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Abstract

We introduce a new notion called generalized dominated splitting which is weaker

than classical dominated splitting. We use this notion to generalize a result of

Zhang[12]: every diffeomorphism with nontrivial global generalized dominated split-

ting can not be minimal.

1 Introduction

Minimality is an important concept in the study of dynamical systems. It is interest-

ing to study some nature structure of the system that incompatible with minimality. In

1980’s Herman[3] constructed a (family of) C1 diffeomorphism on a compact 4-dimensional

manifold that is minimal but has positive topological entropy simultaneously and Rees[8]

constructed a minimal homeomorphism with positive topological entropy on 2-torus. So

positive entropy is insufficient to guarantee the non-minimality. In [5] Mañé gave an ar-

gument to locate some nonrecurrent point if the map admits some invariant expanding

foliation (also see [2]). In particular this argument implies that a partially hyperbolic

diffeomorphism always has some nonrecurrent point and hence can not be minimal. Re-

cently in [12] Zhang showed that a global dominated splitting is sufficient to exclude the

minimality of the system. In present paper we mainly want to generalize the result [12]

to a more general assumption called generalized dominated splitting.

Let M be a compact D-dimensional smooth Riemannian manifold and let d denote

the distance induced by the Riemannian metric. Denote the tangent bundle of M by

TM and denote by Diff1(M) the space of C1 diffeomorphisms of M . Denote the maximal

norm of a linear map A by ‖A‖ and denote the minimal norm of an invertible linear map

A by m(A) := ‖A−1‖−1. Now we introduce our new notion called generalized dominated

splitting.
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Definition 1.1. Let f ∈ Diff1(M) and let S ∈ N, λ > 0. Given an f−invariant compact

set ∆, we say a Df−invariant splitting T∆M = E ⊕ F on ∆ to be a generalized

dominated splitting on ∆ (or simply GDS), if

(1). T∆M = E ⊕ F is continuous on ∆;

(2).
‖DfkS |E(x)‖
m(DfkS |F (x))

≤ λ, ∀x ∈ ∆, ∀k ∈ N;

(3). there exists x0 ∈ ∆,
‖DfS |E(x0)

‖
m(DfS |F (x0)

)
< λ−1.

Note that ‖AB‖ ≤ ‖A‖‖B‖, m(AB) ≥ m(A)m(B), ‖AB‖ ≥ ‖A‖m(B) and m(AB) ≤
m(A)‖B‖. Then

‖Df [n
S
]S|E(x0)‖

m(Df [n
S
]S|F (x0))

× C2S ≥ ‖Dfn|E(x0)‖
m(Dfn|F (x0))

≥ ‖Df [n
S
]S|E(x0)‖

m(Df [n
S
]S|F (x0))

× C−2S (1.1)

where C = supx∈M max{‖Df(x)‖, ‖Df−1(x)‖}.
Remark 1.2. By (1.1) the second condition in Definition 1.1 implies that for all x ∈ ∆,

lim sup
n→+∞

1

n
log

‖Dfn|E(x)‖
m(Dfn|F (x))

=
1

S
lim sup
n→+∞

1

n
log

‖DfnS|E(x)‖
m(DfnS|F (x))

≤ 1

S
min{log λ, 0} ≤ 0.

Recall the definition of classical dominated splitting. Let ∆ be an f−invariant compact

set. A Df−invariant splitting T∆M = E ⊕ F on ∆ is called (S, λ)-dominated on ∆ (or

simply dominated), if there exist two constants S ∈ Z+ and 0 < λ < 1 such that

‖DfS|E(x)‖
m(DfS|F (x))

≤ λ, ∀x ∈ ∆.

Note that dominated splitting is always continuous (see [1]), λ < 1 < λ−1 and

‖DfkS|E(x)‖
m(DfkS|F (x))

≤
k−1
∏

i=0

‖DfS|E(f i(x))‖
m(DfS|F (f i(x)))

≤ λk ≤ λ.

So any dominated splitting satisfies Definition 1.1(Moreover, we will give an example

below which does not have global dominated splitting but admits a global GDS).

Let ∆ be an f−invariant compact set. If ∅ 6= ∆ & M , it is clear that f can not be

minimal since the closure of every orbit in ∆ is still contained in ∆. A Df−invariant

splitting T∆M = E ⊕ F on ∆ is nontrivial if dim(E) · dim(F ) 6= 0. And we say a

Df−invariant splitting T∆M = E ⊕ F to be global, if ∆ = M. Now we state our main

theorem for considering systems with global GDS.

Theorem 1.3. Let f ∈ Diff1(M). If there is a nontrivial global GDS TM = E⊕F , then

f can not be minimal.

Remark 1.4. There exists some minimal system f ∈ Diff1(M) such that its nontrivial

global invariant splitting TM = E⊕F only satisfies the first two conditions in Definition

1.1. More precisely, for a ∈ R, define the corresponding rotation Ra : S1 → S1, x 7→
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x + a(mod1). Clearly for the product system fa1,a2,··· ,an := Ra1 × Ra2 × · · · × Ran :

Tn → Tn(a1, a2, · · · , an ∈ R), its nontrivial global invariant splitting TM = E ⊕ F

satisfies the first two conditions in Definition 1.1 for any S ∈ N, λ ≥ 1 but fails the third

condition for all S ∈ N, λ ≥ 1 (
‖Dfk|E(x)‖
m(Dfk |F (x))

≡ 1, ∀x ∈ ∆, ∀k ∈ N). It is well-known

that 1, a1, a2, · · · , an ∈ R are rationally independent if and only if the product system

fa1,a2,··· ,an = Ra1 × Ra2 × · · · × Ran is minimal(and ergodic with respect to Lebesgue

measure). This shows that both minimal and non-minimal C∞ diffeomorphisms admit to

have nontrivial global invariant splitting TM = E ⊕ F satisfying the first two conditions

in Definition 1.1.

If a global Df−invariant splitting T∆M = E ⊕ F is not GDS but the first two con-

ditions in Definition 1.1 still hold for some S, λ, then λ ≥ 1 and λ−1 ≤ ‖DfkS |E(x)‖
m(DfkS |F (x))

≤

λ, ∀x ∈ ∆, ∀k ∈ N. Otherwise, there exists x0 ∈ ∆ and k0,
‖Dfk0S |E(x0)

‖
m(Dfk0S |F (x0)

)
< λ−1, then

T∆M = E ⊕ F is GDS for N := k0S and λ. Furthermore, from (1.1)

(C2Sλ)−1 ≤ ‖Dfn|E(x)‖
m(Dfn|F (x))

≤ C2Sλ, ∀x ∈ ∆, ∀n ∈ N.

In particular, limn→+∞
1
n
log

‖Dfn|E(x)‖
m(Dfn|F (x))

= 0, ∀x ∈ ∆. From these analysis and Remark

1.2, the third condition in Definition 1.1 can be deduced once for some x,

lim inf
n→+∞

1

n
log

‖Dfn|E(x)‖
m(Dfn|F (x))

< 0.

Hence, we state such a corollary of Theorem 1.3 as follows.

Corollary 1.5. Let f ∈ Diff1(M). If there is a nontrivial global Df−invariant splitting

TM = E ⊕ F satisfying the first two conditions in Definition 1.1 and there exists x0,

lim inf
n→+∞

1

n
log

‖Dfn|E(x0)‖
m(Dfn|F (x0))

< 0,

then TM = E ⊕ F is a nontrivial global GDS and thus f can not be minimal.

This corollary can be as a sufficient condition to obtain GDS. By Remark 1.2, for a

global (S, λ)-dominated splitting, every point x satisfies

lim sup
n→+∞

1

n
log

‖Dfn|E(x)‖
m(Dfn|F (x))

≤ 1

S
log λ < 0.

This implies for any global dominated splitting, every point satisfies the assumption of

Corollary 1.5 and the supreme limit can be uniformly less than 0. But Corollary 1.5

assumes only one such point and uses inferior limit. Thus the assumption in Corollary

1.5 is still weaker than dominated splitting(for instance, see Example 3.1 below).
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Remark 1.6. For any surface diffeomorphism f with positive topological entropy, if there is

a nontrivial global Df−invariant splitting TM = E⊕F satisfying the first two conditions

in Definition 1.1, then f satisfies Corollary 1.5 and thus f can not be minimal. More

precisely, by Variational Principle([11]), for any diffeomorphism with positive entropy,

there exists an ergodic measure µ with positive entropy and thus by Rulle’s inequality([9])

µ has both negative Lyapunov exponent(χ1 < 0) and positive Lyapunov exponent(χ2 > 0)

simultaneously. Note that dim(E) = dim(F ) = 1, then for µ a.e. x,

lim
n→+∞

1

n
log

‖Dfn|E(x)‖
m(Dfn|F (x))

= χ1 − χ2 ≤ −2hµ(f) < 0.

In particular, we recall that if f is a C1+α surface diffeomorphism with positive topological

entropy, then f always has periodic point by classical Pesin theory[4] and thus can not

be minimal.

2 Proof of Theorem 1.3

Before proving Theorem 1.3 we need a result of [7] .

Lemma 2.1. (Proposition 3.4 in [7]) Let f : X → X be a continuous map of a compact

metric space. Let an : X → R, n ≥ 0, be a sequence of continuous functions such that

an+k(x) ≤ an(f
k(x)) + ak(x) for every x ∈ X, n, k ≥ 0. (2.2)

and such that there is a sequence of continuous functions bn : X → R, n ≥ 0, satisfying

an(x) ≤ an(f
k(x)) + ak(x) + bk(f

n(x)) for every x ∈ X, n, k ≥ 0. (2.3)

If

inf
1

n

∫

X

an(x)dµ < 0

for every ergodic f-invariant measure, then there is N > 0 such that aN(x) < 0 for every

x ∈ X.

Proof of Theorem 1.3 If λ < 1, then the nontrivial global GDS is a nontrivial

global dominated splitting. By the result of [12], f can not be minimal. Now we assume

that λ ≥ 1 and we will give a proof by contradiction. Suppose f is minimal, then the

nontrivial global GDS can not be a nontrivial global dominated splitting from [12]. To

get a contradiction for this case, we only need to prove that the nontrivial global GDS is

nontrivial global dominated splitting.

Define for ǫ > 0

Aǫ := {z ∈ M | ‖DfS|E(z)‖
m(DfS|F (z))

< −ǫ+ λ−1}
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and set A =
⋃

ǫ>0Al. Note that every set Aǫ is open set and A is also open since the

splitting TM = E ⊕ F is continuous. Clearly by assumption the point x0 must be in A.

Take 0 < ǫ < λ−1 small enough such that x0 ∈ Aǫ so that Aǫ 6= ∅.

Since we assume that f is minimal, then for every invariant measure µ, its support

supp(µ) must coincide with the whole manifold M . Otherwise, if for some µ, supp(µ) $
M. Then every point x ∈ supp(µ), the closure of its orbit is contained in supp(µ) $ M

since supp(µ) is always compact and invariant. This contradicts that f is minimal. So

for any nonempty open set, it always has positive measure for any invariant measure. In

particular, µ(Aǫ) > 0 holds for any invariant measure µ.

Define functions for x ∈ M

an(x) := log
‖Dfn|E(x)‖
m(Dfn|F (x))

.

Recall that ‖AB‖ ≤ ‖A‖‖B‖ and m(AB) ≥ m(A)m(B). Then it is easy to see that

an satisfy (2.2) of Lemma 2.1. Taking into account (2.2) we see that (2.3) holds once

an(x) ≤ an+k(x) + bk(f
n(x)). This is easily verified for bk(x) := log

‖(Dfk |E(x))
−1‖

m((Dfk |F (x))−1)
since

‖Dfn|E(x)‖
m(Dfn|F (x))

≤ ‖Dfn+k|E(x)‖
m(Dfn+k|F (x))

× ‖(Dfk|E(fn(x)))
−1‖

m((Dfk|F (fn(x)))−1)
.

Recall that TM = E ⊕ F is a continuous splitting. So an(x), bn(x) are continuous func-

tions. Then all assumptions of Lemma 2.1 are satisfied once inf 1
n

∫

M
an(x)dµ < 0 holds

for ergodic invariant measure µ.

Let µ be an f ergodic invariant measure. By Subadditive Ergodic Theorem(see [11]),

and the ergodicity of µ, the limit function

a(x) := lim
n→+∞

1

n
an(x)

is well-defined, f -invariant and can be a constant function for µ a.e x. Now we prove for

µ a.e x, a(x) < 0 which implies inf 1
n

∫

M
an(x)dµ < 0. Let Φ := ∪n∈Zf

n(Aǫ). Clearly it is

f -invariant and from ergodicity of µ we have that µ(Φ) = 1(In fact, Φ = M since M \ Φ
is f -invariant and closed but f is minimal). So we only need to prove a(x) < 0 for µ a.e

x ∈ Aǫ since a(x) is f invariant. Define cn(x) := anS(x), then

c(x) := lim
n→+∞

1

n
cn(x) = S lim

n→+∞

1

nS
anS(x) = Sa(x).

So we only need to prove c(x) < 0 for µ a.e. x ∈ Aǫ.

By Birkhoff Ergodic Theorem, the limit function

χ∗
Aǫ
(x) := lim

n→+∞

1

n

n−1
∑

j=0

χAǫ
(f jS(x))

exists for µ a.e. x and fS−invariant. Moreover,
∫

χ∗
Aǫ
(x)dµ =

∫

χAǫ
(x)dµ = µ(Aǫ). If µ is

fS ergodic, it is obvious since χ∗
Aǫ
(x) ≡

∫

χAǫ
(x)dµ = µ(Aǫ) > 0 holds for µ a.e. x ∈ M .
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But we do not know whether µ is fS ergodic or not. We only know that it is still fS

invariant. Here we recall a basic fact for recurrent times which is the claim in the proof

of Proposition 3.1 [6]. This fact is that for any homeomorphism g, if ν is g-invariant and

Γ is a set with ν(Γ) > 0, then for ν a.e. x ∈ Γ,

χ∗
Γ(x) := lim

n→+∞

1

n

n−1
∑

j=0

χΓ(g
j(x)) > 0

(Remark that in general this fact holds only for ν a.e. x ∈ Γ and then x ∈ ∪n∈Zg
n(Γ) but

maybe not hold for ν a.e. x ∈ M since ν is just g-invariant). This guarantees that for µ

a.e. x ∈ Aǫ, χ
∗
Aǫ
(x) > 0 since µ is fS invariant and µ(Aǫ) > 0. Fix such a point x ∈ Aǫ.

Let

t0(x) = 0 < t1(x) < t2(x) < · · ·
to be the all positive times such that f ti(x)S(x) ∈ Aǫ. Then

lim
i→+∞

i

ti(x)
= lim

ti(x)→+∞

1

ti(x)

ti(x)−1
∑

j=0

χAǫ
(f jS(x)) = χ∗

Aǫ
(x) > 0.

Recall the definition of Aǫ and the second condition of GDS. Then

‖DfS|
E(f tj(x)S(x))

‖
m(DfS|

F (f tj(x)S(x))
)
≤ −ǫ+ λ−1

and
‖Df (tj+1(x)−tj (x)−1)S |

E(f tj(x)S+S(x))
‖

m(Df (tj+1(x)−tj(x)−1)S |
F (f tj(x)S+S(x))

)
≤ λ.

Hence, for n = ti(x),

cn(x) = log
‖DfnS|E(x)‖
m(DfnS|F (x))

≤
i−1
∑

j=0

log
‖DfS|

E(f tj(x)S(x))
‖

m(DfS|
F (f tj(x)S(x))

)

+

i−1
∑

j=0

log
‖Df (tj+1(x)−tj(x)−1)S |

E(f tj(x)S+S(x))
‖

m(Df (tj+1(x)−tj(x)−1)S |
F (f tj(x)S+S(x))

)

≤ i log(−ǫ+ λ−1) + i log λ = i log(1− ǫλ).

Thus

c(x) = lim
n→+∞

1

n
cn(x) ≤ lim

i→+∞

i log(1− ǫλ)

ti(x)
= χ∗

Aǫ
(x) log(1− ǫλ) < 0.

Remark that χ∗
Aǫ
(x) > 0 and the estimate inequality of cn(x) play the crucial roles.

Now we can use Lemma 2.1 to get that there isN > 0 such that aN(x) < 0 for every x ∈
M. Recall that aN is a continuous function and M is compact. So t := maxx∈M{aN (x)}
exists and must be negative. If τ = et, then 0 < τ < 1 and for any x ∈ M,

‖DfN |E(x)‖
m(DfN |F (x))

= eaN (x) ≤ et = τ.
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So the nontrivial global GDS TM = E ⊕ F is a nontrivial global (N, τ)-dominated split-

ting. We complete the proof.

Remark 2.2. Note that the assumption of ergodicity of µ is not necessary due to the used

claim in the proof of Proposition 3.1 [6]. Moreover, if we do not assume f to be minimal

in the proof, it is easy to see that for any invariant (not necessarily ergodic) measure µ,

inf 1
n

∫

M
an(x)dµ < 0 if and only if µ(∪ǫ>0Aǫ) > 0.

Remark 2.3. This proof implies a fact that if inf 1
n

∫

M
log

‖Dfn|E(x)‖
m(Dfn|F (x))

dµ < 0 holds with

respect to a continuous Df -invariant splitting TM = E ⊕ F for all ergodic invariant

measure µ, then TM = E ⊕ F is a global dominated splitting.

3 Difference of GDS and Dominated splitting

To further illustrate the new notion of GDS, we construct a simple example which firstly

appeared in [10]. This diffeomorphism has global GDS for S = 1, λ = 1 but does not have

global dominated splitting.

Example 3.1. Let g be a Cr(r ≥ 1) increasing function on [0, 1], satisfying:

g(0) = 0, g(1) = 1, g′(0) = g′(1) =
3−

√
5

2
, g(

1

2
) =

1

2
, g′(

1

2
) =

3 +
√
5

2
and

3−
√
5

2
≤ g′(x) ≤ 3 +

√
5

2
, ∀x ∈ [0, 1], g(x) < x, ∀ x ∈ (0,

1

2
), g(x) > x, ∀ x ∈ (

1

2
, 1).

1

0 1x0

Figure 1: Graph of the function g.

And let h : T 2 → T 2 be the hyperbolic Torus automorphism

(y, z) 7→ (2y + z, y + z), y, z ∈ S1 = R/Z.
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Define f = g × h : T 3 → T 3. Clearly,

Df(x, y, z) =





g′(x) 0 0

0 2 1

0 1 1



 .

There exists naturally a continuous splitting TT 3 = E1 ⊕ E2 ⊕ E3, where E2 and

E3 are from the hyperbolic Torus automorphism h and E1 is g−invariant. The forward

Lyapunov exponent of E1 is log 3−
√
5

2
over T 3 − {1

2
} × T 2 and the Lyapunov exponents

of E2 ⊕ E3 over {0} × T 2 are log 3−
√
5

2
, log 3+

√
5

2
respectively. Denote by δ0 the point

measure at point 0 ∈ S1 and denote by m the Lebesgue measure on T 2, then the product

measure µ = δ0×m is a hyperbolic ergodic measure of the diffeomorphism f = g×h with

three nonzero Lyapunov exponents − log 3+
√
5

2
, − log 3+

√
5

2
, log 3+

√
5

2
. Set E = E1 ⊕E2 and

F = E3, then E⊕F construct a continuous Df -invariant splitting of TT 3 over the whole

space T 3 and E⊕F is a GDS for S = 1, λ = 1 on the whole space T 3. However, it is not

a global dominated splitting since for every point u = (1
2
, y, z) (y, z ∈ S1),

‖Df |E(u)‖
m(Df |F (u))

=
3+

√
5

2

3+
√
5

2

= 1.

Similarly if E = E2 and F = E1 ⊕ E3, we can follow above discussion to get that the

new E ⊕ F is also not dominated but a global GDS for S = 1, λ = 1. But if E = E1

and F = E2 ⊕ E3, then it is easy to see this splitting E ⊕ F is not a global GDS and

thus is also not a global dominated splitting(even though this splitting is continuous on

whole manifold). All in all, this example has nontrivial global GDS but does not admit

nontrivial global dominated splitting.

At the end of present paper, we point out a further question under a more general

assumption.

Question 3.2. Let f ∈ Diff1(M). If there is a nontrivial global Df−invariant splitting

TM = E ⊕ F satisfying

(1). TM = E ⊕ F is continuous on ∆;

(2). for every x ∈ M,

lim inf
n→+∞

1

n
log

‖Dfn|E(x)‖
m(Dfn|F (x))

≤ 0;

(3). there exists x0,

lim inf
n→+∞

1

n
log

‖Dfn|E(x0)‖
m(Dfn|F (x0))

< 0.

Then whether f can not be minimal?

Acknowledgement. The author thanks very much to Professor Marcus Bronzi,
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3. M. Herman, Construction d’un difféomorphisme minimal d’entropie topologique non

nulle, Ergod. Th. Dynam. Sys. 1 (1981), 65-76.

4. A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms,

Inst. Hautes Etudes Sci. Publ. Math. 51 (1980), 137-173.
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