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A solvable model of fracture with power-law distribution of fragment sizes

Ken Yamamoto and Yoshihiro Yamazaki
Department of Physics, Waseda University, Tokyo, Japan

The present letter describes a stochastic model of fracture, whose fragment size distribution can
be calculated analytically as a power-law-like distribution. The model is basically cascade fracture,
but incorporates the effect that each fragment in each stage of cascade ceases fracture with a certain
probability. When the probability is constant, the exponent of the power-law cumulative distribution
lies between —1 and 0, depending not only on the probability but the distribution of fracture points.
Whereas, when the probability depends on the size of a fragment, the exponent is less than —1,

irrespective of the distribution of fracture points.

PACS numbers: 02.50.-r, 46.50.4a, 05.40.-a

Fracture and fragmentation are ubiquitous in nature,
and the comprehension and control of fracture are very
important not only in science and engineering but in
our daily lives. Numerous experiments have confirmed
that fragment size distributions mainly follow power-law
distributions ﬁ], but other types, including lognormal
distributions ], have been also observed. From a the-
oretical point of view, various models have attempted
to derive power laws ﬂ@], but there seems to be no
decisive model which briefly and analytically explains a
power-law distribution of fragment sizes without using
specific breaking mechanisms. Some stochastic models
] can successfully provide power-law distributions,
but they cannot be applied directly to fracture phenom-
ena.

A lognormal distribution of fragment sizes can be ex-
plained by a quite simple model of cascade fracture ﬂﬂ]
In this model, one rod of length L breaks into two frag-
ments at a randomly chosen point, and each of the two
fragments again breaks into two sub-fragments, and so on
(see Fig. [ (a)). The length of one of the fragments af-
ter the n-th stage of fracture is expressed as &€ -+ - &, L,
where &1, &o, - -, &, are random numbers between 0 and
1. This process is referred to as ‘multiplicative’, because
the length of a fragment is given by multiplying the pre-
vious length by &;. Assuming that &, - - , &, are indepen-
dently and identically distributed, and that the variance
of log &; is finite, one can prove by the central limit theo-
rem for log &; that the fragment size distribution exhibits
a lognormal distribution when n > 1.

In the present letter, we slightly modify the above mul-
tiplicative model of cascade fracture so that the resulting
fragment size distribution becomes power-law like.

Our model also starts with one rod of length L, and
fragments repeatedly break into two sub-fragments. A
fracture point is given by a random number ¢ € (0,1)
drawn from a probability density function g(£). The
difference from the above simple multiplicative model is
that each fragment ceases fracture with a constant prob-
ability p, which we call the “stopping probability” (see
Fig. [ (b)). Whether each fragment stops fracture or
not is determined independently; once a fragment ceases
fracture, it never restarts fracture any more, and we call

such a fragment “inactive”.

In order to analyze this model, we focus on the cumu-
lative number Np(z) of fragments, which represents the
expected number of fragments larger than x. The initial
length L of the rod is specified as a parameter. Np(x)
satisfies the following equation.

Ni(z) = (1 p) / {Net(2) + No_ern(2)} g(€)de + p.
(1)

The first term (integration) at the right hand side repre-
sents that the initial rod breaks into two fragments of the
lengths £L and (1 — &)L with probability (1 — p), and the
last term represents that the initial rod becomes inactive
with probability p.

If we rescale our length scale by a factor a(> 0)
and observe fracture processes, the length of the initial
rod is aL in the new scale, and the cumulative number
Np(z) corresponds to Ny (ax). This seeming difference
is just brought by rescaling, so we have a scaling relation
Nor(ax) = Np(z) or Nop(x) = Np(x/a). Using this
relation to convert all subscripts in Eq. () into L, and
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FIG. 1: (a) The simple model of cascade fracture, where the
fragments at each stage break into two sub-fragments. The
resulting fragment size distribution is a lognormal one. (b)
Our proposed model, which is similar to (a) except that each
fragment ceases fracture with a constant probability p.
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in order to eliminate the last term “p” in Eq. (D), we
obtain a homogeneous equation of Ny :

Nya)=(1-p) | 1 {NL (g) LRy (li_g)}g@de

We assume a power-law form Ny (z) = Cz—#, where C
and (> 0) are both independent of . Then, we have

1
(1 p) / (11—} ge)de=1.  (3)

The exponent § is determined by this equation; hence 3
generally depends on both p and ¢g. Furthermore, it is
natural to assume that the fracture is left-right symmet-
rical if a rod is uniform, that is, g(¢) = g(1 — &) for any
€ € (0,1). This condition simplifies Eq. (3] to

21— p) /0 £9g(€)de = 1. (4)

We finally determine the coefficient C'. By the defi-
nition of the cumulative number, N (L) is the expected
number of fragments larger than L, and it is equal to
the probability with which the initial rod ceases fracture.
Thus, Ni(L) = p. On the other hand, Np(L) = CL™#
is immediately obtained. Therefore, it follows by Eq. ([2)
that

_2p(1—0p)

c=""_"18
1-2p

Eventually, the complete solution is

2p(1 = p) B,.—8 P
Np(z)= 2" Plpp,—6
@) = e -

- 1—p2p {2(1_”) (%)_ﬂ_l}’

coupled with Eq. (B]) for the determination of 8. Note
that Ny, is an exact power law, but Ny, is not exactly be-
cause of the presence of the second term “—1”. Nonethe-
less, N (z) can be approximated by a power law if the
second term is negligible, i.e., 2(1 — p) > (z/L)?, or if ©
is sufficiently smaller than L and p is also small.

The solution 8 of Eq. @) or @) cannot be expressed
explicitly for general probability density g. We provide
two examples of calculations of 5. The mathematically
simplest instance is g(§) = (£ — 1/2), where § is the
Dirac delta function. In other words, the fracture points
are at the middle of the fragments. Equations @) and
(@) in this case are both reduced to

2(1-p)- (%)ﬁ =1,

and the solution is 8 = 1+ log(1 — p)/ log 2.

In the second example, the fracture point is distributed
uniformly over each fragment, i.e., g(§) = 1 for all £ €
(0,1). Equation ({#]) becomes

1

e
1+ 5

1
2(1-p) [ g =21-p) ,
and the solution is 8 =1 — 2p.

Both in these two specific examples, 8 = 1 + log(1 —
p)/log2 and 8 =1 — 2p, the possible ranges of 8 and p
are restricted by each other: p < 1/2 follows from 8 > 0,
and 8 < 1 follows from p > 0. Namely, the reasonable
value of the stopping probability is 0 < p < 1/2 and the
possible value of £ is within 0 < 8 < 1.

The same restrictions for p and 8 also hold for a gen-
eral probability density g. For a fixed g, we consider
FB) == [y {€° + (1 -6} g(€)d¢, which is defined at
least in 8 > 0, and continuous and differentiable. Clearly,
Eq. (@) is expressed as f(8) = 1/(1 — p). Using the
normalization fol g(§)d¢ = 1, we have f(0) = 2 and
f(1) =1 for any g. Hence, the intermediate value the-
orem in elementary calculus insures that the equation
f(B) = 1/(1 — p) has at least one solution g € (0,1) if
1<1/(1—p) <2 (or0<p<1/2). On the other hand,
f(B) is decreasing because

d
dB

therefore the correspondence between § and p is one-
to-one, i.e., 8 can be determined wuniquely for given p.
Positivity p > 0 holds in 8 < 1, and 8 > 0 holds in
1/(1 —p) <2 (or p < 1/2). See Fig. Pl for the reference
of the analysis.
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FIG. 2: The structure of Eq. (@).
B € (0,1) exists for any p € (0,1/2).

The unique solution

Figure B shows numerical results of Nj,. The parame-
ters are L =1, and p = 0.1,0.2,0.3,0.4. The probability
density g for the fracture points are g(§) = 6(§ — 1/2)
in (a) and ¢g(§) = 1 in (b). We limited fracture to 20
stages at the maximum, and we counted only the inac-
tive fragments. Each plot is the average of 1000 sam-
ples. An exact power law Ny, is also shown with black
lines. Power laws fail in larger fragment sizes, as men-
tioned above. In the panel (b), the cumulative numbers
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FIG. 3: Numerical result of cumulative number Ny (z) for
L =1, and p = 0.1,0.2,0.3, and 0.4, generated by counting
only the inactive fragments within 20th stage of cascade, and
averaging 1000 samples each. Each straight line indicates
the corresponding Ny that follows an exact power law. The
fracture points are (a) at the middle of the fragments g(¢) =
0(x — 1/2), and (b) distributed uniformly g(§) = 1.

also deviate largely from power laws in smaller sizes be-
cause the number of fracture steps is bounded: some long
fragments are still active after the last fracture stage in
the simulation, and they will contribute to raising of the
number of small fragments if fracture is continued.

It is noted that there have been many experimental re-
sults of 8 > 1, but the above model provides only 8 < 1.

Np(z

ZP
= Zp(fl
n=0

Thus, N ax(x) ~ oY N x(z) is derived for x > A and
a > 0. We guess a power-law form N, \(x) = Cax ™7,
and substitute into Eq. (@) together with two scaling
relations, which yields

1
/0 (697 1 (1 6)P ) g(e)de = 1.

This equation can be solved immediately as 8 = 1 + 7,
where we note the normalization fol g(&)dé =1. > 1is

&L > ) {1 = pA(L)H1 = pa(&L)} -+

&L > 1) (51 L )Vo()ﬂ.

Here we modify the model in order to realize § > 1. Re-
calling the above analysis, we have treated the stopping
probability as a constant value p. Instead, we set here the
stopping probability as a function of a fragment size. In
particular, we give the stopping probability of a fragment
of size { as

A\
m(é)—{(f) sy (5)

where A is a characteristic length and v > 0 is a con-
stant. It represents an effect that smaller fragments are
more difficult to experience further fracture. Obviously,
a fragment becomes inactive whenever its size becomes
smaller than A, hence the parameter X is the lower bound
of the fragment sizes. We employ the assumption A < L
in the following analysis.

As above, the cumulative number Ny, »(z), including
two parameters L and A this time, plays an important
role in the following analysis. In the same way as Eq.
@), Ny satisfies the following equation.

NLﬁ)\(:E)

{1 (%)} / (Nepa(®) + Naoena(@)) 9(€)de
~(z)
:/01 {Nera() + Noopa(@)} 9(€)de, (6)

where we used the approximation A/L ~ 0. (the symbol
“~" is used only in this sense.)

A scaling relation Nyr ox(ax) = N A(z) is again ob-
tained. We need another scaling relation for the analysis.
By the definition of the cumulative number,

{1=pr(& & L)}-pa(&a---&al)

attained because v > 0. A remarkable point is that the
exponent 8 = 14y is universal over any probability den-
sity g governing the fracture points. (Compare with the
case of a constant stopping probability, where 5 depends

on g.)

The coefficient C' is A7 L, derived from the consistency
of two expressions Ni(L) = CL™# = CL=0*" and
Nr(L) = pA(L) = (A/L)7. Finally, the complete solu-
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FIG. 4: Numerical results of N, for L = 1. The parameter values of the stopping probability are A = 107 and v = 0.5, 1,
and 1.5. Each data set was generated by averaging 1000 samples. Solid lines indicate the corresponding solutions (7). The
probability densities for the fracture points are respectively g(§) = §(£ — 1/2) in (a), and g(§) =1 in (b).

tion is expressed as

M\ -0+
— '+ — [ 2 had
Npa(z) = NLa (L> (L) .

The calculation is based on x > A; consequently, this
solution probably breaks down if z < .

Numerical results are shown in Fig. [ where we set
L =1 and A = 107%. Numerically-generated cumulative
numbers clearly lie on the power-law solution (solid line)
over a wide range of larger fragment sizes. Also, the
data points deviate from the power laws in a fragment
size close to or less than A, as expected theoretically.

One can straightforwardly extend the model so that
each fragment breaks into n subfragments at a single frac-
ture, where n can be either a fixed or random number.
A fragment size distribution in this case is again like a
power law; the exponent (8 is less than 1 under a con-
stant stopping probability, and 8 = 1+ ~(> 1) under the
stopping probability as in Eq. (@). A special case like
the Sierpinski fractal is found in Refs. [15, [16] without

pointing out the sensitivity of 8 against g.

Our model claims that a lognormal and power-law dis-
tribution are similar; the difference is whether the stop-
ping probability exists or not. Their similarity has been
supported experimentally. A fragment size distribution
qualitatively changes according to impact energy [17] (or
falling height |18]): it exhibits a lognormal distribution
under lower energy, and a power-law distribution un-
der higher energy. These results imply that a lognormal
distribution and a power-law distribution can possess a
common origin. Furthermore, the proposed mechanism,
where a multiplicative stochastic process with random
stopping produces a power-law distribution, is quite sim-
ple and general, so it will be applicable to other systems
than fracture.
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