

x ) mod G∼,

where µ(x) is an arbitrary function of x is weakly normalized.

Remark 2. The sets K and K̄ of equations are really subclasses of the class (1) since the con-
dition (f, g) = (±u−4

x , µ(x)u−3
x ) mod G∼ and its negation are equivalent to systems of equations

and/or inequalities with respect to the arbitrary elements f and g. Indeed, by acting on the ar-
bitrary elements f = ±u−4

x and g = µ(x)u−3
x with transformations from G∼ and eliminating the

involved group parameters and the parameter-function µ, we arrive at a system of differential
equations in f and g characterizing the subclass K. Namely, the subclass K is singled out from
the class (1) by the system

Vux = 1, Wxux(V
3)ux −Wux(V

3)xux = 0, Wuxux(V
3)ux −Wux(V

3)uxux = 0,

where V = −4f/fux and W = V 3(g + fVx + fxV/2). This implies that the subclass K̄ as the
complement of K is defined by the inequality

(

Vux − 1
)2

+
(

Wxux(V
3)ux −Wux(V

3)xux
)2

+
(

Wuxux(V
3)ux −Wux(V

3)uxux
)2

6= 0.

20



The above Cases 0–3 represent the complete group classification of equations from the sub-
class K up to G∼-equivalence. Recall that by the definition of the subclass K any equation from
this subclass is G∼-equivalent to an equation with f = ±u−4

x and g = µ(x)u−3
x .

Lemma 1. A complete list of G∼-inequivalent Lie symmetry extensions for equations of the
general form

utt = ±u−4
x uxx + µ(x)u−3

x , (29)

where µ runs through the set of smooth functions depending on x, is exhausted by the following
cases:

0. arbitrary µ : g∩1 = g∩ + 〈t2∂t + tu∂u, 2t∂t + u∂u〉,
1. µ = 1: gmax = g∩1 + 〈∂x〉,
2. µ = νx−1, ν 6= 0: gmax = g∩1 + 〈2x∂x + u∂u〉,
3. µ = 0: gmax = g∩1 + 〈∂x, 2x∂x + u∂u〉.

(30)

Remark 3. We can use equations of the general form

utt = θ(x)u−4
x uxx (31)

as canonical representatives of elements from the class K instead of (29). Indeed, each equation
from the subclass (29) is mapped to an equation from the subclass (31) by the transforma-
tion D(ϕ), where ϕxx±µϕx = 0 and θ(x̃) = ±(ϕx(x))

−2. (Here and in what follows all ± and ∓
are consistent with those from Lemma 1.) In other words, we construct a point-transformation
mapping [50] between the subclasses (29) and (31) which is generated by a family of equivalence
transformations parameterized by the arbitrary element µ. Hence, mapping and rearrangement
of the classification list (30) lead to the equivalent list based on the canonical representative
form (31):

0. arbitrary θ : g∩1 = g∩ + 〈t2∂t + tu∂u, 2t∂t + u∂u〉,
1. θ = ±e2x : gmax = g∩1 + 〈2∂x + u∂u〉,
2. θ = ±|x|2p, p 6= 0: gmax = g∩1 + 〈2x∂x + (p+ 1)u∂u〉,
3. θ = ±1: gmax = g∩1 + 〈∂x, 2x∂x + u∂u〉.

(32)

Cases 0, 1, 2|ν=±1, 2|ν 6=±1 and 3 of the list (30) are mapped to Cases 0, 2|p=−1, 1, 2|p=ν/(ν∓1)

and 3 of the list (32), respectively. Each of the classification lists has certain advantages. Thus,
the form (31) is more compact than (29). At the same time, basis elements of the algebras
presented in the list (30) do not depend, in contrast to Case 2 of (32), on equation parameters.
The equation associated with Case 1 of the list (30) does not explicitly involve the independent
variable x, as opposed to its image given in Case 2|p=−1 of the list (32) whose value of the
arbitrary element θ equals ±x−2.

Remark 4. Due to Theorem 2, to complete the group classification of the class (1) it is enough
to investigate symmetry extensions induced by subalgebras of the equivalence algebra g∼. The
corresponding Lie symmetry generators satisfy the following simplified determining equations:

τu = τx = τtt = ξu = ξt = ηuu = ηxu = ηtx = ηtu = ηttt = 0,

ξfx + ((ηu − ξx)ux + ηx)fux = 2(ξx − τt)f,

ξgx + ((ηu − ξx)ux + ηx)gux = (ηu − 2τt)g + (ξxxux − ηxx)f + ηtt.

(33)

Remark 5. Lemma 1 obviously implies that the entire class (1) is not weakly normalized.
This can also be proved without the study of the subclass structure, by the direct computation
of the union g∪ of the maximal Lie invariance algebras of equations from the class (1). The
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set g∪ consists of vector fields of the form τ(t, x, u)∂t + ξ(t, x, u)∂x + η(t, x, u)∂u for which the
whole system of determining equations and the nonvanishing condition (fux , guxux) 6= (0, 0)
are consistent with respect to the functions f = f(x, ux) and g = g(x, ux). The consistency
condition is the joint system of (28) and

ηtx(ηu − ξx) = ηxηtu + ξηtxx,

ηtu(ξxx + ηxx) = ηtxx(ηu − 2τt + ξ),

ηttt(ηu − 2τt) = ηtt(ηtu − 2τtt).

(34)

It is clear that g∪ is not contained in the projection Pg∼ of the equivalence algebra g∼, which
is associated with the solution set of the system given in the first row of (33).

9 Set of admissible transformations

After we have established the equivalence group of the class (1), we can describe the set of
admissible transformations of this class in terms of its normalized subclasses. Theorem 2 and
its proof give us hints on feasible ways for the classification of admissible transformations.

First we assume that fux = 0 and therefore guxux 6= 0. We differentiate Eq. (11) with respect
to ũt̃ and ũx̃ and take into account Eq. (9). From the obtained equation

guxux
TxXx

U 2
u

= 0

and the inequality guxux 6= 0 we can conclude that TxXx = 0. Then Eq. (9) also implies TtXt = 0.
Suppose that Tt = 0. Consequently, in view of the nondegeneracy condition of point trans-

formations we have Tx 6= 0 and Xt 6= 0 and therefore Xx = 0. The expressions of ut and ux
via ũt̃ and ũx̃ take the form ut = (Xtũx̃ −Ut)/Uu and ux = (Txũt̃ −Ux)/Uu, i.e., the expression
of ut (resp. ux) does not involve ũt̃ (resp. ũx̃). We differentiate Eq. (11) twice with respect to
ũx̃ and once with respect to u. In view of the supposition Tt = 0, this gives (Uuu/U

2
u )u = 0.

Then we differentiate Eq. (11) twice with respect to ũt̃:

guxux = 2f
Uuu
Uu

. (35)

The subsequent differentiation of Eq. (35) with respect to u gives the equation (Uuu/Uu)u = 0,
which together with (Uuu/U

2
u )u = 0 implies that Uuu = 0. Then Eq. (35) is reduced to guxux = 0

and therefore leads to a contradiction.
This is why we necessarily have TtXx 6= 0 and consequently Xt = Tx = 0. In view of Eq. (10),

we also obtain the equation f̃ = fX2
x/T

2
t from which we can conclude by differentiation with

respect to t that Ttt = 0. It is also evident that f̃ũx̃ = 0.
Owing to the restrictions derived so far, it is now possible to split Eq. (11) with respect to ut.

The coefficient of u2t gives Uuu = 0 and that of ut leads to Utu = 0. The rest of Eq. (11) is

g̃T 2
t − Utt = f(ũx̃Xxx − Uxx − 2Uxuux) + gUu.

This obviously implies that g̃ũx̃ũx̃ 6= 0 since guxux 6= 0. We will successively differentiate the
above rest with respect to three combinations of variables, (u, ũx̃), (t, ũx̃) and t, which gives
Uxu = 0, Utx = 0 and Uttt = 0, respectively.

Summing up, for the components T , X and U of admissible transformations of any equation
with fux = 0 and guxux 6= 0 within the class (1) we derive the same system of determining
equations as in the case of equivalence transformations, cf. (13). Moreover, the conditions
fux = 0 and guxux 6= 0 are saved by the admissible transformations. In this way, we have
established the following theorem:
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Theorem 3. The subclass of class (1) which is singled out by the constraints fux = 0 and
guxux 6= 0 is saved by admissible point transformations within the class (1). This subclass
is normalized and its equivalence group coincides with the equivalence group G∼ of the entire
class (1).

It now remains to investigate the case fux 6= 0. Eq. (9) immediately implies that TtXt =
TxXx = 0.

Supposing Tx 6= 0, we obtain that Xx = 0, Xt 6= 0 and hence Tt = 0. In view of these
conditions Eq. (10) is reduced to X2

t = f̃fT 2
x . Differentiating the last equation with respect

to ux leads to the equation f̃ fuxT
2
x = 0, which is equivalent to the equation Tx = 0, contradicting

the initial supposition.

Therefore, we have Tx = 0, Tt 6= 0, Xt = 0 and Xx 6= 0 and Eq. (10) reads

f̃T 2
t = fX2

x. (36)

As the transformation rules for the first derivatives are simplified to

ũt̃ =
Ut + Uuut

Tt
, ũx̃ =

Ux + Uuux
Xx

,

we can conclude from Eq. (36) that f̃ũx̃ = 0 if and only if fux = 0.

Differentiating Eq. (36) with respect to u gives (Uxu+Uuuux)f̃ũx̃ = 0, and therefore Uuu = 0
and Uxu = 0. Differentiating Eq. (36) with respect to t results in the equation

(

Utu
Xx

(

Xxũx̃ − Ux
Uu

)

+
Uxt
Xx

)

f̃ũx̃ + 2f̃
Ttt
Tt

= 0. (37)

Taking into account the simplifications obtained so far, we represent Eq. (11) in the reduced
form

g̃T 2
t +

Ut + Uuut
Tt

Ttt − Utt − 2Utuut = f

(

Ux + Uuux
Xx

Xxx − Uxx

)

+ gUu.

This last equation can be split with respect to ut, giving the equations

Uu
Tt
Ttt = 2Utu,

g̃T 2
t +

Ut
Tt
Ttt − Utt = f

(

Ux + Uuux
Xx

Xxx − Uxx

)

+ gUu.
(38)

We now distinguish the two cases Ttt = 0 and Ttt 6= 0.

In the case of Ttt = 0, the first of the above equations implies Utu = 0. The corresponding
form of Eq. (37) then leads to Utx = 0. Differentiating the second equation of (38) with respect
to t yields Uttt = 0. Collecting all the results for this case implies that the transformation
belongs to the equivalence group G∼.

We now investigate the case of Ttt 6= 0. Then, we solve the first equation of (38) with respect
to Utu/Uu and plug the resulting expression into Eq. (37). This yields

(

Ttt
2Tt

(

ũx̃ −
Ux
Xx

)

+
Uxt
Xx

)

f̃ũx̃ + 2
Ttt
Tt
f̃ = 0,

or,

(

ũx̃ +
Uxt
Xx

2Tt
Ttt

−
Ux
Xx

)

f̃ũx̃ + 4f̃ = 0.
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The difference of the second and third terms in the bracket can be encapsulated as a function
of x (or, equivalently, x̃), i.e. we can write (ũx̃ + α̃(x̃))f̃ũx̃ + 4f̃ = 0. This implies that

f̃ =
β̃(x̃)

(ũx̃ + α̃(x̃))4
. (39)

We now differentiate the second equation of (38) with respect to u, which gives

Uttu =
UutTtt
Tt

=
1

2

(

UuTtt
Tt

)

t

,

where the second equality holds upon differentiating the first equation in (38) with respect to t.
This implies that

UtuTtt
Tt

− Uu

(

Ttt
Tt

)

t

= 0,

which is equivalent to (UuTt/Ttt)t = 0. Integrating this equation gives an expression for Uu:
Uu = κTtt/Tt, where κ is a constant. We substitute the expression for Uu into the first equation
of (38) to obtain 2TtttTt − 3T 2

tt = 0. The general solution of the last equation is

T =
a1t+ a0
a3t+ a2

,

were ai, i = 0, . . . , 3, are constants with a1a2 − a0a3 6= 0 which are determined up to a common
nonvanishing multiplier. As Ttt 6= 0, we moreover have a3 6= 0 and can assume a3 = 1 due to the
indeterminacy of the constant multiplier. Then we successively gauge a2, a0 and a1 to 0, 1 and
0 by a shift of t, a scaling of t and a shift of t̃, respectively. All the above transformations belong
to the group G∼. In other words, T = 1/t mod G∼. Plugging the expression obtained for T into
the equation Uu = κTtt/Tt allows deriving that Uu = q̂/t, where q̂ is a nonzero constant.

Combining Eq. (36) with the expression for f̃ established in Eq. (39) yields

f =
T 2
t

X2
x

α̃(X)X4
x

(Uuux + Ux + β̃(X)Xx)4
=

α(x)

(ux + β(x))4
,

where β(x) := (Ux + β̃(X)Xx)/Uu and α(x) := T 2
t Xxα̃(X)/U4

u . Furthermore, upon using
transformations from the equivalence group G∼, we can set β̃ = β = 0, which consequently
implies that Ux = 0. By means of equivalence transformations, we can also set β, β̃ ∈ {−1, 1} and
as the multiplier relating α and α̃ is strictly positive, we have that α̃ = α. As the transformation
of X only depends on x it also follows from T 2

t Xx/U
4
u = 1 that Xx = const. Upon scaling this

constant and translations of x, which belong to G∼, we can chooseX = x. Therefore, T 2
t /U

4
u = 1.

As T = 1/t and thus Uu = q̂/t, this means that q̂ = 1, i.e., Uu = 1/t and hence U = u/t+U0(t)
and ũx̃ = ux/t. Here U

0 = U0(t) is a smooth function arising after integration with respect to u
and depending only on x in view of the condition Ux = 0.

The remaining part of Eq. (11) can be represented as

g̃

t3
− 2U0

t − tU0
tt = g, (40)

where U = u/t + U0(t). The differentiation of Eq. (40) with respect to t yields g̃ũx̃ ũx̃ + 3g̃ +
t4(tU0

tt + 2U0
t )t = 0. The first two terms do not depend on t and the last summand depends

only on t. Thus, we can separate variables and set t4(tU0
tt + 2U0

t )t = −3κ̃ = const, where the
factor of −3 was introduced for the sake of convenience. Integration of this equation yields
tU0

tt + 2U0
t = κ̃/t3 + κ, where κ = const. The general solution of this equation is U0 =
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κ̂/(2t2) − κt/2 − σ1/t + σ0, where σ1, σ2 = const. We also have g̃ũx̃ ũx̃ + 3g̃ = κ̃, which upon
integration leads to g̃ = µ̃(x̃)/ũ3x̃ + κ̃. Plugging these results into Eq. (40) gives

g =
µ̃(X)

u3x
+

κ̃

t3
− (tU0

tt + 2U0
t ) =

µ̃(X)

u3x
+ κ.

Using equivalence transformations, we can put κ̂ = κ = 0. This is why we have f̃ = δ/ũ4x̃,
f = δ/u4x, g̃ = δ/ũ3x̃ and g = δ/u3x, where δ = ±1. That is, the equivalence transformations for
this case reduce to symmetry transformations.

Owing to the above computations, we can formulate the following theorem:

Theorem 4. The subclass K of the class (1), that consists of equations G∼-equivalent to equa-
tions of the form (29), is semi-normalized with respect to G∼. Any admissible transformation
in this subclass is generated by G∼ or is represented as a composition of the transformations
(θ1, θ2, T1), (θ2, θ2, T2) and (θ2, θ3, T3), where θ1 = (f, g), θ2 = (±u−4

x , µu−3
x ), θ3 = (f̃ , g̃) and

T1, T3 are equivalence transformations and T2 = 1/t is a symmetry transformation of Lθ2 . The
complement K̄ of K in the class (1) (as well as the complement of K in the subclass of (1)
singled out by the condition fux 6= 0) is normalized with respect to G∼. The usual equivalence
group of the subclass K̄ coincides with G∼.

Corollary 4. The entire class (1) is semi-normalized. Hence the group classification of the
class (1) up to G∼-equivalence coincides with the group classification of this class up to general
point equivalence.

Remark 6. It can be proved using the above consideration that the class (29) is normalized.
The equivalence group G∼

1 of this class consists of the transformations of the general form

t̃ =
a1t+ a0
a3t+ a2

, x̃ = b1t+ b0, ũ =
±
√

|b1A| u+ b3t+ b2
a3t+ a2

, µ̃ =
µ

b1
,

were ai, i = 0, . . . , 3, are constants with A = a1a2 − a0a3 6= 0 which are determined up to
a common nonvanishing multiplier and bi, i = 0, . . . , 3, are arbitrary constants with b1 6= 0.
The group G∼

1 can be represented as the product of its two subgroups. The first subgroup is
the ideal associated with the kernel group of the class (29) and formed by the transformations
from G∼

1 with b1 = 1 and b0 = 0. The second subgroup corresponds to the subgroup of G∼

whose elements save equations of the form (29) and consists of the transformations from G∼
1

with a3 = 1 and a2 = 0. This is why the list presented in Lemma 1 is an exhaustive list of Lie
symmetry extensions in the class (29) up to both G∼

1 -equivalence and general point equivalence.

Remark 7. It follows from the above consideration that the entire class of equations of the
general form (1) is partitioned into three subclasses associated with the additional constraints
fux 6= 0, fux = 0 and guxux 6= 0, and fux = guxux = 0, respectively. Equations from different
subclasses of this partition are not mapped to each other by point transformations. This is the
main reason why it is natural to separate nonlinear equations of the form (1) from linear ones,
which are well studied and form the last subclass.

Remark 8. In order to simplify calculations, we could use Theorem 4.4b of Ref. [24], describing
form-preserving transformations between (1 + 1)-dimensional second-order partial differential
equations of the quite general form utt = H(t, x, u, ux, uxx), where Huxx 6= 0. This theorem
directly implies the simplest constraints Tu = Tx = Xu = Xt = 0 for admissible transformations
of the class (1), in view of which the coefficients of any Lie symmetry operatorQ = τ∂t+ξ∂x+η∂u
of each equation from the class (1) satisfy the determining equations τu = τx = ξu = ξt = 0.
A partial repetition of computations in the present paper was necessary in order to finding the
appropriate partition of the class (1) into subclasses.
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10 Classification of inequivalent appropriate subalgebras

In order to classify subalgebras of the equivalence algebra g∼, we need to describe the adjoint
action of the equivalence group G∼, which consists of transformations of the form (14), on the
generating vector fields (2) of g∼. This adjoint action can be determined by solving the Cauchy
problem

dw

dε
= ad v(w) := [v,w], w(0) = w0

for each pair (v,w0) of generating vector fields of g∼, which is equivalent to computing the
convergent Lie series [34]

w(ε) = Ad(eεv)w0 :=

∞
∑

n=0

εn

n!
(ad v)n(w0).

An alternative way is the direct computation of actions of transformations from G∼ on elements
of g∼ via pushforward of vector fields by these transformations [11]. Stated in another way, the
second method uses the usual transformation rule of vector fields under point transformations.
As this method properly works for infinite-dimensional Lie algebra, we will pursue it below.

Employing elementary equivalence transformations (cf. the end of Section 6), we can compute
the nonidentical adjoint actions using the respective push-forwards. This yields

F2
∗(c4)D

t = Dt + 2c4F
2, Dt

∗(c1)F
2 = c−2

1 F2,

G∗(ψ)D
u = Du − G(ψ), Du

∗(c2)G(ψ) = c2G(ψ),

F2
∗(c4)D

u = Du − c4F
2, Du

∗(c2)F
2 = c2F

2,

G∗(ψ)D(ϕ) = D(ϕ) + G(ϕψx), D∗(θ)G(ψ) = G(ψ(θ̂)),

D∗(θ)D(ϕ) = D(ϕ(θ̂)/θ̂x),

where θ̂ = θ̂(x) is the inverse of the function θ. It should be stressed that there are more
nonidentical adjoint actions of transformations from G∼ on generating vector fields of g∼ than
listed above, namely those related with actions on the trivial prolongation ĝ∩ of the kernel
algebra g∩ to the arbitrary elements, which is an ideal in g∼, and those involving Pt∗(c0) and
F1
∗(c3). These adjoint actions, however, do not yield simplifications in the course of classification

of extensions of the kernel algebra.
We will only classify appropriate subalgebras of g∼. Any appropriate subalgebra s of g∼

should contain ĝ∩ = 〈Pt,F1,G(1)〉. For the class (1) we have two specific representations of s,
which are given by s = ĝ∩ + 〈Q1, . . . , Qk〉 = 〈Pt,F1〉 + 〈G(1), Q1, . . . , Qk〉, where “+” denotes
the direct sum of vector spaces, ĝ∩ is an ideal of s (since it is an ideal of the entire g∼) and
〈G(1), Q1, . . . , Qk〉 is a subalgebra of s. Q1, . . . , Qk are basis elements from the complement of
ĝ∩ in s and their projections to the space of equation variables yield a proper Lie symmetry
extension of g∩ in the class (1).

Remark 9. The double representation of appropriate subalgebras is related with the rep-
resentation of the whole equivalence algebra g∼ in the form g∼ = ĝ∩ + ḡ, where ĝ∩ and
ḡ = 〈Du,Dt,D(ϕ),G(ψ),F2〉 are an ideal and a subalgebra of g∼ but the sum is not direct
even in the sense of vector spaces since ĝ∩ ∩ ḡ = 〈G(1)〉. Unfortunately, the equivalence alge-
bra g∼ does not possess a representation as a semi-direct sum of the ideal ĝ∩ associated with the
kernel algebra and a certain subalgebra, which additionally complicates the group classification
of the class (1).

This is why it is necessary to classify only subalgebras of g∼ which are contained in ḡ and
contain 〈G(1)〉. The classification should be carried out up to G∼

0 -equivalence, where G
∼
0 is a
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subgroup of G∼ formed by the transformations (14) with c0 = c3 = 0. In fact, we will present
the classification results in terms of extensions of ĝ∩ excluding G(1) from the corresponding
bases.

The determining equations for Lie symmetries of equations from the class (1) impose more
restrictions on appropriate subalgebras.

Lemma 2. s ∩ 〈Du,G(ψ),F2〉 = s ∩ 〈Dt,F2〉 = {0} for any appropriate subalgebra s.

Proof. Suppose that an appropriate subalgebra s of g∼ contains an operator Q = bDu+ G(ψ) +
cF2, where at least one of the constants b and c or the derivative ψx of the function ψ = ψ(x)
does not vanish. Then the operator PQ is a Lie symmetry operator for an equation from the
class (1). Substituting the coefficients of operator Q into the determining equations (33) implies
the following conditions for the arbitrary elements f and g:

(bux + ψx)fux = 0, (bux + ψx)gux = 2c− ψxxf + bg.

For both the cases b 6= 0 and ψx 6= 0 it follows that fux = 0 and guxux = 0, which contradicts
the definition of class (1). The case b = 0, ψx = 0 and c 6= 0 leads to a contradiction. Therefore,
any appropriate subalgebra does not contain an operator of the form considered.

Analogously, an operator Dt + cF2, where c is an arbitrary constant, gives the condition
f = 0, which is also inconsistent with the definition of the class (1).

Lemma 3. dim
(

s ∩ 〈D(ϕ),G(ψ),F2〉
)

6 2 for any appropriate subalgebra s.

Proof. Suppose that s is an appropriate subalgebra of G∼ and dim
(

s ∩ 〈D(ϕ),G(ψ),F2〉
)

> 2.
This means that the subalgebra s contains (at least) two operators Qi = D(ϕi) + G(ψi) + ciF

2,
where the functions ϕi, i = 1, 2, should be linearly independent in view of Lemma 2. In other
words, the projections PQi of Qi simultaneously are Lie symmetry operators of an equation from
the class (1). By W we denote the Wronskian of the functions ϕ1 and ϕ2, W = ϕ1ϕ2

x − ϕ2ϕ1
x.

W 6= 0 as the functions ϕ1 and ϕ2 are linearly independent.
Plugging the coefficients of PQi into the first classifying equation from the system (33) gives

two equations with respect to f only,

(ϕixux − ψix)fux − ϕifx + 2ϕixf = 0. (41)

We multiply the equation corresponding to i = 2 by ϕ1 and subtract it from the equation for
i = 1 multiplied by ϕ2. Dividing the resulting equation byW , we obtain the ordinary differential
equation

(ux + β)fux + 2f = 0,

where β = β(x) := (ϕ2ψ1
x − ϕ1ψ2

x)/W and the variable x plays the role of a parameter. It is
possible to set β = 0 by means of an equivalence transformation, G(−β). Indeed, this trans-
formation preserves the form of the operators Qi, only changing the values of the functional
parameters ψi. In particular, it does not affect the linear independency of the functions ϕi.
The integration of the above equation for β = 0 yields that f = αu−2

x , where α = α(x) is a
nonvanishing function of x. In view of the derived form of f , splitting of equations (41) with
respect to ux leads to ϕ1αx = 0 and ϕix = 0, i.e. ψix = 0 and αx = 0. As G(1) ∈ s, we can assume
up to linear combining of elements of s that ψi = 0. The constant α can be scaled to α = ±1
by an equivalence transformation.

In a similar manner, consider the last equation from system (33), taking into account the
restrictions set on parameter-functions and the form of f . For each Qi, this classifying equation
gives an equation with respect to g,

ϕixuxgux − ϕigx = −ϕixxαu
−1
x − 2ci. (42)
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Again, we multiply the equation corresponding to i = 2 with ϕ1 and subtract it from the
equation for i = 1 multiplied by ϕ2, divide the resulting equation by W and thereby obtain that
gux = µ2u−2

x + µ1u−1
x , where µ2 = µ2(x) := αWx/W and µ1 = µ1(x) := 2(c1ϕ

2 − c2ϕ
1)/W .

Integration with respect to ux directly gives g = µ2u−1
x + µ1 ln |ux|+ µ0, where µ0 = µ0(x) is a

smooth function of x. The parameter-function µ2 can be set equal to zero by the equivalence
transformation D(ζ), where the function ζ = ζ(x) is a solution of the equation αζxx+µ2ζx = 0.
Substituting the derived form of g into equations (42) and splitting with respect to ux, we find
that µ1x = 0, ϕixx = 0, ϕiµ0x = ϕixµ

1 + 2ci. Therefore, µ1 is a constant and the functions ϕ1

and ϕ2 can be set to 1 and x, respectively, upon linear combining of Qi. Then, we have
µ0x = 2c1, xµ

0
x = 2c2 + µ1, i.e. c1 = 0, c2 = −1/2 and µ0 is a constant that can be set to zero by

the equivalence transformation F(−µ0/2).

Summing up, we have proved that any equation of class (1) admitting (at least) two opera-
tors PQi is G∼-equivalent to an equation of the form

utt = ±u−2
x uxx + µ1 ln |ux|,

where µ1 = const. However, the determining equations (33) in this case yield ηx = 0, ηu = τt,
ξxx = 0, µ1ηu = 0, ηtt = µ1(τt−ξx). This obviously implies that the number of such operators Qi

cannot exceed two.

Corollary 5. There are two G∼-inequivalent cases of Lie symmetry extensions in class (1)
involving two linearly independent operators of the form PQi, where Qi = D(ϕi)+G(ψi)+ ciF

2,

1. utt = ±u−2
x uxx + 2 ln |ux| : gmax = g∩ + 〈PD(1),PD(x) − PF2〉,

2. utt = ±u−2
x uxx : gmax = g∩ + 〈PD(1),PD(x),PDt + PDu〉.

Proof. For µ1 6= 0, we have that ηu = τt = 0, ξxx = 0 and, after scaling of µ1 to two by an
equivalence transformation, ηtt = −2ξx. This directly gives the first case. If µ1 = 0, we obviously
recover the second case.

Now that we have computed the essential adjoint actions and classified all appropriate sub-
algebras in Corollary 5 for which dim

(

s ∩ 〈D(ϕ),G(ψ),F2〉
)

= 2, we should go on with the
computation of inequivalent appropriate extensions of ĝ∩, which contain at most one linearly
independent operator of the form D(ϕ) + G(ψ) + cF2, where ϕ = ϕ(x) is a nonvanishing func-
tion. In view of Lemma 2 it is obvious that the dimension of such extensions cannot be greater
than three. Here we select candidates for such extensions using only restrictions on appropriate
subalgebras presented in Lemmas 2 and 3. As there exist specific restrictions for two- and three-
dimensional extensions, we will make an additional selection of appropriate extensions from the
set of candidates directly in the course of the construction of invariant equations.

The result of the classification is formulated in the subsequent lemmas.

Lemma 4. A complete list of G∼-inequivalent appropriate one-dimensional extensions of ĝ∩

in g∼ is given by

〈Du + 1
2D

t +D(ε) + F2〉, 〈Du − pDt +D(ε)〉, 〈Dt −D(1)〉,

〈Dt − G(x)〉, 〈D(1) + εF2〉,
(43)

where ε ∈ {0, 1} and a is an arbitrary constant.

Proof. The classification of the appropriate one-dimensional extensions can be carried out effec-
tively by simplifying a general element of the linear span 〈Du,Dt,D(ϕ),G(ψ),F2〉,

Q = a1D
u + a2D

t +D(ϕ) + G(ψ) + a4F
2,
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using push-forwards of transformations from G∼. For this aim, it is necessary to distinguish
multiple cases, subject to which of the constants ai or functions ϕ, ψ are nonzero. We note in
the beginning that owing to the push-forward D∗(θ) we can always set ϕ = a3 = const.

For a1 6= 0 we can scale the vector field Q to achieve a1 = 1. Using the push-forwards of
a suitable transformation G(χ), we can set ψ = 0. The further possibilities for simplification
depend crucially on the value of a2. For a2 = 1/2, the sum Du + a2D

t is invariant under the
push-forward F2

∗(c4) and therefore it is not possible to set a4 = 0. The actions of the push-
forwards of the transformations D(x) and Du allow scaling of a3 and a4 to {0, 1}. If a4 = 1, by
denoting a3 = ε we obtain the first case from the list (43).

For a2 6= 1/2 we can use the push-forward F2
∗(c4) to additionally set a4 = 0, which gives,

jointly with the case a2 = 1/2 and a4 = 0, the second extension listed, where a2 is denoted
by −p.

If a1 = 0 and a2 6= 0, we scale a2 = 1 and can use the push-forward F2
∗(c4) to set a4 = 0.

For a3 6= 0, we can scale a3 = −1 by means of the action of Du
∗ (c2) and additionally put ψ = 0

upon using the push-forward of the transformation G(χ). If a3 = 0, we have ψx 6= 0 in view of
Lemma 2 and hence we can use the action of D∗(θ) to set ψ = −x. This gives the third and the
fourth case of the list (43), respectively.

In case of a1 = a2 = 0 but a3 6= 0, we can set a3 = 1 and use the push-forward G∗(ψ) for
a certain ψ to arrive at ψ = 0. The action of Du

∗(c2) on the resulting vector field allows us to
scale the coefficient a4 so that we have a4 ∈ {0, 1}, which yields the fifth element of the above
list of one-dimensional inequivalent subalgebras.

In view of Lemma 2, the case a1 = a2 = a3 = 0 is not appropriate.

Lemma 5. Up to G∼-equivalence, any appropriate two-dimensional extension of ĝ∩ in g∼, which
contains at most one linearly independent operator of the form D(ϕ) + G(ψ) + cF2, belongs to
the following list:

〈Du +D(1), Dt +D(b)〉, 〈Du +D(1), Dt + G(ex)〉,

〈a1D
u + a2D

t + a3D(x) + ε0G(x) + ε1F
2, D(1) + ε2F

2〉,
(44)

where b, a1, a2, a3, ε0, ε1 and ε2 are constants with b 6= 0, (a1, a2) 6= (0, 0), (a2, a3) 6= (0, 0),
(a1, a3, ε0) 6= (0, 0, 0) and (a1 − 2a2 − a3)ε2 = 0. Due to scaling of the first basis element and
G∼-equivalence we can also assume that one of a’s equals 1, (a1 − a3)ε0 = 0, (a1 − 2a2)ε1 = 0,
ε0, ε1 ∈ {0, 1} and ε2 ∈ {−1, 0, 1} or, if ε0 = 0, ε2 ∈ {0, 1}.

Proof. The general strategy is to take two arbitrary linearly independent elements Q1 and Q2

from the linear span 〈Du,Dt,D(ϕ),G(ψ),F2〉 such that s = ĝ∩ + 〈Q1, Q2〉 is a five-dimensional
subalgebra of g∼ satisfying the restriction on elements of the form D(ϕ) + G(ψ) + cF2 and
Lemma 2 and simplify Q1 and Q2 as much as possible by linear combining of elements of s and
push-forwards of transformations from G∼. The proof is split into two parts.

First, we consider possible extensions not involving operators of the form D(ϕ)+G(ψ)+ cF2.
In view of this additional restriction and Lemma 2, up to linear combining we can take the
elements Q1 and Q2 in the initial form

Q1 = Du +D(ϕ1) + G(ψ1) + c1F
2, Q2 = Dt +D(ϕ2) + G(ψ2) + c2F

2,

where ϕ1 6= 0. We set ϕ1 = 1, ψ1 = 0 and c1 = 0 using D∗(θ), G∗(χ) with suitable functions θ
and χ and F2

∗(c1), respectively, i.e. Q
1 = Du +D(1). As the subalgebra s is closed with respect

to the Lie bracket of vector fields, we have [Q1, Q2] = D(ϕ2
x) + G(ψ2

x − ψ2)− c2F
2 ∈ 〈G(1)〉 and

hence ϕ2
x = 0, c2 = 0 and ψ2

x − ψ2 = const. Integrating the equations for ϕ2 and ψ2 gives that
ϕ2 = b and ψ2 = d1e

x + d0 for some constants b, d1 and d0. The constant d0 can be always
set equal to zero by linear combining with the operator G(1) belonging to ĝ∩. The further
simplification of Q2 depends on the value of b. If b 6= 0, the push-forward of G(−d1b

−1ex) does
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not change Q1 and leads to d1 = 0. If b = 0, the parameter d1 is nonzero in view of Lemma 2
and, therefore, can be scaled to 1 by D∗(d

−1
1 ). As a result, we obtain the first two elements of

the list (44).
Now we investigate the case dim

(

s ∩ 〈D(ϕ),G(ψ),F2〉
)

= 1. Then basis operators of the
extension of ĝ∩ can be chosen in the form

Q1 = a1D
u + a2D

t +D(ϕ1) + G(ψ1) + c1F
2, Q2 = D(ϕ2) + G(ψ2) + c2F

2,

where (a1, a2) 6= (0, 0) and ϕ2 6= 0. We set ϕ2 = 1 and ψ2 = 0 using D∗(θ) and G∗(χ)
with suitably chosen functions θ and χ, respectively. As s is a Lie algebra, we have that
[Q2, Q1] = D(ϕ1

x) + G(ψ1
x) + (a1 − 2a2)c2F

2 = a3Q2 + G(d) for some constants a3 and d.
Therefore, ϕ1

x = a3, (a1 − 2a2 − a3)c2 = 0 and ψ1
x = c0. Up to combing Q1 with Q2 and G(1) we

obtain that ϕ1 = a3x and ψ1 = c0x. Up to G∼-equivalence we can assume that (a1 − a3)c0 = 0
and (a1−2a2)c1 = 0. Indeed, if a1−2a2 6= 0, we can set c1 = 0 using F2

∗(c̃1) with an appropriate
constant c̃1. To set c0 = 0 in the case a1 − a3 6= 0, we simultaneously act by G∗(c̃0x) with an
appropriate constant c̃0 and linearly combine the operator Q2 with D(1). Using push-forwards
of scalings of variables and alternating their signs, we can independently scale the constant
parameters c0, c1 and c2 and change sings of c1 and, simultaneously, c0 and c2. Additionally we
can multiply the whole vector field Q1 by a nonvanishing constant to scale one of nonvanishing
a’s to one. The conditions (a2, a3) 6= (0, 0) and (a1, a3, ε0) 6= (0, 0, 0) follow from Lemma 2. This
yields the third case of the list (44) and thereby completes the proof of the theorem.

Lemma 6. Up to G∼-equivalence, any appropriate three-dimensional extension of ĝ∩ in g∼,
which contains at most one linearly independent operator of the form D(ϕ) + G(ψ) + cF2, has
one of the following forms:

〈Du + p1D(x), Dt + p2D(x), D(1) + εF2〉,

〈Du +D(x) + dG(x), Dt − G(x), D(1)〉,
(45)

where p1, p2 and d are constants, ε ∈ {0, 1}, (p1, p2) 6= (1, 0) and ε(p1 − 1) = ε(p2 + 2) = 0.

Proof. In view of Lemma 2, any three-dimensional appropriate extension of ĝ∩, which contains at
most one linearly independent operator of the form D(ϕ)+G(ψ)+cF2 , is spanned by vector fields
Q1 = Du+D(ϕ1)+G(ψ1)+c1F

2, Q2 = Dt+D(ϕ2)+G(ψ2)+c2F
2 and Q3 = D(ϕ3)+G(ψ3)+c3F

2,
where ϕi and ψi are smooth functions of x, ci are constants, ϕ1, ϕ3 6= 0 and (ϕ2, ψ2) 6= (0, 0).

Using F∗(c1), D∗(θ) and G∗(χ) with suitably chosen functions θ and χ of x and, if c3 6= 0,
Du

∗ (c
−1
3 ), we set c1 = 0, ϕ3 = 1, ψ3 = 0 and c3 = ε ∈ {0, 1}. The commutation relations of Q3

with Q1 and Q2 are

[Q3, Q1] = D(ϕ1
x) + G(ψ1

x) + c3F
2 = p1Q

3 + d1G(1),

[Q3, Q2] = D(ϕ2
x) + G(ψ2

x)− 2c3F
2 = p2Q

3 + d2G(1)

for some constants pi and di, i = 1, 2. These commutation relations imply the conditions ϕix = pi,
ψix = di and (p1 − 1)ε = (p2 + 2)ε = 0. Therefore, up to combining Qi with Q3 and G(1) we
obtain ϕi = pix and ψi = dix. Then the commutation relation

[Q2, Q1] = (d2 + p2d1 − p1d2)G(x) + c2F
2 = 0

yields c2 = 0 and p2d1 = (p1 − 1)d2. If p1 6= 1, we can set d1 = 0 using G∗(−(p1 − 1)−1d1x)
and then the equality p2d1 = (p1 − 1)d2 is reduced to d2 = 0. Analogously, in the case p2 6= 0
we can set d2 = 0 using G∗(−p

−1
2 d2x) and then the equality p2d1 = (p1 − 1)d2 is equivalent

to d1 = 0. Summing up, we always have d1 = d2 = 0 mod G∼ if (p1, p2) 6= (1, 0). This gives
the first extension in (45). Otherwise, p1 = 1, p2 = 0 and hence ε = 0 and d2 6= 0. Setting
d2 = −1 by Du

∗(−d
−1
2 ), we obtain the second extension in (45). This completes the proof of the

theorem.
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11 Result of group classification

To describe equations whose Lie invariance algebras contain the projection Ps of a certain
appropriate subalgebra s of g∼ to the variable space, we can use two equivalent ways, which
lead to the same system of partial differential equations in the arbitrary elements f and g: For
each basis element Q of s we should either substitute the coefficients of PQ into the last two
equations of system (33) or write the condition of invariance of the functions f and g with respect
to Q. Then we should solve the joint system of the equations derived. Simultaneously we should
check whether the projection Ps is really the maximal Lie invariance algebra for obtained values
of the arbitrary elements f and g.

All the candidates for one-dimensional appropriate extensions listed in Lemma 4 are really
appropriate. For each representative of the list we have an uncoupled system of two equations
in f and g, which is easy to be solved. As a result, we obtain the following list of equations from
class (1) that admit one-dimensional Lie symmetry extensions of g∩ related to g∼:

1.1. Du + 1
2D

t +D(ε) + F2 : utt = f̃(ω)u−1
x uxx + g̃(ω) + 2 ln |ux|,

1.2. Du − pDt +D(ε) : utt = |ux|
2p(f̃(ω)uxx + g̃(ω)ux),

1.3. Dt −D(1) : utt = e2x(f̃(ux)uxx + g̃(ux)),

1.4. Dt − G(x) : utt = e2ux(f̃(x)uxx + g̃(x)),

1.5. D(1) + εF2 : utt = f̃(ux)uxx + g̃(ux) + 2εx),

where ω = x− ε ln |ux|, ε ∈ {0, 1} and p is an arbitrary constant. Here and in what follows, in
each case we present only basis elements the corresponding subalgebra of g∼ which belong to
the complement of the basis {Pt,G(1),F1} of ĝ∩.

Calculations related to two-dimensional extensions are more complicated. We first present
the result of the calculations and then give some explanations.

2.1. Du −D(p), Dt −D(1), p 6= 0, : utt = ±e−2x|ux|
2p(uxx + νux),

2.2. Du +D(x), Dt − G(x) : utt = ±e2ux(x2uxx + νx),

2.3. Du +Dt +D(x), D(1) : utt = f̃(ux)uxx,

2.4. Du +Dt +D(x) + G(x), D(1) : utt = ±uxx + e−ux ,

2.5. 2Du +Dt + 2D(x) + G(x) + F2, D(1) : utt = ±e2uxuxx + 2ux,

2.6. Du +D(x) + G(x), D(1) + ε2F
2, ε2 ∈ {−1, 0, 1} : utt = ±e2uxuxx + eux + 2ε2x,

2.7. (2− q)Du + (1− q)Dt + (2− q)D(x) + G(x), D(1), q 6= 0, 1:
utt = ±e2uxuxx + equx ,

2.8. (2 + 2p− q)Du + (1 + p− q)Dt + (1 + 2p− q)D(x), D(1), q 6= 0:
utt = ±|ux|

2puxx + |ux|
q,

2.9. (3 + 2p)Du +Dt + (1 + 2p)D(x), D(1) + F2 :

utt = ±|ux|
2puxx + ε3|ux|

p+1/2 + 2x, ε3 ∈ {0, 1},

2.10. 2(1 + p)Du + (1 + p)Dt + (1 + 2p)D(x) + F2, D(1) : utt = ±|ux|
2puxx + 2 ln |ux|,

2.11. 2Du +Dt + 2F2, D(1) + F2 : utt = ±u−1
x uxx + 2 ln |ux|+ 2x.

Nontrivial constraints for constant parameters which are imposed by the maximality condition
for the corresponding extensions are discussed in detail after Theorem 5.

Cases 2.1 and 2.2 correspond to the first and second spans from Lemma 5, respectively. For the
associated invariant equations to have a simpler form, these span are replaced by the equivalent
spans 〈Du−D(p), Dt−D(1)〉, where p = −b−1, and 〈Du+D(x), Dt−G(x)〉, respectively. Note
that we always can set a constant multiplier of the arbitrary element f to ±1, e.g., by scaling
of t.

The third span from Lemma 5 in fact represents a multiparametric series of candidates
for appropriate extensions, which is partitioned in the course of the construction of invariant
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equations into Cases 2.3–2.11. Not all values of series parameters give appropriate extensions.
Additional constraints for parameters follow from the consistence conditions of the associated
system in the arbitrary elements,

fx = 0, ((a1 − a3)ux + ε0)fux = 2(a3 − a2)f,

gx = 2ε2, ((a1 − a3)ux + ε0)gux = (a1 − 2a2)g − 2ε2a3x+ 2ε1,

with the inequality f 6= 0 and the requirement that the dimension of extensions should not
exceed two.

The above partition is carried out in the following way.
If a1 = a3 = a2, the common value of a’s is nonzero and we can set it to be equal 1 by scaling

the first basis elements of the span. We also have that ε1 = 0 mod G∼ and ε2 = 0. Depending on
either ε0 = 0 or ε0 = 1 (which is replaced by the equivalent value ε0 = −1) we obtain Cases 2.3
and 2.4, respectively.

If a1 = a3 6= a2, scaling the first basis elements of the span allows us to set a3 − a2 = 1.
The parameter ε0 should be nonzero since otherwise f = 0. Therefore, ε0 = 1 mod G∼. The
conditions a2 = 1, a2 = 0 and a2 6= 0, 1 lead to Cases 2.5, 2.6 and 2.7, respectively. In the last
case we denote 1 − a2 by q. This value should also be nonzero since otherwise the extension
dimension is greater than two.

Let a1 6= a3. Then ε0 = 0 mod G∼ and by scaling the first basis elements of the span we can
also set a1 − a3 = 1. Introducing the notation p = a3 − a2 and q = a1 − 2a2, we obtain that
a1 = 2+2p−q, a2 = 1+p−q and a3 = 1+2p−q. The further partition depends on values of ε2,
q and ε1. For ε2 = 0 the dimension of extension is not greater than two only if either q 6= 0 and
then ε1 = 0 mod G∼ (Case 2.8) or q = 0 and ε1 6= 0 and then ε1 = 1 mod G∼ (Case 2.10). The
condition ε2 = 1 implies that q = p + 1/2. If additionally either q = ε1 = 0 or q 6= 0 (and then
ε1 = 0 mod G∼), we have Case 2.9. Case 2.11 corresponds to the additional constraints q = 0
and ε1 6= 0 (i.e. ε1 = 1 mod G∼).

Consider the candidates for three-dimensional appropriate extensions listed in Lemma 6.
The compatibility of the associated systems in the arbitrary elements, supplemented with the
inequality f 6= 0, implies p1+p2 = 1 and d = 0 for the first and the second span of Lemma 6, re-
spectively. The general solutions of these systems up to G∼-equivalence are (f, g) = (±|ux|

2p, 0)
and (f, g) = (±e2ux , 0). This gives the following cases of Lie symmetry extensions:

3.1. (1 + p)Du + pD(x), (1 + p)Dt +D(x), D(1), p 6= −2,−1, 0: utt = ±|ux|
2puxx,

3.2. Du +D(x) + G(x), Dt − G(x), D(1) : utt = ±e2uxuxx.

Special cases of Lie symmetry extensions in class (1) are presented before this section. More
precisely, all inequivalent equations whose maximal Lie invariance algebras are not contained
in the projection of the equivalence algebra g∼ to the variable space are listed in Lemma 1.
Equations from class (1) which are invariant with respect to two linearly independent operators
of the form PQi, where Qi = D(ϕi)+G(ψi)+ciF

2, are described in Corollary 5. For convenience,
we collect the derived cases in a single table and formulate the final result of group classification
in the class (1) as a theorem. Recall that within the class (1) G∼-equivalence coincides with the
general point equivalence, cf. Corollary 4.

Theorem 5. All G∼-inequivalent (resp. point-inequivalent) cases of Lie symmetry extensions
of the kernel algebra g∩ in the class (1) are exhausted by cases presented in Table 1.

In each case of Table 1 we present only basis elements of the corresponding Lie invariance
algebra that belong to the complement of the basis {∂t, ∂u, t∂u} of g∩. The spans of g∩ and the
vector fields given in cases 1–6 and 9 of Table 1 are the maximal Lie invariance algebra of the
corresponding equations for the general values of the associated parameter-functions f̃ and g̃,
but for certain values of these parameter-functions additional extensions are possible.
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Table 1: Lie symmetry extensions of the kernel algebra g∩ = 〈∂t, ∂u, t∂u〉 for the class (1)

N f g Basis of extension

One-dimensional extensions

1 f̃(x− ε ln |ux|)u
−1
x g̃(x− ε ln |ux|) + 2 ln |ux| t∂t + 2ε∂x + 2(u+ t2)∂u

2 f̃(x− ε ln |ux|)|ux|
2p g̃(x− ε ln |ux|)|ux|

2pux −pt∂t + ε∂x + u∂u

3 f̃(ux)e
2x g̃(ux)e

2x t∂t − ∂x

4 f̃(x)e2ux g̃(x)e2ux t∂t − x∂u

5 f̃(ux) g̃(ux) + 2εx ∂x + εt2∂u

Two-dimensional extensions

6 δu−4
x g̃(x)u−3

x t2∂t + tu∂u, 2t∂t + u∂u

7 δe2x|ux|
2p, p 6= 0,−2 νe2x|ux|

2pux, ν(p+ 1) 6= δ p∂x − u∂u, t∂t − ∂x

8 δx2e2ux νxe2ux , ν 6= δ x∂x + u∂u, t∂t − x∂u

9 f̃(ux) 0 ∂x, t∂t + x∂x + u∂u

10 δ e−ux ∂x, t∂t + x∂x + (u+ x)∂u

11 δe2ux 2ux ∂x, t∂t + 2x∂x + (2u+ x+ t2)∂u

12 δe2ux eux+2ε2x, ε2∈{−1, 1} x∂x + (u+ x)∂u, ∂x + ε2t
2∂u

13 δe2ux equx , q 6= 0 ∂x, (1− q)t∂t + (2− q)x∂x + ((2− q)u+ x)∂u

14 δ|ux|
2p |ux|

q , *) ∂x, (1+p−q)t∂t + (1+2p−q)x∂x + (2+2p−q)u∂u

15 δ|ux|
2p ε|ux|

p+1/2+2x ∂x + t2∂u, t∂t + (1+2p)x∂x + (3+2p)u∂u

16 δ|ux|
2p 2 ln |ux| ∂x, (1+p)t∂t + (1+2p)x∂x + (2(1+p)u+ t2)∂u

17 δu−1
x 2 ln |ux|+ 2x ∂x + t2∂u, t∂t + 2(u+ t2)∂u

Three-dimensional extensions

18 δu−4
x u−3

x t2∂t + tu∂u, 2t∂t + u∂u, ∂x

19 δu−4
x νx−1u−3

x , ν 6= 0 t2∂t + tu∂u, 2t∂t + u∂u, 2x∂x + u∂u

20 δ|ux|
2p, p 6= −2, 0 0 ∂x, t∂t + x∂x + u∂u, pt∂t − u∂u

21 δe2ux 0 ∂x, t∂t + x∂x + u∂u, t∂t − x∂u

Four-dimensional extensions

22 δu−4
x 0 t2∂t + tu∂u, 2t∂t + u∂u, ∂x, 2x∂x + u∂u

Here δ = ±1 mod G∼ and ε ∈ {0, 1} mod G∼. In Case 15 ε = 0 mod G∼ if p = −1/2.
*) q 6= 0, (p, q) 6= (−1,−1), (−2,−3) in Case 14.

In the course of collecting cases of Lie symmetry extensions into Table 1, they are properly
arranged. In particular, Cases 1 and 2 of Corollary 5 are merged with Cases 2.10 and 3.1 into
Cases 16 and 20 of Table 1, respectively. As the value p = −1 is singular for the basis of
Case 2.10, the bases of Case 2.10 and Case 2 of Corollary 5 are changed in order to be agreed.
Case 2.6 with ε2 = 0 is not included in Case 12 of Table 1 since it is united with Case 2.7 into
Case 13 of this table.

Within the algebraic approach used for group classification of the class (1) the construction of
Lie invariance algebras precedes the construction of associated invariant equations. This is why
the simplification of the form of bases of Lie symmetry extensions, in a certain sense, dominates
in Table 1. The form of invariant equations can be slightly simplified if simultaneous minor
complication of bases of the corresponding Lie invariance algebras are permitted. In particular,
multipliers equal to two can be removed from arbitrary elements by equivalence transformations
or re-denoting the parameter p.

Note that the unique inequivalent case of Lie symmetry extension for which the corresponding
Lie invariance algebra is of maximal dimension possible for equations the class (1) and equal to
seven, Case 22, is not associated with a subalgebra of the equivalence algebra g∼.
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Now we discuss nontrivial constraints for constant parameters which are imposed by the
maximality condition for the corresponding extensions.

The equation utt = e2x|ux|
2p(δuxx + νux) corresponding to Case 7 for general values of

parameters is linear if p = 0. If p 6= −1, it is reduced by the transformation t̃ = |p + 1|−p−1t,
x̃ = e−x/(p+1), ũ = u to the equation ũt̃t̃ = |ũx̃|

2p(δũx̃x̃ + ν̃x̃−1ũx̃) with ν̃ = δ − ν(p + 1), which
coincides with the equation of Case 19 (resp. 20, resp. 22) if p 6= −2 and ν̃ 6= 0 (resp. p = −2
and ν̃ 6= 0, resp. p = −2 and ν̃ = 0).

The equation utt = e2ux(δx2uxx + νxux) corresponding to Case 8 is similar with respect to
the transformation t̃ = t, x̃ = x, ũ = u+x ln |x|−x to the equation ũt̃t̃ = e2ũx̃(δũx̃x̃+(ν−δ)x̃−1)
which coincides with the equation of Case 21 if ν = δ.

Consider the subclass of the class (1) associated with the additional constraints fx = gx = 0,
i.e., the class of equations of the general form

utt = f(ux)uxx + g(ux), (46)

where (fux , guxux) 6= (0, 0). Lie symmetries of these equations were comprehensively described
in [12] using no equivalence relation. The selection of Cases 5|ε=0, 9, 10, 11, 13, 14, 16, 18, 20, 21
and 22 from Table 1, which are related to equations from the subclass (46), represents the exhaus-
tive list of Lie symmetry extensions in this subclass up to general point equivalence, where the
algebra g∩1 = 〈∂t, ∂u, t∂u, ∂x〉 given in Case 5|ε=0 is the corresponding kernel algebra. Theorems 3
and 4 imply that the equivalence group G∼

2 of the subclass (46) is a subgroup of the equivalence
group G∼, namely, it consists of transformations of the form (14) with ϕxx = ψxx = 0. As
all necessary shifts, scalings and sign changes of the derivatives utt, uxx and ux are induced by
transformations from the equivalence group, the majority of constants parameterizing elements
of the classification list from [12] can be set to appropriate values (0, 1, ±1 or others). In
other words, these constants are inessential from the point of view of symmetry analysis. As a
result, the classification list from [12] is reduced to the above selection of cases from Table 1,
excluding a single case given in [12] as Case X. After simplifications by shifts, scalings and sign
changes of derivatives induced by transformations from G∼

2 , the value of arbitrary elements for
this case takes the form f = δu−2

x and g = δu−1
x , where δ = ±1. A value of the coefficient

of u−1
x in the expression for g is not essential. We set it equal to δ for convenience. The re-

lated equation utt = δu−2
x uxx + δu−1

x has the six-dimensional maximal Lie invariance algebra
〈∂t, ∂u, t∂u, ∂x, e

x∂x, t∂t + u∂u〉 and is reduced by the transformation T : t̃ = t, x̃ = ex, ũ = u to
the equation ũt̃t̃ = δũ−2

x̃ ũx̃x̃, which corresponds to Case 20|p=−1 from Table 1. This is why we put
(p, q) 6= (−1,−1) as a parameter constraint for Case 14 from Table 1. The presence of one more
inequivalent case in the course of the classification of the subclass (46) up to G∼

2 -equivalence in-
stead of general point equivalence is explained by the fact that the transformation T does not be-
long to G∼

2 . To complete the discussion of singular values of parameters for Case 14 from Table 1,
we only note that the values p = −2 and q = −3 directly give Case 18 and for the value q = 0 the
corresponding equation is reduced by the transformation ũ = u− t2/2 to the equation associated
with Case 20. The same transformation reduces Case 13 with q set to zero formally to Case 21.

Any equation from the class (1) is a potential equation for the equation of the form

vtt = (f(x, v)vx + g(x, v))x (47)

with the same value of the arbitrary elements f and g, where the argument ux is replaced by v.
Indeed, Eq. (47) possesses two inequivalent characteristics of conservation laws, λ1 = 1 and
λ2 = t. The potential systems constructed with the simplest conserved vectors associated with
these characteristics is

w1
x = vt, w1

t = f(x, v)vx + g(x, v), (48)

w2
x = tvt − v, w2

t = tf(x, v)vx + tg(x, v). (49)
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We denote tw1 − w2 by u. In terms of the dependent variables v, w1 and u, the joint potential
system (48), (49) takes the form ux = v, ut = w1, w1

t = f(x, v)vx + g(x, v) which is a potential
system for system (48), i.e., it is formally a second-level potential system of Eq. (47). Hence
u is a second-level potential for this equation. Excluding v and w1 from the last system, we
obtain Eq. (1). In order to derive Eq. (47) from Eq. (1), we should totally differentiate Eq. (1)
with respect to x and replace ux by v. As the coefficients of any Lie symmetry operator Q =
τ∂t + ξ∂x + η∂u of Eq. (1) satisfy the determining equations τu = ξu = ηuu = ηxu = 0, the
coefficient of ∂v in the prolongation of this operator to v according to the equality v = ux is
equal to ηx+(ηu− ξx)ux and hence does not depend on u. Therefore, Lie symmetries of Eq. (1)
induce no purely potential symmetries of Eq. (47).

We checked cases from Table 1 using the package DESOLV [10, 51] for symbolic calculations
of Lie symmetries, whenever it was possible.

12 Conclusion

Results of this paper and those existing in the literature on symmetry analysis of differen-
tial equations allow us to comparatively analyze different approaches to group classification
of differential equations (partial preliminary group classification, complete preliminary group
classification and complete group classification) within the framework of the algebraic method.
Given a class L|S of (systems of) differential equations with the equivalence group G∼ and the
equivalence algebra g∼, the application of each of the above approaches involves, in some way,
classification of certain subalgebras of g∼. The essential point is what subalgebras of g∼ should
be classified and what equivalence relation should be used in the course of the classification.

In the course of partial preliminary group classification, a proper subalgebra s of g∼ is fixed
and then only subalgebras of s are classified. This approach may be relevant only if the sub-
algebra s is noticeable from the physical or another point of view. Hence the choice of such
subalgebra should be strongly justified which, unfortunately, is often ignored in the existing
literature on the subject. Differences in the consideration of the subalgebra s instead of the
whole algebra g∼ are especially significant in the case when g∼ is an infinite-dimensional alge-
bra whereas s is a finite-dimensional subalgebra. A seeming advantage of replacing g∼ by s is
that in general finite-dimensional algebras are much simpler objects than infinite-dimensional
ones. At the same time, partial preliminary group classification has a few essential weaknesses
most of which are related to the following fact: As the fixed subalgebra s of g∼ is usually not
invariant under the adjoint action of the equivalence group G∼, this group does not generate a
well-defined equivalence relation on subalgebras of s. This is a reason why subalgebras of s are
classified up to the weaker internal equivalence on s, which is induced by the adjoint action of
the continuous transformation group associated with s, instead of G∼-equivalence.

The exhaustive classification of subalgebras up to the internal equivalence is a cumbersome al-
gebraic problem, possessing no algorithmic solution even for finite-dimensional algebras. In order
to simplify it, only one-dimensional subalgebras are usually classified which crucially increases
incompleteness of results obtained in the framework of partial preliminary group classification.
Although the number of classification cases remains quite large, many of them are inessential
from the G∼-equivalence point of view, not to mention the general point equivalence. The
presence of equivalent cases unnecessarily complicates both the solution of the group classifica-
tion problem and further applications of classification results, e.g., for the construction of exact
solutions of systems from the class L|S .

Complete preliminary group classification of the class L|S is based on the classification of
subalgebras of the entire equivalence algebra g∼ up to G∼-equivalence. As both the objects, g∼

andG∼, are directly related to the class L|S and well consistent to each other, this approach looks
as quite natural. For weakly normalized classes of differential equations, it gives an exhaustive
classification list. Moreover, complete preliminary group classification always is a necessary step

35



for complete group classification within the framework of the algebraic method. It is obvious that
complete preliminary group classification gives a list which is closer to exhausting all possible Lie
symmetry extensions than any list obtained via partial preliminary group classification. At the
same time, due to the usage of G∼-equivalence which is stronger than the internal equivalence
on a subalgebra of g∼, the former list can contain even a less number of cases than the latter
one. For example, 33 cases of one-dimensional extensions of the kernel algebra were constructed
for the class (1) in [18] in the course of partial preliminary group classification involving a ten-
dimensional subalgebra of the equivalence algebra of this class. All these cases are G∼-equivalent
to particular subcases of Cases 1–5 from Table 1 of the present paper.

The approach of complete preliminary group classification can be optimized via selecting of
appropriate subalgebras of g∼, i.e. subalgebras whose projections to the space of system vari-
ables are maximal Lie invariance algebras of systems from the class L|S . The simplest common
property of appropriate subalgebras is that they contain the kernel algebra. Other criteria for
selecting of appropriate subalgebras including bounds for dimensions of extensions or additional
extensions are derived via examination of the determining equations for Lie symmetries of sys-
tems from the class L|S . In a certain sense, this means combining the algebraic method of group
classification with the direct method based on the study of compatibility and the integration
of the determining equations up to G∼-equivalence. The usage of the optimized technique of-
ten allows one to reduce the classification problem to classification of certain low-dimensional
subalgebras of the equivalence algebra, even if the equivalence algebra is infinite-dimensional
and there exist infinite-dimensional extensions of the kernel. Related calculations are not too
cumbersome. Thus, minimal computations which are necessary for complete preliminary group
classification of class (1) are exhausted by the first parts of Sections 4 and 8 and entire Sec-
tions 5, 6, 10 and 11. These computations result in the absolute majority of inequivalent cases
of Lie symmetry extensions for the class (1), which are presented in Table 1 (the exceptions are
only Cases 6, 18, 19 and 22).

There exist two ways to apply the algebraic method to complete group classification. The
first way is to reduce complete group classification to preliminary one. The reduction can be
realized, e.g., via proving that the class L|S is weakly normalized or partitioning this class into
weakly normalized subclasses and other subclasses which can be easily classified by the direct
method. Although the partition into subclasses usually involves cumbersome and sophisticated
computations, it is an effective tool of group analysis since it accurately adapts the classification
procedure to the structure of the class L|S . This is the way that has been used in the present
paper. The class (1) is partitioned into two subclasses possessing the same equivalence group as
the whole class (1). One of the subclasses is normalized, the other is semi-normalized and mapped
by equivalence transformations onto its subclass (29) of simple structure. Group classification
of the subclass (29) has been obtained in the course of the partition which results in only four
special cases of Lie symmetry extension (Cases 6, 18, 19 and 22 from Table 1), which are not
related to subalgebras of g∼. The second way is to directly classify G∼-inequivalent appropriate
algebras contained in the span g〈〉 = 〈gθ|θ ∈ S〉 of maximal Lie invariance algebras, gθ, of
all systems from the class L|S . This way properly works only if the class L|S possesses certain
properties, e.g., if the maximal Lie invariance algebra gθ is of low dimension for any θ ∈ S [22] or
if the class L|S is at least weakly normalized or partitioned into weakly normalized subclasses but
this property is not explicitly checked [3, 27, 28, 54]. An explanation for the above observation
is that G∼-equivalence is not appropriate in the course of classification of subalgebras contained
in g〈〉 if g〈〉 is strongly inconsistent with the equivalence algebra g∼ (e.g., much wider than the
projection Pg∼ of g∼ to the space of system variables).

Due to the above partition of the class (1) we have obtained essentially stronger results than
the solution of the usual group classification problem by Lie–Ovsiannikov for this class. The
partition exhaustively describes the set of admissible transformations in the class (1). Moreover,
the fact that the whole class (1) is semi-normalized guarantees that there are no additional point
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equivalence transformations between cases of Lie symmetry extensions presented in Table 1, i.e.,
the same table gives the complete group classification of the class (1) with respect to general
point equivalence.

The extension and clarification of the group classification toolbox is by no means a pure
mathematical problem. Methods from symmetry analysis including group classification have
the potential to provide, in particular, a unifying framework to construct invariant local closure
or parameterization schemes for averaged nonlinear differential equations [33, 40, 47]. As finding
appropriate closure ansatzes for averaged differential equations is at the basis of any numerical
model of (geophysical) fluid dynamical systems, it is immediately clear that group classification
can play a crucial role in the construction of different computational codes for such systems.
The classes of differential equations arising in the course of the parameterization problem are
usually much wider and have more complicated structure than the classes studied in conventional
group classification. It generally cannot be expected to completely solve the group classification
problems for such classes using existing methods. Hence the development of new tools for
group classification of differential equations simultaneously with the improvement of well-known
approaches still remains an attractive and challenging problem. Especially for the above complex
classification problems, the whole framework of the algebraic method as described and extended
in the present paper including the proposed algebraic method of finding equivalence groups
seems to be most appealing.
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[29] Lie S., Über die Integration durch bestimmte Integrale von einer Klasse linearer partieller Differentialgle-
ichungen, Arch. for Math. 6 (1881), 328–368, (Translation by N.H. Ibragimov: S. Lie, On Integration of a
Class of Linear Partial Differential Equations by Means of Definite Integrals, CRC Handbook of Lie Group
Analysis of Differential Equations, 2:473–508, 1994).

[30] Lie S., Vorlesungen über Differentialgleichungen mit bekannten infinitesimalen Transformationen, B.G. Teub-
ner, Leipzig, 1891.

[31] Lisle I.G., Equivalence transformations for classes of differential equations, Ph.D. thesis, University of British
Columbia, 1992.

[32] Meleshko S.V., Group classification of equations of two-dimensional gas motions, Prikl. Mat. Mekh. 58

(1994), 56–62, in Russian; translation in J. Appl. Math. Mech., 58:629–635.

[33] Oberlack M., Invariant modeling in large-eddy simulation of turbulence, in: Annual research briefs, Stanford
University, 1997.

[34] Olver P.J., Application of Lie groups to differential equations, Springer, New York, 2000.

[35] Oron A. and Rosenau P., Some symmetries of the nonlinear heat and wave equations, Phys. Lett. A 118

(1986), 172–176.

[36] Ovsiannikov L.V., Group analysis of differential equations, Acad. Press, New York, 1982.

[37] Ovsjannikov L.V., Gruppovye svoistva differentsialnykh uravnenii., Izdat. Sibirsk. Otdel. Akad. Nauk SSSR,
Novosibirsk, 1962.

[38] Ovsjannikov L.V. and Ibragimov N.H., Group analysis of the differential equations of mechanics, in General
mechanics, vol. 2, Moscow, pp. 5–52, 1975. In Russian.

[39] Popovych R.O., Classification of admissible transformations of differential equations, in Collection of Works
of Institute of Mathematics, vol. 3, Kyiv, pp. 239–254, 2006.

38

http://www.cmst.csiro.au/LIE/LIE.htm


[40] Popovych R.O. and Bihlo A., Symmetry preserving parameterization schemes, arXiv: 1010.3010v2, 36 pp.,
2010.

[41] Popovych R.O., Boyko V.M., Nesterenko M.O. and Lutfullin M.W., Realizations of real low-dimensional
Lie algebras, J. Phys. A 36 (2003), 7337–7360, see arXiv:math-ph/0301029v7 for an extended and revised
version.

[42] Popovych R.O. and Ivanova N.M., New results on group classification of nonlinear diffusion–convection
equations, J. Phys. A 37 (2004), 7547–7565.

[43] Popovych R.O., Ivanova N.M. and Eshraghi H., Group classification of (1+1)-dimensional Schrödinger equa-
tions with potentials and power nonlinearities, J. Math. Phys. 45 (2004), 3049–3057.

[44] Popovych R.O., Kunzinger M. and Eshraghi H., Admissible transformations and normalized classes of non-
linear Schrödinger equations, Acta Appl. Math. 109 (2010), 315–359.

[45] Popovych R.O., Kunzinger M. and Ivanova N.M., Conservation laws and potential symmetries of linear
parabolic equations, Acta Appl. Math. 100 (2008), 113–185.

[46] Popovych R.O. and Vaneeva O.O., More common errors in finding exact solutions of nonlinear differential
equations: Part I, Commun. Nonlinear Sci. Numer. Simul. 15 (2010), 3887–3899, arXiv:0911.1848v2.

[47] Razafindralandy D., Hamdouni A. and Oberlack M., Analysis and development of subgrid turbulence models
preserving the symmetry properties of the Navier–Stokes equations, Eur. J. Mech. B/Fluids 26 (2007), 531–
550.

[48] Song L. and Zhang H., Preliminary group classification for the nonlinear wave equation utt = f(x, u)uxx +
g(x, u), Nonlinear Anal. 70 (2009), 3512–3521.

[49] Vaneeva O.O., Johnpillai A.G., Popovych R.O. and Sophocleous C., Enhanced group analysis and conserva-
tion laws of variable coefficient reaction-diffusion equations with power nonlinearities, J. Math. Anal. Appl.
330 (2007), 1363–1386.

[50] Vaneeva O.O., Popovych R.O. and Sophocleous C., Enhanced group analysis and exact solutions of variable
coefficient semilinear diffusion equations with a power source, Acta Appl. Math. 106 (2009), 1–46.

[51] Vu K.T., Butcher J. and Carminati J., Similarity solutions of partial differential equations using DESOLV,
Comput. Phys. Comm. 176 (2007), 682–693.

[52] Winternitz J.P. and Gazeau J.P., Allowed transformations and symmetry classes of variable coefficient
Korteweg-de Vries equations, Phys. Lett. A 167 (1992), 246–250.

[53] Wittkopf A., Algorithms and implementations for differential elimination, Ph.D. thesis, Simon Fraser Uni-
versity Burnaby, BC, Canada, 2004.

[54] Zhdanov R.Z. and Lahno V.I., Group classification of heat conductivity equations with a nonlinear source,
J. Phys. A 32 (1999), 7405–7418.

39

http://arxiv.org/abs/math-ph/0301029
http://arxiv.org/abs/0911.1848

	1 Introduction
	2 Point transformations in classes of differential equations
	3 Algebraic method of group classification
	4 Equivalence algebra
	5 Preliminary study of admissible transformations
	6 Equivalence group
	7 Calculation of equivalence group by the algebraic method
	8 Determining equations for Lie symmetries
	9 Set of admissible transformations
	10 Classification of inequivalent appropriate subalgebras
	11 Result of group classification
	12 Conclusion

