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1 Introduction

Many physical phenomena are described by nondifferentiable functions. For instance, generic
trajectories of quantum mechanics are nondifferentiable [1]. An important issue consists to
find stationary conditions for integral functionals defined on sets of functions that are not
necessarily differentiable in the classical sense. Several different approaches to deal with
nondifferentiability are being followed in the literature, including the time scale approach,
which typically deal with delta or nabla differentiable functions [2–8], the fractional approach,
allowing to consider functions that have no first order derivative but have fractional derivatives
of all orders less than one [9–15], and the quantum approach, particularly useful to model
physical systems [16–24].

Quantum derivatives play a leading role in the understanding of complex physical systems.
In 1992 Nottale introduced the theory of scale-relativity without the hypothesis of space-time
differentiability [25–27]. In [19] Cresson presents a quantum calculus defined on a set of
Hölder functions based on the h-operator

∆hf(x) =
f(x+ h)− f(x)

h
.

Main result of [19] gives a nondifferentiable Euler–Lagrange equation for the basic problem of
the calculus of variations. Cresson’s calculus of variations has been further developed in [20],
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where Lagrangian and Hamiltonian versions of Noether’s theorem are proved, and in [28]
where the authors study isoperimetric problems. More recently, Cresson and Greff [21, 22]
improved the previous approach of [19].

Our paper is organized as follows. In Section 2 we recall the definition of quantum deriva-
tive (Definition 2) and its main properties are reviewed, including Leibniz’s and Barrow’s
formulas (Theorems 4 and 5, respectively). We also introduce the concept of higher-order and
partial quantum derivatives. In Section 3 we consider integral functionals with Lagrangians
containing the quantum derivative, defined on a set of Hölder functions. We present a nec-
essary and sufficient extremality condition of Euler–Lagrange type (Theorem 8) as well as
natural boundary conditions (Theorem 9). In Section 4 we exhibit a generalization of the
quantum Euler–Lagrange equation when we are in presence of an integral constraint of the
same type as the quantum action functional (Theorem 11). In Section 5 we consider depen-
dence of the action on a complex parameter (Theorem 13). The case where the Lagrangian
contains higher-order quantum derivatives is considered in Section 6, and a higher-order
Euler–Lagrange type equation is proved (Theorem 14). The rest of the paper considers a
generalization for admissible functions of two independent variables. We begin by proving
in Section 7 a nondifferentiable quantum version of Green’s theorem (Theorem 18) and a
quantum analogous of integration by parts for double integrals (formula (12)), from which
we deduce in Section 8 a necessary and sufficient condition for a function to be a quan-
tum extremal for double integrals (Theorem 21) and respective natural boundary conditions
(Theorem 22). We end the paper with Section 9, considering a membrane with potential
energy given by a variational double integral depending on quantum partial derivatives. The
equilibrium of the membrane is given as the quantum Euler–Lagrange extremal.

2 Definitions and basic formulas

We begin by reviewing the quantum calculus as in [21, 22]. Along the text α, β ∈ (0, 1),
h ∈ (0, 1) with h ≪ 1 and σ = ±1. For a continuous function f : I ⊆ R → R, the h-derivative
of f is defined by the quotient

Dσ
hf(x) = σ

f(x+ σh) − f(x)

h

whenever it is defined. Observe that, in case of considering differentiable functions, we can
obtain the standard derivative taking the limit

lim
h→0

Dσ
hf(x) = f ′(x).

Definition 1. The quantum derivative of f , with respect to h, is defined by

✷hf

✷x
(x) =

1

2

[(

D+1
h f(x) +D−1

h f(x)
)

+ i
(

D+1
h f(x)−D−1

h f(x)
)]

. (1)

As before, for differentiable functions we obtain f ′(x) from (1) as h → 0. For complex
valued functions we put

✷hf

✷x
(x) =

✷hRef

✷x
(x) + i

✷hImf

✷x
(x).
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Let C0
conv(I × (0, 1),R) ⊆ C0(I × (0, 1),R) be the set of functions for which the limit

lim
h→0

f(x, h)

exists for any x ∈ I, and let E be a complementary of C0
conv(I× (0, 1),R) in C0(I× (0, 1),R).

Define the projection map π by

π : C0
conv(I × (0, 1),R) ⊕ E → C0

conv(I × (0, 1),R)
fconv + fE 7→ fconv

and the operator 〈·〉 by

〈·〉 : C0(I × (0, 1),R) → C0(I,R)
f 7→ 〈f〉 : x 7→ lim

h→0
π(f)(x, h).

Finally, we arrive to the main concept introduced in [21]: the quantum derivative of f
(without the dependence of h).

Definition 2. The quantum derivative of f is defined by the rule

✷f

✷x
=

〈

✷hf

✷x

〉

. (2)

The scale derivative (2) has some nice properties. Namely, it satisfies a Leibniz and a
Barrow rule. First let us recall the definition of Hölderian function.

Definition 3. Let f ∈ C0(I,R). We say that f is Hölderian of Hölder exponent α if there

exists a constant C > 0 such that, for all x and s, the inequality

|f(x+ s)− f(x)| ≤ C|s|α

holds. The set of Hölderian functions of Hölder exponent α is denoted by Hα(I,R).

Theorem 4 (The quantum Leibniz rule [21]). For f ∈ Hα(I,R) and g ∈ Hβ(I,R), α+β > 1,
one has

✷(f.g)

✷x
(x) =

✷f

✷x
(x).g(x) + f(x).

✷g

✷x
(x).

Theorem 5 (The quantum Barrow rule [21]). Let f ∈ C0([a, b],R) be such that ✷f/✷x is

continuous, and

lim
h→0

∫ b

a

(

✷hf

✷x

)

E

(x)dx = 0. (3)

Then,
∫ b

a

✷f

✷x
(x) dx = f(b)− f(a).

We can generalize the previous notion to include higher-order and partial derivatives. An
higher-order quantum derivative is defined as in the standard case: given n ∈ N, the quantum
derivative of order n of f , ✷

nf
✷xn , is defined recursively by

✷
1f

✷x1
=

✷f

✷x
,

✷
nf

✷xn
=

✷

✷x

(

✷
n−1f

✷xn−1

)

, n = 2, 3, . . .

3



For convenience of notation, we use the convention ✷
0f

✷x0 = f . We note that if f is a function

of class Cn, then ✷
nf

✷xn = dnf
dxn = f (n).

We now consider the two dimensional case. The objective is to introduce the concept of
partial quantum derivative. All the previous definitions and results can be easily adapted
to this case, doing the necessary adjustments. We proceed doing a brief exposition on the
subject. Let Ω ⊆ R

2. For σ = ±1 we define the quantities

∂σ
hf

∂x1
(x1, x2) = σ

f(x1 + σh, x2)− f(x1, x2)

h

and
∂σ
hf

∂x2
(x1, x2) = σ

f(x1, x2 + σh)− f(x1, x2)

h
.

If f is a differentiable function, then we obtain the usual partial derivatives ∂f/∂x1 and
∂f/∂x2 as h → 0. The partial h-quantum derivatives are defined by

✷hf

✷xj
(x1, x2) =

1

2

[(

∂+1
h f

∂xj
(x1, x2) +

∂−1
h f

∂xj
(x1, x2)

)

+ i

(

∂+1
h f

∂xj
(x1, x2)−

∂−1
h f

∂xj
(x1, x2)

)]

,

j ∈ {1, 2}.
Given a function f(·, ·), we say that f belongs to Hα(Ω,R) if both f(·, x2) and f(x1, ·)

are Hölderian of Hölder exponent α for all x1 and x2.
The definition of the partial quantum derivatives ✷f/✷xj of f , j = 1, 2, is clear and is

left to the reader.

3 Extremals for functions with one independent variable: the

quantum Euler–Lagrange equation

In the classical context of the calculus of variations, for example in classical mechanics, one
studies necessary and sufficient optimality conditions for functionals/actions defined on a set
of differentiable functions y, where the Lagrangian L depends on the independent variable x,
function y, and the derivative y′ of y. In our context we deal with nondifferentiable functions
y, and we replace y′ = dy/dx by the quantum derivative ✷y/✷x. We consider the following
functional:

Φ : ∂Hα(I,R) → C

y 7→

∫ b

a

L
(

x, y(x),
✷y

✷x
(x)
)

dx,
(4)

where ∂Hα(I,R) denotes the subspace of Hα(I,R) for which y(a) and y(b) take given fixed
values ya and yb, i.e., y(a) = ya and y(b) = yb. We assume that the Lagrangian L = L(x, y, v) :
[a, b] × R × C → C is differentiable in all its arguments with continuous partial derivatives:
L(·, ·, ·) ∈ C1.

Remark 6. If in (4) we replace the domain of Φ by C1(I,R), then we obtain the usual

functional of variational calculus:

Φ(y) =

∫ b

a

L(x, y(x), y′(x)) dx.
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Let α, β ∈ (0, 1) be such that α + β > 1 and β ≥ α. A variation of y ∈ ∂Hα(I,R) is
another function of ∂Hα(I,R) of the form y + εw, with w ∈ Hβ(I,R) and ε a small real
number.

Definition 7. We say that y is a quantum extremal of (4) if for any w ∈ Hβ(I,R)

d

dε
Φ(y + εw)|ε=0 = 0.

For convenience of notation, we introduce the operator [·] defined by

[y](x) =
(

x, y(x),
✷y

✷x
(x)
)

.

Theorem 8 (The quantum Euler–Lagrange equation [21]). Let α, β ∈ (0, 1) be such that

α+ β > 1 and β ≥ α. If y ∈ ∂Hα(I,R) satisfies ✷y/✷x ∈ Hα(I,R) and

∂L

∂v
[y](x) · w(x)

satisfies condition (3) for all w ∈ Hβ(I,R), then function y is a quantum extremal of Φ on

Hβ(I,R) if and only if
∂L

∂y
[y](x)−

✷

✷x

(

∂L

∂v
[y]

)

(x) = 0 (5)

for all x ∈ [a, b].

From now on we will be always assuming that

∂L

∂v
[y](x) · w(x)

satisfies (3) for all w ∈ Hβ(I,R).
Another important problem is to find the extremals of a certain functional Ψ in the case

we have no boundary constraints on the set of admissible functions that define the domain of
Ψ. As we show below, in this case besides the quantum Euler–Lagrange equation two more
conditions, called the quantum natural boundary conditions, need to be satisfied. Let Ψ be
the functional defined by

Ψ : Hα(I,R) → C

y 7→ Φ(y) =

∫ b

a

L
(

x, y(x),
✷y

✷x
(x)
)

dx.

Theorem 9 (The quantum Euler–Lagrange and natural boundary conditions). Let y ∈
Hα(I,R) be such that ✷y/✷x ∈ Hα(I,R). Function y is a quantum extremal of Ψ on Hβ(I,R)
if and only if the following conditions hold:

1.
∂L

∂y
[y](x) −

✷

✷x

(

∂L

∂v
[y]

)

(x) = 0 for all x ∈ [a, b];

2.
∂L

∂v

(

a, y(a),
✷y

✷x
(a)
)

= 0;

3.
∂L

∂v

(

b, y(b),
✷y

✷x
(b)
)

= 0.
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Proof. Similarly to the proof of Theorem 8, we begin by considering a variation of y of the
type y+εw, with w ∈ Hβ(I,R). Using Theorems 4 and 5, it follows that for all w ∈ Hβ(I,R),

0 =
d

dε
Φ(y + εw)|ε=0

=

∫ b

a

[

∂L

∂y
[y](x) · w(x) +

∂L

∂v
[y](x) ·

✷w

✷x
(x)

]

dx

=

∫ b

a

[

∂L

∂y
−

✷

✷x

(

∂L

∂v

)]

· w dx+

∫ b

a

✷

✷x

(

∂L

∂v
· w

)

dx

=

∫ b

a

[

∂L

∂y
−

✷

✷x

(

∂L

∂v

)]

· w dx+
∂L

∂v

(

b, y(b),
✷y

✷x
(b)
)

· w(b)−
∂L

∂v

(

a, y(a),
✷y

✷x
(a)
)

· w(a).

Since the last equality is valid for any w, we can choose those such that w(a) = w(b) = 0,
obtaining the Euler–Lagrange equation (5) given in item 1. Moreover, choosing functions w
for which w(a) = 0 and w(b) 6= 0 or w(b) = 0 and w(a) 6= 0, we deduce the remaining two
conditions.

4 The quantum isoperimetric problem

We now consider the case when admissible functions y, besides satisfying some boundary
conditions y(a) = ya and y(b) = yb, must also satisfy a given integral constraint. This case is
known in the literature as the isoperimetric problem [2,28]. Let

Θ(y) =

∫ b

a

θ
(

x, y(x),
✷y

✷x
(x)
)

dx =

∫ b

a

θ[y](x) dx

be a functional defined on Hα(I,R), where (x, y, v) 7→ θ(x, y, v) is a C1 function.

Definition 10. Let y ∈ ∂Hα(I,R). We say that y is a quantum extremal for Φ given by (4)
subject to the isoperimetric constraint Θ(y) = C, C ∈ C, if for all n ∈ N and all variations

y = y+
∑n

k=1 εkwk, where (wk)1≤k≤n ∈ Hβ(I,R) and ||ε|| = ||(ε1, . . . , εn)|| is some small real

number, the condition Θ(y) = C implies that d
dεk

Φ(y + εkwk)|ε=0 = 0 for all k ∈ {1, . . . , n}.

Theorem 11. Let y be a quantum extremal for Φ given by (4) subject to the isoperimetric

constraint Θ(y) = C, C ∈ C. If y is not a quantum extremal for Θ, then there exists some

λ ∈ C such that
∂(L− λθ)

∂y
[y]−

✷

✷x

(

∂(L− λθ)

∂v
[y]

)

= 0.

Proof. Let ε1, ε2 ∈ Br(0, 0), with r a sufficiently small positive number, and let y = y+ε1w1+
ε2w2 be a variation of y such that wj ∈ Hβ(I,R) and wj(a) = wj(b) = 0, j = 1, 2. Define on
the set Br(0, 0) the functions given by

Φ(ε1, ε2) = Φ(y) and Θ(ε1, ε2) = Θ(y)− C.

Using integration by parts, one has

∂Θ

∂ε1

∣

∣

∣

∣

(0,0)

=

∫ b

a

(

∂θ

∂y
[y](x)−

✷

✷x

(

∂θ

∂v
[y]

)

(x)

)

w1(x) dx.
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Since y is not a quantum extremal for Θ, there exists a function w1 for which (∂Θ/∂ε1)|(0,0) 6=
0. Thus, we are in conditions to apply the implicit function theorem, i.e., we can write ε1 as
a function of ε2 in a neighborhood of zero, ε1 = ε1(ε2), such that

Θ(ε1(ε2), ε2) = 0.

We now adapt the Lagrange multiplier method to our complex valued functionals. Since
Θ(ε1(ε2), ε2) = 0 for any ε2, it follows that

0 =
d

dε2
Θ(ε1(ε2), ε2) =

dε1
dε2

·
∂Θ

∂ε1
+

∂Θ

∂ε2

and so

dε1
dε2

∣

∣

∣

∣

0

= −

∂Θ
∂ε2

∣

∣

∣

(0,0)

∂Θ
∂ε1

∣

∣

∣

(0,0)

.

On the other hand, since y is a quantum extremal for Φ subject to the constraint Θ ≡ C,

d

dε2
Φ(ε1(ε2), ε2)

∣

∣

0
=

dε1
dε2

∣

∣

∣

∣

0

∂Φ

∂ε1

∣

∣

∣

∣

(0,0)

+
∂Φ

∂ε2

∣

∣

∣

∣

(0,0)

=
dε1
dε2

∣

∣

∣

∣

0

∫ b

a

[

∂L

∂y
[y](x)−

✷

✷x

(

∂L

∂v
[y]

)

(x)

]

w1(x) dx

+

∫ b

a

[

∂L

∂y
[y](x)−

✷

✷x

(

∂L

∂v
[y]

)

(x)

]

w2(x) dx

= 0.

We conclude that
∣

∣

∣

∣

∣

∣

∣

∣

∣

∂Φ

∂ε1

∣

∣

∣

∣

(0,0)

∂Θ

∂ε1

∣

∣

∣

∣

(0,0)

∂Φ

∂ε2

∣

∣

∣

∣

(0,0)

∂Θ

∂ε2

∣

∣

∣

∣

(0,0)

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0.

Since (∂Θ/∂ε1)|(0,0) 6= 0, there exists some λ ∈ C such that

(

∂Φ

∂ε1

∣

∣

∣

∣

(0,0)

,
∂Φ

∂ε2

∣

∣

∣

∣

(0,0)

)

= λ

(

∂Θ

∂ε1

∣

∣

∣

∣

(0,0)

,
∂Θ

∂ε2

∣

∣

∣

∣

(0,0)

)

.

Consequently,
∂

∂ε2
(Φ− λΘ)

∣

∣

∣

∣

(0,0)

= 0. (6)

We prove the result doing the computations in equation (6) and using the fundamental lemma
of the calculus of variations (see, e.g., [29]).

Remark 12. In Theorem 11 we are assuming that

∂θ

∂v
[y](x) · w(x)

satisfies (3) for all w ∈ Hβ(I,R).
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5 Dependence on a parameter

Let
Φ : ∂Hα(I,R)× C → C

(y, ξ) 7→

∫ b

a

L
(

x, y(x),
✷y

✷x
(x), ξ

)

dx.
(7)

Introducing the operator [·]ξ by

[y]ξ(x) =
(

x, y(x),
✷y

✷x
(x), ξ

)

,

we write Φ(y, ξ) =
∫ b

a
L[y]ξ(x) dx. A pair (y, ξ) is called a quantum extremal on Hβ(I,R)×C

for Φ as in (7), if for any pair (w, δ) ∈ Hβ(I,R)×C one has

d

dε
Φ(y + εw, ξ + εδ)|ε=0 = 0.

Theorem 13. Let y ∈ ∂Hα(I,R) be such that ✷y/✷x ∈ Hα(I,R). The pair (y, ξ) is a

quantum extremal for Φ on Hβ(I,R)× C if and only if

∂L

∂y
[y]ξ(x)−

✷

✷x

(

∂L

∂v
[y]ξ

)

(x) = 0 (8)

and
∫ b

a

∂L

∂ξ
[y]ξ(x) dx = 0. (9)

Proof. Let (y, ξ) be a quantum extremal for Φ. For (w, δ) ∈ Hβ(I,R)× C we have

0 =
d

dε
Φ(y + εw, ξ + εδ)|ε=0

=

∫ b

a

[

∂L

∂y
[y]ξ(x)−

✷

✷x

(

∂L

∂v
[y]ξ(x)

)]

· w dx+

∫ b

a

∂L

∂ξ
[y]ξ(x) · δ dx.

Taking δ = 0 we obtain equation (8); taking w ≡ 0 we obtain (9).

6 The higher-order quantum Euler–Lagrange equation

Let n ∈ N and

[y]n(x) =

(

x, y(x),
✷y

✷x
(x), . . . ,

✷
ny

✷xn
(x)

)

.

We now consider functionals of type

Φ(y) =

∫ b

a

L[y]n(x) dx (10)

defined on y ∈ ∂Hα(I,R) with ✷
ky/✷xk still on Hα(I,R) for all k ∈ {1, . . . , n}. We assume

that the Lagrangian

L = L(x, y, v1, v2, . . . , vn) : [a, b]× R× C
n → C

8



is of class C1. We note that if y ∈ Cn(I,R), then (10) reduces to the standard higher-order
variational functional

Φ(y) =

∫ b

a

L
(

x, y(x), y′(x), . . . , y(n)(x)
)

dx.

The advantage of our quantum approach is that in order to obtain the corresponding Euler–
Lagrange equation we do not need to assume, as it happens in the classical case [29], that
admissible functions y are of class C2n, being necessary only continuity. As variations of y
we consider functions y + εw with a small real ε and w ∈ Hβ(I,R) with w(a) = w(b) = 0,
✷

kw/✷xk ∈ Hβ(I,R), and ✷
kw/✷xk(a) = ✷

kw/✷xk(b) = 0 for all k ∈ {1, . . . , n− 1}.

Theorem 14 (The higher-order quantum Euler–Lagrange equation). Let α, β ∈ (0, 1) be

such that α + β > 1 and β ≥ α. A function y ∈ ∂Hα(I,R) with ✷
ky/✷xk still on Hα(I,R)

for all k ∈ {1, . . . , n} is a quantum extremal of Φ on Hβ(I,R) if and only if

∂L

∂y
[y]n(x) +

n
∑

i=1

(−1)i
✷

i

✷xi

(

∂L

∂vi
[y]n

)

(x) = 0

for all x ∈ [a, b].

Proof. Using Theorem 4 consecutively, we deduce that

0 =
d

dε
Φ(y + εw)|ε=0

=

∫ b

a

[

∂L

∂y
[y]n(x) · w(x) +

n
∑

i=1

∂L

∂vi
[y]n(x) ·

✷
iw

✷xi
(x)

]

dx

=

∫ b

a

[

∂L

∂y
[y]n(x) · w(x) +

n
∑

i=1

∂L

∂vi
[y]n(x) ·

✷

✷x

(

✷
i−1w

✷xi−1

)

(x)

]

dx

=

∫ b

a

[

∂L

∂y
[y]n(x) · w(x)−

n
∑

i=1

✷

✷x

(

∂L

∂vi
[y]n

)

(x) ·
✷

i−1w

✷xi−1
(x)

]

dx

=

∫ b

a

[

∂L

∂y
[y]n(x) +

n
∑

i=1

(−1)i
✷

i

✷xi

(

∂L

∂vn
[y]n

)

(x)

]

· w(x) dx.

The result follows from the fundamental lemma of the calculus of variations.

Remark 15. For n = 1 Theorem 14 reduces to Theorem 8.

Remark 16. In Theorem 14 we are assuming that for all i ∈ {1, . . . , n}, and for all k ∈
{0, . . . , i− 1},

✷
k

✷xk

(

∂L

∂vi
[y]n

)

(x) ·
✷

i−k−1

✷xi−k−1
w(x)

satisfies (3) for all w ∈ Hβ(I,R).

We can easily include the case when the Lagrangian depends on a complex parameter ξ.
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Theorem 17. Let

Φ(y, ξ) =

∫ b

a

L[y]nξ (x) dx,

where

[y]nξ (x) =

(

x, y(x),
✷y

✷x
(x), . . . ,

✷
ny

✷xn
(x), ξ

)

,

α, β ∈ (0, 1) be such that α+ β > 1 and β ≥ α, and y ∈ ∂Hα(I,R) be such that ✷ky/✷xk ∈
Hα(I,R) for k = 1, . . . , n. The pair (y, ξ) is a quantum extremal for Φ on Hβ(I,R) × C if

and only if

∂L

∂y
[y]nξ +

n
∑

i=1

(−1)i
✷

i

✷xi

(

∂L

∂vi
[y]nξ

)

= 0

and
∫ b

a

∂L

∂ξ
[y]nξ (x) dx = 0.

7 The quantum Green theorem

We now prove a version of Green’s theorem in the scale derivative context. Let Ω ⊆ R
2 be a

sufficient large set, R = [a, b]× [c, d] ⊆ Ω and f ∈ C0(Ω,R). Let ∂R denote the boundary of
R, oriented in the counterclockwise direction.

Theorem 18 (The quantum Green theorem). Let f and g be two continuous functions whose

domains contain Ω, and such that for all (x1, x2) ∈ [a, b] × [c, d], f(x1, ·) and g(·, x2) satisfy

condition (3). Then,

∫

∂R

(f(x1, x2)dx1 + g(x1, x2)dx2) =

∫ ∫

R

(

✷g

✷x1
(x1, x2)−

✷f

✷x2
(x1, x2)

)

dx1dx2. (11)

Proof. By Theorem 5, we get

∫

∂R

(fdx1 + gdx2) =

∫ b

a

f(x1, c) − f(x1, d)dx1 +

∫ d

c

g(b, x2)− g(a, x2)dx2

= −

∫ b

a

∫ d

c

✷f

✷x2
(x1, x2)dx2dx1 +

∫ d

c

∫ b

a

✷g

✷x1
(x1, x2)dx1dx2

=

∫ ∫

R

(

✷g

✷x1
(x1, x2)−

✷f

✷x2
(x1, x2)

)

dx1dx2.

The equality (11) is proved.

Assume now that f = −Fw and g = Gw, for some continuous functions F,G and w such
that F,G ∈ Hα(Ω,R) and w ∈ Hβ(Ω,R) with α+ β > 1. Using Theorem 18 and Theorem 4,
we get an integration by parts type formula:

∫ ∫

R

(

G ·
✷w

✷x1
+ F ·

✷w

✷x2

)

dx1dx2

=

∫

∂R

(−Fw dx1 +Gw dx2)−

∫ ∫

R

(

✷G

✷x1
+

✷F

✷x2

)

· w dx1dx2. (12)
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In addition, if w ≡ 0 on ∂R, then

∫ ∫

R

(

G ·
✷w

✷x1
+ F ·

✷w

✷x2

)

dx1dx2 = −

∫ ∫

R

(

✷G

✷x1
+

✷F

✷x2

)

· w dx1dx2. (13)

8 Quantum extremals for functionals with two independent

variables

We consider functionals of type

Φ : ∂Hα(Ω,R) → C

y 7→

∫ ∫

R

L

(

x1, x2, y(x1, x2),
✷y

✷x1
(x1, x2),

✷y

✷x2
(x1, x2)

)

dx1dx2,
(14)

where L = L(x1, x2, y, v1, v2) : R× R× C
2 → C is of class C1 and

∂Hα(Ω,R) = {y ∈ Hα(Ω,R) | y(∂R) takes fixed given values}.

Remark 19. When we only consider differentiable functions y, the functional (14) reduces

to

Φ(y) =

∫ ∫

R

L

(

x1, x2, y(x1, x2),
∂y

∂x1
(x1, x2),

∂y

∂x2
(x1, x2)

)

dx1dx2.

As variations of y, we consider those functions of form y+εw with w ∈ Hβ(Ω,R), α+β > 1
and β ≥ α, and ε a small real number.

Definition 20. We say that y is a quantum extremal of Φ given by (14) on Hβ(Ω,R), if for
any w ∈ Hβ(Ω,R) one has

d

dε
Φ(y + εw)|ε=0 = 0.

We now present the scale Euler–Lagrange equation for multiple integrals. It has some
similarities with the standard one (see, e.g., [29]), replacing the partial derivatives ∂/∂xj by
the scale derivative ✷/✷xj .

Theorem 21 (The quantum Euler–Lagrange equation for double integrals). Let α, β ∈ (0, 1)
with α+ β > 1 and β ≥ α, and y ∈ ∂Hα(Ω,R) be such that ✷y/✷xj ∈ Hα(Ω,R), j ∈ {1, 2}.
The function y is a quantum extremal of Φ on Hβ(Ω,R) if and only if

∂L

∂y
[y](x1, x2)−

✷

✷x1

(

∂L

∂v1
◦ [y]

)

(x1, x2)−
✷

✷x2

(

∂L

∂v2
◦ [y]

)

(x1, x2) = 0 (15)

for all (x1, x2) ∈ R, where

[y](x1, x2) =

(

x1, x2, y(x1, x2),
✷y

✷x1
(x1, x2),

✷y

✷x2
(x1, x2)

)

.

Proof. Let y be a quantum extremal of (14) and consider a variation y + εw with w ∈
Hβ(Ω,R). Because of the given constraints on the boundary, we can only consider those
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variations for which w(∂R) ≡ 0. Using the integration by parts formula (13) we get:

0 =
d

dε
Φ(y + εw)|ε=0

=

∫ ∫

R

[

∂L

∂y
[y](x1, x2) · w(x1, x2) +

2
∑

i=1

(

∂L

∂vi
[y](x1, x2) ·

✷w

✷xi
(x1, x2)

)

]

dx1dx2

=

∫ ∫

R

[

∂L

∂y
[y](x1, x2)−

2
∑

i=1

✷

✷xi

(

∂L

∂vi
◦ [y]

)

(x1, x2)

]

· w(x1, x2) dx1dx2.

Equation (15) follows from the fundamental lemma of the calculus of variations.

We now consider the situation without the constraints on ∂R. Let

Ψ : Hα(Ω,R) → C

y 7→ Φ(y).

Theorem 22 (The quantum Euler–Lagrange equation for double integrals and natural
boundary conditions). Let α, β ∈ (0, 1) with α+ β > 1 and β ≥ α, and y ∈ Hα(Ω,R) be such

that ✷y/✷xj ∈ Hα(Ω,R), j ∈ {1, 2}. Then, y is a quantum extremal of Ψ on Hβ(Ω,R) if

and only if the following conditions hold:

1.
∂L

∂y
[y](x1, x2)−

✷

✷x1

(

∂L

∂v1
◦ [y]

)

(x1, x2)−
✷

✷x2

(

∂L

∂v2
◦ [y]

)

(x1, x2) = 0 ∀ (x1, x2) ∈ R;

2.
∂L

∂v1

(

a, x2, y(a, x2),
✷y

✷x1
(a, x2),

✷y

✷x2
(a, x2)

)

= 0 ∀x2 ∈ [c, d];

3.
∂L

∂v1

(

b, x2, y(b, x2),
✷y

✷x1
(b, x2),

✷y

✷x2
(b, x2)

)

= 0 ∀x2 ∈ [c, d];

4.
∂L

∂v2

(

x1, c, y(x1, c),
✷y

✷x1
(x1, c),

✷y

✷x2
(x1, c)

)

= 0 ∀x1 ∈ [a, b];

5.
∂L

∂v2

(

x1, d, y(x1, d),
✷y

✷x1
(x1, d),

✷y

✷x2
(x1, d)

)

= 0 ∀x1 ∈ [a, b].

Proof. Similarly to what was done in the proof of Theorem 21, but using (12) instead of (13),
we deduce that

0 =

∫ ∫

R

[

∂L

∂y
−

✷

✷x1

(

∂L

∂v1

)

−
✷

✷x2

(

∂L

∂v2

)]

· w dx1dx2

+

∫

∂R

[

−
∂L

∂v2
· w dx1 +

∂L

∂v1
· w dx2

]

. (16)

In particular, we may consider those w that are zero on ∂R, and we obtain equality (15) of
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item 1. Replacing (15) into equation (16), it follows that

0 =

∫

∂R

[

−
∂L

∂v2
· w dx1 +

∂L

∂v1
· w dx2

]

= −

∫ b

a

∂L

∂v2

(

x1, c, y(x1, c),
✷y

✷x1
(x1, c),

✷y

✷x2
(x1, c)

)

· w(x1, c) dx1

+

∫ b

a

∂L

∂v2

(

x1, d, y(x1, d),
✷y

✷x1
(x1, d),

✷y

✷x2
(x1, d)

)

· w(x1, d) dx1

+

∫ d

c

∂L

∂v1

(

b, x2, y(b, x2),
✷y

✷x1
(b, x2),

✷y

✷x2
(b, x2)

)

· w(b, x2) dx2

−

∫ d

c

∂L

∂v1

(

a, x2, y(a, x2),
✷y

✷x1
(a, x2),

✷y

✷x2
(a, x2)

)

· w(a, x2) dx2.

The result is proved with appropriate choices of w.

9 An application

A membrane is a portion of surface, plane at rest, with potential energy proportional to the
change in area. Suppose that the membrane at rest covers an area R ⊆ R

2, and in the
boundary the membrane is fixed. If u(·, ·) denotes the deformation normal to the equilibrium,
then the required potential energy is given by the expression

1

2

∫ ∫

R

(

∂u

∂x1

)2

+

(

∂u

∂x2

)2

dx1dx2. (17)

The equilibrium is attained at the Euler–Lagrange extremal of this double integral. For more
on the subject, we refer the reader to [30].

The functional (17) is considered for continuous functions u that possess continuous first
and second order derivatives. These can be very restrictive assumptions. Indeed, it is well
known that often real phenomenons are nondifferentiable, and so not suitable for treatment
under the standard variational approach. Assume that we wish to include in the above
problem nondifferentiable functions, where the velocity is described by a quantum derivative.
In the scale calculus context, we consider the functional

Φ(u) =
1

2

∫ ∫

R

(

✷u

✷x1

)2

+

(

✷u

✷x2

)2

dx1dx2

defined on ∂Hα(Ω,R). Then, by Theorem 21, any quantum extremal u must fulfill the
equation

✷

✷x1

(

✷u

✷x1

)

+
✷

✷x2

(

✷u

✷x2

)

= 0.

Acknowledgments

Work supported by the Portuguese Foundation for Science and Technology (FCT) through the
R&D Unit Center for Research and Development in Mathematics and Applications (CIDMA).

13



References

[1] R. P. Feynman and A. R. Hibbs, Quantum mechanics and path integrals, McGraw-Hill,
1965.

[2] R. Almeida and D. F. M. Torres, Isoperimetric problems on time scales with nabla
derivatives, J. Vib. Control 15 (2009), no. 6, 951–958. arXiv:0811.3650

[3] Z. Bartosiewicz and D. F. M. Torres, Noether’s theorem on time scales, J. Math. Anal.
Appl. 342 (2008), no. 2, 1220–1226. arXiv:0709.0400

[4] R. A. C. Ferreira, A. B. Malinowska and D. F. M. Torres, Optimality conditions for the
calculus of variations with higher-order delta derivatives, Appl. Math. Lett. 24 (2011),
no. 1, 87–92. arXiv:1008.1504

[5] A. B. Malinowska and D. F. M. Torres, Strong minimizers of the calculus of variations
on time scales and the Weierstrass condition, Proc. Est. Acad. Sci. 58 (2009), no. 4,
205–212. arXiv:0905.1870

[6] A. B. Malinowska and D. F. M. Torres, Backward variational approach on time scales
with an action depending on the free endpoints, Z. Naturforsch. A 66a (2011), no. 5, in
press. arXiv:1101.0694

[7] N. Martins and D. F. M. Torres, Calculus of variations on time scales with nabla deriva-
tives, Nonlinear Anal. 71 (2009), no. 12, e763–e773. arXiv:0807.2596

[8] N. Martins and D. F. M. Torres, Generalizing the variational theory on time scales to
include the delta indefinite integral, Comput. Math. Appl. 61 (2011), no. 9, 2424–2435.
arXiv:1102.3727

[9] R. Almeida, A. B. Malinowska and D. F. M. Torres, A fractional calculus of variations for
multiple integrals with application to vibrating string, J. Math. Phys. 51 (2010), no. 3,
033503, 12 pp. arXiv:1001.2722

[10] R. Almeida and D. F. M. Torres, Calculus of variations with fractional derivatives and
fractional integrals, Appl. Math. Lett. 22 (2009), no. 12, 1816–1820. arXiv:0907.1024

[11] J. Cresson, Inverse problem of fractional calculus of variations for partial differential
equations, Commun. Nonlinear Sci. Numer. Simul. 15 (2010), no. 4, 987–996.

[12] R. A. El-Nabulsi and D. F. M. Torres, Necessary optimality conditions for fractional
action-like integrals of variational calculus with Riemann-Liouville derivatives of order
(α, β), Math. Methods Appl. Sci. 30 (2007), no. 15, 1931–1939. arXiv:math-ph/0702099

[13] R. A. El-Nabulsi and D. F. M. Torres, Fractional actionlike variational problems, J.
Math. Phys. 49 (2008), no. 5, 053521, 7 pp. arXiv:0804.4500

[14] R. A. C. Ferreira and D. F. M. Torres, Fractional h-difference equations arising from
the calculus of variations, Appl. Anal. Discrete Math. 5 (2011), no. 1, 110–121.
arXiv:1101.5904

14

http://arxiv.org/abs/0811.3650
http://arxiv.org/abs/0709.0400
http://arxiv.org/abs/1008.1504
http://arxiv.org/abs/0905.1870
http://arxiv.org/abs/1101.0694
http://arxiv.org/abs/0807.2596
http://arxiv.org/abs/1102.3727
http://arxiv.org/abs/1001.2722
http://arxiv.org/abs/0907.1024
http://arxiv.org/abs/math-ph/0702099
http://arxiv.org/abs/0804.4500
http://arxiv.org/abs/1101.5904


[15] G. S. F. Frederico and D. F. M. Torres, A formulation of Noether’s theorem for fractional
problems of the calculus of variations, J. Math. Anal. Appl. 334 (2007), no. 2, 834–846.
arXiv:math/0701187

[16] G. Bangerezako, Variational q-calculus, J. Math. Anal. Appl. 289 (2004), no. 2, 650–665.

[17] G. Bangerezako, Variational calculus on q-nonuniform lattices, J. Math. Anal. Appl. 306
(2005), no. 1, 161–179.

[18] A. M. C. Brito da Cruz, N. Martins and D. F. M. Torres, Higher-order Hahn’s quan-
tum variational calculus, Nonlinear Anal. (2011), in press. DOI: 10.1016/j.na.2011.01.015
arXiv:1101.3653

[19] J. Cresson, Non-differentiable variational principles, J. Math. Anal. Appl. 307 (2005),
no. 1, 48–64. arXiv:math/0410377

[20] J. Cresson, G. S. F. Frederico and D. F. M. Torres, Constants of motion for non-
differentiable quantum variational problems, Topol. Methods Nonlinear Anal. 33 (2009),
no. 2, 217–231. arXiv:0805.0720

[21] J. Cresson and I. Greff, A non-differentiable Noether’s theorem, J. Math. Phys. 52 (2011),
no. 2, 023513, 10 pp.

[22] J. Cresson and I. Greff, Non-differentiable embedding of Lagrangian systems
and partial differential equations, J. Math. Anal. Appl. (2011), in press. DOI:
10.1016/j.jmaa.2011.06.008

[23] A. D. Jannussis, L. C. Papaloucas and P. D. Siafarikas, Eigenfunctions and eigenvalues
of the q-differential operators, Hadronic J. 3 (1979/80), no. 6, 1622–1632.

[24] A. B. Malinowska and D. F. M. Torres, The Hahn quantum variational calculus, J.
Optim. Theory Appl. 147 (2010), no. 3, 419–442. arXiv:1006.3765

[25] L. Nottale, The theory of scale relativity, Internat. J. Modern Phys. A 7 (1992), no. 20,
4899–4936.

[26] L. Nottale, The scale-relativity program, Chaos Solitons Fractals 10 (1999), no. 2-3,
459–468.

[27] L. Nottale, Non-differentiable space-time and scale relativity, International Colloquium
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