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Abstract

The classical Poisson reduction of a given Lagrangian system with (local) gauge symmetries
has to be done before its quantization. We propose here a coordinate free and self-contained
mathematical presentation of the covariant Batalin-Vilkovisky Poisson reduction of a general gauge
theory. It was explained in physical terms (DeWitt indices) in Henneaux and Teitelboim’s book
[HT92]. It was studied in coordinates using jet spaces by Barnich-Brandt-Henneaux [BBH95],
Stasheff [Sta98], Fulp-Lada-Stasheff [FLS02], among others. The main idea of our approach is to
use the functor of point approach to spaces of fields to gain coordinate free geometrical insights on
the spaces in play, and to focus on the notion of Noether identities, that is a simple replacement
of the notion of gauge symmetry, harder to handle algebraically. Our main results are a precise
formulation and understanding of the optimal finiteness hypothesis necessary for the existence
of a solution of the classical master equation, and an interpretation of the Batalin-Vilkovisky
construction in the setting of homotopical geometry of non-linear partial differential equations.
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Introduction

This paper gives a self contained and coordinate free presentation of the Batalin-Vilkovisky for-
malism for homotopical Poisson reduction of gauge theories, in the setting of algebraic non-linear
analysis, expanding on (and giving full proofs for) the very short presentation given in [Pau10],
Section 4. We have tried to be as self-contained as possible so there may be some repetitions.
We refer to loc. cit. for further references on the various subjects treated here. We also refer to
[Pau11] for a more complete and detailed account of this theory and of its applications in physics.

1 Lagrangian variational problems

For the reader’s convenience, we recall shortly the formulation summed-up in [Pau10] and fully
described in [Pau11] of general variational problems, and its grounding on functorial geometry.
This is certainly useful, but not strictly necessary to understand our final results.

Definition 1.0.1. A Lagrangian variational problem is made of the following data:

1. A space M called the parameter space for trajectories,

2. A space C called the configuration space for trajectories,

3. A morphism π : C →M (often supposed to be surjective),

4. A subspace H ⊂ Γ(M,C) of the space of sections of π

Γ(M,C) := {x : M → C, π ◦ x = id},

called the space of histories,

5. A functional (partial function with a domain of definition)

S : H → R

on histories with values in a space R usually given by R (or R[[~]]) called the action functional.

The main object of classical physics is the space

T = {x ∈ H| dxS = 0}

of critical points of the action functional in histories.

Recall from loc. cit. that the word space of this definition means essentially a sheaf

X : Legosop → Sets

on a category Legos of geometrical building blocs equiped with a Grothendieck topology τ , also
called a space modeled on (Legos, τ). Spaces that are locally representable are called manifolds or
varieties. To present also higher gauge theory examples, one has to work with homotopical spaces,
but we will not do that here.

We refer to Deligne-Morgan’s lectures [DM99] and Manin’s book [Man97] for an introduction
to super-varieties. The reference [Pau11] gives a complete account of this in the functorial setting.
We will work without further comments with the following types of spaces:
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1. Smooth spaces (also called diffeologies), modeled on the category Legos = OpenC∞ of open
subsets of Rn for varying n with smooth maps between them.

2. Smoothly algebraic spaces, modeled on the category Legos = AlgopC∞ opposite to the cate-
gory of Lawvere’s smooth algebras (see [MR91] and [Pau11]), with its Zariski topology.

3. Smooth super-spaces, modeled on the category Legos = OpensC∞ of smooth open subsets of
the super affine space Rn|m.

4. Smoothly algebraic super-spaces, modeled on the category Legos = AlgsC∞ of smooth super-
algebras, described in [Pau11].

All these types of spaces are useful (and actually necessary) to describe differential calculus on
spaces of maps between smooth super-manifolds in a proper mathematical setting. If M and C
are two varieties in the above sense, the space of maps

Hom(M,C) : Legosop → Sets

is defined by
Hom(M,C)(U) = Hom(M × U,C).

If π : C →M is a morphism of varieties, the space Γ(M,C) is simply the corresponding subspace
in Hom(M,C).

2 Algebraic analysis of partial differential equations

In this section, we present the natural coordinate free approach to partial differential equations,
in the settings of D-modules and D-algebras. We refer to Schapira’s survey [Sch10] for an efficient
introduction to the general methods of linear algebraic analysis on varieties and to Beilinson and
Drinfeld’s book [BD04] for the non-linear setting.

This section expands on the article [Pau10], giving more details and explanations. In particular,
we use systematically the functor of point approach to spaces of fields, as explained in Section 1
(see also [Pau11] for a complete treatment) without further comments. This means that spaces
of superfunctions are treated essentially as usual spaces, and functionals are defined as partially
defined functions between (functors of points of) usual spaces. We use Beilinson and Drinfeld’s
functorial approach [BD04] to non-linear partial differential equations, and we relate this approach
to ours. We are also inspired by Vinogradov [Vin01] and Krasilshchik and Verbovetsky [KV98].

2.1 D-modules and linear partial differential equations

We refer to Schneiders’ review [Sch94] and Kashiwara’s book [Kas03] for an introduction to D-
modules. We just recall here basic results, that are necessary for our treatment of non-linear partial
differential equations in Section 2.3.

Let M be a smooth variety of dimension n and D be the algebra of differential operators on
M . Recall that locally on M , one can write an operator P ∈ D as a finite sum

P =
∑
α

aα∂
α
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with aα ∈ OM ,
∂ = (∂1, . . . , ∂n) : OM → OnM

the universal derivation and α some multi-indices.
To write down the equation Pf = 0 with f in an OM -module S, one needs to define the

universal derivation ∂ : S → Sn. This is equivalent to giving S the structure of a D-module. The
solution space of the equation with values in S is then given by

SolP (S) := {f ∈ S, Pf = 0}.

Remark that
SolP : Mod(D)→ VectRM

is a functor that one can think of as representing the space of solutions of P . Denote MP the
cokernel of the D-linear map

D .P−→ D

given by right multiplication by P . Applying the functor HomMod(D)(−,S) to the exact sequence

D .P−→ D −→MP → 0,

we get the exact sequence

0→ HomMod(D)(MP ,S)→ S P.−→ S,

which gives a natural isomorphism

SolP (S) = HomMod(D)(MP ,S).

This means that the D-module MP represents the solution space of P , so that the category of
D-modules is a convenient setting for the functor of point approach to linear partial differential
equations.

Remark that it is even better to consider the derived solution space

RSolP (S) := RHomMod(D)(MP ,S)

because it encodes also information on the inhomogeneous equation

Pf = g.

Indeed, applying HomD(−,S) to the exact sequences

0→ IP → D →MP → 0

0→ NP → D → IP → 0

where IP is the image of P and NP is its kernel, one gets the exact sequences

0→ HomD(MP ,S)→ S → HomD(IP ,S)→ Ext1D(M,S)→ 0
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0→ HomD(IP ,S)→ S → HomD(NP ,S)→ ExtD(IP ,S)→ 0

If Pf = g, then QPf = 0 for Q ∈ D implies Qg = 0. The second exact sequence implies that
this system, called the algebraic compatibility condition for the inhomogeneous equation Pf = g
is represented by the D-module IP , because

HomD(IP ,S) = {g ∈ S, Q.g = 0, ∀Q ∈ NP }.

The first exact sequence shows that Ext1D(M,S) are classes of vectors f ∈ S satisfying the algebraic
compatibility conditions modulo those for which the system is truly compatible. Moreover, for
k ≥ 1, one has

Ext1D(IP ,S) ∼= Extk+1
D (MP ,S)

so that all the ExtkD(MP ,S) give interesting information about the differential operator P .
Recall that the sub-algebra D of EndR(O), is generated by the left multiplication by functions

in OM and by the derivation induced by vector fields in ΘM . There is a natural right action of D
on the O-module Ωn

M by
ω.∂ = −L∂ω

with L∂ the Lie derivative.
There is a tensor product in the category Mod(D) given by

M⊗N :=M⊗O N .

The D-module structure on the tensor product is given on vector fields ∂ ∈ ΘM by Leibniz’s rule

∂(m⊗ n) = (∂m)⊗ n+m⊗ (∂n).

There is also an internal homomorphism objectHom(M,N ) given by the O-moduleHomO(M,N )
equipped with the action of derivations ∂ ∈ ΘM by

∂(f)(m) = ∂(f(m))− f(∂m).

An important system is given by the D-module of functions O, that can be presented by the
De Rham complex

D ⊗ΘM → D → O → 0,

meaning that O, as a D-module, is the quotient of D by the sub-D-module generated by vector
fields. The family of generators ∂i of the kernel of D → O form a regular sequence, i.e., for every
k = 1, . . . , n, ∂k is not a zero divisor in D/(∂1, . . . , ∂k−1) (where ∂−1 = 0 by convention). This
implies (see Lang [Lan93], XXI §4 for more details on Koszul resolutions) the following:

Proposition 2.1.1. The natural map

Sym(Moddg(D),⊗)([D ⊗ΘM → D]) −→ O

is a quasi-isomorphism of dg-D-modules. The left hand side gives a free resolution of O as a
D-module called the universal Spencer complex.
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Proposition 2.1.2. The functor
M 7→ Ωn

M ⊗OM

induces an equivalence of categories between the categories Mod(D) and Mod(Dop) of left and
right D-modules whose quasi-inverse is

N 7→ HomOM
(Ωn

M ,N ).

The monoidal structure induced on Mod(Dop) by this equivalence is denoted ⊗!.

Definition 2.1.1. Let S be a right D-module. The De Rham functor with values in S is the
functor

DRS : Mod(D)→ VectRM

that sends a left D-module to

DRS(M) := S
L
⊗DM.

The De Rham functor with values in S = Ωn
M is denoted DR and simply called the De Rham

functor. One also denotes DRr
S(M) =M

L
⊗D S if S is a fixed left D-module and M is a varying

right D-module, and DRr := DRr
O.

Proposition 2.1.3. The natural map

Ωn
M ⊗O D → Ωn

M

ω ⊗Q 7→ ω(Q)

extends to a Dop-linear quasi-isomorphism

Ω∗M ⊗O D[n]
∼→ Ωn

M .

Proof. This follows from the fact that the above map is induced by tensoring the Spencer complex
by Ωn

M , and by the internal product isomorphism

SymModdg(D)([D ⊗ΘM
−1

→ D ⊗O
0

])⊗ Ωn
M −→ (Ω∗M ⊗D[n], d)

X ⊗ ω 7−→ iXω.

We will see that in the super setting, this proposition can be taken as a definition of the right
D-modules of volume forms, called Berezinians.

The D-modules we will use are usually not O-coherent but only D-coherent. The right duality
to be used in the monoidal category (Mod(D),⊗) to get a biduality statement for coherent D-
modules is thus not the internal duality HomO(M,O) but the derived dual Dop-module

D(M) := RHomD(M,D).

The non-derived dual works well for projective D-modules, but most of the D-modules used in field
theory are only coherent, so that one often uses the derived duality operation. We now describe
the relation (based on biduality) between the De Rham and duality functors.
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Proposition 2.1.4. Let S be a coherent Dop-module and M be a coherent D-module. There is a
natural quasi-isomorphism

RSolD(M)(S) := RHomDop(D(M),S) ∼= DRS(M),

where D(M) := RHomD(M,D) is the Dop-module dual of M.

The use of D-duality will be problematic in the study of covariant operations (like Lie bracket
on local vector fields). We will come back to this in Section 2.5.

2.2 Supervarieties and their Berezinians

We refer to Penkov’s article [Pen83] for a complete study of the Berezinian in the D-module setting
and to Deligne-Morgan’s lectures [DM99] and Manin’s book [Man97] for more details on super-
varieties. We also refer to [Pau11] for a treatment of smooth super-geometry making a systematic
use of functors of points.

Let M be a super-variety of dimension n|m and denote Ω1
M the OM -module of differential forms

on M and Ω∗M the super-OM -module of higher differential forms on M , defined as the exterior (i.e.,
odd symmetric) power

Ω∗M := ∧∗Ω1
M := SymMod(OM )Ω

1
M [1].

Remark that Ω∗M is strickly speaking a Z/2-bigraded R-module, but we can see it as a Z/2-graded
module because its diagonal Z/2-grading identifies with SymMod(OM )TΩ1

M , where T : Mod(OM )→
Mod(OM ) is the grading exchange. Thus from now on, we consider Ω∗M as a mere Z/2-graded
module.

The super version of Proposition 2.1.3 can be taken as a definition of the Berezinian, as a
complex of D-modules, up to quasi-isomorphism.

Definition 2.2.1. The Berezinian of M is defined in the derived category of DM -modules by the
formula

BerM := Ω∗M ⊗O D[n].

The complex of integral forms I∗,M is defined by

I∗,M := RHomD(BerM ,BerM ).

The following proposition (see [Pen83], 1.6.3) gives a description of the Berezinian as a D-
module.

Proposition 2.2.1. The Berezinian complex is concentraded in degree 0, and equal there to

BerM := ExtnD(O,D).

It is moreover projective of rank 1 over O.

Proof. This follows from the fact that

∧∗ΘM ⊗O D[−n]→ O
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is a projective resolution such that

BerM := Ω∗M ⊗O D[n] = RHomD(∧∗ΘM ⊗O D[−n],D)

and this De Rham complex is exact (Koszul resolution of a regular module) except in degree zero
where it is equal to

ExtnD(O,D).

Proposition 2.2.2. Suppose M is a super-variety of dimension m|n. The Berezinian is a locally
free O-module of rank 1 on M with generator denoted D(dx1, . . . , dxm, dθ1, . . . , dθn). It f : M →M
is an isomorphism of super-varieties (change of coordinate) with local tangent map Dxf described
by the even matrix

Dxf =

(
A B
C D

)
acting on the real vector space

TxM = (TxM)0 ⊕ (TxM)1,

the action of Dxf on D(dx1, . . . , dxm) is given by the Berezin determinant

Ber(Dxf) := det(A−BD−1C) det(D)−1.

Proof. This is a classical result (see [DM99] or [Man97]).

In the super-setting, the equivalence of left and right D-modules is given by the functor

M 7→M⊗O BerM

that twists by the Berezinian right D-module, which can be computed by using the definition

BerM := Ω∗M ⊗O D[n]

and passing to degree 0 cohomology.
A more explicit description of the complex of integral forms (up to quasi-isomorphism) is given

by
I∗,M := RHomD(BerM ,BerM ) ∼= HomD(Ω∗M ⊗O D[n],BerM )

so that we get
I∗,M ∼= HomO(Ω∗M [n],BerM ) ∼= HomO(Ω∗M [n],O)⊗O BerM

and in particular In,M ∼= BerM .
Remark that Proposition 2.1.3 shows that if M is a non-super variety, then BerM is quasi-

isomorphic with Ωn
M , and this implies that

I∗,M ∼= HomO(Ω∗M [n],O)⊗O BerM ∼= ∧∗ΘM ⊗O Ωn
M [−n]

i−→ Ω∗M ,

where i is the internal product homomorphism. This implies the isomorphism

I∗,M ∼= Ω∗M ,

so that in the purely even case, integral forms essentially identify with ordinary differential forms.
The main use of the module of Berezinians is given by its usefulness in the definition of inte-

gration on super-varieties. We refer to Manin [Man97], Chapter 4 for the following proposition.
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Proposition 2.2.3. Let M be a super-variety, with underlying variety |M | and orientation sheaf
or|M |. There is a natural integration map∫

M
[dt1 . . . dtndθ1 . . . dθq] : Γc(M,BerM ⊗ or|M |)→ R

given in a local chart (i.e., an open subset U ⊂ Rn|m) for g =
∑

I gIθ
I ∈ O by∫

U
[dt1 . . . dtndθ1 . . . dθq]g :=

∫
|U |
g1,...,1(t)dnt.

We finish by describing the inverse and direct image functors in the supergeometric setting,
following the presentation of Penkov in [Pen83].

Let g : X → Y be a morphism of supermanifolds. Recall that for F a sheaf of OY -modules on
Y , we denote g−1F the sheaf on X defined by

g−1F(U) := lim
g(U)⊂V

F(V ).

The (DX , g−1DY ) module of relative inverse differential operators is defined as

DX→Y := OX ⊗g−1OY
g−1DY .

The (g−1DY ,DX) module of relative direct differential operators is defined as

DX←Y := BerX ⊗OX
DX→Y ⊗g−1OY

(Ber∗Y ).

The inverse image functor of D-modules is defined by

g∗D( ) := DX→Y
L
⊗g−1OY

g−1( ) : D(DY )→ D(DX).

If g : X ↪→ Y is a locally closed embedding, the direct image functor is defined by

gD∗ ( ) := DY←X
L
⊗DX

( ) : D(DX)→ D(DY ).

More generally, for any morphism g : X → Y , one defines

gD∗ ( ) := Rf∗(
L
⊗D DX→Y ).

2.3 Differential algebras and non-linear partial differential equa-
tions

In this section, we will use systematically the language of differential calculus in symmetric
monoidal categories, and the functor of points approach to spaces of fields, described in [Pau10].
We restrict our presentation to polynomial partial differential equations with functional coefficients,
but our results also apply to smooth partial differential equations (for a full treatment, that would
be too long for this article, see [Pau11]). We specialize the situation to the symmetric monoidal
category

(Mod(DM ),⊗OM
)
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of left DM -module on a given (super-)variety M . Recall that there is an equivalence

(Mod(DM ),⊗)→ (Mod(DopM ),⊗!)

given by tensoring with the (D,Dop)-modules BerM and Ber−1
M = HomO(BerM ,O). The unit

objects for the two monoidal structures are O and BerM respectively. If M is a D-module (resp.
a Dop-module), we denote Mr := M⊗ BerM (resp. M` := M⊗ Ber−1

M ) the corresponding Dop-
module (resp. D-module).

Recall that if P ∈ Z[X] is a polynomial, one can study the solution space

SolP=0(A) = {x ∈ A, P (x) = 0}

of P with values in any commutative unital ring. Indeed, in any such ring, one has a sum, a
multiplication, a zero and a unit that fulfill the necessary compatibilities to be able to write
down the polynomial. One can thus think of the mathematical object given by the category of
commutative unital rings as solving the mathematical problem of giving a natural setting for a
coordinate free study of polynomial equations. This solution space is representable, meaning that
there is a functorial isomorphism

SolP=0(−) ∼= HomRingscu(Z[X]/(P ),−).

This shows that the solution space of an equation essentially determine the equation itself. Remark
that the polynomial P lives in the free algebra Z[X] on the given variable that was used to write
it.

Suppose now given the bundle π1 : C = R×R→ R = M of smooth varieties. We would like to
study an algebraic non-linear partial differential equation

F (t, ∂itx) = 0

that applies to sections x ∈ Γ(M,C), that are functions x : R → R. It is given by a polynomial
F (t, xi) ∈ R[t, {xi}i≥0]. The solution space of such an equation can be studied with values in
any O-algebra A equipped with an action of the differentiation ∂t (that fulfills a Leibniz rule for
multiplication), the basic example being given by the algebra Jet(OC) := R[t, {xi}i≥0] above with
the action ∂txi = xi+1. The solution space of the given partial differential equation is then given
by the functor

SolD,F=0(A) := {x ∈ A, F (t, ∂itx) = 0}

defined on all OC-algebras equipped with an action of ∂t. To be more precise, we define the
category of D-algebras, that solves the mathematical problem of finding a natural setting for a
coordinate free study of polynomial non-linear partial differential equations with smooth super-
function coefficients.

Definition 2.3.1. Let M be a variety. A DM -algebra is an algebra A in the monoidal category of
DM -modules. More precisely, it is an OM -algebra equipped with an action

ΘM ⊗A → A

of vector fields on M such that the product in A fulfills Leibniz’s rule

∂(fg) = ∂(f)g + f∂(g).
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Recall from [Pau11] that one can extend the jet functor to the category of smooth D-algebras
(and even to smooth super-algebras), to extend the forthcoming results to the study of non-
polynomial smooth partial differential equations. The forgetful functor

Forget : AlgD → AlgO

has an adjoint (free D-algebra on a given O-algebra)

Jet : AlgO → AlgD

called the (infinite) jet functor. It fulfills the universal property that for every D-algebra B, the
natural map

HomAlgO(OC ,B) ∼= HomAlgD(Jet(OC),B)

induced by the natural map OC → Jet(OC) is a bijection.
Using the jet functor, one can show that the solution space of the non-linear partial differential

equation
F (t, ∂itx) = 0

of the above example is representable, meaning that there is a natural isomorphism of functors on
D-algebras

SolD,F=0(−) ∼= HomAlgD(Jet(OC)/(F ),−)

where (F ) denotes the D-ideal generated by F . This shows that the jet functor plays the role of
the polynomial algebra in the differential algebraic setting. If π : C →M is a bundle, we define

Jet(C) := Spec(Jet(OC)).

One can summarize the above discussion by the following array:

Equation Polynomial Partial differential

Formula P (x) = 0 F (t, ∂αx) = 0
Naive variable x ∈ R x ∈ Hom(R,R)

Algebraic structure commutative unitary ring A DM -algebra A
Free structure P ∈ R[x] F ∈ Jet(OC)
Solution space {x ∈ A,P (x) = 0} {x ∈ A,F (t, ∂αx) = 0}

Example 2.3.1. If π : C = Rn+m → Rn = M is a trivial bundle of dimension m + n over M of
dimension n, with algebra of coordinates OC := R[t, x] for t = {ti}i=1,...,n and x = {xj}j=1,...,m

given in multi-index notation, its jet algebra is

Jet(OC) := R[t, xα]

where α ∈ Nm is a multi-index representing the derivation index. The D-module structure is given
by making ∂

∂ti
act through the total derivative

Di :=
∂

∂ti
+
∑
α,k

xkiα
∂

∂xkα
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where iα denotes the multi-index α increased by one at the i-th coordinate. For example, if
π : C = R× R→ R = M , one gets

D1 =
∂

∂t
+ x1

∂

∂x
+ x2

∂

∂x1
+ . . . .

Definition 2.3.2. Let π : C → M be a bundle. A partial differential equation on the space
Γ(M,C) of sections of π is given by a quotient DM -algebra

p : Jet(OC) � A

of the jet algebra of the OM -algebra OC . Its local space of solutions is the D-space whose points
with values in Jet(OC)-D-algebras B are given by

SolD,(A,p) := {x ∈ B| f(x) = 0, ∀f ∈ Ker(p)}

The non-local space of solutions of the partial differential equation (A, p) is the subspace of Γ(M,C)
given by

Sol(A,p) := {x ∈ Γ(M,C)| (j∞x)∗L = 0 for all L ∈ Ker(p)}

where (j∞x)∗ : Jet(OC) → OM is (dual to) the Jet of x. Equivalently, x ∈ Sol(A,p) if and only if
there is a natural factorization

Jet(OC)
(j∞x)∗//

p
##HH

HH
HH

HH
HH

OM

A

OO

of the jet of x through p.

2.4 Local functionals and local differential forms

The natural functional invariant associated to a given D-algebra A is given by the De Rham
complex

DR(A) := (I∗,M ⊗O D[n])
L
⊗D A

of its underlying D-module with coefficient in the universal complex of integral forms I∗,M⊗OD[n],
and its cohomology h∗(DR(A)). We will denote

h(A) := h0(DR(A)) = BerM ⊗D A

where BerM here denotes the Berezinian object (and not only the complex concentrated in degree
0). If M is a non-super variety, one gets

DR(A) = Ωn
M

L
⊗D A and h(A) = Ωn

M ⊗D A.

The De Rham cohomology is given by the cohomology of the complex

DR(A) = I∗,M [n]⊗OM
A,
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which gives
DR(A) = ∧∗Ω1

M [n]⊗OM
A

in the non super case.
If A is a jet algebra of section of a bundle π : C → M with basis a classical manifold, the

De Rham complex identifies with a sub-complex of the usual De Rham complex of ∧∗Ω1
A/R of A

viewed as an ordinary ring. One can think of classes in h∗(DR(A)) as defining a special class of
(partially defined) functionals on the space Γ(M,C), by integration along singular homology cycles
with compact support.

Definition 2.4.1. Let M be a super-variety of dimension p|q. For every smooth simplex ∆n, we
denote ∆n|q the super-simplex obtained by adjoining q odd variables to ∆n. The singular homology
of M with compact support is defined as the homology H∗,c(M) of the simplicial set

Hom(∆•|q,M)

of super-simplices with compact support condition on the body and non-degeneracy condition on
odd variables.

Recall that, following [Pau11], a functional f ∈ Hom(Γ(M,C),A1) on a space of fields denotes
in general, by definition, only a partially defined function (with a well-chosen domain of definition).

Proposition 2.4.1. Let π : C → M be a bundle and A be the DM -algebra Jet(OC). There is a
natural integration pairing

H∗,c(M)× h∗−n(DR(A)) → Hom(Γ(M,C),A1)
(Σ, ω) 7→ [x 7→

∫
Σ(j∞x)∗ω]

where j∞x : M → Jet(C) is the taylor series of a given section x. If p : Jet(OC) → A is a given
partial differential equation (such that A is D-smooth) on Γ(M,C) one also gets an integration
pairing

H∗,c(M)× h∗−n(DR(A)) → Hom(Sol(A,p),A1)

(Σ, ω) 7→ SΣ,ω : [x(t, u) 7→
∫

Σ(j∞x)∗ω].

Proof. Remark that the values of the above pairing are given by partially defined functions, with a
domain of definition given by Lebesgue’s domination condition to make t 7→

∫
Σ(j∞xt)

∗ω a smooth
function of t if xt is a parametrized trajectory. The only point to check is that the integral is
independent of the chosen cohomology class. This follows from the fact that the integral of a total
divergence on a closed subspace is zero, by Stokes’ formula (the super case follows from the classical
one).

Definition 2.4.2. A functional SΣ,ω : Γ(M,C) → A1 or SΣ,ω : Sol(A,p) → A1 obtained by the
above constructed pairing is called a quasi-local functional. We denote

Oqloc ⊂ O := Hom(Γ(M,C),A1)

the space of quasi-local functionals.
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Remark that for k ≤ n, the classes in h∗−k(DR(A)) are usually called (higher) conservation
laws for the partial differential equation p : Jet(OC)→ A.

If A is a D-algebra, i.e., an algebra in (Mod(D),⊗O), one defines, as usual, an A-module of
differential forms as an A-module Ω1

A in the monoidal category (Mod(D),⊗), equipped with a
(D-linear) derivation d : A → Ω1

A such for every A-module M in (Mod(D),⊗), the natural map

HomMod(A)(Ω
1
A,M)→ DerMod(A)(A,M)

given by f 7→ f ◦ d is a bijection.
Remark that the natural O-linear map

Ω1
A/O → Ω1

A

is an isomorphism of O-modules. The D-module structure on Ω1
A can be seen as an Ehresman

connection, i.e., a section of the natural projection

Ω1
A/R → Ω1

A/M .

Example 2.4.1. In the case of the jet space algebra A = Jet(OC) for C = Rn+m → Rn = M , a
basis of Ω1

A/M compatible with this section is given by the Cartan forms

θiα = dxiα −
n∑
j=1

xijαdt
j .

The De Rham differential d : A → Ω1
A in the D-algebra setting and its De Rham cohomology (often

denoted dV in the literature), can then be computed by expressing the usual De Rham differential
d : A → Ω1

A/M in the basis of Cartan forms.

As explained in Section 2.1, the right notion of finiteness and duality in the monoidal category
of D-modules is not the O-finite presentation and duality but the D-finite presentation and duality.
This extends to the category of A-modules in (Mod(D),⊗). The following notion of smoothness
differs from the usual one (in general symmetric monoidal categories) because we impose the A[D]-
finite presentation, where A[D] := A⊗O D, to have good duality properties.

Definition 2.4.3. The D-algebra A is called D-smooth if Ω1
A is a projective A-module of finite

A[D]-presentation in the category of D-modules, and A is a (geometrically) finitely generated D-
algebra, meaning that there exists an O-moduleM of finite type, and an ideal I ⊂ SymO(M) and
a surjection

Jet(SymO(M)/I) � A.

Proposition 2.4.2. If A = Jet(OC) for π : C →M a smooth map of varieties, then A is D-smooth
and the A[D]-module Ω1

A is isomorphic to

Ω1
A
∼= Ω1

C/M ⊗OC
A[D].

In particular, if π : C = R×M →M is the trivial bundle with fiber coordinate u, one gets the
free A[D]-module of rank one

Ω1
A
∼= A[D]({du})

generated by the form du.
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2.5 Local vector fields and local operations

We refer to Beilinson-Drinfeld’s book [BD04] for a complete and axiomatic study of general pseudo-
tensor categories. We will only present here the tools from this theory needed to understand local
functional calculus. Local operations are new operations on D-modules, that induce ordinary
multilinear operations on their De Rham cohomology. We start by explaining the main motivation
for introducing these new operations when one does geometry with D-algebras.

We now define the notion of local vector fields.

Definition 2.5.1. Let A be a smooth D-algebra. The Ar[Dop]-module of local vector fields is
defined by

ΘA := HomA[D](Ω
1
A,A[D]),

where Ar[Dop] := Ar ⊗BerM Dop acts on the right though the isomorphism

Ar[Dop] ∼= (A⊗O BerM )⊗BerM D
op ∼= A[Dop].

Remark now that in ordinary differential geometry, one way to define vector fields on a variety
M is to take the OM -dual

ΘM := HomOM
(Ω1

M ,OM )

of the module of differential forms. The Lie bracket

[., .] : ΘM ⊗ΘM → ΘM

of two vector fields X and Y can then be defined from the universal derivation d : OM → Ω1
M , as

the only vector field [X,Y ] on M such that for every function f ∈ OM , one has the equality of
derivations

[X,Y ].f = X.iY (df)− Y.iX(df).

In the case of a D-algebra A, this construction does not work directly because the duality used
to define local vector fields is not the A-linear duality (because it doesn’t have good finiteness
properties) but the A[D]-linear duality. This explains why the Lie bracket of local vector fields
and their action on A are new kinds of operations of the form

[., .] : ΘA � ΘA → ∆∗ΘA

and
L : ΘA �A → ∆∗A

where ∆ : M →M ×M is the diagonal map and the box product is defined by

M�N := p∗1M⊗ p∗2N

for p1, p2 : M ×M → M the two projections. One way to understand these construction is by
looking at the natural injection

ΘA ↪→ HomD(A,A[D])

given by sending X : Ω1
A → A[D] to X ◦ d : A → A[D]. The theory of D-modules tells us that the

datum of this map is equivalent to the datum of a DopM×M -linear map

L : ΘA �Ar → ∆∗Ar.
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Similarly, the above formula
[X,Y ].f = X.iY (df)− Y.iX(df)

of ordinary differential geometry makes sense in local computations only if we see ΘA as contained
in HomD(A,A[D]) (and not in HomD(A,A), contrary to what is usually done), so that we must
think of the bracket as a morphism of sheaves

ΘA → HomDop(ΘA,ΘA ⊗Dop)r.

This is better formalized by a morphism of DopM×M -modules

[., .] : ΘA � ΘA → ∆∗ΘA

as above. Another way to understand these local operations is to make an analogy with multilinear
operations on OM -modules. Indeed, if F , G and H are three quasi-coherent OM -modules, one has
a natural adjunction isomorphism

HomOM
(F ⊗ G,H) ∼= HomOM

(∆∗(F � G),H) ∼= HomOM×M
(F � G,∆∗H),

and local operations are given by a D-linear version of the right part of the above equality. It is
better to work with this expression because of finiteness properties of the D-modules in play.

We now recall for the reader’s convenience from Beilinson-Drinfeld [BD04] the basic proper-
ties of general local operations (extending straightforwardly their approach to the case of a base
supervariety M).

Definition 2.5.2. Let (Li)i∈I be a finite family of Dop-modules and M be a Dop-module. We
define the space of ∗-operations

P ∗I ({Li},M) := HomD
XI

(�Li,∆(I)
∗ M)

where ∆(I) : M → M I is the diagonal embedding and �Li := ⊗i∈Ip∗iLi with pi : XI → X
the natural projections. The datum (Mod(Dop), PI) is called the pseudo tensor structure on the
category of Dop-modules.

One can define natural composition maps of pseudo-tensor operations, and a pseudo-tensor
structure is very similar to a tensor structure in many respect: one has, under some finiteness
hypothesis, good notions of internal homomorphisms and internal ∗-operations.

The pseudo-tensor structure actually defines what one usually calls a colored operad with colors
in Mod(Dop). It is very important because it allows to easily manipulate covariant objects like
local vector fields or local Poisson brackets. The main idea of Beilinson and Drinfeld’s approach
to geometry of D-spaces is that functions and differential forms usually multiply by using ordinary
tensor product of D-modules, but that local vector fields and local differential operators multiply
by using pseudo-tensor operations. This gives the complete toolbox to do differential geometry on
D-spaces in a way that is very similar to ordinary differential geometry.

Another way to explain the interest of ∗-operations, is that they induce ordinary operations in
De Rham cohomology. Since De Rham cohomology is the main tool of local functional calculus (it
gives an algebraic presentation of local functions, differential forms and vector fields on the space
Γ(M,C) of trajectories of a given field theory), we will make a systematic use of these operations.
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We refer to Beilinson-Drinfeld [BD04] for a proof of the following result, that roughtly says that
the De Rham functor can be extended to respect the natural pseudo-tensor structures of its source
and target categories. This means, in simpler terms, that local, i.e., ∗-operations can be used to
define usual operations on quasi-local functionals.

Proposition 2.5.1. The central De Rham cohomology functor h : Mod(Dop)→Mod(RM ) given
by h(M) := h0(DRr(M)) :=M⊗D O induces a natural map

h : P ∗I ({Li},M)→ Hom(⊗ih(Li), h(M))

from ∗-operations to multilinear operations. At the level of complexes, the choice of a dg-D-algebra
resolution ε : P → O, that is flat as a dg-D-module (i.e., ⊗DP transforms acyclic complexes in
acyclic complexes), induces a natural morphism

DR : P ∗I ({Li},M) −→ RHom(
L
⊗iDR(Li),DR(M)).

3 Gauge theories and the covariant phase space

We are inspired, when discussing the Batalin-Vilkovisky (later called BV) formalism, by a huge
physical literature, starting with Peierls [Pei52] and De Witt [DeW03] for the covariant approach
to quantum field theory, and with [HT92] and [FH90] as general references for the BV formalism.
More specifically, we also use Stasheff’s work [Sta97] and [Sta98] as homotopical inspiration, and
[FLS02], [Bar10] and [CF01] for explicit computations.

3.1 A finite dimensional toy model

In this section, we will do some new kind of differential geometry on spaces of the form X =
SpecD(A) given by spectra of D-algebras, that encode solution spaces of non-linear partial differ-
ential equations in a coordinate free fashion (to be explained in the next section).

Before starting this general description, that is entailed of technicalities, we present a finite
dimensional analog, that can be used as a reference to better understand the constructions done
in the setting of D-spaces.

Let H be a finite dimensional smooth variety (analogous to the space of histories H ⊂ Γ(M,C)
of a given Lagrangian variational problem) and S : H → R be a smooth function (analogous to an
action functional on the space of histories). Let d : OH → Ω1

H be the De Rham differential and

ΘH := HomOH
(Ω1

H ,OH).

There is a natural biduality isomorphism

Ω1
H
∼= HomOH

(Ω1
H ,OH).

Let idS : ΘH → OH be given by the insertion of vector fields in the differential dS ∈ Ω1
H of the

given function S : H → R.
The claim is that there is a natural homotopical Poisson structure on the space T of critical

points of S : H → R, defined by
T = {x ∈ H, dxS = 0}.
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Define the algebra of functions OT as the quotient of OH by the ideal IS generated by the equations
idS(~v) = 0 for all ~v ∈ ΘH . Remark that IS is the image of the insertion map idS : ΘH → OH and
is thus locally finitely generated by the image of the basis vector fields ~xi := ∂

∂xi
that correspond to

the local coordinates xi on H. Now let NS be the kernel of idS . It describes the relations between
the generating equations idS(~xi) = ∂S

∂xi
of IS .

The differential graded OH -algebra

OP := Symdg([ΘH
−1

idS−→ OH
0

])

is isomorphic, as a graded algebra, to the algebra of multi-vectors

∧∗OH
ΘH .

This graded algebra is equipped with an odd, so called Schouten bracket, given by extending the
Lie derivative

L : ΘH ⊗OH → OH
and Lie bracket

[., .] : ΘH ⊗ΘH → ΘH

by Leibniz’s rule.

Proposition 3.1.1. The Schouten bracket is compatible with the insertion map idS and makes OP
a differential graded odd Poisson algebra. The Lie bracket on ΘH induces a Lie bracket on NS.

Now let gS → NS be a projective resolution of OT as an OH -module. This graded module is
the finite dimensional analog of the space of gauge (and higher gauge) symmetries. Suppose that
P is bounded with projective components of finite rank.

Definition 3.1.1. The finite dimensional BV algebra associated to S : H → R is the bigraded
OH -algebra

OBV := Symbigrad

 gS [2] ⊕ ΘH [1] ⊕ OH
⊕

tg∗S [−1]

 ,

where tg∗S is the OH -dual of the graded module gS transposed to become a vertical ascending
graded module.

The main theorem of the Batalin-Vilkovisky formalism, that is the aim of this section, is the
following:

Theorem 3.1.1. There exists a non-trivial extension

Scm = S0 +
∑
i≥1

Si ∈ OBV

of the classical function S that fulfills the classical master equation

{Scm, Scm} = 0.

The differential D = {Scm, .} gives OBV the structure of a differential graded odd Poisson algebra.
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The corresponding derived space RSpec(OBV , D) can be thought as a kind of derived Poisson
reduction

RSpec(OBV , D) ∼= RSpec(OH/IH)/
R
NS

that corresponds to taking the quotient of the homotopical critical space of S (cofibrant replacement
of OT = OH/IH)) by the foliation induced by the Noether relations NS .

Example 3.1.1. To be even more explicit, let us treat a simple example of the above construction.
Let H = R2 be equipped with the polynomial function algebra OH = R[x, y]. The differential one
forms on H are given by the free OH -modules

Ω1
H = R[x, y](dx,dy).

Let S ∈ OH be the function F (x, y) = x2

2 . One then has dS = xdx. The module ΘH of vector
fields is the free module

ΘH = R[x, y]

(
∂
∂x
, ∂
∂y

)
and the insertion map is given by the R[x, y]-module morphism

idS : ΘH → OH
~v 7→ 〈dS,~v〉,

and, in particular, idS
(
∂
∂x

)
= x, and idS

(
∂
∂y

)
= 0. The image of the insertion map is given by the

ideal IS = (x) in OH = R[x, y]. The kernel NS of the insertion map is the free submodule

NS = gS = R[x, y]
( ∂
∂y

)

of ΘH . One then has a quasi-isomorphism

SymOH−dg([gS [2]→ ΘH [1]
idS−→ OH ])→ OH/IS .

The obtained algebra is called the Koszul-Tate resolution of OH/IS . Now the bigraded BV algebra
OBV is given by

OBV := Symbigrad

 gS [2] ⊕ ΘH [1] ⊕ OH
⊕

tg∗S [−1]

 .

It can be described more explicitely as

OBV = SymOH−bigrad


 O

(
∂
∂y

)
H [2] ⊕ O

(
∂
∂x
, ∂
∂y

)
H [1] ⊕ OH

⊕
O(dy)
H [−1]


 .

The graded version is the OH -algebra

OBV = Sym∗(gS)⊗ ∧∗ΘH ⊗ ∧∗g∗S
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on 4 = 1 + 2 + 1 variables. The action map gS ⊗OH → OH induces a differential operator

OH → Hom(gS ,OH)

whose extension to the algebra ∧∗g∗S is the Chevalley-Eilenberg differential of the action. The
extension of the natural differential on the horizontal part

OKT := Sym∗(gS)⊗ ∧∗ΘH ⊂ OBV

of the BV algebra gives the Koszul-Tate differential. The BV formalism gives a way to combine the
Koszul-Tate differential with the Chevalley-Eilenberg differential by constructing an Scm ∈ OBV
such that some components of the bracket {Scm, .} induce both differentials on the corresponding
generators of the BV algebra. In our case, the Koszul-Tate part of Scm is defined by

SKT = S +
∂

∂y
.dy,

so that
dKT = {SKT , .} : OKT → OKT .

In this case, the expression SKT is a solution Scm of the classical master equation. This construction
is not so interesting because the critical algebra OT = OH/IS is simply R[x, y]/(x) ∼= R[y] and the
foliation by gauge orbits on it is given by the free action of the vector field ∂

∂y , so that the invariants

OgS
T are simply the space R of functions on the critical space T/gS , that is simply a point. The

action being nice, there is no higher cohomology and the BV differential graded algebra (OBV , D)
is quasi-isomorphic to R. In the case of spaces of fields and action functionals, the situation is not
so simple, and the foliation by gauge orbits can be more singular on the critical space.

The aim of this section is to generalize the above construction to local variational problems,
where H ⊂ Γ(M,C) is a space of histories (subspace of the space of sections of a bundle π : C →M)
and S : H → R is given by the integration of a Lagrangian density. The main difficulties that we
will encounter and overcome trickily in this generalization are that:

1. The D-module D ⊗O D is not D-coherent, so that a projective resolution of NS will not be
dualizable in practical cases. This will impose us to use finer resolutions of the algebra OT
of functions on the critical space.

2. Taking the bracket between two densities of vector fields on the space H of histories is not
an OM -bilinear operation but a new kind of operation, called a locally bilinear operation and
described in Section 2.5.

3. The ring D is not commutative. This will be overcome by using the equivalence between
D-modules and Dop-modules given by tensoring by BerM .

Out of the above technical points, the rest of the constructions of this section are completely
parallel to what we did on the finite dimensional toy model.
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3.2 General gauge theories

Proposition 3.2.1. Let M be a super-variety and A be a smooth D-algebra. There is a natural
isomorphism, called the local interior product

i : h(Ω1
A) := BerM ⊗D Ω1

A −→ HomA[D](Θ
`
A,A)

ω 7−→ [X 7→ iXω].

Proof. By definition, one has
ΘA := HomA[D](Ω

1
A,A[D])

and since A is D-smooth, the biduality map

Ω1
A → HomAr[Dop](ΘA,Ar[Dop])

is an isomorphism. Tensoring this map with BerM over D gives the desired result.

Definition 3.2.1. If A is a smooth D-algebra and ω ∈ h(Ω1
A), the A[D] linear map

iω : Θ`
A → A

is called the insertion map. Its kernel Nω is called the A[D]-module of Noether identities and its
image Iω is called the Euler-Lagrange ideal.

If A = Jet(OC) for π : C → M a bundle and ω = dS, the Euler-Lagrange ideal IdS is locally
generated as an A[D]-module by the image of the local basis of vector fields in

Θ`
A
∼= A[D]⊗OC

ΘC/M .

If M is of dimension n and the relative dimension of C over M is m, this gives n equations (indexed
by i = 1, . . . , n, one for each generator of ΘC/M ) given in local coordinates by

∑
α

(−1)|α|Dα

(
∂L

∂xi,α

)
◦ (j∞x)(t) = 0,

where S = [Ldnt] ∈ h(A) is the local description of the Lagrangian density.
We now define the notion of local variational problem with nice histories. This type of varia-

tional problem can be studied completely by only using geometry of D-spaces. This gives powerful
finiteness and biduality results that are necessary to study conceptually general gauge theories.

Definition 3.2.2. Let π : C → M , H ⊂ Γ(M,C) and S : H → R be a Lagrangian variational
problem, and suppose that S is a local functional, i.e., if A = Jet(OC), there exists [Lω] ∈ h(A) :=
BerM ⊗D A and Σ ∈ Hc,n(M) such that S = SΣ,Lω. The variational problem is called a local
variational problem with nice histories if the space of critical points T = {x ∈ H, dxS = 0}
identifies with the space Sol(A/IdS) of solutions to the Euler-Lagrange equation.

The notion of variational problem with nice histories can be explained in simple terms by
looking at the following simple example. The point is to define H by adding boundary conditions
to elements in Γ(M,C), so that the boundary terms of the integration by part, that we do to
compute the variation dxS of the action, vanish.
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Example 3.2.1. Let π : C = R3 × [0, 1] → [0, 1] = M , A = R[t, x0, x1, . . . ] be the corresponding
DM -algebra with action of ∂t given by ∂txi = xi+1, and S = 1

2m(x1)2dt ∈ h(A) be the local
action functional for the variational problem of newtonian mechanics for a free particle in R3. The
differential of S : Γ(M,C) → R at u : U → Γ(M,C) along the vector field ~u ∈ ΘU is given by
integrating by part

〈dxS, ~u〉 =

∫
M
〈−m∂2

t x,
∂x

∂~u
〉dt+

[
〈∂tx,

∂x

∂~u
〉
]1

0

.

The last term of this expression is called the boundary term and we define nice histories for
this variational problem by fixing the starting and ending point of trajectories to annihilate this
boundary term:

H = {x ∈ Γ(M,C), x(0) = x0, x(1) = x1}

for x0 and x1 some given points in R3. In this case, one has

T = {x ∈ H, dxS = 0} ∼= Sol(A/IdS)

where IdS is the D-ideal in A generated by −mx2, i.e., by Newton’s differential equation for the
motion of a free particle in R3. The critical space is thus given by

T = {x ∈ H, ∂tx is constant on [0, 1]},

i.e., the free particle is moving on the line from x0 to x1 with constant speed.

Definition 3.2.3. A general gauge theory is a local variational problem with nice histories.

3.3 Regularity conditions and higher Noether identities

We now describe regularity properties of gauge theories, basing our exposition on the article
[Pau10]. We will moreover use the language of homotopical and derived geometry in the sense
of Toen-Vezzosi [TV08] to get geometric insights on the spaces in play in this section (See [Pau11]
for an introduction and references). We denote A 7→ QA a cofibrant replacement functor in a given
model category. Recall that all differential graded algebras are fibrant for their standard model
structure.

In all this section, we set π : C → M , H ⊂ Γ(M,C), A = Jet(OC) and S ∈ h(A) a gauge
theory. The kernel of its insertion map

idS : Θ`
A → A

is called the space NS of Noether identities. Its right version

N r
S = BerM ⊗NS ⊂ ΘA

is called the space of Noether gauge symmetries.

Definition 3.3.1. The derived critical space of a gauge theory is the differential graded A-space

P := Spec(AP ) : dg −A−Alg → SSets
R 7→ sHomdg−AlgD(AP ,R).
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whose coordinate differential graded algebra is

AP := Symdg([Θ
`
A[1]

idS−→ A]).

A non-trivial Noether identity is a class in H1(AP , idS).

We refer to Beilinson and Drinfeld’s book [BD04] for the following proposition.

Proposition 3.3.1. The local Lie bracket of vector fields extends naturally to an odd local (so-
called Schouten) Poisson bracket on the dg-A-algebra AP of coordinates on the derived critical
space.

The following corollary explains why we called N r
S the space of Noether gauge symmetries.

Corollary 3.3.1. The natural map

N r
S �N r

S → ∆∗ΘA

induced by the local bracket on local vector fields always factors through ∆∗N r
S and the natural map

N r
S �Ar/IrS → ∆∗Ar/IrS

is a local Lie A-algebroid action.

The trivial Noether identities are those in the image of the natural map

∧2Θ`
A → ΘA,

and these usually don’t give a finitely generatedA[D]-module because of the simple fact thatD⊗OD
is notD-coherent. This is a very good reason to consider only non-trivial Noether identities, because
these can usually (i.e., in all the applications we have in mind) be given by a finitely generated
A[D]-module.

Definition 3.3.2. The proper derived critical space of a gauge theory is the (derived) space

RSpec(A/IS) : dg −A−Alg → SSets
R 7→ sHomdg−AlgD(B,R).

where B ∼−→ A/IdS is a cofibrant resolution of A/IS as a dg-A-algebra in degree 0.

From the point of view of derived geometry, differential forms on the cofibrant resolution B give
a definition of the cotangent complex of the D-space morphism

i : SpecD(A/IS)→ SpecD(A)

of inclusion of critical points of the action functional in the D-space of general trajectories. This
notion of cotangent complex gives a well behaved way to study infinitesimal deformations of the
above inclusion map i (see Illusie [Ill71]), even if it is not a smooth morphism (i.e., even if the
critical space is singular).
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It is easy to define a cofibrant resolution of the critical space related to Noether identities. If
gS → NS is a projective A[D]-resolution, the dg-algebra

B = Symdg([gS [2]→ Θ`
A[1]→ A])

is a cofibrant resolution of A/IS . An important problem with this simple construction is that
the terms of the given resolution gS → NS are usually not finitely generated as A[D]-modules.
We will see how to define a finer, so-called Koszul-Tate resolution, that will have better finiteness
properties, by using generating spaces of Noether identities. These can be defined by adapting
Tate’s construction [Tat57] to the local context. We are inspired here by Stasheff’s paper [Sta97].

Definition 3.3.3. A generating space of Noether identities is a tuple (gS ,An, in) composed of

1. a negatively graded projective A[D]-module gS ,

2. a negatively indexed family An of dg-A-algebras with A0 = A, and

3. for each n ≤ −1, an A[D]-linear morphism in : gn+1
S → ZnAn to the n-cycles of An,

such that if one extends gS by setting g1
S = Θ`

A and if one sets

i0 = idS : Θ`
A → A,

1. one has for all n ≤ 0 an equality

An−1 = SymAn
([gn+1

S [−n+ 1]⊗A An
in→ An

0
]),

2. the natural projection map
AKT := lim

−→
An → A/IS

is a cofibrant resolution, called the Koszul-Tate algebra, whose differential is denoted dKT .

We are now able to define the right regularity properties for a given gauge theory. These finite-
ness properties are imposed to make the generating space of Noether identities dualizable as an
A[D]-module (resp. as a graded A[D]-module). Without any regularity hypothesis, the construc-
tions given by homotopical Poisson reduction of gauge theories, the so-called derived covariant
phase space, don’t give A-algebras, but only R-algebras, that are too poorly behaved and infinite
dimensional to be of any (even theoretical) use. We thus don’t go through the process of their
definition, that is left to the interested reader.

We now recall the language used by physicists (see for example [HT92]) to describe the situation.
This can be useful to relate our constructions to the one described in physics books.

Definition 3.3.4. A gauge theory is called regular if there exists a generating space of Noether
identities gS whose components are finitely generated and projective. It is called strongly regular if
this regular generating space is a bounded graded module. Suppose given a regular gauge theory.
Consider the inner dual graded space (well-defined because of the regularity hypothesis)

g◦S := HomA[D](gS ,A[D])`.

1. The generators of Θ`
A are called antifields of the theory.
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2. The generators of gS of higher degree are called antighosts, or (non-trivial) higher Noether
identities of the theory.

3. The generators of the graded Ar[Dop]-module grS are called (non-trivial) higher gauge sym-
metries of the theory.

4. The generators of the graded A[D]-module g◦S are called ghosts of the theory.

Remark that the natural map g0,r
S → N r

S ⊂ ΘA identifies order zero gauge symmetries with
(densities of) local vector fields that induce tangent vectors to the D-space SpecD(A/IS) of solu-
tions to the Euler-Lagrange equation. This explains the denomination of higher gauge symmetries
for grS .

We now define an important invariant of gauge theories, called the Batalin-Vilkovisky bigraded
algebra. This will be used in next section on the derived covariant phase space.

Definition 3.3.5. Let gS be a regular generating space of the Noether gauge symmetries. The
bigraded A[D]-module

VBV :=

 gS [2] ⊕ Θ`
A[1] ⊕ 0

⊕
tg◦S [−1]

 ,
where tg◦S is the vertical chain graded space associated to g◦S , is called the module of additional
fields. The completed bigraded symmetric algebra

ÂBV := ŜymA-bigraded(VBV )

is called the completed Batalin-Vilkovisky algebra of the given gauge theory. The corresponding
symmetric algebra

ABV := SymA-bigraded(VBV )

is called the Batalin-Vilkovisky algebra.

In practical situations, physicists usually think of ghosts and antifields as sections of an ordinary
graded bundle on spacetime itself (and not only on jet space). This idea can be formalized by the
following.

Definition 3.3.6. Let g be a regular generating space of Noether symmetries for S ∈ h(A).
Suppose that all the A[D]-modules gi and Θ`

A are locally free on M . A Batalin-Vilkovisky bundle
is a bigraded vector bundle

EBV → C

with an isomorphism of A[D]-modules

A[D]⊗OC
E∗BV → VBV ,

where EBV are the sections of EBV → C. The sections of the graded bundle EBV →M are called
the fields-antifields variables of the theory.
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Recall that neither C → M , nor EBV → M are vector bundles in general. To illustrate the
above general construction by a simple example, suppose that the action S ∈ h(A) has no non-
trivial Noether identities, meaning that for all k ≥ 1, one has Hk(AP ) = 0. In this case, one
gets

VBV = Θ`
A[1]

and the relative cotangent bundle EBV := T ∗C/M → C gives a BV bundle because

Θ`
A
∼= A[D]⊗OC

ΘC/M .

The situation simplifies further if C → M is a vector bundle because then, the vertical bundle
V C ⊂ TC → M , given by the kernel of TC → π∗TM , is isomorphic to C → M . Since one has
T ∗C/M

∼= (V C)∗, one gets a natural isomorphism

EBV ∼= C ⊕ C∗

of bundles over M . This linear situation is usually used as a starting point for the definition of a
BV theory (see for example Costello’s book [Cos10]). Starting from a non-linear bundle C → M ,
one can linearize the situation by working with the bundle

C linearx0 := x∗0TC/M →M

with x0 : M → C a given solution of the equations of motion (sometimes called the vacuum).

Proposition 3.3.2. Let EBV → C be a BV bundle. There is a natural isomorphism of bigraded
algebras

Jet(OEBV
)
∼−→ ABV = Symbigrad(VBV ).

Proof. Since EBV → C is a graded vector bundle concentrated in non-zero degrees, one has

OEBV
= SymOC

(E∗BV ).

The natural map
E∗BV → VBV

induces a morphism
OEBV

= SymOC
(E∗BV )→ ABV .

Since ABV is a D-algebra, one gets a natural morphism

Jet(OEBV
)→ ABV = Symbigrad(VBV ).

Conversely, the natural map E∗BV → OEBV
extends to an A[D]-linear map

VBV → Jet(OEBV
),

that gives a morphism
ABV → Jet(OEBV

).

The two constructed maps are inverse of each other.
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The main interest of the datum of a BV bundle is that it allows to work with non-local func-
tionals of the fields and antifields variables. This is important for the effective renormalization of
gauge theories, that involves non-local functionals.

Definition 3.3.7. Let EBV → C be a BV bundle. Denote A1(A) := A the graded affine space.
The space of non-local functionals of the fields-antifields is defined by

OBV := Hom(Γ(M,EBV ),A1)

of (non-local) functionals on the space of sections of EBV . The image of the natural map

h(ABV ) ∼= h(Jet(OEBV
)) −→ OBV

is called the space of local functionals of the fields-antifields and denoted OqlocBV ⊂ OBV .

3.4 The derived covariant phase space

In all this section, we set π : C → M , H ⊂ Γ(M,C), A = Jet(OC) and S ∈ h(A) a gauge theory.
Suppose given a strongly regular generating space of Noether symmetries gS for S, in the sense of
definitions 3.3.3 and 3.3.4.

The idea of the BV formalism is to define a (local and odd) Poisson dg-A-algebra (ABV , D, {., .})
whose spectrum RSpecD(ABV , D) can be though as a kind of homotopical space of leaves

RSpec(A/IS)/
R
N r
S

of the foliation induced by the action (described in corollary 3.3.1) of Noether gauge symmetries N r
S

on the derived critical space RSpecD(A/IS). It is naturally equipped with a homotopical Poisson
structure, which gives a nice starting point for quantization. From this point of view, the above
space is a wide generalization of the notion extensively used by DeWitt in his covariant approach
to quantum field theory [DeW03] called the covariant phase space. This explains the title of this
section.

We will first define the BV Poisson dg-algebra by using only a generating space for Noether
identities, and explain in more details in the next section how this relates to the above intuitive
statement.

Proposition 3.4.1. The local Lie bracket and local duality pairings

[., .] : ΘA � ΘA → ∆∗ΘA and 〈., .〉 : (gnS)r � (gnS
◦)r → ∆∗Ar, n ≥ 0,

induce an odd local Poisson bracket

{., .} : ÂrBV � ÂrBV → ∆∗ÂrBV

called the BV-antibracket on the completed BV algebra

ÂBV = Ŝymbigrad

 gS [2] ⊕ Θ`
A[1] ⊕ A

⊕
tg◦S [−1]


and on the BV algebra ABV .
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Definition 3.4.1. Let gS be a regular generating space of Noether identities. A formal solution
to the classical master equation is an Scm ∈ h(ÂBV ) such that

1. the degree (0, 0) component of Scm is S,

2. the component of Scm that is linear in the ghost variables, denoted SKT , induces the Koszul-
Tate differential dKT = {SKT , .} on antifields of degrees (k, 0), and

3. the classical master equation
{Scm, Scm} = 0

(meaning D2 = 0 for D = {Scm, .}) is fulfilled in h(ÂBV ).

A solution to the classical master equation is a formal solution that comes from an element in
h(ABV ).

The main theorem of homological perturbation theory, given in a physical language in Henneaux-
Teitelboim [HT92], Chapter 17 (DeWitt indices), can be formulated in our language by the follow-
ing.

Theorem 3.4.1. Let gS be a regular generating space of Noether symmetries. There exists a
formal solution to the corresponding classical master equation, constructed through an inductive
method. If gS is further strongly regular and the inductive method ends after finitely many steps,
then there exists a solution to the classical master equation.

Proof. One can attack this theorem conceptually using the general setting of homotopy transfer
for curved local L∞-algebroids (see Schaetz’s paper [Sch09] for a finite dimensional analog). We
only need to prove the theorem when g has all gi given by free A[D]-modules of finite rank since
this is true locally on M . We start by extending S to a generator of the Koszul-Tate differential
dKT : AKT → AKT . Remark that the BV bracket with S on ABV already identifies with the
insertion map

{S, .} = idS : Θ`
A → A.

We want to define SKT :=
∑

k≥0 Sk with S0 = S such that

{SKT , .} = dKT : AKT → AKT .

Let C∗αi
be generators of the free A[D]-modules gi and Cαi be the dual generators of the free

A[D]-modules (gi)◦. We suppose further that all these generators correspond to closed elements
for the de Rham differential. Let nαi := dKT (C∗αi

) in AKT . Then setting Sk =
∑

αk
nαk

Cαk , one
gets

{Si, C∗αi
} = {nαiC

αi , C∗αi
}

= nαi

= dKT (C∗αi
)

so that {SKT , .} identifies with dKT on AKT . Now let mαj denote the coordinates of nαi in the
basis C∗αi

, so that

nαi =
∑
j

mαjC
∗
αj
.
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One gets in these coordinates

Si =
∑
αi,αj

C∗αj
mαjC

αi .

The next terms in S =
∑

k≥0 Sk are determined by the recursive equation

2dKT (Sk) +Dk−1 = 0

where Dk−1 is the component of Koszul-Tate degree (i.e., degree in the variables C∗αi
) k − 1 in

{Rk−1, Rk−1}, with

Rk−1 =
∑
j≤k−1

Sj .

These equations have a solution because Dk−1 is dKT -closed, because of Jacobi’s identity for the
odd bracket {., .} and since dKT is exact on the Koszul-Tate components (because it gives, by
definition, a resolution of the critical ideal), these are also exact. If we suppose that the generating
space gS is strongly regular (i.e., bounded) and the inductive process ends after finitely many steps,
one can choose the solution S in h(ABV ).
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