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Abstract

We present a new framework for defining fuzzy approximations to geometry in
terms of a cutoff on the spectrum of the Dirac operator, and a generalization of
it that we call the Dirac-Flux operator. This framework does not require a sym-
plectic form on the manifold, and is completely rotation invariant on an arbitrary
n-sphere. The framework is motivated by the formalism of Holographic Space-
Time (HST), whose fundamental variables are sections of the spinor bundle over
a compact Euclidean manifold. The strong holographic principle (SHP) requires
the space of these sections to be finite dimensional. We discuss applications of
fuzzy spinor geometry to HST and to Matrix Theory.
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1 Introduction: Holographic Space-time (HST)

HST is an attempt to supply a general formalism for a theory of quantum gravity, which will
reduce to string theory for space-times that are asymptotically AdS or Minkowski, but which
has the flexibility to discuss cosmology, including dS space. The formalism also makes more
direct contact with concepts of local physics. The Strong Holographic Principle (SHP),
introduced by TB and W. Fischler is the assumption that the Covariant Entropy Bound
(CEB) [1–3] implies that the Hilbert space encoding all measurements inside a causal dia-
mond, is finite dimensional, with dimension that approaches the exponential of one quarter
of the area of the holographic screen of the diamond1. The area is measured in Planck units
and the formula is supposed to be only asymptotic for large area. In weakly coupled string
theory, there is a further caveat. Here the Einstein equations break down at a length scale
parametrically larger than the Planck scale and the identification of entropy and area fails
unless the area is large in string units. The SHP combined with the notion of commutativity
at space-like separation, encodes all of the geometrical properties of a Lorentzian space-time
into quantum mechanical statements about operator algebras.

The basic idea is that space-time is only an emergent phenomenon, but that its properties
reflect more basic properties of the underlying quantum theory of gravity. The kinematics
of HST is a net of finite dimensional operator algebras, called diamond algebras A(D), with
specified intersections O(D,D′), which are tensor factors in both A(D) and A(D′). O(D,D′)
represents the set of all quantum measurements, which can be performed in the maximal
area causal diamond in the intersection of the diamonds D and D′. It is clear that specifying
the data in these algebras for a sufficiently rich set of diamonds, in the limit in which
space-time emerges, will determine both the conformal factor and the causal structure of the
Lorentzian geometry, which are thus kinematical properties of the quantum theory, rather
than fluctuating quantum variables. The arguments of Jacobson [4], suggest that Einstein’s

1The boundary of a causal diamond is a null surface, which can be foliated by space-like surfaces. The
holographic screen of the diamond is the space-like surface of largest area. We abuse language and call the
area of the screen the area of the diamond.
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equations for the geometry will be an automatic consequence of the laws of thermodynamics,
in the emergent space-time limit.

The actual quantum variables may be thought of classically as the space-time orientations
of pixels on the holographic screen. Naively, a pixel is a position on the screen, through which
a null ray passes, and the orientation of a bit of d− 2 plane orthogonal to the null ray. This
data is incorporated in the Cartan-Penrose (C-P) equation

ΨγµΨ(γµ)αβΨβ = 0,

which forces the vector bilinear to be null, and the spinor Ψ to be a null plane spinor for
that null ray:

Ψ =
(
0 Sa

)
.

The C-P equation is Lorentz covariant and has a scaling symmetry. These are considered
gauge equivalences. Generically, we may expect them all to be fixed in a unitary formulation
of the quantum mechanics (which is all that we will consider). In fact, the scaling symmetry
is explicitly broken in the quantum theory. However, there is a Z2 subgroup of the scaling
symmetry, which is preserved and ends up playing the role of the (−1)F gauge symmetry
familiar from quantum field theory. The connection between spin and statistics is automatic,
as in Matrix Theory [5].

The strong holographic principle implies that a finite area holographic screen can have
only a finite number of pixels, and that the algebra of variables for each pixel has a finite
dimensional unitary representation. For compactifications to four dimensional space-time,
the quantum commutation relations take the form

[(ψP )Ai , (ψ
† Q)jB]+ = δ

j
i δ

A
BZ

PQ.

The indices i, j run from 1 to N , A,B run from 1 to N + 1, and P,Q run over a basis
of a finite dimensional approximation to the spinor bundle over a compact manifold. We
call this the pixel algebra of the HST model. It must be supplemented by commutation
relations between the ZPQ and the fermionic variables, forming a finite dimensional super-
algebra. The holographic principle implies this algebra must have a finite dimensional unitary
representation. We assume further that the action of the fermionic operators sweeps out the
entire space of states of this representation.

An elegant choice for the finite dimensional approximation, based on A. Connes ideas
about non-commutative geometry, is to put a cutoff on the spectrum of the Dirac operator.
ψ and ψ† are the two chiral spinor bundles over the fuzzy two sphere. ZPQ lives in the bundle
of forms over the compact manifold, fuzzified as the product of two cutoff spinor bundles.
The ZPQ are the analogs of wrapped brane charges in string theory.

In writing this equation, we have used the usual fuzzy quantization of the two sphere,
which uses the space of sections of holomorphic line bundles to define a non-commutative
approximation to the algebra of functions on the sphere and general vector bundles over this
algebra. This is essentially the same as our Dirac fuzzification for the two sphere. We will
show that the Dirac operator enables us to preserve rotation invariance for a space of any
dimension.
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2 The Dirac equation and geometry

Alain Connes [6] has made the Dirac operator the central focus of his metrical non-commutative
geometry. Connes emphasis is on non-commutative geometries with infinite dimensional
function algebras, while we are concerned with finite dimensional non-commutative approxi-
mations to ordinary commutative geometries. For physicists, an easy way to understand the
relation between the Dirac equation and geometry is to think about the short time expansion
of the heat kernel for the square of the Dirac operator

〈x|e−tD2

|y〉 → N t−
d
2 e−

l2(x,y)
4t ,

where d is the dimension of the manifold and l(x, y) the geodesic distance between the points.
The factor N is the number of geodesics of equal minimal length connecting the two points.
This expression is most easily derived from the Feynman path integral representation of the
heat kernel. The short time limit is a semi-classical limit for that functional integral. The
heat kernel thus contains all of the geometrical information about the manifold.

Note that for this expression we need to know not only the spectrum of the Dirac operator,
but also the form of its eigensections in the position representation. Geometers have long
known how to describe the points of a manifold in terms of the algebraic structure of its
algebra of functions. A point is equivalent to the maximal ideal of functions which vanish at
that point. Alternatively, a point defines an algebra homomorphism between the algebra of
functions and the complex numbers (a multiplicative linear functional). Connes shows that
everything that is to be known about a manifold can be encoded in the relation between the
Dirac operator and the algebra of smooth functions realized as multiplication operators on
the Hilbert space of square integrable sections of the spinor bundle. He then proposes an
abstract definition of the Dirac operator for a general non-commutative algebra of operators
on a Hilbert space as the definition of a non-commutative Riemannian manifold.

Our aim is more modest. We simply want to recover the normal commutative geometry of
manifolds as a limit of finite dimensional matrix algebras. This is relatively straightforward.
For most2 compact Riemannian manifolds of dimension d and volume V , the operator V

1
dD

has a spectrum that runs from ∼ ±1 to ±∞. We will define a fuzzy spinor bundle over this
manifold by cutting off the spectrum of this operator via the inequality ||V

1
dD|| < N , where

N is a positive integer. That is, we restrict to the space of eigensections whose eigenvalues
satisfy this inequality. The dimension of this subspace of eigensections is another positive
integer K(N).

The algebra of K(N)×K(N) matrices is realized as a set of integral kernels

Mαβ(x, y) =
∑

Mijψ
∗ i
α (x)ψj

β(y),

on the full spinor bundle. In the limit N → ∞, we restrict attention to matrices which
produce kernels of the form

∑
Mijψ

∗ i
α (x)ψj

β(y) → fαβ(x)δ(x, y),

2To quantify the notion of most, we have to think about a moduli space of Riemannian manifolds satisfying
some equations. Such moduli spaces have a natural metric on them, and although non-compact, the moduli
space has finite volume. This means that extreme values of the moduli are “non-generic”. Our statement
will be valid in a region of moduli space that contains a large fraction of the total volume.
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where δ(x, y) is the Dirac distribution on the manifold. fαβ belongs to the algebra of dif-
ferential forms with Clifford multiplication, rather than the standard Grassmann product.
The Clifford multiplication of course depends on the metric. With appropriate restrictions
on the limiting form ofMij we can get measurable, continuous, or smooth differential forms.

2.1 Moduli

If we have a moduli space of manifolds, then the eigenvalues and eigensections of the Dirac
operator depend smoothly on the moduli. However, the spirit of non-commutative geometry
and fuzzy geometry in particular is that the algebra determines the geometry. In the standard
geometric quantization of the two torus, we can see that this leads to a discretization of
moduli space. A square fuzzy torus is defined by the algebra of all N ×N matrices, written
in terms of generators U, V satisfying

UN = V N = 1,

UV = e
2πi
N V U.

The area of this torus in Planck units is ∼ N2. If N has a factor k, we can get a rectangular
torus by restricting attention to the subalgebra generated by Uk and V , and a similar re-
striction produces tilted tori as well. But we only get a rational set of moduli in this manner.
Continuous moduli arise, like longitudinal momenta in Matrix Theory [5] and HST, as ratios
of integers, both of which are taken to infinity.

For spinor fuzzification we consider the Dirac operator with periodic boundary condi-
tions3. A general 2-torus is determined by a parallelogram, parameterized in terms of three
real numbers (a, b, c) with 0 < c < a. a is the length of the horizontal segments, and b the
vertical separation between them. c determines the tilt of the parallelogram. The eigenvalues
and eigensections of the Dirac operator with periodic boundary conditions are determined
by a two vector p = (p1, p2) with

p1 =
2πn

a
p2 =

2πm

b
−

2πnmc

ab
.

The eigenvalues are ±|p| and the eigensections are

ψ±e
ip·x,

where ψ± are the two eigenspinors of σ1p1 + σ2p2.
Fuzzification consists of choosing integer valued moduli a = N , b = M , c = k ≤ N

and cutting off the values of m and n. Two natural cutoffs are n ≤ N , m ≤ N , and(
n
N

)2
+
(
m
M

− knm
MN

)2
< K2, for some integer K. The first is similar to the kind of cutoff one

gets from Kahler quantization, while the latter conforms to our general idea of just bounding
the spectrum of the Dirac operator. ForK of order 1, both methods give a number of sections
of the spinor bundle that scales like MN , which is proportional to the area of the torus. If

3The implications of different spin structures for our program seem interesting, but we have not understood
them.
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we make the independent sections into independent generators of a quantum superalgebra,
then the entropy of the torus will be proportional to its area.

More generally, the large eigenvalues of the Dirac equation on any smooth compact
manifold are approximately like plane waves and their degeneracy grows like PD, where P
is the eigenvalue cutoff and D the dimension. Thus, the number of independent sections
grows like the volume of the manifold in Planck units. Since this compact manifold is
the holographic screen of a Lorentzian manifold in the HST formalism, this is precisely
the right Bekenstein-Hawking entropy in the general case. That is to say, the entropy per
four dimensional pixel (fixed value of i and A) will, for compact dimensions large in higher
dimensional Planck units, be proportional to the volume of the internal dimensions. This is
the conventional Kaluza-Klein relation between the four dimensional and higher dimensional
Planck scales.

It is easy to work out the spinor fuzzification of a general torus, and we will do a general
sphere in the next section. The procedure is straightforward for any manifold for which one
can work out the eigenvalues and eigensections of the Dirac equation. The tensor product
relation between spinor bundles and the bundles of differential forms imply that some of the
topological features of the manifold are encoded in zero modes of the Dirac equation. This
is familiar from the Atiyah-Singer Index theorem and its generalizations. In particular, if
we have a covariantly constant spinor, Dµψ0 = 0, then it is also a zero mode of the Dirac
equation. The non-vanishing differential forms

ψ0γµ1...µk
ψ0,

where the matrices are the k-fold anti-symmetrized product of tangent space Dirac matrices,
contracted into the vielbein, are all elements of the cohomology of the manifold. This part
of the topological information about the manifold is preserved by spinor fuzzification. Note
that this is a bit different than Kahler fuzzification, where the information that is kept is a
cutoff version of the Picard group and the dimensions of spaces of sections of holomorphic line
bundles, as well as information about the complex structure. It is peculiar though that not
all of this information is invariant information about the finite dimensional matrix algebra.
For example the fuzzy square torus and the fuzzy sphere have the same algebra, and in some
sense are distinguished only by the choice of a basis in this algebra (spherical harmonics vs.
powers of clock and shift operators) and the way in which expansion coefficients in these
bases behave in the large N limit.

We believe that the lack of some explicit topological information about the manifold in
fuzzy quantization is at the root of string dualities. Highly supersymmetric compactifications
of string/M theory to asymptotically flat space-times are often characterized by moduli
spaces of classical background geometries. The use of classical backgrounds that are solutions
of some low energy effective field theory always implies that we are working in a limit where
some length scale is much larger than the Planck scale4. We’ve seen that in such limits,
the discrete moduli spaces of fuzzy compactification give rise to continuous ratios of large
integers5. The notion of continuous moduli spaces is conceptually wrong, but valid to all

4This can be a geometric length scale in the compactification manifold or the Compton wavelength of
some quantum excitation.

5For example, in Kahler quantization, the Kahler moduli have to do with the direction in the Picard
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orders in expansions in LP

LLarge
. String duality relations are derived in terms of constraints on

low energy Lagrangians in two different limits, which have the same SUSY algebra.
In HST, the SUSY algebra arises in the limit of large causal diamonds in the non-compact

space, with the discrete internal moduli fixed. In that limit, the pixel algebra generators
become distributions, (ψP )Ai → ψKδ(Ω,Ω0) and the anti-commutation relations become (for
4 dimensional asymptotically flat space)

[ψK , ψ†L]+ = PZKL.

Recall that K and L label a finite dimensional basis of the space of Dirac eigensections on
the internal manifold, with eigenvalue less than some bound. P is a positive real number. It
arises as follows. We take the N characterizing the maximal spherical harmonic in the pixel
algebra to infinity, obtaining wave functions localizable on the sphere, which deserve to be
called particles penetrating the holographic screen. Now we can do this in block diagonal
matrices of size Ni → ∞, with Ni

Nj
fixed, obtaining continuous longitudinal fractions. We now

view these fractions as ratios of dimensionfull momenta, and P is that momentum. If the
internal manifold has a covariantly constant spinor, then we smear the distributional pixel
algebra generators with conformal Killing spinors on the two sphere and pick K,L to both
be the zero mode, we get the N = 1 SUSY algebra with 4-momentum Pµ = P (1,±Ω0)

6.
The pixel SUSY algebra will have scalar charges corresponding to BPS states if the

theory has larger supersymmetry or more non-compact dimensions. However, if the internal
manifold has finite volume in Planck units7 then the eigenvalues of the charge operators are
bounded. It’s easy to see that the bound corresponds to the point at which a state of that
charge has a mass larger than the 4D Planck mass, so that it is really a black hole. Such black
holes can be made in particle collisions. It is only in extreme limits of the discrete moduli,
where the dimension of the pixel algebra goes to infinity, that we can describe “all” of these
black hole states as elementary objects like D-branes or Kaluza-Klein modes of compactified
particles. Indeed, such limits are always characterized by a small dimensionless parameter
g2 and the non-gravitational nature of the states is only valid for values of charge less that
some inverse power of g2.

The upshot of this discussion is that we know how to describe SUSY algebras and BPS
states in the HST formalism. A dual string pair corresponds to taking two different limits of
the discrete parameters that characterize an HST compactification, namely the pixel algebra.
We can follow states between the two limits by following their conserved charges. In the
two limits, the moduli become continuous parameters and we can use the usual arguments

group in which we take fluxes to infinity at fixed ratio. Complex structure moduli have to do with choices
of subalgebras of the algebra of all N ×N matrices in the space of sections of the holomorphic line bundle
corresponding to the chosen Picard group element. We’ve seen in the example of the two torus, that such
sub-algebras are characterized by rational fractions k

N
, where k is a divisor of N . These parameters become

continuous as N → ∞. The example of tori shows how a similar phenomenon arises for spinor fuzzification.
The number of Dirac eigenvalues below some bound is an integer, and jumps at discreet points in torus
moduli space. We can cover all possibilities in the N → ∞ limit, by choosing rational values for the moduli
with a maximum denominator of order the bound N .

6 The ± ambiguity arises from a reflection ambiguity in the conformal Killing spinor equation. It has to
do with incoming and outgoing particles, and we will not discuss it further.

7Translation: the representation space of the pixel algebra has finite dimension for fixed N .
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to compare the dual formulations of the theory. One of us (TB) has been guilty on many
occasions of saying that dualities proved that there were lengths smaller than the Planck
scale in string theory (since e.g. the weak coupling IIA string limit is a zero radius circle in
M-theory). This argument is specious. Every calculable limit of string moduli space, as well
as limits like F-theory, which are only partially calculable, depends on having a length scale
much larger than the Planck scale of the non-compact dimensions, defined by the Einstein
frame Lagrangian. The expansion parameter is always a power of this ratio of scales. This is
the reason that the constraints of the Holographic Principle and the fundamentally discrete
nature of moduli are not apparent in these expansions.

The discreteness of moduli has profound implications for cosmology. Much of the litera-
ture on string inspired cosmology, including many papers written by one of the authors (TB),
uses moduli fields as ingredients in an inflationary cosmology. Coherent fields are, from the
HST point of view, an approximate way of describing states with many particles. However,
the particle horizon at early times is small, and the HST formalism only admits a finite num-
ber of particles in such a region. The entropy of the particle horizon in a pre-inflationary
era is roughly

S =
K

ρ
∼ N2VI ,

where K is a geometrical factor that depends on the details of the early history of the
universe, and ρ is the energy density in Planck units. VI is the number of independent
sections in the fuzzy spinor bundle over the internal space, and N2 is the number of spinor
harmonics on the fuzzy two sphere. When we make multi-particle states using the HST
variables, the number of particles scales like N1/2 if we require the particles to be roughly
localizable8. For unification scale inflation we have S ∼ 1012 at most. Thus, the number of
particles is of order

103V
− 1

4
I .

Thus, the VI → ∞ limit in which the internal geometry has approximately continuous mod-
uli, conflicts with the requirement that four dimensional field theory be a good approximation
to the dynamics of the inflaton. The term cosmological moduli is, within the HST formalism,
an oxymoron.

2.2 Flux compactifications

There has been a lot of interest over the past decade in compactifications of string theory
characterized by fluxes of p-form gauge fields through non-trivial p-cycles of the compactifi-
cation manifold. We would like to conjecture that the corresponding HST compactification
is obtained by replacing the Dirac operator by the flux Dirac operator

DF = D +
∑

F
(p)
i Γp,

where F
(p)
i are the fluxes and Γp the antisymmetrized product of Dirac matrices, contracted

into the vielbein. Spinors that are covariantly constant with respect to a generalized connec-
tion, depending on the fluxes, will give zero modes of DF , which can be used to construct

8In order to use the conventional field theory calculation of inflationary fluctuations, we have to consider
particles that are localizable on a scale much smaller than the horizon.
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SUSY generators as above. The qualitative features of the above discussion of spinor fuzzifi-
cation, are unchanged by the addition of fluxes. More quantitative details of this conjecture
will be addressed in future work.

3 Fuzzy spheres in any dimension

The eigenvalues and eigen-sections of the Dirac operator on the n-sphere have been worked
out, for example, in [7]. For n even the eigenvalues are9

±(M +
n

2
),

where M is a non-negative integer. The degeneracy of this eigenspace is

Dn(M) =
2

n
2 (n+M − 1)!

M !(n− 1)!
.

The eigensections are given in terms of Jacobi polynomials. For n odd we have eigenvalues

±(M +
n

2
),

with degeneracy

2
n−1
2 (n+M − 1)!

M !(n− 1)!
.

In both cases, the largeM behavior of ΣM ≡
∑

m≤M Dn(m) scales likeMn, so an eigenvalues
cutoff on M combined with a finite dimensional representation of the quantum algebra of
variables in the spinor bundle, will have an entropy with this scaling. This suggests that M
be interpreted as proportional to the radius of the sphere in Planck units.

The maximal entropy of massless particles in a region of size R in d − 1 dimensional
space, subject to the constraint that they do not collapse to form a black hole with radius

∼ R, scales like R
(d−1)(d−2)

d . Now imagine that our spinor bundle variables are arranged in a
K×L matrix, with K ∼ L ∼M

d−2
2 . We again try to associate particles with blocks that are

roughly P ×P in size. The entropy of the factor Hilbert space generated by just those block

variables is of order PM
d−2
2 . Thus if P ∼M

(d−2)2

2d and M ∼ R in Planck units, we reproduce
the particle entropy formula coming from black hole physics. The formula for P shows that
P 2 can be interpreted as the dimension of the fuzzy spinor bundle on the d− 2 sphere, with
eigenvalue cutoff M∗ ∼ M

d−2
d . This generalizes the M

1
2 cutoff found in [8]. Following that

reference we interpret this as the cutoff on the size of the longitudinal momentum p(1,Ω) in
units of the inverse radius 1

MMP
of the causal diamond.

In the four dimensions the individual K, L, or P dimensional factor spaces carry irre-
ducible representations of the rotation group. We have not found an analog of that factor-
ization for general d. However, the formalism is completely rotation invariant, because the
spaces of K × L and (roughly) P × P matrices are all spinor bundles with an eigenvalue
cutoff for the Dirac operator. Thus, the variables of our quantum theory, both the full causal
diamond algebra, and the sub-algebra that describes particle-like excitations, transform as
representations of the Rotation group Spin(d− 1).

9We have multiplied the Dirac operator of [7] by i, to make it Hermitian.
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4 Applications to Matrix Theory

Matrix theory is an approach to a non-perturbative construction of certain super-Poincare
invariant models of string/M theory. It should be thought of as a discrete light-cone quanti-
zation (DLCQ) of the underlying theory, in which only particle states with discrete, positive
longitudinal momenta are kept and the total longitudinal momentum is restricted to be a
positive integer N . An elegant derivation of the Matrix Theory prescription from perturba-
tive string theory has been given in [9], following work of [10, 11]. One realizes the compact
null direction as an infinite boost of a small space-like circle and uses the duality between
M-theory and IIA string theory to claim that the positive momentum states are all D0-
branes. The light front theory needs the non-relativistic D0 brane action, and with enough
SUSY, this is completely determined. For four or fewer compact dimensions, preserving at
least 16 supercharges, the resulting theory is a well-defined quantum field theory. From the
string theory point of view, the dimensions of the compact space are small in string units,
if they are O(1) in 11 dimensional Planck units, so we must do T-duality transformations
(Fourier-Mukhai transformations in the case of K3 manifolds), to get to a frame where the
physics is well understood.

For five dimensions one has to deal with the poorly understood Little String Theories
[12] and for six or more compact dimensions that dual theory appears to require quantum
gravity and does not achieve the objective of reducing quantum gravity to a non-gravitational
problem. One of the present authors (TB) has emphasized before [13] that, although the
Seiberg prescription is elegant and allows us to use results of perturbative string theory,
there is no such thing as a unique DLCQ of M-theory. DLCQ is an approximation method,
and any approximation that gets the right results in the N → ∞ limit is acceptable. Fuzzy
geometry will enable us to define M-theory for all supersymmetric compactifications in terms
of the large N limit of a finite matrix quantum mechanics.

The matrix Lagrangian for Matrix Theory in 11 non-compact dimensions is

L = Tr
[ 1

2R
Ẋ2 − θT θ̇ −

R

4
[X i, Xj]2 −RθTγi[θ,X

i]
]
.

X i is a 9 = 11 − 2 dimensional real transverse vector of N × N matrices and θ is an
N × N matrix of 16 component real Spin (9) spinors, on which the Dirac matrices γi act
in the usual fashion. The U(N) symmetry of the Lagrangian is a gauge symmetry, and the
Super-Galilean group of the light front frame acts on the gauge invariant subspace of the the
Hilbert space of this theory. The Lagrangian is written in 11 dimensional Planck units and
the dimensionless parameter R is the radius in Planck units of the null longitudinal circle,
which determines the quantization of longitudinal momentum. The Hamiltonian is simply
proportional to R. In these units, the total momentum is N . The claim is that as N and R go
to infinity at fixed ratio, the states which remain at finite energy are simply supergravitons
in flat 11 dimensional space-time, and the scattering matrix of those excitations along the
flat directions of the quantum potential approaches the S-matrix of 11 dimensional quantum
supergravity, for all momenta.

When we compactify Matrix Theory on a torus, following Seiberg’s prescription, the
XI for the compact directions become covariant derivatives in a U(N) gauge theory on the
T-dual torus. θ, for each value of the non-compact spinor index, becomes a section of the
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tensor product of the spinor bundle over the T-dual torus, with the principal U(N) bundle.
Similarly, when we compactify Matrix Theory on a K3 manifold, four of the XI are re-
placed by covariant derivatives on the Fourier-Mukhai dual K̃3. The result is the U(N)(2, 0)
six dimensional CFT, which is the unique maximally supersymmetric UV completion of 5
dimensional SYM, compactified on S1 times K̃3 [14].

Our proposal for Matrix Theory compactification is to take the original Seiberg proposal,
which naively takes the theory to a SYM theory on the dual of the compactification mani-
fold, and replace that manifold by its spinor fuzzification. Thus, the XI become covariant
derivative operators in a bundle of N2 spinor fields over the manifold10, with a cutoff on the
Dirac eigenvalue that is related to the size of the dual compactification manifold in Planck
units. Each non-compact component of θa is a section of this bundle. Each non-compact
XI is a function on this manifold. That is to say, it is in the tensor product of the algebra
of N ×N matrices, with the 0-form subalgebra of the Clifford algebra of forms on the fuzzy
manifold.

According to this proposal, Matrix Theory compactification in any dimension is a su-
persymmetric quantum mechanics of finite dimensional matrices. The only issue one has to
deal with is whether the large N limit (with the size of the compact spinor bundle fixed)
defines a finite, super-Poincare invariant S-matrix. This prescription is even applicable to
G2 compactification, or compactification on a 7-torus. Indeed, it even allows us to define a
finite N version of compactification on 8 or 9 dimensional manifolds. Presumably, in those
cases, the large N limit of the scattering matrix fails to exist. We hope to come back to
some examples of finite Matrix Theory compactifications in a future publication.

One question left open by this proposal is what we mean by “dual” in the general case.
For tori and K3 manifolds this is clear. The authors of [15] suggested that for CY 3-folds
the relevant duality is mirror symmetry. Indeed, the problem Seiberg solved with T-duality
was that the description in terms of D0-branes on the original manifold had a manifold
whose size shrank to zero in string units. The string perturbation expansion breaks down,
and sometimes the duality tells us how to describe the resulting limit in an exact way. The
mirror dual of a zero volume CY 3-fold is a CY 3-fold at its conifold singularity. In fact, our
discussion of fuzzy compactification and the holographic principle suggests that when the
size of the manifold is of order 1 in Planck units, the approximation of continuous moduli
breaks down. The manifold and it’s mirror dual are just two different O(1) values of the
discrete moduli.

Greg Moore has suggested to us a strategy which would obviate the need for formulat-
ing a precise notion of dual to every compactification manifold. In all known examples,
the Dirac-Ramond operator, with supersymmetric boundary conditions, has a spectrum in-
variant under dualities of string theory that preserve gS = 0. An eigenvalue cutoff on the
Dirac-Ramond operator, again leads to a finite dimensional spinor bundle, so perhaps this
could be used as a definition of fuzzy compactifications of Matrix Theory.

10In the Matrix Theory Lagrangian, we recognize that the compact XI are the tangent space components

of covariant derivatives, eµaDµ, so that the flat scalar product is all that is necessary.
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5 Conclusions

The Strong Holographic Principle implies that a finite area holographic screen corresponds
to a finite dimensional approximation to the spinor bundle over the screen. Defining this ap-
proximation by a sharp cutoff on the spectrum of the Dirac operator, preserves all isometries
of the manifold, as well as SUSY. It gives a rather precise definition of compactifications of
the holographic space-time formalism, as well as compactifications of Matrix Theory. The
latter always correspond to a quantum system with a finite number of variables. The only
question that arises is whether the large N limit of the Matrix Theory scattering matrix
converges to a Super-Poincare invariant answer.
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