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We compute analytically the full distribution of Andreev conductance GNS of a metal-
superconductor interface with a large number Nc of transverse modes, using a random matrix
approach. The probability distribution P(GNS, Nc) in the limit of large Nc displays a Gaussian be-
havior near the average value 〈GNS〉 = (2−

√
2)Nc and asymmetric power-law tails in the two limits

of very small and very large GNS. In addition, we find a novel third regime sandwiched between the
central Gaussian peak and the power law tail for large GNS. Weakly non-analytic points separate
these four regimes—these are shown to be consequences of three phase transitions in an associated
Coulomb gas problem.

PACS numbers: 75.10.Jm, 64.70.Tg,75.40.Mg

Introduction - Advances in fabrication of mesoscopic
structures has led to a great deal of interest in their elec-
trical and thermal transport properties, from the point of
view of both fundamental questions in the quantum the-
ory of transport, and of device applications [1]. When the
devices are disordered or chaotic, a statistical approach
in which one characterises the phase-coherent motion of
electrons in terms of an ensemble of unitary scattering
matrices S [2–7] and uses Landauer’s description [8, 9]
of transport in terms of the corresponding transmission
eigenvalues {Tn}, has proved very successful. Among
the early successes of this approach was a general and
transparent explanation [2–4] for the phenomenon of uni-
versal conductance fluctuations [1, 10, 11]: the variance
var(G) corresponding to sample-to-sample fluctuations of
the conductance G (measured in units of the conduc-
tance quantum G0 = 2e2/h) of disordered mesoscopic
structures is independent of their size and the disorder
strength, and is determined solely by whether or not
time-reversal (TR) and other symmetries are present.

Within this random matrix approach, the conductance
G of a structure with Nc transverse channels is given as
G =

∑Nc

i=1 Tn, and the fact that its variance var(G) is a
universal O(1) number is then seen to be a natural conse-
quence of strong correlations between the {Tn}—the pre-
cise nature of these correlations is determined only by the
symmetry properties of the relevant ensemble of scatter-
ing matrices. These correlations cause var(G) to become
independent of Nc at large Nc, contrary to expectations
from the usual ‘central limit considerations’ for sums of
a large number of independent random variables.

How do these strong correlations affect the form of the
full probability distributions of various transport proper-
ties, including their large deviations from the mean? This
question is interesting not only because recent experi-
mental advances may make it possible to measure such
distribution functions in some cases [12, 13], but also
because similar questions about the behaviour of corre-

lated random variables have recently surfaced in many
disparate fields with a large number of applications [14].
In spite of this broad interest, there are few results avail-
able along these lines—notable among these are the re-
cent calculations for the full distribution of the conduc-
tance and shot-noise of mesoscopic structures in their
normal metallic state [15–18], and for chaotic structures
with one or two superconducting outgoing channels [19].
In this Letter, we have obtained the full distribution

of the conducance GNS of a time-reversal symmetric nor-
mal metal-superconductor (NS) junction in the limit of
large Nc. Transport across an NS junction is particularly
interesting because an electron incident from the normal
side can be reflected as a hole, with the injection of a
Cooper pair into the superconducting condensate [20].
Incorporating the effects of such processes in the pres-
ence of TR symmetry allows one to write the conduc-
tance GNS (measured in units of G0) of such junctions

as GNS = 2
∑Nc

n=1

(
Tn

2−Tn

)2

, where {Tn} are the trans-

mission eigenvalues of the same junction in its putative
normal state [21]. The conductance GNS thus ranges
from 0 to 2Nc, and its average 〈GNS〉 = (2−

√
2)Nc and

variance var(GNS) = 9/16 ≃ 0.563 are well-known in this
TR symmetric case [6] (see also [22]).
Here we show that P(GNS, Nc) for large Nc has the

scaling form [23]:

P(GNS, Nc) ≈ exp
(
−N2

cR(gNS)
)
, (1)

where the large deviation function R(gNS) is plotted in
Fig. 1 and gNS ∈ [0, 2] is the dimensionless conduc-
tance per channel, gNS = GNS/Nc . A striking conse-
quence of our exact computation of R is the prediction
of a marked asymmetry in the large-deviation asymp-

totics near GNS → 0 where P(GNS, Nc) ∼ g
N2

c /4
NS and

near GNS → 2Nc where P(GNS, Nc) ∼ (2− gNS)
N2

c /2.
Another interesting feature is that the rate function

R(gNS) is piecewise smooth over a domain consisting of
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four distinct regions gNS ∈ ⋃3
j=0[gj , gj+1] glued together

via weak non-analytic points: apart from the asymmetric

large-deviation tails displayed above for gNS near 0 and
2 respectively, and the universal Gaussian behavior

P(GNS, Nc) ∼ exp
(
−(GNS − 〈GNS〉)2/2σ2

)
, (2)

with dimensionless variance σ2 = 9/16 around the mean
〈GNS〉 = (2 −

√
2)Nc, there is a fourth tiny region that

separates the Gaussian central region from the large-
deviation tail near GNS = 2Nc. As we shall demonstrate
below, this is a direct consequence of three phase transi-
tions in an associated Coulomb gas problem.
The Coulomb gas problem - TheNc transmission eigen-

values Tn ∈ [0, 1] are distributed according to the Jacobi
Orthogonal random matrix ensemble [7]:

PT ({Tn}) = ANc

∏

n<m

|Tn − Tm|
∏

n

T−1/2
n , (3)

with ANc
ensuring normalization. The probability dis-

tribution of GNS is given by P(GNS, Nc) =

=

∫

[0,1]Nc

∏

i

dTiδ

(

gNSNc − 2

Nc∑

n=1

T 2
n

(2− Tn)2

)

PT ({Tn}) .

(4)
Changing variables ξn = Tn/(2−Tn) and exponentiating
the δ function leads to P(GNS, Nc) =

=

∫

[0,1]Nc

∏

i

dξi e
−N2

cC1( 1

Nc

∑Nc
n=1

ξ2n−
gNS

2 )
Pξ ({ξn}) ,

(5)

where

Pξ ({ξn}) = ÃNc

∏

n<m

|ξn − ξm|
∏

n

ξ
−1/2
n

(1 + ξn)Nc+1/2
(6)

and C1 is fixed by the saddle-point condition (see below).
While the Nc-fold {ξ} integral (5) can be computed for
any finite Nc in terms of Pfaffians [30], for large enough
Nc one can map (5) to a continuum Coulomb gas prob-
lem. To make this connection, we represent a particular
realization of ξ in terms of a continuum density func-
tion ρ(ξ) = 1

Nc

∑Nc

n=1 δ(ξ − ξn) obeying the normaliza-

tion condition
∫ 1

0 dξρ(ξ) = 1. Originally introduced by
Dyson [24], this procedure has recently been successfully
used in a number of different contexts [25–27].

We may now write the probability distribution
P(GNS, Nc) in this large Nc limit as a functional inte-
gral over the normalized density field ρ,

P(GNS, Nc) = ANc

∫

Dρ exp
(
−N2

c S[ρ]
)
, (7)

where the action S is given by

S[ρ] = C1

(∫

dξξ2ρ(ξ)− gNS

2

)

+ C0

(∫

dξρ(ξ) − 1

)

+

∫

dξρ(ξ) ln(1 + ξ)− 1

2

∫ ∫

dξdξ
′

ρ(ξ)ρ(ξ
′

) ln |ξ − ξ
′ |. (8)

Here, ANc
∼ exp(N2

cΩ0), with Ω0 = (3/2) ln 2 is the
overall normalization factor in this large Nc limit, and
C0 is a Lagrange multiplier enforcing the normalization

condition
∫ 1

0
dξρ(ξ) = 1. We have also dropped contribu-

tions to the action S that are subdominant in the large
Nc limit.

Clearly, (7) can be viewed as the partition function of
a 2-d gas of particles confined on the segment [0, 1], sub-
ject to an all-to-all Coulomb repulsion and sitting in an
external potential V (ξ) = ln(1 + ξ) + C1ξ

2 + C0 at in-
verse temperature N2

c . In this large Nc limit, equilibrium
properties of this Coulomb gas are clearly determined by
the saddle point of the functional integral (7), that corre-
sponds to the minimum energy configuration of the fluid.
Varying the action S with respect to ρ, we see that this

minimum energy density configuration ρ⋆ must satisfy
the integral equation

ln(1 + ξ) + C0 + C1ξ
2 =

∫

ρ⋆(ξ
′

) ln |ξ − ξ
′ |dξ′

(9)

for all ξ in the support of ρ⋆. Differentiating (9) with
respect to ξ we get

2C1ξ +
1

1 + ξ
= Pr

∫
ρ⋆(ξ

′

)

ξ − ξ′
dξ

′

(10)

for all ξ in the support of ρ⋆, where Pr stands for
Cauchy’s principal part.
Finding the solution ρ⋆(ξ) of (10) with the constraints

∫ 1

0 dξρ⋆(ξ) = 1 and
∫ 1

0 dξξ2ρ⋆(ξ) = gNS/2 is the main
technical challenge. The saddle point density ρ⋆(ξ) ob-
tained in this manner then depends parametrically only



3

on gNS ∈ [0, 2], and the required result for the probability
distribution in the large Nc limit is finally given in terms
of the action S evaluated on ρ⋆,

P(GNS, Nc) ≈ exp




−N2

c (S[ρ
⋆]− Ω0)

︸ ︷︷ ︸

R(gNS)




 . (11)

Solution of (9) and phase transitions for ρ⋆ - Singular
integral equations of the type (10) can be solved in closed
form using either Tricomi’s theorem [28] when ρ⋆ has sup-
port on a single interval [L1, L2], or a more general scalar
Riemann-Hilbert method [18, 29] if this assumption is not
valid.
We find that [30]

ρ⋆(ξ) =







ρ⋆I(ξ) for g0 = 0 ≤ gNS ≤ g1, see (13)

ρ⋆II(ξ) for g1 ≤ gNS ≤ g2, see (14)

ρ⋆III(ξ) for g2 ≤ gNS ≤ g3, see (15)

ρ⋆IV (ξ) for g3 ≤ gNS ≤ g4 = 2, see (16)

where g1 ≡ 2 − 19/8
√
2 = 0.320621 . . . , g2 ≡ (968 −

499
√
2 + 102

√
17)/484 = 1.41088 . . . and g3 ≡ 2 − (9 −

√
21)/

√

15(6 +
√
21) = 1.64939 . . . . The emerging phys-

ical picture is as follows. Since 2
∫
dξξ2ρ⋆(ξ) = gNS, small

values of gNS are expected to correspond to a large value
of C1 (the strength of the quadratic part of the confining
potential V (ξ)) and a resulting ρ⋆(ξ) that is concentrated
near the left edge ξ = 0. Making the ansatz that the den-
sity has support on the interval [0, L1] we determine it
by using Tricomi’s formula:

ρ⋆I(ξ) =

(√

L1+1
ξ+1 + C1

4 (L2
1 + 4L1ξ − 8ξ2) + aI

)

π
√

ξ(L1 − ξ)
, (12)

where aI is a constant of integration. We now fix C1, L1

and aI by requiring that ρ⋆I(ξ = L1) = 0, it is normalized
to 1, and has a second moment equal to gNS/2. We obtain

ρ⋆I(ξ) =

√
L1 − ξ

π
√
ξ

(
1

(ξ + 1)
√
L1 + 1

+ C1(L1 + 2ξ)

)

,

(13)

where C1 = 4
3L2

1

√

L1+1
and 1 +

5L2

1
−8L1−16

16
√

L1+1
= gNS/2.

For gNS > g1, L1 becomes greater than 1, invalidat-
ing the solution. This corresponds to a phase transi-
tion in the Coulomb gas: the external potential becomes
weak enough that the density is spread out over the en-
tire available space to minimize the effects of the inter-
particle repulsion. In this extended phase, ρ⋆ has sup-
port over the entire interval ξ ∈ [0, 1] and is obtained
by simply setting L1 = 1 in (12). Fixing the integration
constant and C1, we obtain

ρ⋆II(ξ) =
1

π
√

ξ(1− ξ)

( √
2

ξ + 1
+

C1

4
(1 + 4ξ − 8ξ2)

)

,

(14)

where now C1 = 32
9 (2−

√
2−gNS). For gNS > g2, ρ

⋆
II goes

negative in the middle of its support, thereby invalidating
this solution.
For g2 < gNS < g3, we find that no single support

solution is able to satisfy all the constraints on the equi-
librium density. In this narrow region, the external po-
tential pushes the Coulomb fluid to the right edge ξ = 1
(C1 is negative for these values of gNS) but cannot fully

overcome the effects of the interparticle Coulomb repul-
sion. As a result the Coulomb gas breaks up in this novel
intermediate phase into two spatially disjoint fluids sepa-
rated by an empty region in the middle. More precisely,
we find using a more general Riemann-Hilbert ansatz [30]
that the solution in the regime g2 < gNS < g3 has two
supports, the first on the interval [0, L2], and the second
on the interval [L3, 1], with L3 > L2, with the equilib-
rium density in these two intervals being given by the
formula

ρ⋆III(ξ) =
−2C1

√

(ξ − L2)(ξ − L3)3(ξ +
(L2+3L3+1)

2 )

π
√

ξ(1 − ξ)(1 + ξ)
,

(15)
with L3 related to L2 via the constraint 5− 2L2 − 6L3 −
3L2

2 − 6L2L3 − 15L2
3 = 0, and L2 and C1 being fixed by

normalization and second moment equal to gNS/2 (see
[31] for details).
Finally, as gNS → g3, L2 → 0 and C1 is now large

enough in magnitude and negative in sign, giving way
to a conventional single-support solution on [L4, 1] when
gNS > g3. In this case, Tricomi’s formula along with
normalization condition yields

ρ⋆IV (ξ) =

√
2

π

√
ξ − L4√
1 + L4

1√
1− ξ

×

×
(

4(2ξ + L4 − 1)

(1− L4)(1 + 3L4)
− 1

1 + ξ

)

, (16)

where L4 is determined by
√
2(1− L4)(1− 18L4 − 15L2

4)

16
√
1 + L4(1 + 3L4)

=
gNS

2
− 1. (17)

Inserting the analytical expressions of the densities in
the four phases into the action (8), the rate function
R(gNS) can now be evaluated in terms of elementary in-
tegrals [30]. This is shown in Fig. 1, where we display
R(gNS), along with an inset showing the analytically cal-
culated curves and Monte-Carlo data for the typical form
of the equilibrium density in each of the four phases. Fi-
nally, a straightforward asymptotic expansion of these
results allows us to obtain closed form expressions for
the power-law asymptotics of R(gNS) as detailed in the
introduction.
Summary - In summary, the Coulomb gas formula-

tion of the problem of Andreev conductance distribution
reveals a rich thermodynamic behavior which can be ad-
dressed analytically. Four zero-temperature phases in the
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FIG. 1: The rate function R(gNS) obtained from our large Nc solution is shown along with an inset that displays the form of
the equilibrium density of the Coulomb gas in each regime (analytical formulae in solid black lines and Monte Carlo simulations
in red triangles, see [31] for details). The green dashed lines are fit to the asymptotic forms for the left and the right tails and
the central Gaussian region mentioned in the text. The vertical black dashed lines correspond to the critical points g1, g2 and
g3.

associated Coulomb fluid, dictated by the precise value
of gNS ∈ [0, 2] correspond to as many regions in the rate
function domain within which R(gNS) is smooth. The
central Gaussian region is flanked by long-power-law tails
with a novel intermediate regime corresponding to a dis-
connected support in the Coulomb fluid density. A di-
rect experimental confirmation of our predictions may be
within reach with existing device setups while extensions
to the case of broken TR appear very challenging and are
left as an open question.
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