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Abstract. Multi-kink solutions of the defocusing, modified Korteweg-de Vries
equation (mKdV) found by Grosse [19, 20] are shown to be globally H1-stable,

and asymptotically stable. Stability in the one-kink case was previously estab-
lished by Zhidkov [47] and Merle-Vega [37]. The proof uses transformations

linking the mKdV equation with focusing, Gardner-like equations, where sta-

bility and asymptotic stability in the energy space are known. We generalize
our results by considering the existence, uniqueness and the dynamics of gen-

eralized multi-kinks of defocusing, non-integrable gKdV equations, showing

the inelastic character of the kink-kink collision in some regimes.

1. Introduction and main results

In this paper we continue our work on stability of multi-soliton solutions for some
well-known, dispersive equations, started in a joint work with M.A. Alejo and L.
Vega [3]. In this opportunity, we consider the nonlinear H1-stability, and asymp-
totic stability, of the multi-kink solution of the defocusing, modified Korteweg-de
Vries (KdV) equation

ut + (uxx − u3)x = 0. (1.1)

Here u = u(t, x) is a real valued function, and (t, x) ∈ R2. Solutions u = u(t, x)
of (1.1) are invariant under space and time translations, and under suitable scaling
properties. Indeed, for any t0, x0 ∈ R, and c > 0, both u(t − t0, x − x0) and
c1/2u(c3/2t, c1/2x) are solutions of (1.1). Finally, u(−t,−x) and −u(t, x) are also
solutions.

From a mathematical point of view, equation (1.1) is an integrable model [2], with
a Lax pair structure and infinitely many conservation laws. Moreover, equation
(1.1) has non-localized solitons solutions, called kinks, namely solutions of the form

u(t, x) = ϕc(x+ ct+ x0), ϕc(s) :=
√
c ϕ(
√
cs), c > 0, x0 ∈ R, (1.2)

and

ϕ(s) := tanh(
s√
2

), (1.3)

which solves

ϕ′′ + ϕ− ϕ3 = 0, in R, ϕ(±∞) = ±1, ϕ′ > 0. (1.4)
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2 H1-stability of multi-kinks

On the one hand, since the Cauchy problem associated to (1.1) is locally well
posed in ϕc(·+ct)+H1(R) (cf. Merle-Vega [37, Prop. 3.1]), each solution is indeed
global in time thanks to the conservation of Energy:

E[u](t) :=
1

2

∫
R
u2x(t, x)dx+

1

4

∫
R

(u2 − c)2(t, x)dx = E[u](0). (1.5)

A simple inspection reveals that this is a non-negative quantity.

On the other hand, the standard Cauchy problem for initial data in the Sobolev
space Hs(R) is locally well-posed for s ≥ 1

4 (Kenig-Ponce-Vega [24]), and globally

well-posed for s > 1
4 (Colliander et al. [9]). This result is almost sharp since

for s < 1
4 the solution map has been shown to not be uniformly continuous, see

Christ-Colliander-Tao [8] (see also Kenig-Ponce-Vega [25] for an early result in the
focusing case).

It is also important to stress that (1.1) has in addition another less regular
conserved quantity, called mass:

M [u](t) :=
1

2

∫
R

(c− u2(t, x))dx = M [u](0). (1.6)

Of course this quantity is well-defined for solutions u(t) such that (u2(t) − c) has
enough decay at infinity. In particular, one has M [ϕc] < +∞.

Now we focus on the study of suitable perturbations of kinks solutions of the
form (1.2). This question leads to the introduction of the concepts of orbital and
asymptotic stability. In particular, since the energy (1.5) is a conserved quantity –in
other words, it is a Lyapunov functional–, well defined for solutions at the H1-level,
it is natural to expect that kinks are (orbitally) stable under small perturbations
in the energy space. Indeed, H1-stability of mKdV kinks has been considered
initially by Zhidkov [47], see also Merle-Vega [37] for a complete proof, including
an adapted well-posedness theory. We recall that their proof is strongly based in
the non-negative character of the energy (1.5) around a kink solution ϕc, which
balances the bad behavior of the mass (1.6) under general H1-perturbations of a
kink solution.

For additional purposes, to be explained later, we recall that in [37], the main
objective of Merle and Vega was to prove that solitons of the KdV equation

ut + (uxx + u2)x = 0, (1.7)

were L2-stable, by using the Miura transform

M [v](t, x) :=
3

2
c+

[ 3√
2
vx −

3

2
v2
]
(t, x− 3ct). (1.8)

This nonlinear H1−L2 transformation links solutions of (1.1) with solutions of the
KdV equation (1.7). In particular, the image of the family of kink solutions (1.2)
under the transformation (1.8) is the well-known soliton of KdV, with scaling 2c
(cf. [37]):

M [ϕc(x+ ct+ x0)] = Q2c(x− 2ct+ x0).

Therefore, by proving the H1-stability of single kinks –a question previously consid-
ered by Zhidkov [47]–, and (1.8), they obtained a form of L2-stability for the KdV
soliton. Additionally, a simple form of asymptotic stability for the kink solution
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was proved. Related asymptotic results for soliton-like solutions can also be found
e.g. in [12, 43, 41, 26, 30, 31].

Kinks are also present in other nonlinear models, such as the sine-Gordon (SG)
equation, the φ4-model, and the Gross-Pitaevskii (GP) equation [1, 13]. In each
case, it has been proved that their are stable for small perturbations in a suitable
space, cf. [23, 18, 47, 15, 6]. Let us also recall that the SG and GP equations are
integrable models in one dimension [1, 13].

Let us come back to the equation (1.1). In addition to the previously men-
tioned kink solution (1.2), mKdV has multi-kink solutions, as a consequence of
the integrability property, and the Inverse Scattering method. This result, due to
Grosse [19, 20], can be obtained by a different approach using the Miura trans-
form (1.8), see Gesztesy-Schweinger-Simon [16, 17], or the monograph by Thaller
[44]. According to Gesztesy-Schweinger-Simon [17], there are at least two different
forms of multi-kink solutions for (1.1), which we describe below (cf. Definitions
1.1 and 1.4). Moreover, they proved that the Miura transform sends these solu-
tions towards a well defined family of multi-soliton solutions of the KdV equation,
provided a criticality property is satisfied (see [18, 17] for such an assumption).

In order to present multi-kinks from a different point of view, we need some
preliminaries.

In [3] (see e.g. [40] for a short review), Alejo-Muñoz-Vega showed the L2-
stability of KdV multi-solitons following the Merle-Vega approach and the Gesztesy-
Schweinger-Simon property [17], above described. However, H1-stability of multi-
kinks was not known at that moment. Even worse, according to our knowledge,
there was no result involving stability of several kink solutions, for any type of dis-
persive equation with stable kinks. Instead, we avoided this problem and followed
a different approach, based in the use of the Gardner transform

Mβ [v] := v − 3

2

√
2βvx −

3

2
βv2. (1.9)

This nonlinear map links solutions of the KdV equation and the Gardner equation
[38, 14],

vt + (vyy + v2 − βv3)y = 0, in Rt × Ry, β > 0. (1.10)

In particular, the Gardner transform sends Gardner solitons towards KdV solitons
(see [3] for further details).

However, we have realized that the existence, uniqueness and stability of multi-
kinks is closely related to the solitons of the Gardner equation, and more generally,
dynamical properties of defocusing gKdV equations are closely related to those of
suitable focusing counterparts. In particular, as a consequence of our results, we
provide the first proof of stability for multi-kinks solutions of the mKdV equation.
This result can be also considered a first step towards the understanding of the
dynamics of several SG and φ4 kinks.

In order to explain in more detail this relationship, let us recall that the Gardner
equation is also an integrable model [14], with soliton solutions of the form

v(t, y) := Qc,β(y − ct),
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and1

Qc,β(s) :=
3c

1 + ρ cosh(
√
cs)

, with ρ := (1− 9

2
βc)1/2, 0 < c <

2

9β
. (1.11)

In particular, in the formal limit β → 0, we recover the standard KdV soliton.
On the other hand, the Cauchy problem associated to (1.10) is globally well-posed
under initial data in the energy class H1(R) (cf. [24]), thanks to the mass and
energy conservation laws (see [3] for more details).

The first, striking connection is well-known in the mathematical physics liter-
ature, and it was in part used in the recent paper [3]. Indeed, let v = v(t, y) ∈
C(R, H1(R)) be a solution of (1.10). Then

u(t, x) := b−
√
β v
(
t, x+

t

3β

)
, b :=

1

3
√
β
, (1.12)

solves the mKdV equation (1.1).2 In terms of the Miura and Gardner transform, it
reads as follows

mKdV

KdV <
Gardner, [14, 3]

Miura, [38, 37]

<
Gardner

(1.12)

>

<

Figure 1. Transformation (1.12) in terms of Miura (1.8) and
Gardner transforms.

Note that, for t fixed, (1.12) is a diffeomorphism which preserves regularity, a
key difference with respect to the Miura and Gardner transforms. Note in addition
that u in (1.12) is an L∞-function with nonzero limits at infinity. This will allow
to consider the first class of multi-kink solutions of (1.1), characterized by the same
positive limit (= b) as x→ ±∞. Moreover, since −u(t, x) is also a solution of (1.1),
one can easily construct a solution with negative limits at infinity. This analysis
motivates the following alternative approach for the multi-kink solution:

Definition 1.1 (Even multi-kink solutions, see also [19, 20, 17, 44]).
Let β > 0, scaling parameters 0 < c01 < c02 < . . . < c0N < 2

9β and x−1 , . . . , x
−
N ∈ R

be fixed numbers. We say that a solution Ue(t) := Ue(t; c
0
1, . . . , c

0
N ;x−1 , . . . , x

−
N ) of

(1.1) is an even multi-kink if it satisfies

lim
t→−∞

∥∥Ue(t)− b+
√
β

N∑
j=1

Qc0j ,β(·+ c̃jt+ x−j )
∥∥
H1(R) = 0, (1.14)

lim
t→+∞

∥∥Ue(t)− b+
√
β

N∑
j=1

Qc0j ,β(·+ c̃jt+ x+j )
∥∥
H1(R) = 0, (1.15)

1See e.g. [39, 3] and references therein for a more detailed description of solitons and integra-
bility for the Gardner equation.

2Note that

u(t, x) := −b+
√
β v
(
t, x+

t

3β

)
, b =

1

3
√
β
, β > 0, (1.13)

is also a solution of (1.1).
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with b = 1
3
√
β

, c̃j := 1
3β − c

0
j > 0, x+j ∈ R depending only on (x−k ) and (c0k), and

Qc,β being solitons of the Gardner equation (1.10).

Remarks.
1. Let us emphasize that c̃N < c̃N−1 < . . . < c̃1, which means that bigger Gardner
solitons are actually slower than the smaller ones. Note also that they move from
the right to the left, as time evolves. In conclusion, as time goes to ±∞, the
Gardner components of the multi-kink solution are ordered in the inverse sense
compared with the usual solitons of the Gardner equation, or any focusing gKdV
equation.

2. The denomination multi-kink above comes from the fact the these solutions
can be seen asymptotically as the sum of several kinks ±ϕc of the form (1.2). For
instance, with our notation, given β > 0 and 0 < c < 2

9β , an expression for the

2-kink solution is given by [17, p. 505] (see also [44, p. 273])

Ue(t, x) = b− [ϕc/2(x+ c̃t+ 2x0)− ϕc/2(x+ c̃t)], (1.16)

with

b :=
1

3
√
β
, c̃ :=

1

3β
− c, x0 :=

1

2
√
c

log
(√2 + 3

√
βc√

2− 3
√
βc

)
> 0,

and ϕc as in (1.2). Note that both kinks ±ϕc/2 have the same velocity c̃, a

key difference with the SG and φ4 models. After a quick computation, using the
identity

tanh(a+ k)− tanh a = 2 tanh(k)
[
1 +

cosh(2a+ k)

cosh(k)

]−1
,

one can see that (1.16) can be written, as in (1.14)-(1.15), using the Gardner soliton
(1.11):

Ue(t, x) = b−
√
βQc,β(x+ c̃t+ x0),

which will be helpful for our purposes. From this fact one can say that in general,
the function Ue represents a 2N-kink solution. In terms of our point of view, it
will represent N different Gardner solitons attached to the non-zero constant b.

The existence of a solution Ue satisfying (1.14) is a simple consequence of (1.12)
and the behavior of the N -soliton solution of the Gardner equation (see also [19, 20,
17] and [44, pp. 272-273] for the standard deduction). Indeed, from the integrable
character of this last equation, given parameters β > 0, 0 < c01 < . . . < c0N < 2

9β ,

and x01, . . . , x
0
N ∈ R, it is well-known that there exists a N -soliton solution of the

form (see e.g. Maddocks-Sachs [28] for a similar structure)

V (N)(t, x) := V (N)(x; c0j ;x
0
j − c0j t) (1.17)

of (1.10), and which satisfies

lim
t→−∞

∥∥V (N)(t)−
N∑
j=1

Qc0j ,β(· − c0j t− x−j )
∥∥
H1(R) = 0, (1.18)

lim
t→+∞

∥∥V (N)(t)−
N∑
j=1

Qc0j ,β(· − c0j t− x+j )
∥∥
H1(R) = 0, (1.19)

for some x±j ∈ R, uniquely depending on the set of parameters (c0k, x
0
k). Moreover,

note that V (N)(t) is unique in the sense described by Martel in [29]:
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Asymptotic uniqueness: Given β > 0, 0 < c01 < . . . < c0N < 2
9β , and x−1 , . . . , x

−
N ∈

R, the corresponding multi-soliton V (N) given in (1.17) is the unique C(R, H1(R))-
solution of (1.10) satisfying (1.18).

From (1.12) we can define

Ue(t) := b+
√
βV (N)(t, ·+ t

3β
). (1.20)

Note that we do not need the criticality assumption required in [17, 44]. Following
the notation of Maddocks and Sachs [28] and (1.17), we may think Ue as a function
of three independent set of variables:

Ue(t, x) := Ue(x; c0j , x
0
j + c̃jt),

with c̃j given in Definition 1.1. Therefore, as a conclusion of the preceding analysis,
and using (1.12), we get the uniqueness of the corresponding solution Ue.

Theorem 1.2 (Uniqueness of even multi-kink solutions).
Let β > 0, 0 < c01 < c02 < . . . < c0N < 2

9β and x−1 , . . . , x
−
N ∈ R be fixed numbers.

Then the associated even multi-kink Ue defined in (1.20) is the unique solution of
(1.1) satisfying (1.14).

Proof. See Section 2. �

The second problem that we want to consider is the stability of the multi-kink
Ue. First of all, we recall some important literature.

In [36, 35], Martel, Merle and Tsai have showed the stability and asymptotic sta-
bility of the sum of N solitons of some generalized KdV equations, well decoupled
at the initial time, in the energy space H1(R). We say that such an initial data
is well-prepared. Their approach is based on the construction of N almost con-
served quantities, related to the mass of each solitary wave, plus the total energy of
the solution. Although the proof for general nonlinearities is not present in the lit-
erature, it is a direct consequence of [36] (see also Section 5 in [35].). An important
remark to stress is that their proof applies even for non-integrable cases, provided
they have stable solitons, in the sense of Weinstein [45]. In the particular case of
the Gardner equation, this condition reads

∂c

∫
R
Q2
c,β(s)ds > 0, for c < 2

9β . (1.21)

This inequality is directly verifiable in the case of Gardner solitons, see (B.5). From
this result and Definition 1.1 we claim the following

Theorem 1.3 (Stability of even multi-kink solutions).
The family of multi-kink solutions Ue(t) from Definition 1.1 and (1.20) is global-

in-time H1-stable, and asymptotically stable as t→ ±∞.

In Section 2 we give a precise, ε-δ formulation of this result. See Theorem 2.3.

There is a second type of multi-kink solutions for (1.1), which is actually the
best known one. Here, the standard kink ϕc in (1.2) and the Gardner equation play
once again a crucial and surprising rôle. Indeed, let β > 0 be a fixed parameter



Claudio Muñoz 7

and suppose that one has a solution of (1.1) of the form (the reader may compare
with (1.12) and (1.13))

u(t, x) := ϕc(x+ ct) +
√
βũ(t, x+

t

3β
), c :=

1

9β
, (1.22)

and ũ(t) ∈ H1(R). Then ũ(t, y) satisfies the equation

ũt + (ũyy + ũ2 − βũ3)y = 3((ϕ2
c − c)ũ+

√
β(ϕc +

√
c)ũ2)y, (1.23)

with ϕc = ϕc(y − 2ct). In particular, if the support of ũ(t) is mainly localized in
the region where ϕc ∼ −

√
c, namely y � 2ct, then the right hand side above is

a small perturbation of the left hand side, a Gardner equation with parameter
β > 0. As an admissible function ũ, we can take e.g. a sum of Gardner solitons:

ũ(t, y) ∼
N−1∑
j=1

Qcj ,β(y − cjt), 0 < c1 < c2 . . . < cN−1 <
2

9β
= 2c,

with support localized in the region c1t . y . cN−1t, for t� 1. In particular, one
has cN−1t � 2ct for t � 1, which is a necessary condition for the existence of a
solution of the form (1.22). Note in addition that Figure 1 can be adapted in the
following way:

mKdV

KdV < (1.24)

Miura

<
∼ Gardner (1.23)

(1.22)

>

<

Figure 2. The generalized diffeomorphism (1.22) linking (1.23)
and mKdV.

The transformation linking (1.23) and KdV is nothing but

ũ(t, x) 7→ Q2c(x−2ct)−3
√
βϕc(x−2ct)ũ(t, x)+

3

2

√
2βũx(t, x)− 3

2
βũ2(t, x), (1.24)

(compare with the Gardner transform (1.9)).
Finally, the same argument can be done in the case of a solution of the form

u(t, x) := ϕc(x+ ct)−
√
βû(t, x+ t

3β ), and the equation for û(t, y),

ût + (ûyy + û2 − βû3)y = 3((ϕ2
c − c)û+

√
β(
√
c− ϕc)û2)y,

provided û is supported mainly in the region {ϕc ∼
√
c}. These two new ideas

allow us to consider the following definition of a multi-kink solution, from the point
of view of the Gardner equation:

Definition 1.4 (Odd multi-kink solutions, [17, 44]).
Let N ≥ 2, β > 0, scaling parameters 0 < c01 < c02 < . . . < c0N−1 <

2
9β and

x01, . . . , x
0
N ∈ R be fixed numbers. We say that a solution Uo(t) := Uo(t; c

0
j ;x

0
j ) of

(1.1) is an odd multi-kink solution if it satisfies

lim
t→−∞

∥∥Uo(t)−ϕc0N (·+ c0N t+x−N ) +
√
β

N−1∑
j=1

Qc0j ,β(·+ c̃jt+x−j )
∥∥
H1(R) = 0, (1.25)
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lim
t→+∞

∥∥Uo(t)−ϕc0N (·+ c0N t+x+N )−
√
β

N−1∑
j=1

Qc0j ,β(·+ c̃jt+x+j )
∥∥
H1(R) = 0, (1.26)

with c0N := 1
9β , c̃j := 1

3β − c
0
j > 0 and x±j ∈ R depending only on (c0k). Finally, ϕc

is a kink solution (1.2) with scaling c, and Qc,β is a soliton solution of the Gardner
equation (1.10).

One can also say that Uo is composed by (2N − 1) single kinks, in other words,
it is a (2N − 1)-kink solution. Additionally, as above mentioned, one may think
this solution as function composed of three different class of parameters:

Uo(t, x) = Uo(x; c0j ; c̃jt+ x0j ), (c̃N := c0N ).

From the point of view of the Gardner equation, this solution represents a big
kink, solution of mKdV, with attached (±)Gardner solitons ordered according their
corresponding velocities c̃j . Note finally that solitons move from the right to the
left.

Figure 3. A schematic design of the evolution in time of a 5-kink
solution of mKdV, composed of a big kink ϕc03 and two Gardner

solitons, Qc01,β and Qc02,β , 0 < c01 < c02 < 2c03, and β = 1
9c03

. Below,

the behavior as t → −∞; above, the behavior as t → +∞. Each
part is ordered according to their respective velocity −c̃j := c0j −
3c03 < 0, j = 1, 2. Note that −c̃1 < −c̃2 < −c03, which means that
the smallest soliton Qc01,β is actually the fastest one.

The proof of the existence of this family is not direct, although it can be explicitly
obtained from the solutions found by Grosse [19, 20], using the Inverse Scattering
method (see also [17], or [44, pp. 270-272] for an alternative procedure involving
the inverse Miura transform). In this paper we present a third proof, which gives
in addition a uniqueness property, uniform estimates and does not require the
criticality property considered in [17, 44]. The uniqueness is, of course, modulo the
2N -parameter family (c0j , x

−
j ).

Theorem 1.5 (Existence and uniqueness of odd multi-kink solutions).
Let N ≥ 2, β > 0, c0N = 1

9β , 0 < c01 < c02 < . . . < c0N−1 <
2
9β and x−1 , . . . , x

−
N ∈ R

be fixed numbers. There exists a unique solution Uo(t) of (1.1) satisfying (1.25).

Proof. See Section 5. �
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The next result is a positive answer to the open question of stability of odd
multi-kinks.

Theorem 1.6 (Stability of odd multi-kink solutions).
The family of multi-kink solutions Uo(t) from Definition 1.4 is global-in-time

H1-stable.

We prove this result in Section 4. In particular, we give a more precise statement
in Theorem 4.1.

General nonlinearities. We point out that our results, starting from transfor-
mations (1.12)-(1.22), and the Zhidkov theory developed in [47], can be made even
more general and include a wide range of non-integrable, defocusing gKdV equa-
tions.

Indeed, in the next paragraphs we first introduce the notion of generalized,
even and odd multi-kink solutions. Of course these objects have to match with
those considered in Definitions 1.1 and 1.4, for the special case of the integrable
mKdV model. Second, we study the existence, uniqueness and stability of these
new solutions in the case of well-prepared initial data. Next, we consider some
particular collision problems, in the spirit of [32, 33, 39] (note that the collision
problem makes sense since we consider non-integrable equations). The method
used is the same as in the previous results, so we will skip most of the proofs. We
emphasize that the main idea is to exploit the properties contained in the following
figure:

u ∈ defocusing gKdV (even) < (u ∼ b+ ũ) > ũ ∈ focusing gKdV

u ∈ defocusing gKdV (odd) < (u ∼ ϕc + ũ) > ũ ∈ focusing gKdV

Figure 4. The generalized transformations (1.12)-(1.22) linking
a defocusing gKdV with a focusing gKdV equation.

Let us consider the generalized, defocusing KdV equation

ut + (uxx − f(u))x = 0, u = u(t, x) ∈ R. (1.27)

Here f : R→ R is a non-linear term, with enough regularity, to be specified below.
From now on, we will assume the following hypotheses:

(a) There exists b0 ∈ R such that f (k)(b0) 6= 0, for some k ∈ {2, 3, 4}.

Let k0 ∈ {2, 3, 4} be the first integer k satisfying this property. We assume
f is of class Ck0+1(R).

(b) If f (2)(b0) = 0 and f (3)(b0) 6= 0, then f (3)(b0) < 0.

The reader may compare e.g. with the integrable case f(s) = s3, where for
b0 6= 0 one has f ′′(b0) = 6b0 6= 0. Another important example is the cubic-quintic
nonlinearity f(s) := s3 + µs5, µ ∈ R− {0} fixed, for which

f ′′(b0) = 2b0(3 + 10µb20) 6= 0,
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provided b0 6= 0 and b20 6= − 3
10µ in the case µ < 0. Otherwise, we are in a degenerate

case and f ′′(b0) = 0. Computing the third derivative, one has

f (3)(b0) = 6(1 + 10µb20).

For any µ 6= 0 one has that b0 = 0 does not satisfy (b) above and therefore is not
allowed. In the case µ < 0, b20 = − 3

10µ , one has f (3)(b0) = −12 < 0, which is an

admissible case.

Under these two assumptions and using [29, Remark 2], we prove existence and
uniqueness of generalized even multi-kinks for (1.27), satisfying the equivalent of
(1.15) (cf. Definition 1.1).

Theorem 1.7 (Existence and uniqueness of generalized, even multi-kinks).
Let N ≥ 2 and b0 ∈ R be such that (a)-(b) above are satisfied. There exists

c∗ := c∗(f, b0) > 0 such that, for all 0 < c01 < c02 < . . . < c0N < c∗, the following
holds. There exists a unique solution Ue = Ue(t) of (1.27) such that Ue(t) − b0 ∈
C(R, H1(R)), and it satisfies

lim
t→+∞

∥∥Ue(t)− b0 − b1 N∑
j=1

Qc0j (·+ c̃jt)
∥∥
H1(R) = 0, (1.28)

with3

b1 :=
( −k!

f (k0)(b0)

) 1
k0−1

, c̃j := f ′(b0)− c0j ∈ R, (1.29)

and ũ(t, y) = Qcj (y − cjt) is a soliton solution of the focusing gKdV equation

ũt + (ũyy + f̃(ũ))y = 0, (1.30)

where

f̃(s) := − 1

b1

[
f(b0 + b1s)− f(b0)− b1f ′(b0)s

]
. (1.31)

Proof. See Section 3. �

Remarks.
1. Let b0 ∈ R−{0}, and fb0(s) := s5 − 5b0s

4 + 10b20s
3 − 10b30s

2. Then c∗(fb0 , b0) =

+∞ and f̃b0(s) = s5. Therefore, according to [29, Theorem 1], the conclusion of the
above Theorem are still valid for the L2-critical case. Even better, the above result
can be adapted in the case of L2-supercritical nonlinearities, as a consequence of
Côte-Martel-Merle [11] and Combet [10].

2. Note that from k0 ≥ 2 and (a) above one has at least f̃ ∈ C3(R), a sufficient
condition to obtain global well-posedness for (1.30)-(1.31) in H1(R) [24, 35].

Following the Martel-Merle-Tsai’s paper [36], we say that an initial configuration
u0 ∈ b0 + H1(R) for (1.27) is well-prepared if for L,α > 0 and 0 < c01 < . . . <
c0N < c∗ (c∗ given by Theorem 1.7), and x01 < x02 < . . . < x0N ∈ R, one has∥∥u0− b0− b1 N∑

j=1

Qc0j (·−x0j )
∥∥
H1(R) ≤ α, x0j > x0j−1 +L, j = 2, . . . , N, (1.32)

with b1 defined in (1.29), and Qc0j solitons of (1.30)-(1.31). Our next result states

that this configuration is preserved for positive times.

3In the case k0 = 2 both b1 and −b1 are admissible values.
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Theorem 1.8 (Stability of the even multi-kinks).
There exist L0, α0 > 0 such that for all L > L0 and α ∈ (0, α0), a well-prepared

initial configuration u0 for (1.27), satisfying (1.32), is H1-stable for all positive
times.

Proof. The proof is similar to that of Theorem 1.3. We skip the details. �

Another striking consequence of (3.1) is the fact that we can describe the inter-
action among even kinks in some regimes, in the spirit of [32, 33, 39]. Indeed, one
has the following

Theorem 1.9 (Inelastic interaction of even 4-kinks).
Let b0 ∈ R such that (a)-(b) are satisfied, and suppose in addition that f is of

class Ck1+1(R), where

f (k1)(b0) 6= 0 for some k1 ≥ 4. (1.33)

Let c∗ = c∗(f, b0) > 0 be the corresponding threshold for the existence and stability
of single solitons for (1.30)-(1.31). Consider 0 < c01 � c02 � c∗, and let Ue(t) be
the unique 4-kink solution of (1.27) satisfying (1.28). Then Ue(t) is global-in-time
H1-stable, but it is not pure as t→ −∞.

Remarks.
1. The condition (1.33) allows us to rule out the integrable cases f(s) = αs2 +βs3,
α, β ∈ R.
2. By not pure as t → −∞ in Theorem 1.9 we mean that (1.14) cannot happen:
for any x−j ∈ R,

lim inf
t→−∞

∥∥Ue(t)− b0 −√β 2∑
j=1

Qc0j ,β(·+ c̃jt+ x−j )
∥∥
H1(R) > 0.

3. The collision problem has been recently considered in the case of the NLS
equation: see e.g. Holmer-Marzuola-Zworski [21, 22], Perelman [42], and references
therein.

Proof of Theorem 1.9. We prove Theorem 1.9 in Section 3. The main idea is that
condition (1.33) is the key point to invoke [32] and our result [39, Theorem 1.3] to
equations (1.30)-(1.31), classifying the nonlinearities for which the 2-soliton collision
is inelastic. �

Another collision result is the following remarkable consequence of the recent
Martel-Merle’s papers describing the interaction of (i) two very different [32], and
(ii) two nearly equal solitons of the quartic gKdV equation [34].

Corollary 1.10 (Inelastic interaction of even 4-kink solutions, quartic case).
Let b0 ∈ R, and fb0(s) := s4 − 4b0s

3 + 6b20s
2. Then fb0 satisfies (a)-(b) above,

one has c∗(fb0 , b0) = +∞ and for any 0 < c01 � c02, the corresponding 4-kink Ue(t)
constructed in Theorem 1.7, and pure as t → +∞, is globally H1-stable, but it is
not pure as t → −∞. The same result is valid in the regime 0 < c01 < c02, with
|c01 − c02| � 1.
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Remark. The last result is a consequence of the fact that from (1.30) and (1.31),

one has f̃b0(s) = s4, for which solitons Qc exist for any c > 0. Note in addition that
for any b0 6= 0, the corresponding nonlinearity fb0 does not allow to perform the
standard transformation u→ −u, which links the defocusing and focusing quartic
equations. Moreover, the quadratic term in fb0 is always of defocusing nature.
Therefore, the above result is completely new for b0 6= 0.

Finally, we consider the case of generalized, odd multi-kink solutions. First of all,
we have to recall some important facts. For more details, the reader may consult
the monograph of Zhidkov [47].

Let ϕ−, ϕ+ ∈ R, with ϕ− < ϕ+, and let c > 0, x0 ∈ R be fixed numbers. Let
f be the nonlinearity considered in (1.27). Suppose that the following hypotheses
hold:

(c) one has

cϕ− − f(ϕ−) = cϕ+ − f(ϕ+);

(d) the function F (s) :=

∫ s

ϕ−
(cσ − f(σ)− cϕ− + f(ϕ−))dσ satisfies

F (ϕ+) = 0, and F (s) < 0, for all s ∈ (ϕ−, ϕ+);

(e) f ′(ϕ±) > c (non degeneracy condition).4

Then there exists a monotone, generalized kink solution of (1.27), of the form

u(t, x) := ϕc(x+ ct+ x0), lim
s→±∞

ϕc(s) = ϕ±, (1.34)

and ϕc satisfies

ϕ′′c + cϕc − f(ϕc) = cϕ− − f(ϕ−), ϕ′c > 0, ϕ′c ∈ H1(R).

Moreover, this solution satisfies, for some constants K, γ > 0, the following esti-
mates

|ϕc(s)− ϕ±|+ |ϕ′c(s)| ≤ Ke−γ|s|.
Finally, but not least important, the condition ϕ′c > 0 implies that (1.34) is H1-
stable (Zidkhov [47, p. 91], Merle-Vega [37]).

Remarks.
1. For the sake of clarity, let us mention that in the integrable case f(s) = s3, given
ϕ− ∈ R and c > 0, one has that for ϕ+ > ϕ−, conditions (c)-(d) and (e) lead to
necessary conditions ϕ− = −

√
c and ϕ+ =

√
c, namely (1.2).

2. It is important to point out that the multi-kink solution Ue constructed in
Theorem 1.7 cannot be decomposed as the sum of several kinks of the form (1.34),
at least in a general situation (compare e.g. with (1.16)). Therefore, we believe
that (1.28) and (1.35) below are the correct ways to define generalized multi-kink
solutions, in the case of defocusing gKdV equations.

3. The Cauchy problem associated to (1.27) with initial condition satisfying u(0)−
ϕc ∈ H1(R), is locally well-posed in the class ϕc(· + ct) + H1(R). This result is
consequence of the analysis carried out by Merle and Vega in [37] and the fact that

4This condition ensures that the continuous spectrum of the linearized operator L := −∂2x −
c+ f ′(ϕc) is bounded from below, away from zero, and the kernel of L is spawned by its ground

state ϕ′
c > 0.
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f is regular enough. In what follows, we will only consider stable solutions, then
globally well defined.

Our next objective is to generalize the Zhidkov’s results to the case of (2N − 1)-
kinks, as follows:

Theorem 1.11 (Existence and uniqueness of generalized odd multi-kinks).
Let N ≥ 2 and ϕ−, ϕ+ ∈ R be such that (a)-(b) hold with b0 := ϕ−, and

(c)-(e) above are satisfied. There exists c∗ := c∗(f, ϕ−) > 0 such that, for all
0 < c01 < c02 < . . . < c0N < c∗, and x−1 , x

−
2 , . . . , x

−
N ∈ R, the following holds. There

exists a unique solution Uo = Uo(t) of (1.27) such that u(t) − ϕc(· + ct) ∈ H1(R),
and it satisfies

lim
t→+∞

∥∥Uo(t)− ϕc(·+ ct+ x−N )− b1
N∑
j=1

Qc0j (·+ c̃jt+ x−j )
∥∥
H1(R) = 0, (1.35)

with b1, c̃j as in (1.29), and ũ(t, y) = Qcj (y− cjt) is a soliton of the focusing gKdV
equation (1.30)-(1.31).

The proof of this result follows the lines of the proof of Theorem 1.5, see also
Remark 2 in [29]. Let us recall that in this situation, and following the notation of
(1.30)-(1.31), equation (1.23) now becomes

ũt + (ũyy + f̃(ũ))y = [F (t, y)]y, ũ ∈ H1(R),

with

F (t, y) :=
1

b1
[f(ϕc + b1ũ)− f(ϕc)− f(ϕ− + b1ũ) + f(ϕ−)]

=
1

b1

∫ b1ũ

0

∫ ϕc

ϕ−
f ′′(t+ s)dsdt.

Therefore, since u ∈ L∞(R), one has F (t, y) = O(|ϕc −ϕ−||ũ|), which is enough to
conclude.

Finally, we say that an initial configuration u0, perturbation of a kink solution
ϕc, is well-prepared if for L,α > 0, 0 < c01 < . . . < c0N−1 < c∗, and x01 < x02 <

. . . < x0N , one has∥∥u0 − ϕc(· − x0N )− b1
N∑
j=1

Qc0j (· − x0j )
∥∥
H1(R) ≤ α, x0j > x0j−1 + L, j = 2, . . . , N,

(1.36)
with b1 defined in (1.29). In addition, by taking c∗ smaller if necessary, we assume
that each soliton Qc0j is stable in the sense of Weinstein (1.21).

Theorem 1.12 (Stability of the odd multi-kinks).
There exist L0, α0 > 0 such that for all L > L0 and α ∈ (0, α0), a well-prepared

initial data u0 for (1.27), satisfying (1.36), is H1-stable for all positive times.

This result is proved following the lines of the proof of Theorem 1.6, using in
addition that single solitons are stable. We skip the details.

Final remarks.
1. We recall that the collision problem in the case of odd multi-kink solutions
remains an interesting open question. In addition, we believe that our approach
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introduces new ideas to deal with the dynamics of kink solutions in the L2-critical
and supercritical setting, by using a suitable focusing counterpart.

2. Let us mention that a similar transformation to (1.22) can be introduced in the
cases of the φ4 and sine-Gordon models, with similar results. For the first equation,

utt − uxx = u(1− u2), u(t, x) ∈ R, (1.37)

it is well know that u(t, x) = ϕ(x), with ϕ given in (1.3), is a stationary kink

solution. However, the transformation u(t, x) := ϕ(x) + 2
3 ũ(
√

2t,
√

2x) leads to the
following equation for ũ(s, y)

ũss − ũyy + ũ+ ũ2 +
2

9
ũ3 =

3

2
(1− ϕ2)ũ+ (1− ϕ)ũ2.

Looking for an approximate, localized, stationary solution, we arrive to study the
elliptic equation associated to the Gardner nonlinearity:

ũyy − ũ− ũ2 +
2

9
ũ3 = 0, ũ ∈ H1(R).

Using the transformation ũ = −û, we get a Gardner elliptic equation with param-
eters c := 1 and β := − 2

9 (cf. (B.1)), therefore it is possible to attach to the kink
solution of (1.37) suitable soliton-like structures of the form (1.11). For instance,
we may take a sum of boosted Gardner profiles:

ũ(s, y) ∼ −
N∑
j=1

Q(γj(y − vjs)), 0 < v1 < v2 < . . . < vN , γj := (1− v2j )−1/2.

and Q(x) := Q1,− 2
9
(x) = 3(1 +

√
2 cosh(x))−1 from (1.11).

Now we perform the same analysis in the case of the sine-Gordon equation

utt − uxx + sinu = 0, u(t, x) ∈ R, (1.38)

and its kink solution ϕ(x) := 4 arctan ex. Indeed, using the transformation u(t, x) :=
ϕ(x) + ũ(t, x), we arrive to the following perturbed, sine-Gordon equation

ũtt − ũxx + sin ũ = (1− cosϕ) sin ũ+ (1− cos v) sinϕ,

where the right hand side is small if we consider ũ as a localized solution of (1.38)
in the region where ϕ ∼ 0. We can put for instance, a sum of breather solutions,
provided this solution is stable, which is an open problem. We expect to consider
some of these problems in a forthcoming publication.

Idea of the proofs. Theorems 1.2, 1.3, 1.7 and 1.8 can be deduced from Martel
[29] and Martel-Merle-Tsai [36, 35]. We recall that, without using transformation
1.12, these results were unable to be tackled down by using any direct method.

We prove Theorem 1.6 in Section 4. The proof is based in the approach intro-
duced in [36] in order to describe the stability in H1(R) of N decoupled solitons.
However, in this opportunity we face several new problems since the kink solution
and the Gardner solitons are in strong interaction through the dynamics. Moreover,
the mass (1.6) cannot be used to control the Gardner solitons, as has been done in
[36]. This means that Theorem 1.6 cannot be deduced from the standard Zhidkov
[47] and Martel-Merle-Tsai [36] results, and we need new ideas. In that sense, the
transformation (1.22) is the first step –and the more important one– to understand
the interaction among kinks as actually localized, soliton-like interactions.
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Let us be more precise. Using the energy (see (1.5)) of the solution u(t), one
can control with no additional difficulties the kink solution. This is a consequence
of the non negative character of the linearized operator around the kink solution,
see [47, 37] for more details. However, this quantity is far from being enough to
control the behavior of the Gardner solitons. We overcome this difficulty by using
the transformation (1.22), which introduces a new function ũ(t), almost solution of
a Gardner-like equation (cf. (1.23)). It turns out that the perturbative terms on
the right hand side of (1.23) can be controlled provided the solitons are far from
the center of the main kink solution, which holds true if we assume that the initial
configuration is well prepared (see Proposition 4.2). Additionally, we introduce
a new, almost conserved mass (see (4.25)) for the portion on the left of the
solution ũ, which allows to control each Gardner soliton by separated. Using this,
we avoid the problem of using the natural mass (1.6), which is very bad behaved for
H1(R) perturbations. This approach is completely general and can be adapted to
prove Theorem 1.12. No additional hypotheses are needed, only the single stability
of each generalized soliton component of the multi-kink solution. The proof of the
asymptotic stability property generalizes the argument used [35], this time to the
function ũ.

Finally, concerning Theorem 1.5 –proved in Section 5–, we extend the result of
Martel [29]. Most of the proof is similar to the proof of Theorem 1.6, but estimates
are easier to carry out since we do not need to control the scaling parameters of
each Gardner solitons.

2. Proof of Theorems 1.2 and 1.3

Proof of Theorem 1.2. Let Ũ be another solution of (1.1) satisfying (1.14).
Then, from (1.12),

Ṽ (t, y) :=
1√
β

[
b− Ũ(t, y − t

3β
)
]
,

is solution of the Gardner equation (1.10) and satisfies (1.18). From the uniqueness

of V (N) [29], one has Ṽ ≡ V (N), and therefore Ũ ≡ Ue.
Proof of Theorem 1.3. First of all, let us recall the Martel-Merle-Tsai’s stability
result [36]:

Theorem 2.1 (H1-stability of the sum of N -Gardner solitons, [36, 35]).
Let N ≥ 2, β > 0 and 0 < c01 < c02 < . . . < c0N < 2

9β be such that (1.21)

holds for all j = 1, . . . , N. There exists α̃0, Ã0, L̃0, γ̃ > 0 such that the following
is true. Let v0 ∈ H1(R), and assume that there exists L̃ > L̃0, α̃ ∈ (0, α̃0) and
x̃01 < x̃02 < . . . < x̃0N , such that∥∥v0 − N∑

j=1

Qc0j ,β(· − x̃0j )
∥∥
H1(R) ≤ α̃, x̃0j > x̃0j−1 + L̃, j = 2, . . . , N. (2.1)

Then there exists x̃1(t), . . . x̃N (t) such that the solution v(t) of the Cauchy problem
associated to (1.10), with initial data v0, satisfies

v(t) = S(t) + w(t), S(t) :=

N∑
j=1

Qc0j ,β(· − x̃j(t)),
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and

sup
t≥0

{
‖w(t)‖H1(R) +

N∑
j=1

|x̃′j(t)− c0j |
}
≤ Ã0(α̃+ e−γ̃L̃). (2.2)

Moreover, there exist c∞j > 0 such that lim+∞ x̃′j(t) = c∞j and

lim
t→+∞

‖v(t)−
N∑
j=1

Qc∞j ,β(· − x̃j(t))‖
H1(x>

c01
10 t)

= 0. (2.3)

It is important to stress that the well-preparedness restriction on the initial
data (2.1) is by now necessary since there is no satisfactory collision theory for the
non-integrable cases.5

However, as explained in [36] for the KdV case, the above argument can be
extended to a global-in-time stability result, thanks to the continuity of the Gardner
flow in H1(R) [24], and the fact that the Gardner equation (1.10) is an integrable
model, with explicit N -soliton solutions (see (1.18)-(1.19)), given by the family
V (N) above described. Therefore, a direct consequence of this property and the
invariance of the equation under the transformation u(t, x) 7→ u(−t,−x) is the
following

Corollary 2.2 (H1-stability of Gardner multi-solitons, [36, 35]).
Let δ > 0, N ≥ 2, 0 < c01 < . . . < c0N and x01, . . . , x

0
N ∈ R. There exists α0 > 0

such that if 0 < α < α0, then the following holds. Let v(t) be a solution of (1.10)
such that

‖v(0)− V (N)(·; c0j , x0j )‖L2(R) ≤ α,

with V (N) the N -soliton satisfying (1.18)-(1.19). Then there are xj(t) ∈ R, j =
1, . . . , N , such that

sup
t∈R

∥∥v(t)− V (N)(·; c0j , xj(t))
∥∥
H1(R) ≤ δ. (2.4)

Moreover, there exist c∞j > 0 such that

lim
t→+∞

∥∥v(t)− V (N)(·; c∞j , xj(t))
∥∥
H1(x>

c01
10 t)

= 0, (2.5)

and xj(t) are C1 for all |t| large enough, with x′j(t)→ −c∞j ∼ −c0j as t→ +∞. A
similar result holds as t→ −∞, with the obvious modifications.

Remark. Let us emphasize that the proof of this result requires the existence and
the explicit behavior of the multi-soliton solution V (N) of the Gardner equation,
and therefore the integrable character of the equation. In particular, we do not
believe that a similar result is valid for a completely general, non-integrable gKdV
equation, unless one considers some perturbative regimes (cf. [32, 34] for some
global H1-stability results in the non-integrable setting.)

Therefore, using (1.12) and the previous result one has the following more precise
version of Theorem 1.3.

5See [32, 33, 34, 39] for some recent results describing the collision of two solitons for gKdV
equations in some particular regimes and with general nonlinearities, beyond the integrable cases.
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Theorem 2.3 (Stability of even multi-kink solutions).
The family of multi-kink solutions Ue(t) from Definition 1.1 and (1.20) is global-

in-time H1-stable, and asymptotically stable as t→ ±∞. More precisely, let β, δ >
0, N ≥ 2, 0 < c01 < . . . < c0N < 2

9β and x01, . . . , x
0
N ∈ R. There exists α0 > 0 such

that if 0 < α < α0, then the following holds. Let u(t) be a solution of (1.1) such
that

‖u(0)− Ue(·; c0j , x0j )‖H1(R) ≤ α, (2.6)

with Ue the 2N -kink solution defined in (1.20). Then there exist xj(t) ∈ R, j =
1, . . . , N , such that

sup
t∈R

∥∥u(t)− Ue(·; c0j , xj(t))
∥∥
H1(R) ≤ δ. (2.7)

Moreover, there exist c∞j > 0 such that

lim
t→+∞

∥∥u(t)− Ue(·; c∞j , xj(t))
∥∥
H1(x>( 1

10 c
0
1−3c)t)

= 0, (2.8)

and xj(t) are C1 for all |t| large enough, with x′j(t) → c∞j ∼ c̃j as t → +∞. A
similar result holds as t→ −∞, with the obvious modifications.

Remark. Let us recall, for the sake of completeness, that estimate (2.8) is deduced
from (2.5) by using the transformation (1.12).

3. Proof of Theorems 1.7 and 1.9

Proof of Theorem 1.7. Thanks to (a)-(b), there exists a generalized transfor-
mation of the form (1.12), such that

u(t, x) = b0 + b1ũ(t, x+ f ′(b0)t), (3.1)

with b1 given by (1.29), and such that ũ(t, y) satisfies (1.30)-(1.31). Moreover, note

that a Taylor expansion gives us that f̃ is a subcritical perturbation of the pure
power nonlinearity:

f̃(s) = − 1

k0!
bk0−11 f (k0)(b0)sk0 − 1

(k0 + 1)!
bk01 f

(k0+1)(ξ)sk0+1

= sk0 + f̃b0(s), k0 ∈ {2, 3, 4}, (3.2)

for some ξ in between b0 and b0 + b1s. Note in addition that

lim
s→0

f̃b0(s)

|s|k0
= 0.

According to Berestycki and Lions [5], f̃ is an admissible nonlinearity for the ex-
istence of small solitons, in the sense that there exists c∗ > 0 (depending on f
and b0 fixed), such that for all 0 < c < c∗, there exists a solution ũ = ũ(t, y) of
(1.30)-(1.31), of the form

ũ(t, y) = Qc(y − ct),
and such that Qc = Qc(s) satisfies

Q′′c − cQc + f̃(Qc) = 0, Qc > 0, Qc ∈ H1(R).

Moreover, Qc can be chosen even and exponentially decreasing as s→ ±∞.

In addition, for 0 < c < c∗ small, solitons satisfy the corresponding Weinstein
condition (1.21) (cf. Martel-Merle [35]), which implies orbital stability in the energy
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space H1(R). From Theorem in [29], given 0 < c01 < . . . < c0N < c∗, N ≥ 2, there

exists a unique solution Ũ ∈ C(R, H1(R)) of (1.30)-(1.31), satisfying

lim
t→+∞

∥∥∥Ũ(t)−
N∑
j=1

Qc0j (· − c0j t)
∥∥∥
H1(R)

= 0.

The final conclusion follows after applying the transformation (3.1). Note that c̃j
defined in (1.29) can be either zero, positive or negative, depending on b0 and c∗;
however one always has c̃N < c̃N−1 < . . . < c̃1.

Proof of Theorem 1.9. Let us consider the transformation (3.1), which leads to
the focusing gKdV equation (1.30)-(1.31). Let k1 ≥ 4 be the first integer satisfying
f (k1)(b0) 6= 0. Note that from (1.29) and (3.2), one has

f̃(s) =


s2 − 1

3!
b21f

(3)(b0)s3 − 1

k1!
bk1−11 f (k1)(b0)sk1 + f̃1(s), k0 = 2;

s3 − 1

k1!
bk1−11 f (k1)(b0)sk1 + f̃1(s), k0 = 3;

s4 + f̃1(s), k0 = 4.

Note that in each case one has

lim
s→0

f̃1(s)

|s|k1
= 0.

Since by hypothesis f (k1)(b0) 6= 0, one has that f̃ is a nontrivial perturbation of

the integrable models f̃(s) = s2, s3 and f̃(s) = s2 + βs3.
Therefore, from the classification theorem for the regime 0 < c1 � c2 � c∗

showed in [32, 33, 39], one can conclude that the 2-soliton structure is globally H1-
stable, but the solution Ue constructed in Theorem 1.7 is never pure as t→ −∞.
The final conclusion follows after applying (3.1). The proof is complete.

4. Proof of Theorem 1.6

In this section we prove Theorem 1.6. First of all, we state a more detailed
version of this result.

Theorem 4.1 (Stability of odd multi-kink solutions).
The family of multi-kink solutions Uo(t) from Definition 1.4 is global-in-time H1-

stable, and asymptotically stable as t → ±∞. More precisely, let δ, β > 0, N ≥ 2,
0 < c01 < . . . < c0N−1 <

2
9β and x01, . . . , x

0
N ∈ R. There exists α0 > 0 such that if

0 < α < α0, then the following holds. Let u(t) be a solution of (1.1) such that

‖u(0)− Uo(·; c0j , x0j )‖H1(R) ≤ α, c0N :=
1

9β
(4.1)

with Uo the (2N −1)-kink solution from Definition 1.4. Then there exist xj(t) ∈ R,
j = 1, . . . , N , such that

sup
t∈R

∥∥u(t)− Uo(·; c0j , xj(t))
∥∥
H1(R) ≤ δ. (4.2)

It turns out that the proof of Theorem 4.1 follows as a consequence of the
following
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Proposition 4.2 (H1-stability of the one kink and (N − 1) Gardner solitons).
Let N ≥ 2, β > 0, c0N = 1

9β , and 0 < c01 < c02 < . . . < c0N−1 <
2
9β be such

that (1.21) holds for all j = 1, . . . , N. There exists α0, A0, L0, σ0 > 0 such that the
following is true. Let u0 ∈ H1(R), and assume that there exists L > L0, α ∈ (0, α0)
and x01 < x02 < . . . < x0N , such that∥∥u0 − ϕc0N (·+ x0N )−

√
β

N−1∑
j=1

Qc0j ,β(·+ x0j )
∥∥
H1(R) ≤ α, x0j−1 < x0j − L, (4.3)

for j = 2, . . . , N . Then there exists x1(t), . . . , xN (t) such that the solution u(t) of
the Cauchy problem associated to (1.1), with initial data u0, satisfies

u(t) = S(t)+w(t), S(t) := ϕc0N (·+c0N t+xN (t))+
√
β

N−1∑
j=1

Qc0j ,β(·+ c̃jt+xj(t)),

and

sup
t≥0

{
‖w(t)‖H1(R) +

N∑
j=1

|x′j(t)|
}
≤ A0(α+ e−σ0L). (4.4)

Proof of Theorem 4.1. From Proposition 4.2, the proof of Theorem 4.1 follows
directly from the integrable character of the mKdV equation and the existence of a
suitable multi-kink solution satisfying (1.25)-(1.26). See e.g. [3, Corollary 1.2] for
a similar, detailed proof.

Therefore, we are left to prove Proposition 4.2.

Proof of Proposition 4.2.

Stability. Let us assume the hypotheses of Proposition 4.2. Let σ0 satisfying

0 < σ0 ≤
1

2
min(c02 − c01, c03 − c02, . . . , 2c0N − c0N−1), (4.5)

a measure of the minimal difference among the scaling parameters. This quantity
may change from one line to another, but always satisfies (4.5).

Note that a simple continuity argument, using the local Cauchy theory developed
in [37] shows that there exists t0 > 0 such that

sup
t∈[0,t0]

∥∥∥u(t)−ϕc0N (·+c0N t+x̃N (t))−
√
β

N−1∑
j=1

Qc0j ,β(·+c̃jt+x̃j(t))
∥∥∥
H1(R)

≤ 2(α+e−σ0L),

(4.6)
for some x̃j(t) ∈ R, j = 1, . . . , N . Therefore, given K∗ > 2, we can define the
following quantity

T ∗ := sup
{
T > 0, for all t ∈ [0, T ], (4.6) is satisfied with 2 replaced by K∗,

and for some x̃j(t) ∈ R.
}
. (4.7)

Our objective is to show that for some K∗ > 0 large enough, one has T ∗ = +∞.
Following a contradiction argument, we will assume T ∗ < +∞. This allows to
prove the following modulation property.

Lemma 4.3 (Modulation).
Possibly taking α0 > 0 and 1

L0
smaller, there exists K > 0 independent of K∗,

such that if L > L0 and 0 < α < α0, the following holds. There exist unique
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C1 functions cj : [0, T ∗] → (0,+∞), j = 1, . . . , N − 1, and xj : [0, T ∗] → R,
j = 1, . . . , N , such that

z(t, x) := u(t, x)− ϕc0N (x+ c0N t+ xN (t))−
√
β

N−1∑
j=1

Qcj ,β(x+ c̃jt+ xj(t)), (4.8)

satisfies, for all j = 1, . . . , N , and for all t ∈ [0, T ∗],∫
R
z(t, x)ϕ′c0N

(x+ c0N t+ xN (t))dx = 0, (4.9)

and∫
R
z(t, x)Q′cj ,β(x+ c̃jt+ xj(t))dx =

∫
R
z(t, x)Qcj ,β(x+ c̃jt+ xj(t))dx = 0. (4.10)

Moreover, there exists K > 0 such that for all t ∈ [0, T ∗],

‖z(t)‖H1(R) +

N−1∑
j=1

|cj(t)− cj(0)| ≤ KK∗(α+ e−σ0L), (4.11)

and

‖z(0)‖H1(R) +

N−1∑
j=1

|cj(0)− c0j | ≤ Kα. (4.12)

Proof. The proof of this result is a standard exercise of Implicit Function Theorem,
see e.g. Lemma in [36] for a similar proof. Note that in this opportunity we have
modulated the translation parameter associated to the kink solution (cf. (4.9)).
From [47, 37], there is no need to modulate the scaling parameter, see e.g. Lemma
A.1 in Appendix A. �

In what follows, we introduce some useful notation. Let us consider

R(t, x) :=
√
β

N−1∑
j=1

Qcj ,β(x+ c̃jt+ xj(t)), (= the Gardner solitons) (4.13)

and ũ(t, y) defined by the relation

u(t, x) := ϕc(x+ ct+ xN (t)) +
√
βũ(t, x+

t

3β
), (4.14)

where, for the sake of clarity, we have defined c := c0N . In particular,

ũ(t, y) =
1√
β

(R+ z)(t, y − t

3β
)

=

N−1∑
j=1

Qcj ,β(y − cjt+ xj(t)) +
1√
β
z(t, y − t

3β
)

=: R̃(t, y) + z̃(t, y). (4.15)

A simple computation shows that ũ = ũ(t, y) satisfies the modified Gardner equa-
tion (compare with (1.23))

ũt + (ũyy + ũ2 − βũ3)y = 3[(ϕ2
c − c)ũ+ (

√
c+ ϕc)ũ

2]y +
x′N (t)√

β
ϕ′c. (4.16)
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In this last equation ϕc is a function of the variable y in the sense that ϕc(x+ ct+
xN (t)) = ϕc(y − 2ct + xN (t)). The following result gives an explicit expansion of
the energy of u(t).

Lemma 4.4 (Expansion of the energy).
Consider the energy E[u](t) defined in (1.5), for c = c0N = 1

9β . Then, for any

t ∈ [0, T ∗], one has the following decomposition

E[u](t) = E[ϕc] +
2

3

N−1∑
j=1

c
3/2
j (t) + F(t) +O(‖z(t)‖3H1(R)) +O(e−σ0L), (4.17)

with F(t) the following second order functional

F(t) :=
1

2

∫
R

(z2x(t) + 2cz2(t)− 3(c− ϕ2
c)z

2(t)− 6
√
cRz2(t) + 3R2z2(t)). (4.18)

Proof. From (4.8) and (4.13), one has:

E[u](t) = E[ϕc +R+ z](t)

= E[ϕc](t) +
1

2

∫
R
R2
x + c

∫
R
R2 −

√
c

∫
R
R3 +

1

4

∫
R
R4

+

∫
R

(ϕc +
√
c)R3 +

∫
R

(ϕc)xRx +
3

2

∫
R
(ϕ2
c − c)R2 +

∫
R
ϕc(ϕ

2
c − c)R

−
∫
R
z(ϕ′′c + cϕc − ϕ3

c)−
∫
R
z(Rxx − 2cR+ 3

√
cR2 −R3)

+3

∫
R
(ϕ2
c − c)Rz +

1

2

∫
R
(z2x + 2cz2 − 3(c− ϕ2

c)z
2 − 6

√
cRz2 + 3R2z2)

+3

∫
R
(ϕc +

√
c)Rz2 + 3

∫
R
R2(ϕc +

√
c)z +

∫
R
ϕcz

3 +

∫
R
Rz3 +

1

4

∫
R
z4.

First of all, note that the term E[ϕc](t) actually does not depend on t. Additionally,
from (1.2) and (1.4) one has

ϕ′′c + cϕc − ϕ3
c = 0. (4.19)

In order to obtain some estimates of the above quantities, we need the following

Lemma 4.5 (Identities for R(t)).
Let R be the sum of N decoupled Gardner solitons defined in (4.13). Then one

has the following identities:

Rxx − 2cR+ 3
√
cR2 −R3 = −

√
β

N−1∑
j=1

(2c− cj)Qcj ,β +OH1(R)(e
−σ0L). (4.20)

and

1

2

∫
R
R2
x + c

∫
R
R2 −

√
c

∫
R
R3 +

1

4

∫
R
R4 =

2

3

N−1∑
j=1

c
3/2
j (t) +O(e−σ0L). (4.21)
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Proof. Let us prove (4.20). From (4.13) and the fact that c = 1
9β , one has

l.h.s. of (4.20) =
√
β

N−1∑
j=1

(Q′′cj ,β − 2cQcj ,β) + 3β
√
c
(N−1∑
j=1

Qcj ,β
)2 − β3/2(

N−1∑
j=1

Qcj ,β
)3

=
√
β

N−1∑
j=1

(Q′′cj ,β − 2cQcj ,β +Q2
cj ,β − βQ

3
cj ,β)

+
√
β

N−1∑
i 6=j

Qci,βQcj ,β − β3/2
[
(

N−1∑
j=1

Qcj ,β)3 −
N−1∑
j=1

Q3
cj ,β

]
.

Using the equation for Qc,β (cf. (B.1)), one has

l.h.s. of (4.20) = −
√
β
N−1∑
j=1

(2c− cj)Qcj ,β +OH1(R)(e
−σ0L),

as desired.

Now we consider (4.21). From (4.13) and (B.4), one has

l.h.s. of (4.21) = β

N−1∑
j=1

∫
R

{1

2
Q′2cj ,β + cQ2

cj ,β −
√
βcQ3

cj ,β +
β

4
Q4
cj ,β

}
+O(e−σ0L)

= β

N−1∑
j=1

{
Eβ [Qcj ,β ] + 2cM [Qcj ,β ]

}
+O(e−σ0L)

=
2

3

N−1∑
j=1

c
3/2
j (t) +O(e−σ0L).

The proof is complete. �

Let us come back to the proof of Lemma 4.4. From the above results, the
orthogonality conditions (4.10), (4.18) and (4.19) we have

E[u](t) = E[ϕc] +
2

3

N−1∑
j=1

c
3/2
j (t) + F(t) +O(‖z(t)‖3H1(R))

−
∫
R

(ϕc −
√
c)R3 −

∫
R

(ϕc)xRx +
3

2

∫
R

(ϕ2
c − c)R2 (4.22)

−
∫
R
ϕc(ϕ

2
c − c)R− 6

∫
R

(ϕ2
c − c)Rz − 3

∫
R

(ϕc −
√
c)Rz2. (4.23)

Finally, the last two lines in the above identity, namely (4.22)-(4.23), are exponen-
tially small. Indeed, one has e.g.∣∣∣∣∫

R
(ϕc −

√
c)R3

∣∣∣∣ ≤ Ke−σ0L. (4.24)

The other terms can be bounded in a similar fashion. From these estimates, (4.17)
follows directly. �
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In the next step, we introduce a modified mass, almost monotone in time, which
allows to control the Gardner solitons. Let Q(s) := (cosh(s))−1,

φ(x) := mQ(
√
σ0x/2), ψ(x) :=

∫ x

−∞
φ(s)ds, where m :=

[ 2
√
σ0

∫ ∞
−∞

Q
]−1

.

Note that, for all x ∈ R, ψ′(x) > 0, 0 < ψ(x) < 1, and limx→−∞ ψ(x) = 0,
limx→+∞ ψ(x) = 1.

Finally, let, for j = 1, . . . , N − 1, the modified mass

Mj(t) :=
1

2

∫
R
ũ2(t, y)(1− ψj(t, y)) dy, ψj(t, x) := ψ(y − σj(t)), (4.25)

with σj(t) := 1
2 (c0j−1t + c0j t + x0j−1 + x0j ), and ũ defined in (4.14). Note that this

quantity considers the mass on the left of each soliton, which represents the main
difference, compared with the standard arguments included in [36, 31].

Lemma 4.6 (Almost monotonicity of the mass, see also [36]).
There exist K > 0 and L0 > 0 such that, for all L > L0, the following is true.

For all t ∈ [0, T ∗] one has

Mj(t)−Mj(0) ≥ −K e−σ0L. (4.26)

Proof. The proof is similar to [29, 36], so we sketch the main steps. Let j ∈
{1, . . . , N − 1}. Using equation (4.16) and integrating by parts several times, we
have

d

dt
Mj(t) =

= −1

2

∫
R

[
− 3ũ2x − (c0j−1 + c0j )ũ

2 +
4

3
ũ3 − 3

2
βũ4

]
ψ′j −

1

2

∫
R
ũ2ψ

(3)
j (4.27)

+
3

2

∫
R
ũ(1− ψj)[(ϕ2

c − c)ũ+ (
√
c+ ϕc)ũ

2]y (4.28)

+
1

2
√
β
x′N (t)

∫
R
ũ(1− ψj)ϕ′c. (4.29)

Let us consider the term (4.27). By definition of ψ, |ψ(3)| ≤ σ0

4 ψ
′, so that∣∣∣∣∫

R
ũ2ψ

(3)
j

∣∣∣∣ ≤ 1

4
(c0j−1 + c0j )

∫
R
ũ2ψ′j . (4.30)

In order to bound the term

∫
R

(
4

3
ũ3 − 3

2
βũ4)ψ′j , one follows the argument of [36],

splitting the real line in two different regions according to the position of each
soliton, and the rest. Following that argument, one finds∣∣∣∣∫

R
(
4

3
ũ3 − 3

2
βũ4)ψ′j

∣∣∣∣ ≤ Ke−σ0(t+L) +
1

4
σ0

∫
R
ũ2ψ′j .

Now we consider the term (4.28). Note that one has∣∣(1− ψj)(ϕ2
c − c)

∣∣ ≤ Ke−σ0(t+L),

and a similar estimate is valid for the term |(1− ψj)(
√
c+ ϕc)|. Therefore∣∣∣∣32

∫
R
ũ(1− ψj)[(ϕ2

c − c)ũ+ (
√
c+ ϕc)ũ

2]y

∣∣∣∣ ≤ Ke−σ0(t+L),
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Let us consider the term (4.29). In this case, it is enough to recall that

‖(1− ψj)ϕ′c‖L2(R) ≤ Ke−σ0(t+L),

and |x′N (t)| ≤ Kα. Finally, we obtain for some K > 0,

d

dt
Mj(t) ≥ −Ke−σ0(t+L).

Thus, by integrating between 0 and t, we get the conclusion. Note that K and L
are chosen independently of t. �

Lemma 4.7 (Quadratic control of the variation of cj(t)).
There exists K > 0 independent of K∗, such that for all t ∈ [0, T ∗],

N−1∑
j=1

|cj(t)− cj(0)| ≤ K(‖z(t)‖2H1(R) + ‖z(0)‖2H1(R) + e−σ0L). (4.31)

Proof. We proceed in several steps, following the proof given in [36].

1. Note that from (4.17), and using a Taylor expansion of the function

f(M [Qcj(t),β ]) :=
2

3
c
3/2
j (t)

around the point s0 := M [Qcj(0),β ],6 one has for some K > 0,∣∣∣N−1∑
j=1

β(2c− cj(0))(M [Qcj(t),β ]−M [Qcj(0),β ])
∣∣∣ ≤

≤ K(‖z(t)‖2H1(R) + ‖z(0)‖2H1(R)) +Ke−σ0L +K

N−1∑
j=1

(M [Qcj(t),β ]−M [Qcj(0),β ])2.

Note in addition that for α0 small and L0 > 0 large, from (B.5),∣∣M [Qcj(t),β ]−M [Qcj(0),β ]
∣∣ = ∂cM [Qc,β ]

∣∣∣
c=cj(0)

(cj(t)− cj(0)) +O(|cj(t)− cj(0)|2)

=
c
1/2
j (0)

β(2c− cj(0))
(cj(t)− cj(0)) +O(|cj(t)− cj(0)|2).

Since 2c− cj(0) ≥ 2c− cN−1(0) > σ0 > 0, one has∣∣∣N−1∑
j=1

β(2c− cj(0))(M [Qcj(t),β ]−M [Qcj(0),β ])
∣∣∣

≤ K(‖z(t)‖2H1(R) + ‖z(0)‖2H1(R) + e−σ0L) +K

N−1∑
j=1

|cj(t)− cj(0)|2.

(4.32)

In other words, the left hand side above is of quadratic variation in z.

6In particular, a simple computation using (B.5) and c = 1
9β

shows that

f ′(s0) =
c1/2

∂cM [Qc,β ]

∣∣∣
c=cj(0)

=
1

9c
(2c− cj(0)) = β(2c− cj(0)).
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2. Let

dj(t) := β

j∑
k=1

M [Qck(t),β ], j = 1, . . . , N − 1. (= the mass on the left) (4.33)

We claim that there exists K > 0 such that, for all j = 1, . . . , N − 1,

|dj(t)− dj(0)| ≤ (dj(t)− dj(0)) +K‖z(0)‖2L2(R) +K‖z(t)‖2L2(R) +Ke−σ0L. (4.34)

Let us prove this last identity. Suppose j ∈ {1, . . . , N−1}. First of all, if dj(t)−dj(0)
is nonnegative, there is nothing to prove. Let us assume that dj(t) − dj(0) < 0,
therefore we have to show that

dj(0)− dj(t) ≤ K‖z(0)‖2L2(R) +K‖z(t)‖2L2(R) +Ke−σ0L.

Recall that from Lemma 4.6, one has Mj(0) ≤Mj(t)+Ke−σ0L. On the other hand,
from (4.10), (4.13), (4.14) and (B.3),

Mj(t) =
1

2

∫
R

(R̃2 + 2R̃z̃ + z̃2)ψ̃j(t)

=
1

2

N−1∑
k=1

∫
R
Q2
ck,β

ψ̃j(t) +
1

2

∫
R
z̃2ψ̃j(t) +O(e−σ0L)

=
1

β

[
β

j∑
k=1

M [Qck(t),β ] +
1

2

∫
R
z2ψj(t)

]
+O(e−σ0L).

Therefore,

dj(t)− dj(0) = −1

2

∫
R

(z2ψj(t)− z2ψj(0)) + β(Mj(t)−Mj(0)) +O(e−γ0L). (4.35)

Using Lemma 4.6, (4.34) follows easily.

3. Conclusion. From the definition of dj(t) in (4.33),

N−1∑
j=1

β(2c− cj(0))(M [Qcj(t),β ]−M [Qcj(0),β ]) =

= (2c− c1(0))(d1(t)− d1(0)) +

N−1∑
j=2

(2c− cj(0))[dj(t)− dj−1(t)− (dj(0)− dj−1(0))]

= (2c− cN−1(0))(dN−1(t)− dN−1(0)) +

N−2∑
j=1

(cj+1(0)− cj(0))(dj(t)− dj(0)). (4.36)

Therefore, by (4.32) and (4.36),

(4.36) ≤ K‖z(t)‖2H1(R) +K‖z(0)‖2H1(R) +Ke−σ0L +K

N−1∑
j=1

|cj(t)− cj(0)|2. (4.37)
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Since 2c− cN−1(0) ≥ σ0 and cj+1(0)− cj(0) ≥ σ0, by (4.34), one has

σ0

N−1∑
j=1

|dj(t)− dj(0)| ≤ (2c− cN−1(0))|dN−1(t)− dN−1(0)|

+

N−2∑
j=1

(cj+1 − cj)(0)|dj(t)− dj(0)|

≤ (4.36) +K‖z(0)‖2L2(R) +K‖z(t)‖2L2(R) +Ke−σ0L.

Thus, by (4.37),

N−1∑
j=1

|dj(t)−dj(0)| ≤ K‖z(t)‖2H1(R)+K‖z(0)‖2H1(R)+Ke
−γ0L+K

N−1∑
j=1

|cj(t)−cj(0)|2.

(4.38)
Since for j ≥ 2 one has

|cj(t)− cj(0)| ≤ K|M [Qcj(t),β ]−M [Qcj(0),β ]|
= K|dj(t)− dj−1(t)− dj(0) + dj−1(0)|
≤ K|dj(t)− dj(0)|+K|dj−1(t)− dj−1(0)|,

we obtain from (4.38)

N−1∑
j=1

|cj(t)−cj(0)| ≤ K‖z(t)‖2H1(R)+K‖z(0)‖2H1(R)+Ke
−σ0L+K

N−1∑
j=1

|cj(t)−cj(0)|2.

Choosing a smaller α0 and a larger L0, depending on K∗, we can assume K|cj(t)−
cj(0)| ≤ 1/2 and so

N−1∑
j=1

|cj(t)− cj(0)| ≤ K‖z(t)‖2H1(R) +K‖z(0)‖2H1(R) +Ke−σ0L. (4.39)

The proof is complete. �

Lemma 4.8 (Bootstrap).
There exists K > 0, independent of K∗, such that for all t ∈ [0, T ∗],

‖z(t)|2H1(R) ≤ K(‖z(0)‖2H1(R) + e−σ0L).
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Proof. By (4.17),

F(t) = F(0)− 2

3

N−1∑
j=1

(c
3/2
j (t)− c3/2j (0)) +O(‖z(t)‖3H1(R)) +O(e−σ0L)

= −
N−1∑
j=1

β(2c− cj(0))(M [Qcj(t),β ]−M [Qcj(0),β ])

+O
(
‖z(0)‖2H1(R) + ‖z(t)‖3H1(R) +

N−1∑
j=1

|cj(t)− cj(0)|2 + e−σ0L
)

= −(2c− cN−1(0))(dN−1(t)− dN−1(0))−
N−2∑
j=1

(cj+1(0)− cj(0))(dj(t)− dj(0))

+O
(
‖z(0)‖2H1(R) + ‖z(t)‖3H1(R) +

N−1∑
j=1

|cj(t)− cj(0)|2 + e−σ0L
)
.

On the other hand, note that from (4.32) and Lemma 4.6,

dj(t)− dj(0) ≥ −1

2

∫
R

(z2ψj(t)− z2ψj(0))−Ke−σ0L, j = 1, . . . , N − 1.

Therefore

F̃(t) ≤ K‖z(0)‖2H1(R) +K‖z(t)‖3H1(R) +K

N−1∑
j=1

(cj(t)− cj(0))2 + e−σ0L, (4.40)

with F̃(t) given by the formula

F̃(t) :=

= F(t)− 1

2

N−2∑
j=1

((cj+1(0)− 2c) + (2c− cj(0)))

∫
R
z2ψj(t)

−1

2
(2c− cN−1(0))

∫
R
z2ψN−1(t)

= F(t)− 1

2

N−1∑
j=2

(2c− cj(0))

∫
R
z2(ψj(t)− ψj−1(t))− 1

2
(2c− c1(0))

∫
R
z2ψ1(t)

=
1

2

∫
R

{
z2x(t) + c(t, x)z2(t)− 3(c− ϕ2

c)z
2(t)− 6

√
cRz2(t) + 3R2z2(t)

}
, (4.41)

with

c(t, x) := 2c−
N−1∑
j=2

(2c− cj(0))(ψj − ψj−1)(t)− (2c− c1(0))ψ1(t)

= 2c
[
1−

N−1∑
j=2

(ψj − ψj−1)(t)− ψ1(t)
]

+

N−1∑
j=2

cj(0)(ψj − ψj−1)(t) + c1(0)ψ1(t). (4.42)
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We prove in Appendix A that this quadratic form is coercive, in the sense that
there exists λ0 > 0 independent of t and K∗ such that, thanks to (4.9) and (4.10),

F̃(t) ≥ λ0‖z(t)‖2H1(R). (4.43)

Therefore, from (4.40), (4.31), and taking α0 smaller if necessary, we obtain

‖z(t)‖2H1(R) ≤ K‖z(0)‖2H1(R) +K‖z(t)‖3H1(R) + e−σ0L,

and so

‖z(t)‖2H1(R) ≤ K‖z(0)‖2H1(R) +Ke−σ0L,

for some constant K > 0, independent of K∗. Thus, the proof of Lemma 4.8 is
complete. �

We conclude the proof of Proposition 4.2. From (4.11), Lemmas 4.7 and 4.8, we
have∥∥∥u(t)− ϕc(·+ ct+ xN (t)) +

√
β

N−1∑
j=1

Qc0j ,β(·+ c̃jt+ xj(t))
∥∥∥
H1(R)

≤ ‖z(t)‖H1(R) +
√
β
∥∥∥N−1∑
j=1

[Qcj ,β(·+ c̃jt+ xj(t))−Qc0j ,β(·+ c̃jt+ xj(t))]
∥∥∥
H1(R)

≤ ‖z(t)‖H1(R) +K

N−1∑
j=1

|cj(t)− c0j |

≤ ‖z(t)‖H1(R) +K

N−1∑
j=1

|cj(t)− cj(0)|+K

N−1∑
j=1

|cj(0)− c0j |

≤ ‖z(t)‖H1(R) +K‖z(0)‖2H1(R) +Ke−σ0L +Kα ≤ K(α+ e−σ0L),

where K > 0 is a constant independent of K∗. Finally, choosing K∗ = 4K, we get
the desired contradiction. The proof is complete.

5. Sketch of proof of Theorem 1.5

The proof follows the lines of [29, Theorem 1] and the proof of Proposition 4.2
from the previous section. Let us assume the hypotheses of Theorem 1.5. Let
Tn → +∞ be an increasing sequence, and

R(t) := ϕc0N (·+ c0N t) +
√
β

N−1∑
j=1

Qc0j ,β(·+ c̃jt), c̃j = 3c0N − c0j .

It is clear that R(t)− ϕc0N (·+ c0N t) is uniformly bounded in any Hs(R), s ≥ 0.

Now we consider the following Cauchy problem

(un)t + ((un)xx − u3n)x = 0, un(t, x) ∈ R, (5.1)

un(Tn) = R(Tn). (5.2)

From [37], one has global existence of a unique solution un(t) for (5.1), satisfying
un − ϕc0N ∈ C(R, H1(R)), with conserved energy (1.5). The main part of the proof
is to establish the following uniform estimates:
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Proposition 5.1 (Uniform estimates).
There exist K,n0 > 0 such that for all n ≥ n0, and for all t ∈ [Tn0 , Tn], one has

‖un(t)−R(t)‖Hs(R) ≤ Kse
−σ0t, s ∈ [0, 1+], (5.3)

with σ0 > 0 defined in (4.5).

The proof of this result is similar to the proof of Proposition 4.2, but it is easier
since we do not need to modulate the scaling parameters cj(t) in Lemma 4.3. In

particular, the term ∼
∑
j c

3/2
j (t) in (4.17) is constant. Lemma 4.6 holds with no

modifications. In order to control the directions Qcj ,β in (4.43), we only use Lemma
4.6, so Lemma 4.7 is not needed. The reader may consult [29] for a detailed proof.

As a consequence of the above estimate, one has, up to a subsequence, and for
all t ≥ Tn0

,

un(t)− ϕc0N (·+ c0N t) ⇀ u0 in H1(R),

un(t)− ϕc0N (·+ c0N t)→ u0 in L2(K),

for all K ⊂ R compact. On the other hand, note that from (1.22) and (1.23) the
function

ũn(t, y) :=
1√
β

(un(t, y − 3c0N t)− ϕc0N (y − 2c0N t)), c0N =
1

9β
,

satisfies the equation (1.23). Arguing as in [29, eqn. (14)], one has the following

Lemma 5.2 (Egorov estimate).
There exists ε0 > 0 such that, for all 0 < ε < ε0, the following holds. There

exists R0 = R0(ε) > 0 such that for all n ≥ n0,

‖un(Tn0
)− ϕc0N (·+ c0NTn0

)‖L2(|x|>R0) ≤ ε. (5.4)

From (5.4) one has that

un(Tn0
)− ϕc0N (·+ c0NTn0

)→ u0 in L2(R),

and by interpolation and (5.3), the convergence is in H1(R). Let U be the unique
solution of (1.1) such that U(Tn0

) = ϕc0N (·+ c0NTn0
) + u0 (cf [37, Proposition 3.1]).

From the uniform H1(R) continuity of the mKdV flow on compact sets of time, one
has

un(t)→ U(t) in H1(R),

for all t ≥ Tn0
. Therefore, ‖un(t) − U(t)‖H1(R) → 0 as n → +∞, for all t ≥ Tn0

.
Finally, passing to the limit in (5.3), we get the desired existence conclusion.

Uniqueness. Using once again the transformation (1.22), and the equation (1.23),
we claim that from [29], one has the following

Lemma 5.3 (Exponential decay).
Let v ∈ ϕc0N (·+c0N t)+C(R, H1(R)) be a solution of (1.1) satisfying (1.26). Then

there exists K,T0 > 0 such that

sup
t≥T0

‖v(t)− ϕc0N (·+ c0N t+ x+N )−
√
β

N−1∑
j=1

Qc0j ,β(·+ c̃jt+ x+j )‖H1(R) ≤ Ke−σ0t.

Using this property, the uniqueness result is just a consequence of the analysis
carried out in [29]. We skip the details.
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Appendix A. Proof of (4.43)

In this section we sketch the proof of (4.43). See e.g. [36] for a detailed, similar
proof. First of all, note that from (4.41), (4.13) and (4.15) one has

F̃(t) =
1

2

∫
R

(z2x + c(t, x)z2 − 3(c− ϕ2
c)z

2 − (2R̃− 3βR̃2)z2),

with c(t, x) given in (4.42).

1. We recall the following well-known result.

Lemma A.1 (Positivity of the Zhidkov functional, see [47, 37]).
There exists λ0 > 0 such that for all z ∈ H1(R), with

∫
R zϕ

′
c = 0, one has

1

2

∫
R

(z2x + 2cz2 − 3(c− ϕ2
c)z

2) ≥ λ0
∫
R

(z2x + z2). (A.1)

2. Let Φ ∈ C2(R), with Φ(s) = Φ(−s), Φ′ ≤ 0 on R+, and

Φ(s) = 1 on [0, 1]; Φ(s) = e−s on [2,+∞), e−s ≤ Φ(s) ≤ 3e−s on R+.

Finally, let ΦB(s) := Φ( sB ).

Lemma A.2 (Localized coercivity, see e.g. [36, 46]).
There exists B0, λ0 > 0 such that, for all B > B0, if z ∈ H1(R) satisfies∫

R
Qcz =

∫
R
Q′cz = 0,

then ∫
R

ΦB(z2x − (2Q2
c − 3βQ2

c)z
2 + cz2) ≥ λ0

∫
R

ΦB(z2x + z2). (A.2)

Note that a similar argument can be followed in order to prove a localization
property for the Zhidkov functional considered in Lemma A.1. We skip the details.

3. Now we perform a localization argument, as in [36]. One has from (A.1),

F̃(t) =
∑N
j=1 Fj(t) + (F̃(t)−

∑N
j=1 Fj(t)), with

Fj(t) :=
1

2

∫
R

ΦB,j(z
2
x+cj(t)z

2−(2Qcj ,β−3βQ2
cj ,β)z2), ΦB,j := ΦB(x+c̃jt+xj(t)),

for all j = 1, . . . , N − 1, and

FN (t) :=
1

2

∫
R

ΦB,N (z2x + 2cz2 − 3(c− ϕ2
c)z

2), ΦB,N := ΦB(x+ ct+ xN (t)).

From Lemma A.2, one has for B large enough,

Fj(t) ≥ λ0
∫
R

ΦB,j(z
2
x + z2)(t, x)dx,
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for all j = 1, . . . , N . On the other hand,

F̃(t)−
N∑
j=1

Fj(t) =

∫
R

(
1−

N∑
j=1

ΦB,j

)
(z2x + c(t, x)z2)

+

N−1∑
j=1

∫
R

ΦB,j(c(t, x)− cj(t))z2 +

∫
R

ΦB,N (c(t, x)− 2c)z2

−1

2

∫
R

(
2R̃− 3βR̃2 −

N−1∑
j=1

ΦB,j(2Qcj ,β − 3βQ2
cj ,β)

)
z2

−3

2

∫
R
(1− ΦB,N )(c− ϕ2

c)z
2

Each term above can be treated following the lines of the proof of Lemma 4 in [36],
and it is proved that for all B large, the above terms can be estimated by

≥ − 1

16
λ0

∫
R

(z2x + z2).

The final conclusion is that for B large enough, but independent of z,

F̃(t) ≥ 1

8
λ0

N∑
j=1

∫
R

ΦB,j(z
2
x + z2) ≥ 1

16
λ0

∫
R

(z2x + z2),

for some λ0 > 0 independent of z(t) and B. Thus the proof of (4.43) is complete.

Appendix B. Proof of some identities

Lemma B.1 (Identities).
Let Qc,β be the Gardner soliton from (1.11). Then one has

(1) Basic identities.

Q′′c,β = cQc,β −Q2
c,β + βQ3

c,β , Q′2c,β = cQ2
c,β −

2

3
Q3
c,β +

β

2
Q4
c,β . (B.1)

(2) Integrals.

β

∫
R
Q3
c,β = −c

∫
R
Qc,β+

∫
R
Q2
c,β , β

∫
R
Q4
c,β = −4

3
c

∫
R
Q2
c,β+

10

9

∫
R
Q3
c,β , (B.2)

and ∫
R
Qc,β =

3

2
β

∫
R
Q2
c,β + 6

√
c. (B.3)

(3) Energy. Let

Eβ [Qc,β ] :=
1

2

∫
R
Q′2c,β −

1

3

∫
R
Q3
c,β +

β

4

∫
R
Q4
c,β .

Then one has

Eβ [Qc,β ] =
2

3β
c3/2 − 1

9β

∫
R
Q2
c,β . (B.4)

(4) Weinstein’s condition. For c < 2
9β ,

∂c
1

2

∫
R
Q2
c,β =

9c1/2

2− 9βc
. (B.5)
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Proof. The first identity in (B.1) is just the elliptic equation for Qc,β , obtained by
replacing in (1.10). The second one follows from the first identity in (B.1), after
multiplication by Q′c,β and integration in space.

On the other hand, the first identity in (B.2) follows after integration of (B.1).
In the same form, the second identity in (B.2) is a consequence of the first identity
in (B.1) and the integration of the second one in (B.1) against Qc,β .

Let us prove (B.3). Note that from (B.1),

(Q′c,β
Qc,β

)′
= −1

3
Qc,β +

β

2
Q2
c,β .

Using the definition of Qc,β from (1.11), and integrating, one gets

−2
√
c = −1

3

∫
R
Qc,β +

β

2

∫
R
Q2
c,β ,

namely (B.3). Now we prove (B.4). From (B.1) and (B.2)

Eβ [Qc,β ] =
1

2

∫
R
Q′2c,β −

1

3

∫
R
Q3
c,β +

β

4

∫
R
Q4
c,β

=
1

2
c

∫
R
Q2
c,β −

2

3

∫
R
Q3
c,β +

β

2

∫
R
Q4
c,β

= −1

6
c

∫
R
Q2
c,β −

1

9

∫
R
Q3
c,β =

c

9β

∫
R
Qc,β − (

c

6
+

1

9β
)

∫
R
Q2
c,β .

Using (B.3), we obtain (B.4), as desired.

Finally, let us prove (B.5). From the definition (1.11), one has

∂cQc,β(s) =
1

c

[
(1 +

9βc

4ρ2
)Qc,β −

3β

4ρ2
Q2
c,β +

1

2
sQ′c,β(s)

]
;

therefore, using (B.2) and (B.3),

∂c
1

2

∫
R
Q2
c,β =

∫
R
Qc,β∂cQc,β =

3

4c

∫
R
Qc,β

[
(1 +

3βc

ρ2
)Qc,β −

β

ρ2
Q2
c,β

]
=

3

4c

[
(1 +

3βc

ρ2
− 1

ρ2
)

∫
R
Q2
c,β +

c

ρ2

∫
R
Qc,β

]
=

3

4c

[
(1 +

3βc

ρ2
− 1

ρ2
+

3βc

2ρ2
)

∫
R
Q2
c,β +

6c3/2

ρ2

]
=

9c1/2

2ρ2
.

�
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