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Abstract

A set of r non-Hermitian oscillator Hamiltonians in r dimensions is shown
to be simultaneously diagonalizable. Their spectra is real and the common
eigenstates are expressed in terms of multiple Charlier polynomials. An al-
gebraic interpretation of these polynomials is thus achieved and the model is
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Non-Hermitian Hamiltonians with real spectra are currently being ac-
tively investigated with respect to their mathematical underpinnings and
their physical applications. (See the most recent special issues dedicated to
this topic [1, 2, 3].) We present here a set of r non-Hermitian oscillator
Hamiltonians in r dimensions that all have real eigenvalues. This system
is also seen to provide an algebraic model for the multiple Charlier polyno-
mials and is exploited to derive some properties of these special functions.
The approach is related to the interpretation that was given of the ordinary
Charlier polynomials in [4, 5] and of the d-orthogonal Charlier polynomials
in [6].

The monic r-multiple Charlier polynomials [7, 8, 9] C~σ
~n(k) are indexed by

a multi-index ~n = (n1, n2, · · · , nr) ∈ N
r with length |~n| = n1+ · · ·+nr. They

are orthogonal with respect to r Poisson measures with different positive
parameters σ1, · · · , σr (collectively denoted by ~σ):

∞
∑

k=0

C~σ
~n(k)k

l
σl
j

k!
= 0, l = 0, 1, · · · , nj − 1 (1)

for 1 ≤ j ≤ r. (In the following we shall omit the suffix ~σ.) They have been
shown [7, 10] to obey the r nearest-neighbor recurrence relations:

kC~n(k) = C~n+ ~e1(k) + (σ1 + |~n|)C~n(k) +
r
∑

j=1

njσjC~n−~ej(k),

...

kC~n(k) = C~n+ ~er(k) + (σr + |~n|)C~n(k) +

r
∑

j=1

njσjC~n−~ej(k),

(2)

where ~ej = (0, · · · , 0, 1, 0, · · · , 0) is the j-th standard unit vector with 1 on
the j-th entry. Subtracting the above relations pair-wise, one finds that the
polynomials C~n(k) satisfy as a consequence

C~n+~ei(k)− C~n+ ~nj
(k) + (σi − σj)C~n(k) = 0 (3)

for all i, j ∈ {1, · · · , r}.
Let us introduce the Heisenberg-Weyl algebra W (r) associated to har-

monic oscillators in r-dimensions. H is generated by the annihilation and
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creation operators ai and a
+
i (resp.), i = 1, · · · , r, that satisfy the commuta-

tion relations

[ai, aj ] = [a+i , a
+
j ] = 0, [ai, a

+
j ] = δij , i, j = 1, · · · , r. (4)

Denote by |n1, · · · , nr〉 = |n1〉 · · · |nr〉 the normalized simultaneous eigen-
states of the r number operators Ni = a+i ai:

a+i ai |n1, · · · , ni, · · · , nr〉 = ni |n1, · · · , ni, · · · , nr〉 ,
ni ∈ N, i = 1, · · · , r, (5)

〈m1, · · · , mr|n1, · · · , nr〉 = δm1,n1
· · · δmr ,nr

. (6)

Remember that

[a+i ai, aj] = −δijaj , [a+i ai, a
+
j ] = δija

+
j . (7)

The algebra W (r) is represented in this number state basis in the standard
way:

ai |n1, · · · , ni, · · · , nr〉 =
√
ni |n1, · · · , ni − 1, · · · , nr〉 ,

a+i |n1, · · · , ni, · · · , nr〉 =
√
ni + 1 |n1, · · · , ni + 1, · · · , nr〉 .

(8)

Consider now the set of r Hamiltonians Hi, i = 1, · · · , r, defined as fol-
lows:

Hi =
r
∑

j=1

a+j aj +
r
∑

j=1

σja
+
j + ai + σi, i = 1, · · · , r. (9)

It is straightforward to see that the multiple Charlier polynomials simultane-
ously diagonalize the r non-Hermitian oscillator Hamiltonians. To that end,
form the states

|k〉〉 = N
(r)
k

∞
∑

~n=0

C~n(k)√
n1! · · ·nr!

|n1, · · · , nr〉 , k ∈ N. (10)
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Let us act on |k〉〉 with Hi:

Hi |k〉〉 =N (r)
k

∞
∑

~n=0

C~n(k)√
n1! · · ·nr!

·
{

(|~n|+ σi) |n1, · · · , ni, · · · , nr〉

+
√
ni |n1, · · · , ni − 1, · · · , nr〉

+
r
∑

j=1

σj
√

nj + 1 |n1, · · · , ni + 1, · · · , nr〉
}

=N
(r)
k

∞
∑

~n=0

1√
n1! · · ·nr!

·
{

C~n+~ei(k) + (σi + |~n|)C~n(k) +
r
∑

j=1

njσjC~n−~ej(k)

}

,

(11)

Invoking the recurrence relations (2), we thus have indeed

Hi |k〉〉 = kHi |k〉〉 (12)

for all i = 1, · · · , r. So although non-Hermitian, the operators Hi have a real
spectrum given by the non-negative integers, the states |k〉〉 are uniquely
defined (up to a constant factor) as the joint eigenstates of the operators
Hi, i = 1, · · · , r with eigenvalues equal to k. Interestingly the Hamiltonians
Hi do not commute pairwise. Indeed it is readily found that

[Hi, Hj] = ai − aj + (σi − σj) (13)
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for all i, j = 1. · · · , r. Remark however that

(ai − aj) |k〉〉 =N (r)
k

∞
∑

~n=0

C~n(k)√
n1! · · ·nr!

·
{√

ni |n1, · · · , ni − 1, · · · , nr〉

− √
nj |n1, · · · , ni − 1, · · · , nr〉

}

=N
(r)
k

∞
∑

~n=0

1√
n1! · · ·nr!

·
(

C~n+~ei(k)− C~n+~ej (k)
)

|n1, · · · , nr〉

(14)

Hence, by property (3),
[Hi, Hj] |k〉〉 = 0. (15)

The operators Hi, thus on commute “on shell”, thereby reconciling the fact
that they do not commute and yet have common eigenvectors. As such the
set of Hamiltonians Hi form a “weakly” integrable system. It is also useful to
observe that the operators Hi can be obtained from the standard harmonic
oscillator Hamiltonian in r dimensions

H0 =

r
∑

j=1

a+j aj (16)

by similarity transformations. Using the Baker-Campbell-Hausdorff formula

eAY e−B = A + [A,B] +
1

2!
[A, [A,B]] +

1

3!
[A, [A[A,B]]] + · · · , (17)

it is easily shown that
Hi = SiH0S

−1
i (18)

with

Si = eai
r
∏

j=1

e−σja
+

j , i = 1, · · · , r. (19)

This explains obviously why the spectrum of the Hi are real.
We shall now show how this framework can be used to derive properties

of the multiple Charlier polynomials. We shall focus on the step relations
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they obey and their explicit expression. Suppose we have operators X such
that

[Hi, X ] = −X (20)

for all i = 1, · · · , r. Then,

Hi (X |k〉〉) = (k − 1)X |k〉〉 , (21)

that is, X |k〉〉 is a simultaneous eigenvectors of the Hi with eigenvalue k− 1
and is hence proportional to |k − 1〉〉. Similarly, if there is an operator Y
such that

[Hi, Y ] = Y (22)

for all i = 1, · · · , r, the vector Y |k〉〉 will be proportional to |k + 1〉〉. It is
immediate to find these operators X and Y from the known lowering and
raising operators of H0, by exploiting the fact that the Hi’s are related to
H0 by the similarity transformations (18)-(19). Let X0 =

∑r
i=1 αiai, where

αi are some constants. It is clear that [H0, X0] = −X0. To obtain Xs that
will obey (20), one has to determine the constants αi so that

S1X0S
−1
1 = S2X0S

−1
2 = · · · = SrX0S

−1
r . (23)

In this case, it is found that (23) imposes no constraints on the αis and hence
the r operators

Xj = SiajS
−1
i = aj + σj (24)

enjoy the property (20). They will be found to imply r step relations for
the multiple Charlier polynomials. Similarly, using Y0 =

∑r
i=1 βia

+
i as the

generic raising operator of H0, the condition analogous to (24) is found to
require that all the coefficients βi be equal. Up to a trivial constant factor
there is thus only one raising operator Y verifying (22) and it is given by

Y = Si

(

r
∑

j=1

a+j

)

Si =

(

r
∑

j=1

a+j

)

+ 1. (25)

In order to obtain step relations for the multiple Charlier polynomials from
the action of Xj , j = 1, · · · , r and Y on both sides of (10), we need to know
the precise action of these operators on |k〉〉. The key is to relate |k〉〉 to an
eigenstate of H0.

Let |k〉∗ be a state such that

H0 |k〉∗ = k |k〉∗ . (26)
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Take S1 |k〉∗. Obviously,

H1S1 |k〉∗ = S1H0 |k〉∗ = kS1 |k〉∗ . (27)

That is, S1 |k〉∗ is an eigenstate of H1 with eigenvalue k. If now,

Si |k〉∗ = γiS1 |k〉∗ , i = 2, · · · , r (28)

for all i 6= 1, with γi some constants, because of (18), S1 |k〉∗ will necessarily
be a common eigenstate of all Hi, i = 1, · · · , r, with eigenvalue k. Since this
last property defines |k〉〉 (up to a constant factor), we could then posit

|k〉〉 = S1 |k〉∗ . (29)

Let us then identify the state |k〉〉 for which (29) will hold. It is determined
by the conditions (26) and (28). The most general |k〉∗ satisfying (26) will
be of the form

|k〉∗ =M
(r)
k

∑

l2,··· ,lr

dl2,··· ,lr

∣

∣

∣
k − |~l|, l2, · · · , lr

〉

, (30)

where dl2,··· ,lr are some coefficients to be specified from (25) and M
(r)
k is the

normalization factor. The sum in (30) is performed over all li ∈ {0, · · · , k}
such that |~l| = (l2 + · · ·+ lr) ≤ k.

Using the property eAeB = e[A,B]eBeA which is valid when the operators
A and B commute with their commutator, one readily finds from (19) that

Si = eσ1−σiSie
−a1eai , i = 2, · · · , r. (31)

If we choose the coefficients {dl2,··· ,lr} so that

e−a1e−ai |k〉∗ = |k〉∗ (32)

for all i = 2, · · · , r, condition (28) will be satisfied with γi = eσ1−σi . Now
(32) is tantamount to demanding that

(a1 − ai) |k〉∗ = 0, i = 2, · · · , r. (33)

The r−1 constraints (33) are straightforwardly found to imply the following
r − 1 recurrence relations for the coefficients {dl2,··· ,lr}:

√

lidl2,···li+1,··· ,lr =

√

k − |~l|dl2,···li,··· ,lr (34)
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which are solved by

dl2,··· ,lr =

√

k!

(k − |~l|)!l2! · · · lr!
d0,··· ,0. (35)

Hence

|k〉∗ = M̃
(r)
k

∑

l2,··· ,lr

√

k!

(k − |~l|)!l2! · · · lr!

∣

∣

∣
k − |~l|, l2, · · · , lr

〉

, (36)

where M̃
(r)
k = M

(r)
k d0,··· ,0. This normalization factor is readily determined

from the condition that |k〉∗ be normalized: ∗ 〈k|k〉∗ = 1. This yields

M̃k
(r)

=
1

r
k
2

(37)

with the help of the multinomial formula. The action of the lowering and
raising operators of |k〉∗ can now be directly computed. One finds that

ai |k〉∗ =
√

k

r
|k − 1〉∗ (38)

and also that

(a+1 + a+2 + · · ·+ a+r ) |k〉∗ =
√

r(k + 1) |k + 1〉∗ . (39)

Although, we have privileged the use of S1 in the preceding considerations,
this choice must not matter and indeed the vector |k〉∗ that has been found
is seen to symmetrically satisfy the constraints

(ai − aj) |k〉∗ = 0 (40)

for all pair i, j = 1, · · · , r.
We are now ready to complete the derivations of the step relations. Using

(24), (29) and (38), we can now write that

(aj + σj) |k〉〉 = |k − 1〉〉 . (41)

Using (10), this yields

√

k

r
N

(r)
k−1C~n(k − 1) = N

(r)
k (C~n+~ej(k) + σjC~n(k)). (42)
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To proceed further we need to find N
(r)
k . In order to do that, set ~n = 0 in

(42) and use the recurrence relations (2) to observe that

C~ej(k) = k − σj . (43)

We thus have
N

(r)
k−1

N
(r)
k

=
√
rk (44)

which implies

N
(r)
k =

1√
k!r

k
2

N0 (45)

with
N0 = 〈0, · · · , 0|S1|0, · · · , 0〉 = e−σ1 . (46)

Returning to (42), we finally have using (44), the following set of r “back-
ward” step relations:

kC~n(k − 1) = C~n+~ej(k) + σjC~n(k), j = 1, · · · , r. (47)

Similarly, for the raising operator, we see from (25), (29) and (39) that we
have

(a+1 + · · ·+ a+r + 1) |k〉〉 =
√

r(k + 1) |k + 1〉〉 . (48)

Using again the coherent sum (10), with N
(r)
k now given by (45), steps anal-

ogous to those that led to (47) bring one to find the “forward” relation that
(48) entail:

C~n(k + 1) = C~n(k) +
n
∑

j=1

njC~n−~ej(k). (49)

The relation (47) and (49) can obviously be combined to obtain a difference
equation for the multiple polynomials Ck

~n.
The Hamiltonian H0 is known to admit a U(r) invariance algebra, gen-

erated by the bilinears a+i aj, i, j = 1, · · · , r that all commute with H0. One
might be curious to know what is their inference on the discrete integrable
system on the lattice Nr for which the multiple Charlier polynomials provide
solutions. As for the joint ladder operatorsX and Y , the common symmetries
R of the Hi ([Hi, R] = 0, i = 1, · · · , r.) are obtained from the symmetries R0

of H0 that have all their conjugates SiR0S
−1
i , i = 1, · · · , r differ at most by a
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constant (that does not matter). Resolving those conditions, it is found that
the common symmetries must be of the form

Rij = −Rji = S1[(a
+
1 + · · ·+ a+r )(ai − aj)]S

−1
1

= (a+1 + · · ·+ a+r + 1)(ai + σi − aj − σj)
(50)

From (40), it is seen that they all annihilate |k〉〉 owing to the factor (ai−aj)
in their expression in the first line. Note that S1(a1 − aj)S

−1
1 = (ai + σi −

aj − σj).
Observe also that these joint constants of motion are in involution:

[Rij , Rkl] = 0. (51)

By making explicit, the implication of

Rij |k〉〉 = 0 (52)

when Rij acts on the r.h.s. of (10), one obtains the relations

∑

s 6=i

niC~n+~es−~ei(k)−
∑

s 6=j

njC~n+~es−~ej(k)

+ (ni − nj + σi − σj)C~n(k) + C~n+~ei(k)− C~n+~ej(k)

+ (σi − σj)

r
∑

s=1

nsC~n−~es(k) = 0

(53)

which are in fact consequences of (3) when combined with the recurrence
relations (2).

Our final considerations will bear on the explicit expression of the multiple
Charlier polynomials and on the generating function. Given (29), that is
|k〉〉 = S1 |k〉∗, and the fact that S1 and |k〉∗ are known explicitly, it is quite
clear that an expression for the multiple Charlier polynomials should follow
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from working out the action of S1 on |k〉∗. Let us then proceed.

S1 = e−σ1e−σ1a
+

1 ea1 · e−σ2a
+

2 · · · e−σra
+
r , (54)

S1

∣

∣

∣
k − |~l|, l2, · · · , lr

〉

= e−σ1e−σ1a
+

1 ea1
∣

∣

∣
k − |~l|

〉

·
r
∏

j=2

e−σja
+

j |lj〉 ,
(55)

e−σja
+

j |lj〉 =
∞
∑

nj=0

|nj〉 〈nj | e−σja
+

j |lj〉

=
∞
∑

nj=0

(−σ)nj−lj

(nj − lj)!

√

nj !

lj!
|nj〉 ,

(56)

e−σ1a
+

1 ea1
∣

∣

∣
k − |~l|

〉

=
∞
∑

n1=0

|n1〉 〈n1| e−σ1a
+

1 ea1
∣

∣

∣
k − |~l|

〉

. (57)

The matrix elements occurring in (57) can be obtained following techniques
used in [4] and [5]. If one sets

ψn,k = 〈k| e−σ1a
+

1 ea1 |n〉 , (58)

from

〈k| a+1 a1e−σ1a
+

1 ea1 |n〉 = 〈k| e−σ1a1ea1(a+1 a1 − a1 − σ1a
+
1 + σ1) |n〉 , (59)

one readily finds that ψn,k obey the recurrence relation

kψn,k = (n+ σ1)ψn,k −
√
nψn−1,k − σ1

√
n+ 1ψn+1,k. (60)

This implies that

ψn,k =
1√
n!
(−σ1)npn(k)ψ0,k, (61)

where pn(k) are polynomials of order n in k which are identified with the
monic Charlier polynomials. The “initial” value ψ0,k is directly computed to
be

ψ0,k =
(−σ1)k√

k!
. (62)
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This therefore implies that

e−σ1a
+

1 ea1
∣

∣

∣
k − |~l|

〉

=

∞
∑

n1=0

(−σ1)n1+|~l|−k

√

n1!(k − |~l|)!
pk−|~l|(n1) |n1〉 . (63)

One then uses (55), (56) and (63) to write down the action of S1 on |k〉∗ as
given by (36) and (37). First, one calls upon the following expression for the
standard Charlier polynomials [11]

pn(k) = (−σ1)n 2F0

(

−n,−k
− | − 1

σ1

)

= (−σ1)n
∞
∑

s=0

(−n)s(−k)s
s!

(

− 1

σ1

)s

,

(64)

where we are using the Pochhammer symbol defined by

(a)r = a(a+ 1) · · · (a + r − 1). (65)

One then identifies the coefficients of |n1, · · · , nr〉 on both sides of |k〉〉 =
S1 |k〉∗ to find that

C~n(k) =
n1
∑

s=0

∑

{li}

k!(|~l| − k)r

(k − |~l|)!
· (−n1)r ·

n2! · · ·nr!

(n2 − l2)! · · · (nr − lr)!

· (−σ1)
n1−s

s!
· (−σ2)

l2−s

l2!
· · · (−σr)

lr−s

lr!
.

(66)

After some simplification, one finally arrives at the following explicit expres-
sion:

C~n(k) =

n1
∑

l1=0

· · ·
nr
∑

lr=0

(−n1)l1(−n2)l2 · · · (−nr)lr(−k)l1+···+lr

· (−σ1)
n1−l1

l1!
· (−σ2)

n2−l2

l2!
· · · (−σr)

nr−lr

lr!
.

(67)

This formula has been given in [7] for the case r = 2.
Last, a generating function can be obtained from (29), by introducing the

Bargmann representation where the states |n1, n2, . . . , nt〉 and the oscillator
operators ai, a

+
i , i = 1, 2, . . . , r are realized by

|n1, n2, . . . , nr〉 =
1√

n1!n2! . . . nr!
zn1

1 z
n2

2 . . . znr

r , ai = ∂zi , a
+
i = zi (68)

12



Relations (8) are obviously enforced in this model.
Recall from (28) and (29) that

eσi−σ1Si|k〉∗ = |k〉〉 (69)

for any i = 1, 2, . . . , r. In the Bargmann representation

Si = e−σ1e−(σ1z1+···+σrzr)e∂zi (70)

and

|k〉∗ =
√

k!

rk

∑

l1+l2+···+lr=k

zl1

l1!
. . .

zlr

lr!
(71)

Since
e∂zif(z1, z2, . . . , zi, . . . , zr) = f(z1, z2, . . . , zi + 1, . . . , zr),

we have, combining (69) and (71)

e−σ1

√
k!

rk/2
e−(σ1z1+···+σrzr)

∑

l1,...lr

zl11 . . . (zi + 1)lizlrr
l1! . . . lr!

=

e−σ1

√
k!rk

∑

n1,...nr

C~n(k)

n1! . . . nr!
zn1

1 . . . znr

r .

(72)

This readily gives, the following generating function with the help of the
multimonomial formula

e−(σ1z1+···+σrzr)(z1 + z2 + · · ·+ zr + 1)k =
∑

~n

C~n(k)
zn1

1

n1!
. . .

znr
r

nr!

(73)

Notice that, as should be, any operator Si, i = 1, . . . , r can be used to derive
the identity (73).

In summary, let us recall some of our findings. We have presented
a remarkable set of non-Hermitian harmonic oscillator Hamiltonians in r-
dimensions with real spectra. Their common eigenfunctions have been seen
to be given in terms of multiple Charlier polynomials. Had we passed to a
coordinate representation, we could have obtained relations involving prod-
ucts of Hermite polynomials and their translates [4, 5]. This physical settings
has provided an algebraic model for the multiple Charlier polynomials that

13



has been used to offer alternate demonstrations of some of their structural
relations. It would be of interest in our opinion to pursue the algebraic in-
terpretation of multiple polynomials. The multiple Meixner polynomials in
particular, should lend themselves also to an oscillator modelization. We
plan to return to this in a future publication.
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